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Abstract— The main aim of this work is to model the
relationships between parameters extracted from the heart rate
variability (HRV) signal, which is derived from the electrocar-
diogram (ECG), at different stages of a simulated immersion in
a hyperbaric chamber. The response of the Autonomic Nervous
System is known to be affected by changes in atmospheric
pressure, reflected in changes in the HRV signal. A dataset
consisting of ECG signals from 17 subjects exposed to a
controlled hyperbaric environment, simulating depths from 0
m to 40 m, was used. Both linear and nonlinear dependences
of HRV parameters were analysed using linear regression and
Mutual Information (entropy-based) techniques. Furthermore,
relationships between parameters of the HRV signals, biophysi-
cal variables of the subjects, and atmospheric pressure changes
were characterized by artificial neural networks. In particular,
self-organizing maps (SOM) were trained for modelling and
clustering all the data. In the mid-term, these models could
be the basis to create predictive models of HRV parameters at
high depths in order to increase the safety for divers by warning
them if some abnormal body response could be expected just
by processing the ECG signal at sea level before immersion.

I. INTRODUCTION

Diving is currently one of the most demanding sport
activities. The human body is affected by different factors
in the aquatic environment, which require biological and
physiological adaption to maintain homeostasis. A bad adap-
tion to a hyperbaric environment could entail serious health
problems, and thus the maximum depth for recreational
diving is limited to 40 m (equivalent to a pressure of 5 atm).

As stated by Poisseuille’s law, a decrease in the heart rate
is needed to maintain an adequate cardiac output and to
minimise the effects of hydrostatic pressure [1]. The main
factors affecting cardiovascular response during diving are a
lower temperature and a higher pressure [2]. The Autonomic
Nervous System (ANS) plays a key role in maintaining
homoeostasis by controlling, among others, cardiac output,
heart rate, and blood pressure. The balance between the
two branches of the ANS, namely the sympathetic nervous
system and the parasympathetic nervous system, reflects the
efforts of the body to adapt to a new environment in the
best way possible [3]. The analysis of the Heart Rate Vari-
ability signal (HRV), which can be directly derived from the
electrocardiogram (ECG), is a commonly used non-invasive
technique to measure the activity of the ANS. Spectral
analysis of the HRV signal reveals two main components:
a low-frequency (LF) component [0.04 - 0.15 Hz], which
reflects both sympathetic and parasympathetic activity, and
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a high-frequency (HF) component [0.15 - 0.4 Hz], which has
been typically used to measure parasympathetic activity [3].

The ANS response has been analysed in some studies
simulating variable atmospheric pressure conditions inside
a hyperbaric chamber, without the need to go under water.
The results of these studies suggested an increase in the
power related to the HF band, thus meaning an increase in
parasympathetic activity [4], [5]. A number of these studies
observed a decrease in the heart rate [4], [6], [7], although
this trend was not shown in some of them [5]. The number of
studies analysing the response of the ANS during immersion
is low, probably due to the implicit difficulty of obtaining
proper signal recordings. In real dives, despite the fact that
other external uncontrolled variables, such as immersion
reflex or cold water stimulus [8], [9], might lead us to
expect an increase in sympathetic activity, the ANS response
shows a similar behaviour to that in a hyperbaric chamber:
an increase in HF power [10], [11]. This pattern could be
explained by a possible rise in baroreceptor sensitivity, with
the corresponding increase in parasympathetic activity [12].
All these studies are characterised by: a small number of
subjects (about 10), the use of only the HRV to characterise
the ANS behaviour, and the measurement of only one high-
pressure stage between 2.5 and 3 atm.

The main aim of this work is to model the relationships
between parameters extracted from the HRV signals of 17
subjects at five different stages of a simulated immersion
in a hyperbaric chamber: initial depth of 0 m, depth of
20 m during descent, depth of 40 m after descent, depth
of 20 m during ascent, and depth of 0 m after ascent.
Both linear and nonlinear dependences are analysed by
using linear regression and mutual information techniques.
Furthermore, artificial neural networks (ANNs) were trained
to identify multivariable relationships between parameters
of HRV signals, biophysical variables of the subjects, and
atmospheric pressure at different depths. Particularly, self-
organizing maps (SOM) are calculated to help to detect these
relationships by identifying clusters of variables. In the mid-
term, this analysis could serve as a basis to create more
complex reliable predictive models of HRV parameters at
high depths with the objective of increasing the safety for
divers: if the estimated parameters obtained with the model
for a particular subject (with ECG monitored before diving)
were far from the physiological healthy range, thus indicating
some possible abnormal body response, immersion could be
disadvised.
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II. RELATIONSHIPS BETWEEN VARIABLES

A. Materials

ECG signals of 17 subjects (14 males and 3 females),
with ages between 20 and 44 years, were used as database.
The protocol inside the chamber had a duration of about
two hours, and the ECG signal was recorded at five different
stages, as described in [13]: resting at 1 atm (sea level),
B1D1, stop at 3 atm simulating a depth of 20 m, B3D, stop
at 5 atm simulating a depth of 40 m, B5, and subsequently
two more stops during ascent at 3 atm and 1 atm, stages B3A
and B1A, respectively.

Four temporal parameters were computed using the beat-
to-beat time series of the ECG signal, and four frequency
parameters were calculated based on the power spectral
distribution of the HRV signal [13]:

• NN(s): median of the Normal-to-Normal (NN) intervals
between the fiducial points.

• SDNN(s): statistical dispersion of the NN intervals by
measuring the interquartile range, which reflects the
difference between the upper and lower quartiles.

• RMSSD(s): square root of the mean of the squares of the
successive differences between adjacent NN intervals.

• pNN50(%): number of pairs of successive NNs that
differ by more than 5 ms, divided by the total number
of NN intervals.

• PLF (ad): power inside the LF band (0.04-0.15 Hz).
• PHF (ad): power inside the HF band (0.15-0.4 Hz).
• PLFn(nu): power in LF band normalised with respect to

those of the LF and HF bands:

PLFn =
PLF

PLF +PHF
(1)

• RLF/HF (nu): ratio between LF and HF power:

RLF/HF =
PLF

PHF
(2)

These eight parameters (denoted as indices in the rest of
this paper) were computed at the five stages of immersion
allowing proper characterization of the response of the ANS
to both atmospheric pressure changes and time spent in the
hyperbaric chamber. Additionally, biophysical information of
each subject was included in the database.

B. Linear Regression

In order to analyse the linear dependence between pairs of
variables, linear regression technique was used. If the value
of the square of the Pearson’s coefficient, R2, was equal or
greater than 0.75, the relationship between the parameters
was considered to be linear.

The results showed some punctual and minor linear re-
lationships between indices at different stages. Only the
temporal parameters NN and RMSSD at B1D stage showed
a linear dependence on these same variables at other stages.

Similarly, the relationships between indices and biophys-
ical variables showed high results at stage B5 between PLF

1B from basal; the number reflects the pressure in atm; the letter D or A
refers to descent or ascent

and if the subject takes any medication and also between
PLF and if the subject drinks caffeine. In other words, ANS
response at high pressure is notably affected by these two
biophysical parameters.

C. Mutual Information

Mutual information (MI) measures how much one random
variable tells us about another one. A high value of MI
indicates that a variable can be predicted if the other one is
known. On the contrary, if MI is close to zero, both variables
can be considered independent on each other. Unfortunately,
MI does not inform about the type of relationship, linear or
nonlinear.

In this work, the normalized MI (nMI) within the [0,1]
interval was used. The nMI value is an indicator of how
acceptable a model using a pair of variables could be.
Analogously to linear regression, pairs of parameters were
considered to be highly dependent on each other if their nMI
was equal or greater than 0.75.

The results of nMI showed a strong dependence between
the NN and RMSSD parameters at all different stages, adding
more information to that provided by linear regression. Fi-
nally, other relationships were observed in B3D, B5 and B1A
stages. For example, some positive relationships between
pNN50 index at B1D stage with NN, pNN50, PLFn and
RLF/HF at B5 stage; PLF at B1D with NN, RMSSD, pNN50,
PLF and PHF at B1A stage; and PHF at B1D stage with NN,
RMSSD, pNN50 and PHF at B1A stage.

After performing a similar analysis between biophysical
parameters and the indices at all stages, the most significant
results were found for high arterial pressure value and
cardiac rate with the indices of all stages, except for PHF in
ascent stages. Also, arterial pressure values shared informa-
tion with NN and pNN50 at 1 atm, while this biophysical
parameter was correlated with both SDNN and RLF/HF when
pressure was increased, i.e. at 5 atm. On the other hand,
isolated positive relationships were observed with age, height
and low arterial pressure parameters. Low nMI values for
low arterial pressure with pNN50 and RLF/HF at stage B3D,
and SDNN at stage B1D were also observed (less than 0.4).
In the rest of the relationships with biophysical parameters,
nMI values were very low (between 0.1 and 0.4).

III. SELF-ORGANIZING MAPS

Artificial Neural Networks (ANNs) were used to de-
tect any relationship between indices, biophysical variables,
stages and subjects. Therefore, self-organizing maps (SOMs)
were trained to detect possible multivariable relations be-
tween parameters. A default unsupervised training was cho-
sen since the main goal was to clusterize the data: the
training process was initialized in a random way, was linear
and a batch training algorithm was selected. A Gaussian
function was used as a neighborhood function for updating
the weights of the neurons.

The principal quantifiable properties used to measure the
reliability of a trained SOM were [14]:
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• Mean quantization error to represent the precision of
the data.

• Topographic error to represent the precision of the
topology.

A. Self-organizing maps of the stages and indices

The SOM input data were normalized in the interval (0, 1)
with respect to the values at the B1D stage. The maps were
7x7 in size with hexagonal grids. This size was chosen based
on the number of data for training. Smaller SOMs would lead
different data vectors activating neighboring cells, whereas
larger SOMs would probably lead to isolated activations for
each data vector. The Umatrix (unified distance matrix) is a
common representation of a SOM for data visualization.

The activation maps of the indices at each stage were
calculated (Fig. 1). NN and RMSSD had a similar map in
both B3D and B1A stages, meaning a strong connections
between these two parameters. In addition, PLFn and RLF/HF
maps at B3D and B3A stages are very similar as well.

Interestingly, SOMs of each index were different at all
stages (Fig. 2). Even though the pressures of B1D and
B1A stages, and B3D and B3A stages were the same, their
activation maps did not share any similarity. Therefore, both
time spent in a hyperbaric environment and being in a
descent or ascent stage are factors that significantly affect
the values of the indices.

B. Self-organizing maps using the values of the indices

Three cases of study were analysed:

• Case 1: the characteristics are the 8 temporal and
frequency parameters, the samples are the data of every
subject at each stage, and the map is labelled according
to the stages. The mean quantization error is close to
zero (see Table I), therefore this map is an acceptable
result of classification. Although a low value of topo-
graphic error is convenient, this value is exactly zero,
not guaranteeing a good organization of the map. Large
dispersion of the four normalized stages was detected
over the Umatrix, particularly, at B3D stage.

• Case 2: the characteristics are the 4 stages, the samples
are the 8 indices of every subject, and the map is la-
belled according to the indices. Both errors have quality
values close to zero (see Table I), so this classification
is acceptable, even if no individual clusters can be
detected. For example, NN parameter always shares
activated nodes with other indices.

• Case 3: the characteristics are the 8 temporal and
frequency parameters of the 4 stages, i.e. 32 charac-
teristics in total, and the map is labelled according to
the subjects. In this case, the size of the map was chosen
to be 6x6, good enough to classify the 17 subjects. If
the subjects had the same behaviour, all the activated
nodes of the Umatrix would be in the same region.
But, in a global view, subjects present high variability in
their physiological ANS responses. A few subjects were
found to be isolated within the maps, probably meaning

their ANS responses significantly differ from those of
the others.

TABLE I: Different error values of the three cases of study.

Case 1 Case 2 Case 3
Mean quantization error 0.0981 0.0720 0.2278

Topographic error 0 0.0956 0.0588

C. Self-organizing maps using the indices and biophysical
features

In order to use the biophysical features as inputs for the
SOMs, they were previously normalized within the interval
(0, 1). Some of the features, such as ’Alcohol’ or ’Caffeine’,
took only binary values of 0 or 1.

Activation maps of biophysical variables are shown in
Fig. 3. Only the similarity between height and weight maps
was observed. SOMs combining indices at B1D stage and
biophysical parameters showed that low arterial pressure was
not relevant for subject classification since the maps with and
without that variable were practically the same. Besides, U-
matrices of height and weight were similar, and the same
occurred for those of high arterial pressure and pain.

IV. DISCUSSION
In this study, the relationships between physiological pa-

rameters related to the activity of the ANS at different depths
during simulated immersions have been assessed. In a longer
term, the objective would be to develop a reliable predictive
model to predict the risk of diving for a particular subject.
The results of this work could serve as the initial step in
that direction, for example reducing the number of variables
needed, based on the multivariable relationships shown in the
SOMs. However, for creating such a predictive model, the
database should be considerably enlarged so that the training
could lead to a valid model for all the parameters involved
in the ANS adaptation to a hyperbaric environment.

The analysis of parameters at the different stages of im-
mersion shows larger linear relationships between temporal
indices than those between frequency ones. For instance, pos-
itive results are found between NN and RMSSD at B1D and
B5 stages looking at R2 values. Regarding nMI values, they
are larger in general (at least 0.5 in most relationships) than
those of R2. Some discrepancies are also observed between
R2 and nMI, which may be due to the mapping of some
variables within the [0,1] interval needed for calculating nMI.
Nowadays, MI and nMI are being used in the biomedicine
field in classification and approximation works. They help to
select relevant characteristics within datasets and to reduce
the computational complexity quantitatively [15].

The same statistical methods (linear regression and nMI)
between stages including the biophysical features were per-
formed. The results show that cardiac rate variable, mea-
sured with a pulsometer before immersion, is linearly related
with NN and RMSSD, and PLF at B5 stage with if the
subject takes any medication and if the subject drinks caffeine
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Fig. 1: Activation maps of the indices at each stage after training.
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Fig. 2: Activation maps of the stages after training.

variables. In this case, there is a larger diversity of nMI
values: insignificant relations are observed between if the
subject drinks caffeine variable and the indices at B5 stage,
but the high and low arterial pressure variables are highly
related to those indices in terms of nMI. Interestingly, the if
the subject practices diving variable and the indices at B5
stage present no dependence (nMI values equal to zero).

In the article [16], the influence of time and depth in the
ANS response is confirmed, just as it was concluded with the
SOMs showing organization of the stages. In the study by
Kujawski et al. [17], the influence of the time spent within a
hyperbaric environment on the cardiovascular system was
also observed, registering changes in the parasympathetic
branch at a depth of 30 m, while both ANS branches were
affected at a depth of 60m.

V. CONCLUSIONS

In this study, only a few parameters related to the ANS
response in hyperbaric environment showed significant linear

dependences between them, meaning the relationships are
either nonlinear or multivariable. In order to account for
nonlinear dependences, the results using Mutual Information
show a considerably higher number of significant relation-
ships.

Multivariable dependence was assessed using ANNs, in
particular, SOMs. Both the time spent in a hyperbaric envi-
ronment and if the subject is in an ascent or descent stage
play a key role in the ANS response. Furthermore, both the
observed high inter-subject variability in the ANS response
and the high number of variables that can have a potential
influence on this response make it difficult to create generic
behavioral models.
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