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Abstract (250 word max) 

Aim: Individuals who require manual wheelchairs after stroke are typically taught to ambulate 

with compensatory propulsion (i.e. using their nonparetic arm and foot), risking disuse of the 

paretic arm. We investigated whether stroke survivors can instead ambulate in a bimanual, lever-

driven wheelchair that requires the paretic arm to contribute half the propulsive input.  

Methods: Seventeen individuals with chronic stroke and severe hemiparesis (upper extremity 

Fugl-Meyer scores between 10 and 24) participated across two experiments. In the first experiment 

participants (n=12) ambulated in straight paths. In the second experiment participants (n=12) also 

performed turns, using an improved version of the wheelchair that incorporated handbrakes. 

Twelve unimpaired controls also completed the second experiment. Motion capture and EMG 

were used to compare biomechanics between groups.  

Results: Altogether, 15 of 17 participants with stroke could ambulate 30 m in straight paths, and 

9 of 12 could turn 1800° entirely under the power of their paretic arm. Participants with stroke 

exhibited largely healthy biomechanics, with minimal shoulder hiking/leaning or trunk inclination. 

Their arm muscle EMG patterns were similar to those used by unimpaired participants, excepting 

delayed elbow extensor activation.   

Conclusions: Individuals with severe arm impairment in the chronic stage of stroke retain 

sufficient strength and coordination with their paretic arm to maneuver bimanual, lever-driven 

wheelchairs. We suggest bimanual, lever driven propulsion should be explored in stroke 

rehabilitation practice as an alternative to compensatory wheelchair propulsion, as it has the 

potential to exercise healthy movement synergies, which may in turn help drive use-dependent 

motor recovery. 



Keywords—stroke, arm, rehabilitation, mobility, synergies, motor control, muscle 

activation, wheelchair.   



Introduction 

It continues to be hypothesized that performing a greater number of practice movements 

during rehabilitation after stroke improves upper limb motor recovery,1–4 as predicted by the theory 

of use-dependent neural plasticity.5 Yet, a major challenge to both stroke patients and stroke 

rehabilitation providers is to successfully achieve the high number of practice movements that is 

theoretically needed to exploit this neural adaptive capacity 6. In a sample of upper limb 

rehabilitation therapy sessions in the US by Lang et al.,7 stroke patients performed an average of 

only 32 upper limb practice movements per session, an order of magnitude less than the 400-600 

repetitions per session required in animal models to elicit significant neural adaptation.6,8,9 

Increasing the number of practice movements is especially difficult for individuals with severe 

arm weakness (about 80% of subacute stroke patients),10 since it is difficult for them to perform 

meaningful exercises on their own. Such individuals are typically excluded from therapy 

paradigms such as constraint-induced movement due to generally poor outcomes,11,12 and have 

difficulty using equipment such as hand cycles or weight machines.13 Current robotic therapy 

devices are effective14 but too expensive for widespread use. 

Because cost constraints limit one-on-one time with therapists, stroke patients typically 

spend hours each day sitting in manual wheelchairs with their arms resting on their laps or on arm 

rests.15 Although a key goal of early stroke rehabilitation is to help patients recover the ability to 

walk, stroke survivors often use manual wheelchairs during inpatient rehabilitation for seating and 

transportation because of initial difficulties with balance and walking.16–18 They are taught to use 

their less-impaired arm and leg to propel their wheelchair, a compensatory strategy that may 

contribute to asymmetric tone.19,20 Alternatively, they may resort to a powered wheelchair that 

does not provide for upper extremity training in addition to being expensive and heavy. Either 



way, failing to train the upper extremity can lead to a cycle of learned disuse and decreasing 

functional ability.21,22 Pushrim-activated power-assist wheelchairs (PAPAWs) help people with 

arm weakness better use a manual wheelchair and are successful products,23,24 but they cannot be 

used by people who cannot appropriately position the arms or grip and push the pushrim.  

If people with hemiparesis after stroke could use their impaired arms to help propel their 

wheelchairs, they could perform many arm practice movements as they moved about in the normal 

course of their day. However, they are at present assumed to be unable to propel manual 

wheelchairs with their weak upper limbs. This assumption stems from the observation that they do 

not have enough hand function to grip and release the push rim, and because they appear to not 

retain enough strength or motor control to make the shoulder and elbow movements needed to 

propel a wheelchair forward. If a device could assist hemiparetic individuals in wheelchair 

propulsion, individuals could self-train their arm as they moved about, much as current manual 

wheelchair users train their upper extremity to a high level of fitness in the normal course of daily 

activity. 

Moreover, there are likely other benefits of wheelchair use during subacute stroke 

rehabilitation therapy. According to Blower,16 using a wheelchair grants mobility to patients who 

otherwise might spend their time between activities relegated to a fixed chair. He argued that this 

may motivate patients by facilitating socialization and enhancing their senses of freedom and self-

efficacy and might also exercise their spatial awareness. Although there is mixed evidence that 

wheelchair use by stroke patients leads to the development of asymmetric muscle tone,20,25 a 

bimanual wheelchair that engaged both arms symmetrically could alleviate such concerns. 

Here, we studied if individuals with hemiparesis after stroke could use their more-impaired 

arm to power one wheel of a wheelchair that utilizes Lever-Actuated Rehabilitation and Ambulation 



(LARA). A LARA-based wheelchair allows patients to propel a manual wheelchair by pumping a 

lever without requiring grasping and releasing of the pushrim. The lever is coupled to the wheel by 

a ratchet-like, one-way clutch that translates forward pumps of the lever into forward motion of the 

chair. In the version of the chair tested here, the lever was elastically connected to the frame of the 

chair, creating a mechanically resonant system. Our prior analysis shows that operating a LARA-

based wheelchair at its resonant frequency could theoretically reduce the RMS torque required for 

sustained over-ground movement by upwards of 50%.26 

Our LARA-based device is an adaptation of the Resonating Arm Exerciser (RAE), a device 

designed for repetitive arm movement training after stroke.27 RAE consists of a lever rigidly 

connected to one wheel of a wheelchair, a splint for attaching the impaired arm to the lever, and 

elastic bands between the lever and the frame of the chair, which makes the lever system resonant. 

To train with RAE, the user moves the arm to create forward and backwards rocking with zero net 

movement. Moving at the resonant frequency of RAE rewards the user with larger arm movements. 

In pilot studies with RAE, stroke patients with severe arm impairment (upper extremity 

Fugl-Meyer scores < 15, out of 66) were able to start RAE rocking and were able to identify and 

move at the system’s resonant frequency.27 In addition, training repeatedly with RAE over three 

weeks reduced arm impairment.28 These findings suggested to us that such individuals might be 

able to ambulate overground with a lever drive wheelchair, and, based on the motivational effect 

of mobility,16 that such overground ambulation may help encourage arm movement practice. In 

addition, a previous, larger study examined the use of stereotypical, repetitive flexion and 

extension movements for arm rehabilitation during the acute phase of stroke and also found 

significant, long-term reductions in arm impairment.29,30 Thus simple, repetitive arm movement—

such as those used to propel a lever drive chair—appear to provoke beneficial motor plasticity.   



A pilot study with LARA also yielded promising results. Four participants with severe 

paresis after chronic stroke retained sufficient control of the shoulder and elbow to ambulate in a 

LARA wheelchair 30 m overground in straight lines.31 A second pilot study found that six 

participants with severe paresis after chronic stroke rapidly learned to use a version of LARA that 

supported increased indoor maneuverability by using a manually clutching transmission that was 

more challenging to learn.32  

However, at the onset of this study, it remained to be rigorously determined to what extent 

individuals with severe hemiparesis after stroke retain sufficient motor control to maneuver lever 

drive chairs in indoor environments, and whether arm exercise in such chairs is a biomechanically-

appropriate activity, that could potentially contribute to rehabilitation of upper extremity motor 

function without exacerbating abnormal moving patterns. Here, we document two experiments to 

answer these questions. The first experiment extended the pilot results31 with additional subjects. 

The second experiment measured arm joint kinematics and muscle activity while another group of 

chronic stroke patients performed both straight-line and turning maneuvers with an updated 

version of the LARA wheelchair that included handbrakes. It was of particular interest to 

determine how features of arm control related to ambulation speed and whether propulsion with a 

lever-driven chair after stroke were associated with abnormal patterns of shoulder and arm 

movement, which might make it less desirable as a therapeutic adjuvant.  

Methods 

First Experiment 

We developed a bimanual lever-driven wheelchair for use as an inpatient arm rehabilitation 

tool (Figure 1, top left). This wheelchair features 1) adjustable arm supports attached to ratcheting 



levers that support the paretic arm and position it so that the user’s hand can push on the lever, 2) 

straps that attach the forearm and hand to the levers through the arm supports, and 3) elastic bands 

that limit the range of motion of the lever and make the lever resonate when pushed at ~1 Hz. 

Users drive the wheelchair by rhythmically flexing and extending their shoulder and elbow. The 

arm supports and ratcheting levers obviate the need for the user to grasp and release the push rim.  

The levers also give users mechanical advantage compared to directly pushing the push rim.  The 

resonance provides further mechanical amplification of the user’s arm force.26  

We hypothesized that this device would allow individuals with severe arm weakness after 

stroke to use their paretic arm to ambulate overground in a straight line (Note: henceforth, we will 

refer to the more-impaired arm as the “paretic” arm, with the implicit understanding that the other, 

“nonparetic” arm may also exhibit some impairment or minor paresis). We tested this hypothesis 

by asking 12 individuals with chronic stroke (mean age 58.8±15.6 years; mean duration since 

stroke 44±41 months) to bimanually propel a first version of the LARA wheelchair. This group 

was equally divided by sex. Their mean upper extremity Fugl-Meyer score ranged from 10 to 23 

(mean score 16.8±3.7) out of the maximum 66, a severe level of arm impairment. Individuals with 

FM scores in this range generally report never using the impaired arm for daily functional activity 

on a standardized arm use questionnaire, the Motor Activity Log.33,34 None of the participants had 

enough hand function to grasp the push rim, and none could bimanually propel a wheelchair, 

although half of the participants were regular users of manual wheelchairs because of their 

persisting gait impairment.   

We asked the participants to propel the chair forward 3 m in a straight line 10 times, with 

a short rest break between each attempt. We measured the position of the wheelchair during each 

trial using a motion capture system (Phase Space) that tracked LEDs placed on the axis of rotation 



of each rear wheel of the wheelchair. We quantified the participants’ deviation from the target 

straight line trajectory as the root mean square of the difference from a straight line path connecting 

the first and last positions of the wheelchair. 

Second Experiment 

Following the first experiment, we performed a second study using an improved lever-

driven wheelchair. In this study, individuals with upper-extremity impairment from chronic stroke, 

and age-matched control subjects maneuvered in straight lines and performed 180⁰ turns. This 

time, we measured the arm kinematics and muscle activity. Kinematic data were recording using 

the same motion capture system, this time with markers placed at key points on the participant’s 

body as well as on the wheelchair. Muscle activity data were recorded via EMG measurement of 

the muscles ostensibly associated with lever-driven wheelchair operation. 

Participants 

An age matched set of 12 participants with hemiparesis after chronic stroke (mean age 

52.7±4.7 years; mean duration since stroke 34±18 months) and 12 unimpaired individuals (mean 

age 51.3±4.6 years) participated in the second study. Both participant groups consisted of 5 males 

and 7 females. The stroke participants had upper-extremity Fugl Meyer (FM) scores ranging from 

12 to 24 (mean score 17.6±1.3) out of the maximum of 66.  

Experimental protocol 

Participants performed repeated trials of two different courses: 1) a 3-m straight-line 

segment and 2) a 1.5-m straight-line segment followed by a the 180⁰ turn, either to the right or to 

the left. Stroke participants performed 10 trials of the straight course, followed by 10 trials of the 

180⁰ turn course. The turn was made in the direction that positioned their paretic arm on the outside 

of the turn, engaging the paretic arm while the wheel powered by the nonparetic arm remained 



stationary. Control participants performed 10 trials of the straight-line course, followed by 10 trials 

of the 180⁰-turn course with a left turn, followed by 10 trials of the 180⁰-turn course with a right 

turn.  

Prior to trials, participants were seated in the LARA wheelchair. At this time, most of the 

stroke participants required their paretic arm and hand to be strapped to the arm support and handle. 

EMG electrodes and motion capture markers were then attached to their body. A full set of 

electrodes and markers were placed on stroke participants’ paretic side and on control participants’ 

right arm, which was the arm driving turning during the left turn trials.  

Prior to the overground ambulation tasks, participants performed two 1-minute stationary 

practice tasks while the wheelchair’s transmission was set to stationary mode and the wheel were 

locked in place (using the built-in, standard wheelchair brakes). In the first, they pumped only their 

paretic arm (right arm for controls), and in the second, they pumped both arms simultaneously. 

Next came the overground ambulation tasks. For the straight-line task, participants were 

positioned at the beginning of the 3-m straight line course and given simple instructions about 

moving the levers forward and backward to move the chair forward and about the availability of 

the handbrake. Then the task was explained: move forward in the chair along the tape line marked 

on the floor until instructed to stop. Participants were given a “go” signal to begin each trial, and 

then a “stop” signal after they completed the course. After each trial, participants were repositioned 

at the starting point (by changing the chair’s transmission to the neutral gear and pulling them 

backward), and then the next trial was started, until 10 trials were completed. Stroke participants 

were then asked if they were experiencing any discomfort and if they felt able to continue the 

experiment.  



The 180⁰-turn trials continued similarly to the straight-line trials. The new task was 

explained: move forward in the chair along the tape line until you reach the 180⁰ arc marked on 

the floor, turn the chair to follow the arc and then drive straight again until instructed to stop. 

Participants were allowed to begin the turn anywhere near the marked arc, as it was difficult for 

them to see the markings on the ground beneath them. They were instructed to ‘drive straight’ as 

soon as they completed the turn, and a second tape line, parallel to the first, served as a reference 

for this closing straight-line movement. The “stop” signal was given as soon as it was apparent the 

participant had resumed straight-line movement, usually less than 1 m. Participants were then 

returned to the start point and the next trial was started. After completing all trials, electrodes and 

markers were removed and then the participant was helped up from the chair. 

Lever-driven wheelchair hardware 

The lever-driven wheelchair used for this experiment (Figure 1, top right) was fashioned 

after the Lever-Actuated, Resonance-Assistance (LARA) protocol and featured independent drive 

levers equipped with arm supports, elastic members, and additional mass to tune the resonant 

behavior of the system.  

This chair represents a hardware improvement over the chair used during the first 

experiment. Each lever was also equipped with a brake handle that controlled a disc brake on the 

corresponding wheel. Adding this brake enabled participants to turn the chair more effectively 

than was possible during the first experiment. By engaging the brake on one wheel and pumping 

the lever of the other wheel, the chair could be made to rotate in an arc centered on the stationary 

wheel. Additionally, during straight-line movement, stroke participants could use the brakes to 

counteract their tendency to turn toward their more-impaired arm. This tendency arose from the 

challenge of applying equal power, simultaneously, with their paretic and nonparetic arms.  



The right and left drive lever were each coupled to their respective wheels of the chair 

through a one-way-bearing clutch that translated forward motion of the lever into forward motion 

of the respective wheel. This clutch caused backward motion of the lever to have no impact, 

comparable to the freewheel of a bicycle that allows the pedals to remain still (or even rotate 

backwards) during coasting. Additionally, each clutch could be engaged or disengaged by flipping 

a handle protruding from the wheel-hub of its lever. Disengaging the clutch facilitated the 

experimental protocol by allowing the experimenter to back up and finely position the participant 

as needed, still seated in the chair, between experimental trials. 

Each lever was coupled to the frame of the chair through a pair of elastic elements (Figure 

1, bottom), one resisting forward and the other backward lever motion, and each consisting of a 

pair of side-by-side tension springs (two springs were found to achieve a resonant frequency of ~1 

Hz). Both elastic elements were connected between the lever-hub and a shared attachment point 

located on the frame of the chair in front of the wheel. By positioning elastic elements both above 

and below the centerline between the rotational axis of the hub and that attachment point on the 

frame, these elastic elements were made to resist backward and forward motion of the lever 

respectively. The configuration had the benefit of containing the elastic elements within a smaller 

region than was possible with the earlier version of LARA (Figure 1, top left), which lessened 

interference with the motion of the lever. Additionally, the elastic elements were positioned in a 

precise configuration to achieve nearly linear angular elasticity over the operating range of the 

levers. This elasticity could be stiffened or loosened by turning a knob (Figure 1, bottom), which 

adjusted the horizontal position of the attachment point on the frame. This precise configuration, 

combined with the increased linearity of tension springs compared to the elastic bands used in the 

previous iteration of the chair, greatly enhanced the resonant behavior of the levers. 



This resonant behavior was augmented by the addition of steel masses added to the top and 

bottom of each lever. These masses increased the rotational inertia of the lever, which combined 

with the angular elasticity created by the tension elements, tuned the resonant frequency to ~1 Hz. 

The masses also nearly counterbalanced the lever. If the levers were not counterbalanced, gravity 

would exert a force on the lever that varied nonlinearly with lever orientation. All these factors 

combined to give the levers linear, resonant behavior that was consistent across participants, 

regardless of their arm length. 

Previous work with the Resonating Arm Exerciser (RAE) suggested that stroke patients 

would be able to entrain their arm movement to the resonant frequency of a resonant lever, 

increasing the amplitude of movement of their more-impaired arm.27 Previous analytical work also 

suggested that resonant levers would reduce the force that participants needed to exert on the levers 

to ambulate in the chair at any given speed.26 The wide range of pump frequencies observed in this 

study, as described later, suggests that resonance may be of secondary importance to the stability 

imparted by the elastic elements and to their contribution to reversing the direction of the levers’ 

motion, particularly at the end of the push phase. 

Finally, each lever was equipped with an arm support that held the user’s forearm as they 

ambulated in the chair. Each arm support featured a trough-like shape that cradled the user’s 

forearm and supported the weight of their arm against gravity. The arm supports pivoted about 

their connection point to the lever, allowing consistent supporting torque to be applied to the 

forearm even as the angle between the forearm and the lever varied with lever orientation. The 

consistent supporting torque was achieved by placing a pre-loaded torsional spring between the 

arm support and the lever. Small variations in the relative orientations of the arm support and lever 

thereby cause only fractional changes in the magnitude of supporting torque applied to the forearm. 



In addition to supporting the arm against gravity, the arm supports helped prevent the forearm 

from bowing out as the user applied force to the lever. Straps were used to further secure the user’s 

arm in the supports when necessary. By constraining a stroke patient’s arm movement to a single 

degree of freedom, the arm supports were expected to simplify the control task of driving the chair 

and help stroke patients leverage their existing strength and coordination to propel the wheelchair. 

Motion capture measurement and data analysis 

Motion capture was again performed using the Phase Space motion capture system. For 

this experiment, however, LED Markers were placed on key positions of the participant’s arm and 

upper-torso to measure trunk, shoulder, and elbow movement during the experiment. Markers were 

also placed on the wheelchair to measures its position and the orientation of the two levers. Data 

were collected with a sampling rate of 100 Hz. Table 1 lists specifically where each marker was 

positioned on the participant’s body. 

Motion capture data were used to compute six kinematic features expected to describe and 

modulate the quality of ambulation in the chair. These features were computed for each pump of 

the lever, averaged across all pumps during a single trial, and then averaged across all trials for a 

single participant. Here, a pump is defined as one complete forward and backward movement of 

the corresponding lever, i.e. one period. The features were: (1) the average speed of the chair 

during each pump, (2) the pump frequency, computed as the reciprocal of the time duration of the 

pump, (3) the range of motion of the participant’s torso during the pump, computed from the angle 

of the torso about the axis parallel to the wheelchair’s axle, (4) the range of motion of elbow 

flexion/extension by the participant’s paretic arm during the pump, (5) the total translation distance 

travelled by the participants’ paretic-side shoulder marker during the pump, and (6) the range of 

motion of the lever on the participant’s paretic side during the pump. 



In calculating these features, ranges of motion were computed by subtracting the minimum 

from the maximum values that occurred during each pump. The translation distance was calculated 

as Euclidean sum of the ranges of motion of each the x, y, and z components of the vector drawn 

from the participant’s C7 vertebra to their shoulder in the chair’s reference frame. The kinematics 

of features related to stroke participants’ paretic side were compared to unimpaired controls’ 

dominant hand side (all controls happened to be right handed). 

Electromyogram (EMG) measurement and data analysis 

EMG was performed using adhesive surface electrodes, which were placed in accordance 

with SENIAM (Surface EMG for Non-Invasive Assessment of Muscles) to measure 9 muscle 

groups: anterior deltoid, middle deltoid, posterior deltoid, biceps, triceps, wrist flexors, wrist 

extensors, and trapezius and pectoral major. Electrodes were positioned in a bipolar configuration 

and data were collected with a sampling rate of 2400 Hz. Due to limited amplifier channels, the 

wrist extensors and trapezius electrodes were measured using the same channel, half of the trials 

measuring wrist extensors and the other half measuring trapezius. The order was randomized in a 

balanced fashion. The first four stroke participants and the first three control participants did not 

have their trapezius measured. After these participants, the alternating wrist extensors/trapezius 

measurement strategy was implemented, a decision informed by preliminary results of minimal 

wrist extensor activity. 

Muscle activity was estimated from raw EMG data using established methods.35 We 

applied a band pass filtered with lower and upper cutoff frequencies of 20 and 400 Hz, rectified 

the filtered signal, and then smoothed the result using a moving root-mean-square window with a 

width of 250ms. A lower cutoff frequency between 20 and 30 Hz has been shown to best remove 

the movement artifact.35 Analysis was performed twice, using a 20 Hz and a 25 Hz cutoff 



frequency, and very similar results acquired. The results were deemed robust to changes in cutoff 

frequency, and 20 Hz was chosen. 

EMG results were primarily used to investigate the relative timing of activation of pairs of 

muscles. This relative timing was found for each trial, for a given pair of muscles, by finding the 

delay that maximized the cross-correlation of the two muscles’ smoothed activity curves. To 

ensure that activations were compared within individual lever pumps, the magnitude of this delay 

was constrained to be within one half of that trial’s average period. This method identifies the 

average timing difference between the centers of the two muscles’ activations. Observing raw data 

revealed no clear trend in muscle activation durations, so precise initiation and termination times 

of activity were not estimated.  

EMG results were also used to identify motor synergies, here defined as the principle 

components of motor coordination at the muscle level. By this definition, synergy represents the 

temporally and spatially correlated activations of a muscle.36,37 Each correlated muscular synergy 

vector 𝐜𝐜𝑗𝑗 = �c1j, … , cmj� is activated by its corresponding neural signal 𝒉𝒉𝑗𝑗(𝑡𝑡) which modulates 

each synergy. There are several algorithms to determine 𝑪𝑪 and 𝑯𝑯. In this work, we have chosen 

the method of Non-Negative Matrix Factorization (NNMF) since it has been shown to perform 

better than PCA for identifying muscle synergies from EMG data.38 𝑪𝑪 and H were initialized with 

random values and iteratively updated using the multiplicative rules explained by Ajiboye and 

Weir36. 

This method requires selecting the number of synergies to be extracted. For this work, we 

used the cross-validation method,36 which involves extracting the minimum number of synergies 

(up to the number of measured muscles, 8 in this work) such that the Variation Accounted For 

(VAF) index between the original measured EMG (𝑽𝑽) and the reconstructed EMG matrix 𝑽𝑽� = 𝑪𝑪 ∙



𝑯𝑯 is over 0.90. This index is computed as 𝑉𝑉AF = 1 −  SVV�
2 /SV2, where SVV�

2  is the sum of the squares 

of the errors between original and predicted value, and SV2  is the total variance of the original EMG 

activation data.  

The primary synergies for each participant during each task were visually compared, and 

common synergies were defined for each combination of group (stroke or control) and task 

(straight-line or 180°-turn) as the synergies observed most consistently across participants in that 

group for that task. A judgement was made about which participant represented the most typical 

expression of each common synergy for each group and task combination. Other participants in 

the same group and task were considered to express a common synergy if any of their primary 

synergies matched with that common synergy with a similarity index 𝑆𝑆 >  0.7.  Although a fully 

automatic method of defining common synergies was not developed, this method was repeated 

with several alternative common synergies for each group until the greatest extent of similarity 

was obtained.  

Results 

Experiment 1: Can people with severe arm hemiparesis bimanually propel a lever 

drive chair in a straight line? 

All 12 individuals in the first study had severe arm impairment (FM between 10 and 23). 

Yet, all were able to propel the wheelchair forward at least a total of 15 m over 10 trials. Some 

participants initially struggled with the task, preventing them from reaching the target total 

distance of 30 m, but 10 of the 12 individuals successfully completed the 3-m task by the last trial 

(Figure 3a). By the last trial, these 10 individuals moved in straight trajectories, while the other 2 

consistently turned toward their paretic side.  



The average speed across all subjects increased significantly from the first to the last trial, 

reaching 0.2±0.2 m/s on the last trial (paired t-test, p = 0.014). The average speed for each subject 

across all trials was also significantly correlated with their FM score of upper extremity 

impairment (Figure 3b; linear regression, r2 = 0.44, p = 0.019). The participant’s deviation from 

the straight-line path decreased across trials, with the average deviation on the tenth trial being 

0.05 ± 0.05 m, although this decrease in error was not significant. The participants performed an 

average of 237 arm movements during the course of the experiment (range = [54, 722]).  A video 

showing the participants propelling themselves with the device can be found at 

http://youtu.be/HzZjBIOxLzg. In a post-experiment interviews, several participants noted that 

achieving self-propulsion with their paretic arm was motivating and empowering, since it allowed 

them to use this arm in a meaningful way, often, they reported, for the first time in years. 

Experiment 2: Can people with severe arm hemiparesis turn a lever drive chair with 

their hemiparetic arm? 

In the second study, 12 individuals with stroke volunteered to propel an improved version 

of the wheelchair while undergoing motion capture and EMG recording; we also incorporated a 

turning maneuver in which participants squeezed a handbrake with their nonparetic hand and 

pumped the chair with their paretic hand.  Seven of the participants in this second study had 

previously participated in the first study described above. All individuals in this study also had 

severe arm impairment, defined as FM score of 24 or below.  

In this study, 9 of 12 participants completed the entirety of the experiment (10 straight-line 

trials and 10, 180⁰ turn trials). The other 3 completed the 10 straight-line trials but no more than 

one 180⁰ turn trial. These participants took the opportunity they were offered to end the experiment 

at any time. One expressed that they were experiencing substantial pre-existing shoulder pain. All 



12 age-matched controls completed the full 30 trials. Equipment problems caused loss of motion 

capture data for one person with stroke and one age-matched control. Excluding the participants’ 

whose data was lost, the mean age of the stroke participants was 52.5 ± 5.2 years (49.4 ± 5.8 years 

for those who completed all 20 trials) and the mean age of the unimpaired controls was 53.1 ± 4.8 

years.  

Consistent with results from the first study, all participants with stroke in this experiment 

were able to propel themselves across 3 m for 10 trials (Figure 3). Thus, combining the first and 

second experiment, 15 of 17 participants with FM scores less than 24 demonstrated they could 

propel a bimanual, lever-driven wheelchair 30 m.  After propelling the chair these first 30 m, 9 of 

12 participants in the second experiment also propelled themselves across 1.5 m and performed a 

180⁰ turn for 10 trials; these turns were driven solely by their paretic arms. In total, these 

participants demonstrated they could both propel the chair 45 m and turn in the chair a total of 

1800° (i.e. 5 full rotations). 

Biomechanics Part 1: How did the individuals with stroke achieve lever-based 

propulsion? 

Wheelchair speed and lever pumping behavior varied substantially between participants in 

the second experiment. Stroke participants were on average substantially slower than unimpaired 

controls, yet, in this second experiment, there was only a marginal correlation between FM score 

and average speed (Figure 4a; linear regression, p = 0.22). The lack of significant correlation may 

be explained in that although the 3 slowest participants had among the lowest FM scores, the 3 

fastest participants did not have distinctly high FM scores. Given that regression analysis is poorly 

conditioned for data sets where a few participants perform dramatically differently than the rest, it 

is unclear if the correlation in the first experiment (without handbrakes) and lack of correlation in 



the second experiment (with handbrakes) describes a true effect of handbrakes on operating the 

LARA wheelchair, or if it is simply an artifact of which participants happened to achieved 

especially fast ambulation during each experiment. 

The questions then arise: what factors do explain how individuals with hemiparesis after 

chronic stroke achieve lever-based propulsion, and what explains faster or slower propulsion 

speeds if speed is not simply a function of impairment level. Two factors were investigated: the 

frequencies at which participants pumped the levers, and the ranges of motion of elbow movement 

they exhibited. Similar results were observed during both straight-line and 180⁰-turn trials. Results 

from straight-line trials are shown here. Results from 180⁰-turn trials were similar and are not 

shown here. 

Similar wide ranges of pump frequency were observed for both stroke participants and 

controls (Figure 4b). Pump frequency was correlated with speed, but this relationship differed 

between stroke participants and controls (Figure 5b), implying that other dynamics were at play. 

Elbow range of motion, on the other hand, was mildly correlated with FM score, and substantially 

lower for stroke participants than for controls (Figure 4c). Elbow range of motion was also loosely 

correlated with speed (Figure 5c), suggesting a predictive relationship moderated by other factors. 

However, combining these two factors produced a much more predictive relationship, specifically 

the product of pump frequency and elbow range of motion was highly correlated with speed 

(Figure 5d). Of note, elbow range of motion and pump frequency were themselves not correlated 

(Figure 5e). These results imply that two uncorrelated motor capacities determine an individual’s 

ambulation speed: 1) their ability to quickly activate and deactivate their arm muscles and 2) their 

ability to extend the elbow through a wide active range of motion.  



We suspected that some participants might have achieved faster speeds using abnormal 

compensatory movements, such as trunk inclination or shoulder leaning or hiking. On average, 

stroke participants showed no increased trunk motion over controls; on an individual basis, 

however, the three slowest participants exhibited larger trunk motion (Figure 4d). This suggests 

that compensation by trunk inclination is a means by which slower participants achieved 

movement, but most participants did not employ this compensation. Amplitude of shoulder 

translation, which would be expected to capture leaning or hiking, differed minimally between 

stroke participants and controls, and was uncorrelated with FM score (Figure 4e). Nor was greater 

shoulder movement observed for slower participants. This suggests that lever-based propulsion 

does not encourage abnormal shoulder movement in individuals with hemiparesis after chronic 

stroke, even for those for whom propulsion is difficult.  

Biomechanics Part 2: How does stroke affect the muscle activation patterns used 

during lever-based propulsion?  

In general, both chronic stroke and control participants exhibited a cascade of muscle 

activation during only the push phase of lever-based propulsion, and minimal activation during the 

recovery phase when the movement was assisted by the return action of the spring attached to the 

lever (Figure 6). This differs from the substantial muscle activity observed during both push and 

recovery phase during push-rim wheelchair propulsion.39,40 This finding implies that LARA 

reduces in the complexity of operating  manual wheelchair. This raises the questions of how the 

timing of these cascading muscle pulses compares between stroke participants and controls and 

whether this might help explain differences in their propulsion speed. We also investigated the 

occurrence of common muscle activation synergies across participants. 



The relative activation timing between the triceps and other muscles best differentiated the 

activation patterns of stroke and control participants (Figure 7a). For controls participants, the 

activity of the triceps significantly preceded that of most other muscles (t-test, p values shown in 

Table 2 “Controls”), suggesting they initiated lever movement by activating the triceps. For 

chronic stroke participants, activation of the triceps did not significantly precede that of any other 

muscle (t-test, p values shown in Table 2 “Stroke”). Comparing these relative timings between 

stroke participants and controls, it was found that the timings of all muscles except the anterior 

deltoid were significantly different between groups (paired t-test, nonequal variance, p values 

shown in Table 2 “Difference”). This comparison supports that a significant shift in timing of the 

triceps occurs following stroke, and that it no longer leads the other muscles.  

The relative timing of the biceps and triceps was investigated as a predictor of participants’ 

propulsion speed, based on our finding that amplitude of elbow movement was correlated with 

participants’ propulsion speed. Elbow extension ostensibly requires activating the triceps without 

interference of the biceps. Our observation that the triceps no longer leads the biceps after stroke 

might help explain chronic stroke participants’ reduced elbow extension relative to control 

participants. To elucidate this connection, each participant’s bicep activation timing was compared 

to their elbow amplitude (Figure 7b). A marginally significant trend was found between biceps 

timing and elbow amplitude for stroke participants (linear regression, R2 = ?, p = 0.052). A non-

significant correlation existed for control participants (linear regression, p = 0.15). Extrapolating 

this trend would suggest that someone with hemiparesis after chronic stroke could increase their 

range of elbow movement, and their propulsion speed by learning to activate their triceps 

preemptively of their biceps and other arm muscles. 



Along with delayed triceps activation, stroke participants appear to have exhibited early 

trapezius activation (not shown directly, but implied by Figure 7a). Using a similar analysis as 

described for the triceps, the trapezius was found to significantly lead the pectoralis major (t-test, 

p = 0.030) and the anterior deltoid (t-test, p = 0.030) for chronic stroke participants. This may 

suggest that stroke participants compensate for their impairment by preempting their arm 

movement with positioning or bracing of the shoulder, even if kinematic data did not show 

increased amplitude of shoulder movement. 

EMG synergy analysis suggested largely similar muscle activation patterns across the two 

groups, with some discrepancy in the expression of synergies involving the triceps. For each 

participant, two primary synergies on average described more than the 90% of their variability in 

muscle activation in each task conditions. The synergies of each participant were visually 

compared, and two common synergies (Figure 7c) were defined for each combination of group 

(stroke or control) and task (straight-line or 180°-turn). For those who expressed them, these 

common synergies were remarkably similar between stroke participants and controls during both 

the straight-line and 180⁰-turn trials (Figure 7c). Overall, these common synergies were expressed 

with 52% consistency across stroke participants (i.e. as one of their two primary synergies) and 

with 63% consistency across controls (Table 3). This suggests that the most common muscle 

activation patterns were largely shared by stroke participants and controls, but that substantial 

variation in these patterns existed within both groups. The common synergies that most involved 

the triceps (𝑤𝑤1 for straight-line trials and 𝑤𝑤2 for 180⁰-turn trials), were also expressed with 52% 

consistency across stroke participants, but with 79% consistency across controls. That is, triceps 

activation was generally synergized with the same muscles for controls. In contrast, only about 



half of stroke participants activated their triceps within any such shared such synergy. That synergy 

did, however, closely resemble the triceps activation synergy expressed by controls. 

Intrinsic Motivation: Are individuals with stroke motivated by their performance in 

lever-driven wheelchairs? 

All participants answered a 10-question survey with relevant questions drawn from the 

Intrinsic Motivation Inventory (IMI), which has been used in studies of robot-aided arm 

rehabilitation.41 Questions related to motivation, effort, and perceived competence (Table 4). All 

questions prompted a numeric response between 1 for “strong disagreement” and 7 for “strong 

agreement”. Perhaps not surprisingly, stroke participants believed that practicing longer with the 

wheelchair would be more beneficial to them than did control participants (paired t-test, p = 

0.0043). They also believed that ambulating in the chair required more effort than did control 

participants (paired t-test, 0.025). No significant difference was found between the responses of 

stroke and control participants on any of the remaining questions. Neither group felt particularly 

anxious or bored during the experiment. Both groups indicated that they wanted to do the activity, 

possibly consistent with the results that both groups found the task fun and felt that their 

participation was important. Both groups were satisfied with their performance despite being 

somewhat less confident that they were good at the activity. Both groups shared a similar level of 

confidence that they became competent at the activity during this session. Surprisingly stroke 

participants did not feel significantly less competent at ambulating in the chair than did control 

participants.  



Discussion 

The assumption that individuals with severe arm weakness after stroke cannot bimanually 

propel themselves in a manual wheelchair is incorrect. Here, we found that a total of 15 of 17 

participants with stroke (10 of 12 from the first experiment, and all 5 new participants from the 

second) propelled a manual, lever-driven wheelchair 30 to 45 m in a straight line, demonstrating 

their ability to coordinate the movement of their arms to move in a straight line. Using a handbrake 

during the second experiment, 9 of 12 stroke participants completed ten 180⁰ turns (for a total of 

1800⁰) completely under the power of the paretic arm.  Thus, with appropriate mechanical 

adaptations, even individuals with otherwise little functional use of the arm generated enough force 

in the required spatiotemporal pattern to propel and turn a lever drive chair. This confirms our 

preliminary findings that chronic stroke survivors retain this capacity,31,32 but in a larger sample. 

Moreover, while ambulating during this study, participants regularly performed between 400-600 

arm movements during each 1-hour session. This dose of exercise exceeds that even of recent 

attempts to provide a high dose of movement practice in stroke rehabilitations.2 It remains to be 

seen if this sort of arm motion is therapeutically meaningful, but this study yields some promising 

results about this possibility, coupled with previous studies on the therapeutic effectiveness of 

simple, repetitive arm movement REFS. We discuss now several features of the lever-driven 

propulsion, the biomechanics of the arm and trunk, and then future directions for research. 

Features of lever-driven wheelchair ambulation 

The stroke participants moved at about half the speed of unimpaired controls during 

straight line movement and rotated the chair at about one-third the speed of controls during turns. 

While their turning was slower generally, the faster half of stroke participants moved in straight 

lines at about the same speed as the slower half of controls. Together these results indicate that 



even people with substantial upper extremity impairment can achieve meaningful ambulation 

speeds for straight line and turning movements in a lever-driven wheelchair.  

Participants’ abilities to turn, as well as to navigate in straight lines, were facilitated by the 

availability of the handbrake in the second experiment. Participants controlled the handbrake with 

their nonparetic hand (a handbrake was present on both sides of the chair, but participants either 

lacked the ability, or were disinclined, to use the brake on their paretic side). Braking facilitated 

straight line movement by allowing participants to voluntarily impede propulsion caused by their 

nonparetic arm, which they tended to move with greater amplitude than their paretic arm. Without 

handbrakes (i.e. in the first experiment), 10 of 12 participants were able to ambulate in straight 

lines, but this required them to regulate this imbalance between their arms, often by alternating 

many small pumps of the paretic-side lever with fewer larger pumps of the nonparetic-side lever. 

Adding the handbrake appears to have circumvented participants’ use of this strategy, as seen in 

the predominately synchronized movement of the two levers.  

Participants were also intrinsically motivated by the movement speeds achieved in this 

study, reporting that the task was motivating, enjoyable, and engaging. Participants with chronic 

stroke also reported similar confidence in their ability to use the chair as unimpaired controls, and 

frequently expressed excitement and satisfaction for what they could achieve with their paretic 

side.  

Biomechanics of lever-driven wheelchair ambulation 

Participants exhibited arm kinematics and muscle activity that imply that ambulating in a 

lever-driven chair would be meaningful to their upper extremity rehabilitation. Speed in the chair 

was strongly correlated with the product of two kinematic features, amplitude of elbow movement 

and pump frequency. These features, in turn, were found to be uncorrelated. This implies that two 



orthogonal predictors of an individual’s ability to ambulate in the chair are 1) their ability to 

alternate between activating and deactivating their muscles, and 2) their ability to extend their 

elbow. In this study, we observed that stroke participants and controls, who ambulated at similar 

speeds, did so with different combinations of these capabilities. Stroke participants employed 

smaller elbow amplitudes and faster pump frequencies to achieve the same speed as slower 

controls.  In any case, if driving a LARA wheelchair promotes these two features, then one might 

expect it to be beneficial for relearning arm movement, as alternating muscle activity and elbow 

extension are essential for performing functional activities with the arm. 

Kinematic analysis alleviated a major concern of this study: whether chronic stroke patients 

ambulate in lever-driven wheelchairs via abnormal compensatory movements of the trunk and 

shoulder. Such compensation might limit the therapeutic effect of lever-driven chairs, since, then, 

users might simply be expected to get better at compensation, rather than arm movement.42 Across 

participants with chronic stroke, amplitude of shoulder motion was within the distribution of 

unimpaired participants’. Trunk motion was elevated only for the slowest 25% of these 

participants. These results show that viable ambulation speed was achieved largely without 

compensatory trunk or shoulder movement. This is an encouraging result also given the potential 

harmful orthopedic effects of applying large forces around abnormal joint orientations.43 This 

result was somewhat surprising given that individuals with severe stroke typically exhibit trunk 

compensation while practicing reaching movements directly.43 Certainly, a stroke patient’s 

clinician would need to assess the quality of their movement, but this result supports the likelihood 

that propelling lever-driven wheelchairs may be an effective, biomechanically healthy means of 

arm movement practice, a hypothesis that warrants clinical evaluation. 



EMG analysis found that participants with stroke expressed similar patterns of muscle 

activation as unimpaired controls, namely a cascade of activations during the push phase of 

ambulation. Similar muscle synergies were observed for both groups, with the exception that the 

common synergy involving the triceps was less often expressed by participants with chronic 

stroke. This echoed the primary difference observed in muscle activation timing: that unimpaired 

participants generally led their muscle activation cascades with triceps activation, whereas 

participants with chronic stroke generally led with trapezius activation, and activated their triceps 

later at roughly the same time as they activated their biceps.  

Delayed timing and reduced synergy of triceps activation would explain the reduced 

amplitude of elbow motion by participants with chronic stroke, and in turn their reduced propulsion 

speeds. Coordinating activation of the opposed triceps and biceps is known to be necessary for 

achieving larger ranges of motion with the elbow.44 As such, although triceps are not a primary 

source of power during traditional manual wheelchair propulsion, the triceps is important for 

maintaining the compliance of the elbow and coordinating its extension with the delivery of power 

from the deltoids and pectoralis major.39,40,45 This is akin to the triceps’ role during reaching tasks 

where the triceps produces relatively minimal force, but must be coordinated with the shoulder 

muscles and biceps to effectively control the position of the hand.46,47  

Even though earlier trapezius activation by participants with chronic stroke appears not to 

caused abnormal shoulder movements, such as leaning or hiking, it still likely impeded lever-

driven propulsion, and may have supported compensation by trunk inclination for the slowest 25% 

of participants. These participants likely retained some volitional control of their trapezius, 

consistent with the proximal to distal gradient in impairment following stroke.48 It is possible that 

by stabilizing the shoulder, they could then apply power with abdominal and other lower trunk 



muscles, which were not measured here, but which has been reported during demanding manual 

wheelchair operation.49 However, if preemptive activation of the trapezius was part of a 

compensatory strategy, it was minimally evident for the faster participants. Early activation of the 

trapezius might alternatively indicate unintentional activation while seeking to activate the anterior 

and middle deltoids, pectoralis major, and triceps, which are the primary muscles engaged during 

manual wheelchair operation by individuals with unimpaired arm function.40 Motor control is 

understood to be largely impeded by imbalances in the strength of agonist-antagonist pairs created 

by stroke, and by the increased involvement of muscles secondary to arm movement.47 Such 

imbalances and unintentional activations likely explain the reduced speed of the participants who 

otherwise expressed largely normal biomechanics.  

Future Directions 

Based on these results, we suggest the exploration of lever-driven wheelchairs as a 

potential paradigm shift in the way rehabilitation and mobility needs are addressed during chronic, 

and perhaps even acute stroke rehabilitation. Use of lever-driven wheelchairs could immediately 

increase the number of arm practice movements that chronic stroke patients perform in outpatient 

and community therapy settings, alleviating paretic arm disuse, and solving a longstanding 

problem in rehabilitation practice. 

This technology might also be integrated into current inpatient clinical practice without 

interfering with times reserved for conventional therapy. Instead, lever-driven wheelchairs could 

potentially replace a patient’s traditional manual wheelchair, allowing them to exercise by moving 

about the clinic. Rather than be pushed by a caregiver to the cafeteria or their therapy appointments, 

patients could then drive themselves, increasing their arm movement practice by hundreds of 

movements each day and enhancing their sense of self-efficacy in the process. A lever-driven 



wheelchair might even provide this independent mobility without the drawbacks associated with 

the compensatory good-arm good-leg strategy currently taught for wheelchair propulsion after 

stroke (e.g. developing asymmetric posture, learned disuse of the paretic limbs20). Other 

drawbacks of lever-driven wheelchairs such as their added weight and width have limited their 

acceptance for community use, but we propose that clinical use would circumvent these problems. 

For clinical use, a chair need not be light enough to load into a vehicle trunk nor narrow enough 

to pass through standard doors or hallways. Nor need it be highly maneuverable, since clinic 

hallways are straight, corners are broad, and speeds are low. 

The next step in evaluating the rehabilitation approach we propose here is to conduct a 

randomized controlled trial of the use of lever-driven wheelchairs for upper limb therapy. A study 

is underway in which newly admitted stroke inpatients are randomly assigned either a traditional 

wheelchair or a lever-driven wheelchair. Those that receive the lever-driven chair use it to move 

about the hospital, currently under the supervision of clinicians, thus increasing their arm 

movement practice. The efficacy of the stationary mode is also being explored, and we have 

developed therapy-oriented computer games that patients can play in their rooms by moving the 

levers.26 Note, such stationary practice could be a meaningful stepping stone to training 

overground ambulation, as some participants in this study who did not exhibit healthy kinematic 

synergies during overground ambulation did exhibit similar synergies as unimpaired individuals 

during stationary practice.  

Clinical Messages 

• Severe arm impairment arising after stroke does not generally eliminate the motor dexterity 

needed to bimanually propel a manual wheelchair, if the wheelchair is modified to remove 

the requirement to grasp and release the push rim.  



• Such exercise appears a good candidate to facilitate rehabilitation outcomes because it 

depends on alternating muscle activity and improving elbow extension. 

• Such wheelchair propulsion involves largely normal biomechanics; shoulder hiking and 

leaning are absent and trunk inclination is rare. 
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Table 1. Motion capture marker positions. 

  



Table 2. P-values for muscle activation timing relative to triceps. 

 
Bold indicates p < 0.05.  



Table 3. Expression of the first two common kinetic synergies across participants. 
 

Control 
Participants 

Line Turn 
𝑤𝑤1 𝑤𝑤2 𝑤𝑤1 𝑤𝑤2 

S1 C1 C2 C1 C2 
S2 C1 C2 C1 C2 
S3  C2 C2  
S4  C2  C2 
S5 C1   C2 
S6  C2 C1 C2 
S7 C2   C2 
S8  C2 C1 C2 
S9 C1   C2 

S10 C2   C2 
S11 C1   C1 
S12 C1   C1 

Stroke 
Participants 

Line Turn 
𝑤𝑤1 𝑤𝑤2 𝑤𝑤1 𝑤𝑤2 

P1  C2  C2 
P2 C2   C2 
P3  C1   
P4 C1 C2 C1 C2 
P5 C1 C2  C1 
P6  C1   
P7 C1 C2 C1  
P8  C1 C1  
P9 C1 C2   

P10 C1   C1 
P11     
P12     

 
𝑊𝑊1 and 𝑊𝑊2: First two (i.e. primary) common synergies. 
𝐶𝐶𝑖𝑖: Indicates that the participant expressed 𝑊𝑊1 or 𝑊𝑊2 as their 𝑖𝑖-th individual synergy. 
Empty cell: The participant did not express this common synergy as either their 1st or 2nd individual synergy. 
Grey cell: The participant did not complete the respective task.  

  



Table 4. Intrinsic Motivation Inventory (IMI) results. 

  



 

 

Figure 1. Top left: The lever-driven wheelchairs used in the first experiment. The arm supports and elastic bands 
position the paretic arm so the user can bimanually propel the chair.  Top right. The improved lever-driven 
wheelchair used in the second experiment. The addition of handbrakes facilitated turning and straight ambulation. 
A clutch handle (back of gearbox) toggled the transmission between stationary and overground modes. Springs (both 
forward of the gearbox) serve as the elastic elements. Steel weights (top and bottom of lever) add inertia to enhance 
mechanical resonance. The experimental arrangement of motion capture markers (LED lights) and sEMG electrodes 
are also pictured. Bottom: Elastic elements and tensioning mechanism for the improved lever-driven wheelchair. 
The springs, although both forward of the gearbox, act in opposite rotational directions, the top springs resisting 
backward motion and the bottom springs resisting forward motion. This arrangement results in a highly linear angular 
stiffness coefficient over the lever’s range of motion during operation. The adjustment knob increases the angular 
stiffness as it is tightened while retaining this linearity. 

  



 

 
Figure 2. Overground trajectories of stroke participants during first experiment. A: Overhead view of the first 
and last trials of the 3-m driving task for all 12 subjects. Each line represents a different subject as they moved from 
left to right. The box at bottom left denotes the position scale. The starting y-position for each subject is offset 
according to their FM scores, with the lowest scores at the bottom and the highest scores at the top. The dots represent 
2-s intervals during the trial; thus, dots that are closer together indicate slower movement. We flipped the trajectories 
for the left-hemiparetic subjects so that the side of the wheelchair controlled by the impaired arm is always on the 
bottom side of the figure (i.e. the trajectories are presented as if all subjects had right hemiparesis). B: Regression of 
speed against FM showed a significant correlation. 
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Figure 3. Overground trajectories of stroke participants during second experiment. Raw motion capture data for 
stroke participants. Each bold curve represents the trajectory traced by a participant during a single trial. The first and 
last trials from each condition (straight trajectory and 180⁰ turn) are plotted for each participant, and participants are 
ordered from left to right by FM score. Dots along the bold curve are spaced out at 2-s intervals providing a 
visualization of speed. The thin curves on immediately to the left and right of the bold curve represent the movement 
of the left and right levers respectively. When a lever is pulled back, the thin curve moves closer to the bold curve. 
When the lever is pushed forward, the thin curve moves away from the bold curve. In general, participants moved the 
levers in sync. Therefore, the space between the thin lines is narrow when both levers are pulled back, and wide when 
both levers are pushed forward. The data from participants with left-sided impairment have their data mirrored so that 
all trajectories are plotted as if the participant had right-sided impairment.  



 
Figure 4. Straight-line trial kinematics. Each data point represents the value of a kinematic feature averaged over 
one participant. Solid lines and p-values indicate population differences between stroke participants and controls. 
Shaded bands depict 95% confidence regions of the mean trends across stroke participants between FM score and 
kinematic features. The associated p-values give the significance of the trends’ slopes.  The color of each data point 
indicates that participant’s average speed, according to a heat map where red to blue represents slow to fast participants 
respectively. Control participant data points are arbitrarily scattered around a FM score of 66 to aid in visualization. 
A: Stroke participants were on average substantially slower than unimpaired controls. Although there was only a 
marginal correlation between FM score and speed, the slowest participants did have among the lowest FM scores. B: 
A wide range of pump frequencies was observed for both participant populations. Pump frequency was also only 
marginally correlated with FM score, but the slowest participants did pump particularly slowly. C: Elbow range of 
motion was substantially lower for stroke participants, and was weakly correlated with FM score, as might be 
expected. D: On average, stroke participants showed no increased trunk motion over controls. However, the three 
slowest participants exhibited larger trunk motion, suggesting the use of trunk movement as a compensatory strategy 
by the slowest participants. E: Shoulder movement differed minimally between stroke participants and controls, and 
was uncorrelated with FM score, evidence that shoulder movement was minimally involved in compensation.  
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Figure 5. Straight-line trial kinematic regression analyses. Shaded regions represent 95% confidence regions for 
the trend lines for stroke participants (red) and controls (blue). That is, the trend line has a 95% chance of falling 
entirely within this region. Data point colors indicate that participant’s average speed, with red to blue representing 
slowest to fastest. A: Elbow motion and pump frequency were uncorrelated with each other. B, C: Pump frequency 
and elbow range of motion were both correlated with average speed. D: When combined, these factors become 
strongly predictive of average speed. This implies that two uncorrelated motor capacities, the ability to quickly 
activate/deactivate muscles and the ability to extend the elbow, coordinate toward determining an individual’s 
ambulation speed. E: Elbow motion was strongly correlated with lever motion for stroke participants, further 
supporting the conclusion that these participants moved the lever by extending their elbows, rather than through 
compensatory shoulder or trunk movement.  
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Figure 6. Raw EMG from chronic stroke and unimpaired participant. A 20-400Hz bandpass filter was used to 
condition the signal and remove motion artifact, a 125ms window moving RMS was used to estimate muscle activity. 
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Figure 7. A: Muscle activation timing relative to triceps. Average activation timings of selected muscles relative 
to the activation of the triceps (at t = 0). Positive values indicate that the muscle was activated later than the triceps. 
Timing is measured in terms of fraction of that average period length during the trial. Unimpaired controls led with 
triceps activation, a pattern not maintained after stroke. Following stroke, the trapezius tends to lead the movement. 
B: Correlation of biceps-triceps timing with elbow movement. Chronic stroke participants’ timing of the biceps 
relative to the triceps was correlated with the amplitude of their elbow movements. A similar but weaker correlation 
was found for unimpaired controls. This result is consistent with the theory that large elbow amplitudes require the 
triceps to extend the elbow during the arm movement, but that this extension requires the triceps to contract without 
co-contraction of the biceps. C: The common muscle synergies 𝒘𝒘𝟏𝟏 and 𝒘𝒘𝟐𝟐, for each experimental task. Bars 
indicate the mean normalized activation of each muscle involved in the synergy across subjects who expressed that 
synergy. Error bars indicate the standard deviation about these means. Synergies of stroke participants are shown in 
cyan, and synergies of control participants in blue 
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