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Abstract— In this paper we study consensus-based dis-
tributed estimation algorithms for estimating the global trans-
lation and rotation of each agent in a multi-agent system. We
consider the case in which agents measure the noisy relative
pose of their neighbors and communicate their estimates to
agree upon the global poses in an arbitrary reference frame.
The main contribution of this paper is a formal analysis that
provides necessary and sufficient conditions to guarantee stabil-
ity (in a Lyapunov sense) of the estimation system’s equilibria.
We prove that consensus-based algorithms will diverge, even
with arbitrarily small inconsistencies on the relative pose, unless
the measurements satisfy minimum consistency conditions. We
determine these consistency conditions for translation-only,
rotation-only, and combined 3D pose estimation using the axis-
angle rotation representation over undirected graphs. We then
propose an initialization method based on these conditions that
guarantees consistency and stability of the estimator’s equilib-
ria. Additionally, we show that existing distributed estimation
methods in literature exploit these conditions to guarantee
convergence of their algorithms. Lastly, we perform simulations
that show convergence when consistency conditions hold and
divergence when they do not.

I. INTRODUCTION

Consensus-based algorithms are often used for distributed
estimation because they enable multiple decision-making
agents to reach agreement on certain quantities by commu-
nicating their estimates over a graph [1]. These algorithms
are preferable to centralized approaches when no centralized
server exists or any given agent is too computationally
constrained to compute the centralized solution for the
entire network. This paper specifically considers nonlinear
consensus-based algorithms for estimating the global pose
of each agent in the multi-agent system in SE(3), i.e., the
Special Euclidean group in three dimensions (3D).

Prior work on distributed pose estimation generally con-
siders relative pose measurements that are either (i) corrupted
by noise or (ii) not corrupted by noise. Without noise,
classic consensus algorithms [1] may be used for translation
estimation. A number of methods have been proposed for
orientation synchronization without noise that consider the
axis-angle representation [2], QR-factorization [3], or syn-
chronization on the manifold of SO(3), the Special Orthog-
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Fig. 1. We consider consensus-based estimation algorithms for estimating
the global position and orientation of a multi-agent network such as the
one shown above. On the left, agents (represented by coordinate frames)
measure the noisy relative pose of their neighbors and communicate their
estimates over a graph (black lines). We show the necessary and sufficient
consistency conditions on these noisy measurements that guarantee stability
of the distributed estimation method — illustrated on the right.

onal group in 3D [4]. A common-frame SE(3) estimation
method is proposed in [5], where all agents desire to reach
consensus on a common frame given a relative pose from
that frame.

Noisy relative measurements have largely been considered
in the analysis of translation-only estimation, a form of
distributed linear estimation [6]. For example, [7] considers
distance-only measurements while [8] considers bearing only
measurements. The noisy relative translation measurements
themselves are considered in [9] which discusses the dis-
tributed computation of the maximum likelihood transla-
tion estimate. The authors of [10] proposed solving for
the centroid of the network and anchor-based translations
simultaneously. Asynchronous estimation is treated in [11]
and 2D estimation with Gaussian noise is analyzed in [12].
There are even fewer solutions that consider distributed 3D
pose estimation given noisy relative measurements. Most
notably, Tron et al. proposed a distributed gradient descent
method that sequentially considers three separate objectives:
first a convex relaxation of the rotation-only objective, then
a translation-only objective, and finally the full 3D pose
objective [13]. Recently, Thunberg et al. also studied dis-
tributed synchronization over all of SE(3) and guarantee
convergence with an iterative algorithm that projects the
rotation estimates at each step onto SO(3) [14]. These
works consider distributed estimation for 3D pose but do
not characterize the consistency conditions on the noisy
measurements for consensus-based estimation systems as we
do in this paper.

Inspired by distributed formation control [15], we consider



a general consensus-based distributed algorithm to compute
the global pose estimate of all agents in the network. The
agents first measure a corrupted version of the relative pose
with respect their neighbors, and then run the algorithm using
these measurements to agree upon their global poses in an
arbitrary reference frame. Unfortunately, even an arbitrarily
small disturbance to the relative pose over one link can lead
to divergence of the estimate. Thus, the main contribution
of the paper is a formal analysis of the necessary and suffi-
cient conditions on the measurements to guarantee stability
(in a Lyapunov sense) of the equilibria of a consensus-
based estimation algorithm. We study the separate cases of
translation-only (linear), rotation-only (nonlinear), and the
coupled translation estimate from 3D pose estimation (non-
linear). To guarantee convergence, the consensus protocol
requires a minimum degree of consistency among the noisy
relative pose measurements (see Fig. 1) in an undirected
measurement graph. The characterization of these conditions
yields a distributed initialization method for the estimation
and also helps to explain update laws in existing distributed
estimation algorithms [13], [14]. Simulation results corrob-
orate the theoretical findings of the paper.

We present the notation and problem formulation in Sec-
tion II followed by the consensus-based estimation algorithm
in Section III. The conditions on the noisy measurements
for convergence to the set of stable equilibria are proven
in Section IV, followed by a discussion of the results in
Section V. We present simulation results for a multi-agent
system in Section VI and draw conclusions in Section VII.

II. NOTATION AND PROBLEM SETUP

Consider n agents that are labeled by the set V =
{1, . . . , n}. The 3D rigid body pose of agent i ∈ V is
measured with respect to a global coordinate frame as a
tuple containing a translation vector and a rotation matrix,
(ti ∈ R3,Ri ∈ SO(3)), where SO(3) = {R ∈ R3×3 |
RTR = I3, det(R) = +1} and I3 is a 3 × 3 identity
matrix.

We make use of the axis-angle representation of rotations
defined as xi ∈ R3. The axis-angle may be thought of as a
rotation θi = ‖xi‖2 about a unit axis ui = xi

‖xi‖2 . We further
define the hat (·)∧ : R3 → so(3) and vee (·)∨ : so(3)→ R3

operators, where so(3) = {S ∈ R3×3 | ST = −S} is the
lie algebra of the special orthogonal group SO(3). The axis-
angle is mapped to rotation matrices using the exponential
map exp(x∧) : so(3) → SO(3), or Rodrigues’ rotation
formula,

exp(x∧) = I3 + sin(θ)
(x

θ

)∧
+ (1− cos(θ))

(x

θ

)∧2
,

where x ∈ R3, x∧ ∈ so(3), and θ = ‖x‖2. The inverse map
is the logarithmic map log(R) : SO(3)→ so(3),

log(R) =

{
φ

2 sin(φ) (R−RT ) , if φ 6= 0

0 , if φ = 0
,

where φ = arccos
(
1
2 (Tr(R)− 1)

)
.

The agents can communicate and measure one another
over a communication graph G = (V, E) with edges (i, j) ∈
E . We assume this graph is undirected, implying bi-direction
communication between connected agents, and that the
topology is fixed with time. Agent i can communicate with
all agents within its local neighborhood subgraph, Ni ⊂ V ,
which is a set of neighbor labels. These connections form
the graph Laplacian [1], L ∈ Rn×n. It is well known that
for undirected graphs L has eigenvalues λ1 = 0 ≤ λ2 ≤
. . . ≤ λn. The eigenvector associated to λ1 is in the set of
vectors with equal entries, i.e., λ1 ∈ 1n = {a ∈ Rn | a =
α1n, α ∈ R} [16], where 1n represents the n-dimensional
column vector of ones. This vector is then a left and right
eigenvector of L — as graph G is undirected — and the null
space of L is Null(L) = 1n.

The relative pose over edge (i, j) ∈ E , representing
the relative pose of neighbor j measured with respect to
agent i, is (tij ,Rij) = (RT

i (tj − ti),R
T
i Rj). Each agent

measures the noisy relative pose of their neighbors once
at the beginning of the algorithm. This measurement is a
perturbation of the true relative pose and is given by the
tuple (t̃ij , R̃ij), ∀ (i, j) ∈ E . Although relative rotations are
commonly measured in rotation matrix form, we consider
the logarithmic map of such measurements and define the
relative axis-angle measurement x̃ij = log(R̃ij)

∨.
Each ith agent maintains its own global pose estimate

(t̂i(t), x̂i(t)) at each time t ∈ R. For clarity, we omit the
time arguments in this paper and refer to the time-varying
estimates as (t̂i, x̂i). Further, denote R̂i = exp(x̂∧i ). It
is important to note that although the estimates are time-
varying, the measurements (t̃ij , R̃ij) are not. This is because
they are measured once at the beginning and used as constant
offset terms in the estimation algorithm (see Section III). This
is in contrast to typical formation control problems where
agents measure their neighbor’s relative pose at each time
step and use this information as feedback in the control.

The goal of this paper is to find global translations and
rotations that minimize error with respect to the noisy relative
measurements as given by Problem 1.

Problem 1 (3D Pose Estimation Problem).

minimize
t̂1,...,t̂n
x̂1,...,x̂n

∑
i∈V

∑
j∈Ni

‖x̂j− x̂i− x̃ij‖22 +‖t̂j− t̂i− R̂it̃ij‖22 .

Minimizing this objective in a distributed manner is chal-
lenging as it is non-convex due to the coupled nature of the
positions and orientations. We will later discuss in Section V
that the equilibria of our algorithm under the consistency
conditions are local minima of Problem 1.

III. CONSENSUS-BASED 3D POSE ESTIMATION

The consensus-based estimation problem we study is con-
ceptually similar to distributed formation control, where the
global position and orientation estimates of agent i evolve
according to the following integrator dynamics,

˙̂ti = νi , (1a)
˙̂xi = Lx̂i

ωi . (1b)



The interaction matrix Lx̂ (note the difference from the graph
Laplacian L) for an axis-angle vector x̂ = θ̂û ∈ R3 is given
by Malis et al. [17] as,

Lx̂ = I3 +
θ̂

2
û∧ +

1− 1

4

sin (θ̂)

sin
(

1
2 θ̂
)2
 û∧2 . (2)

This matrix is defined as I3 when θ̂ = 0 and is unique for an
axis-angle if x̂ ∈ S2π = {x̂ ∈ R3 | ‖x̂‖2 ∈ (0, 2π)} [2]. In
the estimator dynamics (1), the “control inputs” are vi ∈
R3 and wi ∈ R3 for the translation and rotation terms,
respectively. These inputs are defined in our method as,

νi =
∑
j∈Ni

t̂j − t̂i − exp(x̂∧i )t̃ij , (3a)

ωi =
∑
j∈Ni

x̂j − x̂i − x̃ij . (3b)

In the rest of this paper, we refer to system (1) with
control inputs (3) as the consensus-based SE(3) estimation
system. Note that this system is nonlinear due to the coupled
quantities in the translation control and the interaction matrix
that is a function of the rotation axis-angle vector.

Remark 1 (2D pose variant). The algorithm and analysis
presented in this paper are for 3D pose, however the results
are also applicable for 2D pose. In fact, the axis-angle
dynamics in 2D update a scalar quantity (a yaw angle) since
all rotation vectors are aligned.

This estimation scheme takes a similar form to that of [15],
however there are several major differences. First, we use the
axis-angle representation for rotation consensus so that we
may reason about the rotational estimate’s equilibria. Second,
as we already mentioned, the measurements are observed
once at the beginning of the estimation and not at each step
in the estimation. This way, the noise is not fed back into the
system at each time step. The other major difference is that
the measurements are noisy and no longer encode the desired
formation as in formation control literature. Consensus-based
estimators with perturbed measurements like this are not
guaranteed to converge to a stable equilibria set [6]. Hence,
we rigorously prove in the following section the specific
required structure of these offsets such that the estimator
converges to a stable equilibria.

IV. ANALYSIS

We now state the necessary and sufficient conditions on the
noisy measurements (t̃ij , x̃ij) for stability of the proposed
3D pose estimation system’s equilibria set. We first review
the translation-only case with constant, known rotations,
and show the expression for the equilibria as a function of
the noisy measurements, which in turn yields a condition
on the noise for global exponential stability. We extend
this result for the rotation only case with the axis-angle
representation yielding a set of locally asymptotically stable
equilibria. Finally, we inspect the coupled translation case
(now including rotation estimates) and show stability for a

time-varying disturbance term that decays asymptotically. We
note that much of the analysis in this section is performed
on systems that are comprised of all agent’s estimations but
the distributed estimation algorithm does not need this global
information.

Before we begin, we introduce the notion of consistency
and present three definitions. We later discuss the equilibria
of our distributed estimation in terms of these definitions.

Definition 1 (Global consistency). The measurements are
globally consistent if R̃ij = R̃i`R̃`j and t̃ij = t̃i`+ R̃i`t̃`j ,
for all i, `, j ∈ V . In other words, the relative pose from
agent i back to agent i must be zero (identity) for any cycle
in the graph.

Definition 2 (Minimal consistency). The measurements
are minimally consistent if

∑
i∈V

∑
j∈Ni

t̃ij = 03 and∑
i∈V

∑
j∈Ni

x̃ij = 03, where 0n represents the n-
dimensional column vector of zeros.

Definition 3 (Pairwise consistency). The measurements are
pairwise consistent if R̃ij = R̃T

ji and t̃ij = R̃ij t̃ji, ∀ (i, j) ∈
E . This is a particular case of minimal consistency (Defini-
tion 2) that is easy to satisfy with real noisy measurements
as we discuss in Section V.

A. Equilibria of the Translation-only Estimate

To begin our analysis of the proposed estimation system,
we first consider the translation estimation system with fixed
rotation estimates. Specifically, we consider the translation-
only estimate as system (1a) with control (3a),

˙̂ti =
∑
j∈Ni

t̂j − t̂i − exp(x∧i )t̃ij , (4)

where each xi is assumed to be known and constant.
For clarity of presentation, we consider the 1D version

of system (4) and then extend the results to 3D. We stack
the dynamics of each 1D agent into one vector t with the
dynamics,

ṫ = −Lt− δ , (5)

where t = [t̂1, . . . , t̂n]T ∈ Rn is the stacked vector of all
translation estimates — we remove the hat on vectors of
stacked estimates for simplicity in notation. In this system,
L ∈ Rn×n is the graph Laplacian, and δ ∈ Rn is the vector
of desired offsets where each component is δi =

∑
j∈Ni

t̃ij .
The rotations are temporarily omitted when considering only
1D.

We are interested in analyzing first, the structure of δ
such that the equilibria of (5) are stable, and second, the
closed-form expression of the set of stable equilibria. We
present the following proposition for stability that follows
as a generalization of the classic consensus-based formation
control results presented in [1].

Proposition 1 (Scalar translation-only stability). The set of
equilibria for system (5), Et = {t ∈ Rn | ṫ = 0n}, is
globally exponentially stable if and only if the vector of
offsets δ is minimally consistent.



Proof. The proof is split into two parts: first, that minimally
consistent δ =⇒ stability and second, stability =⇒ δ is
minimally consistent.

First, let us assume that the vector δ is minimally con-
sistent, i.e.,

∑
i∈V

∑
j∈Ni

t̃ij = 1Tnδ = 0. We show that
the set of equilibria is stable in a Lyapunov sense. Define a
candidate Lyapunov function V (z) = 1

2zT z that is positive
definite on all Rn, where z = t − teq with teq ∈ Et. The
time derivative of this function is,

V̇ (z) = zT ż = zT (−Lt− δ)

= −zTLz− zT (Lteq + δ) .
(6)

For stability, we require that V̇ (z) < 0 for any z ∈ Rn and is
exactly zero at the origin z = 0n. Let us consider the second
term of V̇ (z) which is −zT (Lteq + δ). This term is always
precisely zero by definition of teq ∈ Et, i.e., (−Lteq−δ) =
0n for any delta, including a minimally consistent one. Now,
we are only concerned with the first term of V̇ (z) which is
−zTLz. This term is known from standard linear consensus
literature to be negative semi-definite with an invariant null
space [1]. Moreover, the rate of change is upper bounded by
the smallest eigenvalue of the Laplacian, implying that the
set of equilibria is globally exponentially stable.

Second, assume that the set of equilibria is globally
exponentially stable. We now show that the equilibria Et,
which are a function of δ, also require minimal consistency.
This assumption implies that V̇ (z) is precisely zero at the
origin, i.e., when t ∈ Et. Additionally, this implies that
ṫ = −Lteq − δ = 0n. Now, we inspect this equilibrium
condition using the Singular Value Decomposition (SVD) of
the graph Laplacian L = UΣUT :

L =

[
A B
C D

] [
Σ̄ 0n−1

0Tn−1 0

] [
AT CT

BT D

]
,

where matrix A is the upper-left (n− 1)× (n− 1) block of
matrix U and vectors B and C follow from that definition
— D is a scalar in this case. Likewise, Σ̄ is the upper-left
(n−1)×(n−1) block of matrix Σ. Also, define the notation
t1:n−1 as the first n−1 entries of a vector t and tn as the last
component of that same vector. The affine system (5) may
then be expressed as UT ṫ = −ΣUT t − UT δ. Define the
coordinate transformation t̄ = UT t such that the equilibrium
condition is,[

˙̄t1:n−1

˙̄tn

]
=−

[
Σ̄ 0n−1

0Tn−1 0

] [
t̄1:n−1

t̄n

]
−
[

AT CT

BT D

] [
δ1:n−1

δn

]
.

(7)

The equilibria of this new system are given by any t̄n ∈ R as
long as BT δ1:n−1 + Dδn = 0. This condition is equivalent
to [BT ,D]δ = 1Tnδ = 0 since the last column of U is λ1,
the eigenvector that corresponds to the smallest eigenvalue.
Thus, we arrive at the requirement that δ must be minimally
consistent given that the equilibria are stable.

Although Proposition 1 is for a 1D system, we extend this
result to 3D and present a corollary for the stability of the

3D equilibria. In 3D with fixed, known rotations, system (5)
has the vectorized form,

ṫ = −(L⊗ Id)t− δ , (8)

where the vector of estimates is now t = [t̂T1 , . . . , t̂
T
n ]T ∈

R3n, (L ⊗ I3) ∈ R3n×3n, ⊗ represents the Kronecker
product, and δ ∈ R3n is the vector of noisy translation offsets
with an ith component

∑
j∈Ni

exp(x∧i )t̃ij ∈ R3.

Corollary 2 (3D translation-only equilibria). The system (8)
with the equilibria set Et = {t ∈ R3n | ṫ = 03n} is globally
exponentially stable if and only if the vector of offsets δ is
minimally consistent.

Proof. The proof follows directly from Proposition 1, where
the the minimum consistency condition is on the vectorized
offsets, i.e.,

∑
i∈V

∑
j∈Ni

exp(x∧i )t̃ij = 03, and the set of
equilibria is found using the SVD on the matrix (L ⊗ I3)
instead of just L.

From the proof of Proposition 1, we see that the equilibria
of (7) are given for any t̄n ∈ R. We see that if this condition
is not satisfied, then ˙̄tn 6= 0 and the formation is in motion.
This means that tn is a degree of freedom in the solution
corresponding to arbitrarily translating the stable formation
in R. Using this observation and Corollary 2, we state the
following theorem for the closed-form expression of the 3D
consensus equilibria as a function of this degree of freedom
and the minimally consistent δ. In general this is a set of
equilibria, however from standard linear consensus we know
that the equilibrium point of the estimate is the mean of the
initial conditions of the estimate.

Theorem 3 (Translation-only set of equilibria). The set of
stable equilibria for system (8) is,

Et = UΨUT δ , (9)

where U is defined from the SVD of (L ⊗ I3), Ψ =

−Diag
([

1
λn

1T3 , . . . ,
1
λ2

1T3 , t̄
T
b

])
, Diag(·) is the block di-

agonal operator that maps vectors to matrices, and t̄b ∈ R3

represents the degree of freedom in the 3D equilibria.

Proof. This solution follows from solving (7) for the equili-
bia t̄ in 3D. To do so we must redefine some of the variables
from the proof of Proposition 1. Consider the SVD,

(L⊗ I3) = UΣUT =[
A B
C D

] [
Σ̄ 0(3n−3)×3

0T(3n−3)×3 03×3

] [
AT CT

BT DT

]
,

where matrix A is the upper-left (3n− 3)× (3n− 3) block
of matrix U and matrices B, C, and D follow from that
definition, Σ̄ is the upper-left (3n− 3)× (3n− 3) block of
matrix Σ, and 0n×n is the n× n matrix of zeros.

The affine system (8) may be expressed as UT ṫ =
−ΣUT t−UT δ. We define for clarity the subscripts ta and
tb to denote the first (3n − 3) and the last three entries,
respectively, of a vector t. Define the same transform t̄ =



UT t with the following dynamics,[
˙̄ta
˙̄tb

]
=−

[
Σ̄ 0(3n−3)×3

0T(3n−d)×3 03×3

] [
t̄a
t̄b

]
−
[

AT CT

BT DT

] [
δa
δb

]
.

(10)

The equilibria of this new system are defined by setting ˙̄t =
03n. We again see that ˙̄tb = 03 for any t̄b ∈ R3 as long as
BT δa + DT δb =

∑
i∈V

∑
j∈Ni

exp(x∧i )t̃ij = 03 due to the
eigenvector of U associated to the smallest eigenvalue, i.e.,
the consistency condition in 3D.

Now, the first (3n − 3) components of (10) are t̄a =
−Σ̄−1(AT δa + BT δb). Further, invert the change of co-
ordinates such that t = Ut̄. Then, the equilibria set is,

Et = U

[
−Σ̄−1(AT δa + CT δb)

t̄b

]
= U

[
−Σ̄−1[AT ,CT ]δ

t̄b[B
T ,D]δ

]
= U

[
−Diag

([
1
λn

1T3 , . . . ,
1
λ2

1T3

])
0(3n−3)×3

03×(3n−3) Diag(t̄b)

]
UT δ ,

(11)
and the statement follows.

B. Equilibria of the Rotation-only Axis-Angle Estimate

We next inspect the stability of the equilibria for the rota-
tion estimate (1b) with control input (3b). Note this estimate
is independent of the translation estimate. We consider the
vectorized version of the axis-angle estimation dynamics by
defining the following terms:

x = [x̂T1 , . . . , x̂
T
n ]T ∈ R3n ,

δx =

∑
j∈N1

x̃T1j , . . . ,
∑
j∈Nn

x̃Tnj

T ∈ R3n , and

Γ = BlkDiag (Lx̂1
, . . . ,Lx̂n

) ∈ R3n×3n .

Here the BlkDiag(·) operator maps a list of matrices to
a block-diagonal matrix. Now, we are interested in the
evolution of the stacked vector x and note that this system
can be expressed as a function of the previously defined
terms,

ẋ = −Γ(L⊗ I3)x− Γδx . (12)

Notice that the structure of the control input (3b) is similar
in form to the standard translation-only system, however
the axis-angle dynamics include the nonlinear interaction
matrix Lx̂i

. Similarly to Section IV-A, we state the necessary
and sufficient conditions of δx required for stability of
this system’s equilibria. First, we present the following two
lemmas regarding the null space and positive definiteness of
the term Γ(L⊗ I3) and then present the stability theorem.

Lemma 4. If x ∈ S2π = {x ∈ R3n | x̂i ∈ S2π, ∀i ∈ V}
then matrix Γ(L ⊗ I3) is full rank and has a null space
equal to the set 1(n,3) = {a ∈ R3n | a = 1n ⊗ α,α =
[α1, α2, α3]T ∈ R3}.

Proof. Each Lx̂i
is full rank since x̂i ∈ S2π , ∀i ∈ V [2].

This implies that the block diagonal Γ is full rank and the
null space of interest is Null(L ⊗ I3). From Lemma 2.2
in [18], the null space of (L⊗ I3) is set of stacked vectors
with repeated, constant components: 1(n,3).

Lemma 5. If x ∈ Sπ = {x ∈ R3n | x̂i ∈ Sπ, ∀i ∈ V} then
matrix Γ(L⊗ I3) has non-negative eigenvalues.

Proof. Consider first the interaction matrix (2) for an agent i
assuming x̂i ∈ Sπ, ∀i ∈ V . The second two matrices of the
sum in (2) are functions of θ̂i and skew-symmetric forms of
the unit vector ûi. The scalar multiples of these two terms
are θ̂i

2 and (1 − 1
4

sin (θ̂i)

sin( 1
2 θ̂i)

2 ) ∈ (0, 1). From properties of

skew-symmetric matrices, the eigenvalues of û∧i include a
zero and one purely imaginary pair while the eigenvalues of
û∧2i include a zero and two repeated −1 values. Further, (2)
has at least one eigenvalue equal to 1 since û∧i and û∧2i are
rank 2. Now, the sum of the eigenvalues of (2) is equal to
the sum of all eigenvalues of the three matrices since these
matrices are Hermitian [19], which is ≥ 1. This implies
that the eigenvalues of (2) are all non-negative and that
Γ is positive semi-definite. Recall that the eigenvalues of
(L ⊗ I3) are also non-negative. Finally, from properties of
products of positive semi-definite matrices, the eigenvalues
of the product Γ(L⊗ I3) are also non-negative.

Theorem 6 (Rotation-only axis-angle stability). The set of
equilibria for system (12) defined by Ex = {x ∈ R3n | ẋ =
03n} is locally asymptotically stable in region x ∈ Sπ if and
only if δx is minimally consistent.

Proof. Similarly to Proposition 1, the proof is split into two
parts: minimally consistent δx =⇒ stability and vice versa.

First, we assume that δx is minimally consistent and
show that the set of equilibria is stable in a Lyapunov
sense. Define a positive definite candidate Lyapunov function
V (z) = 1

2zT z where z = x− xeq and xeq ∈ Ex. Then,

V̇ (z) = zT ż

= −zTΓ[(L⊗ I3)x + δx]

= −zTΓ(L⊗ I3)z− zTΓ[(L⊗ I3)xeq + δx]

The second term of V̇ (z) is zero ∀ z ∈ R3n because of the
definition of xeq and since Γ is full rank from Lemma 4
(i.e., x ∈ Sπ ⊂ S2π). As in Proposition 1, we are then
only concerned with the the first term of V̇ (z), which is
−zTΓ(L ⊗ I3)z. This term is negative semi-definite when
z /∈ Null(Γ(L⊗ I3)) from Lemma 5 since x̂i ∈ Sπ,∀i ∈ V .
However, V̇ (z) is zero when z ∈ Null(L). Fortunately,
the null space z ∈ 1(n,3) is invariant and therefore, by
LaSalle’s invariance principle, the set of equilibria is locally
asymptotically stable in the region defined by x ∈ Sπ .

Second, we assume that the set of equilibria is locally
asymptotically stable and show that these equilibria Ex that
are a function of δx are minimally consistent. Then V̇ (z) is
precisely zero at the origin, i.e., when x ∈ Ex, implying ẋ =
03n and (L⊗ I3)x + δx = 03n since Γ is invertible for x ∈



Sπ ⊂ S2π . In this case, we are interested in the equlibria of a
system that takes the exact form of (8) considering δx instead
of δ. Therefore, from Corollary 2, δx must be minimally
consistent given that the equilibria are stable.

The closed-form set of equilibria for system (12) may also
be computed using Theorem 3 for x ∈ Sπ .

C. Equilibria of the Coupled Translation Estimate

Finally, we inspect the coupled translation estimation
system with time-varying rotation estimates. This may be
applied to the translation estimation when considering the
full 3D pose estimation system. First, we consider a gener-
alized version of this system and introduce a time-varying
disturbance term, δ(t) ∈ R3n, that represents the coupled
rotation estimates and translation measurements from sys-
tem (1a) with control (3a),

ṫ = −(L⊗ Id)t− δ(t) . (13)

We first present the following proposition regarding this
system’s equilibria with a generic decaying δ(t) term that
follows from Theorem 3.8 of [15] with the extension of
minimally consistent offsets in the limit.

Proposition 7 (Coupled stability with generic δ(t)). If the
time-varying disturbance δ(t) satisfies,

lim
t→∞

δ(t) = δ∞ , (14)

where δ∞ is a bounded minimally consistent vector, then,

lim
t→∞

t = teq , (15)

where teq ∈ Et = {t ∈ R3n | ṫ = 03n} is an equilibrium
point of (13).

Proof. Suppose the time-varying disturbance term δ(t) sat-
isfies (14) with δ∞ minimally consistent. Define the error
term z = t− teq . The time derivative is,

ż = −(L⊗ Id)t− δ(t)

= −(L⊗ Id)z + [−(L⊗ Id)teq − δ(t)]

= −(L⊗ Id)z + β .

(16)

Consider the unforced system ż = −(L⊗I3)z and a positive
definite candidate Lyapunov function V (z) = 1

2zT z. Then,
V̇ (z) = −zT (L⊗ I3)z ≤ −λ2‖z‖22, where λ2 is the second
smallest eigenvalue of L [1]. This evaluates to zero when z ∈
1(n,3) and as in Theorem 6, this set is invariant, implying that
the equilibria set is globally asymptotically stable. Further,
the inequality implies global exponential stability from The-
orem 4.10 of [20]. Now, we turn our attention to the affine
control input β. From Corollary 2 and since δ∞ is minimally
consistent we know that β → [−(L⊗ Id)teq − δ∞] = 0nd
as t→∞. Thus, the control in the forced system β vanishes
asymptotically and from Lemma 4.6 of [20], the system is
input-to-state stable, yielding the stated result in (15).

In our 3D pose estimation system, the vectorized coupled
translation estimate takes the following form,

ṫ = −(L⊗ Id)t− δt , (17)

where δt ∈ R3n is the translation offset vector and each ith

three-dimensional sub-vector is given by
∑
j∈Ni

exp(x̂∧i )t̃ij .

Corollary 8 (Coupled translation stability). If the distributed
pose estimate system (1) is controlled by (3), the rotation
measurements are minimally consistent, the coupled rotation-
translation offsets obey limt→∞ δ(t) = δ∞ with δ∞ min-
imally consistent, and the initial rotation estimates satisfy
x ∈ Sπ , then,

lim
t→∞

t = teq , (18)

where teq ∈ Et = {t ∈ R3n | ṫ = 0nd} is an equilibrium
point of (17).

Proof. The proof follows directly from Proposition 7 by
considering the general form of system (13) with local
stability given by the set of x ∈ Sπ .

V. DISCUSSION

The result from the coupled translation estimation (Corol-
lary 8) tells us that the translation and rotation estimation
can be run concurrently. Previous distributed estimation
works often consider these in separate, sequential algorithms,
however this is not necessary with our method. Additionally,
Corollary 8 requires that the coupled rotation-translation
offsets tend towards a minimally consistent vector. How
exactly that consistency is achieved is a design element of
the algorithm and may be accomplished in many ways. We
propose a number of options here and relate them to other
algorithms in literature.

Since rotation is independent of translation, an intuitive
technique is to average the initial pairwise rotation measure-
ments between connected neighbors. The rotation measure-
ments may be initialized at the beginning of the algorithm
for each edge pair (i, j) ∈ E by,

R̃′ij = R̃ij exp

(
1

2
log(R̃T

ijR̃
T
ji)

)
, (19)

such that R̃′ijR̃
′
ji = I3. This operation is not expensive as it

involves one communication round between agent i and its
immediate neighbors.

For translation, one must consider the time-varying ro-
tation estimate. One approach is to average the coupled
translation terms between each update loop using,

t̃′ij =
1

2
(t̃ij − R̃′ij t̃ji) . (20)

This operation only requires a similar one-hop communi-
cation at the beginning, however agent i can perform this
operation without additional communication at all steps in
the future. This is the technique used in Section VI.

In the algorithm by Tron et al. [13], the estimates are
updated using the gradient of an objective similar to the one
in Problem 1. Notably, these gradient-based updates naturally
enforce pairwise consistency of the noisy measurements and
thus satisfy our requirement for stability. Inspired by their



method, this real-time consistency can be incorporated into
a modified control law for the estimation system (1):

νi =
∑
j∈Ni

(t̂j − t̂i) +
1

2

(
R̂j t̃ji − R̂it̃ij

)
. (21)

This type of pairwise averaging also appears in [14] (Algo-
rithm 1) despite the different form of rotation. We also relate
our findings to formation control literature such as [15],
where they require global consistency on the desired poses
for the proof of convergence of the coupled translation and
rotation formation. The global consistency requirement is
significantly more restrictive than minimal consistency.

Our algorithm is not explicitly performing distributed
gradient decent on the centralized objective (1), however we
briefly make the connection to centralized SE(3) maximum
likelihood estimation [21] that considers a similar objective.

Proposition 9. The equilibria of the distributed estimation
system given minimally consistent measurements are local
minima for Problem (1).

Proof. Denote the objective of Problem (1) as J . The gra-
dients with respect to the estimates are,

∂J

∂t̂i
=
∑
j∈Ni

2(t̂i − t̂j) + R̂it̃ij − R̂j t̃ji ,

∂J

∂x̂i
=
∑
j∈Ni

2(x̂i − x̂j) + x̃ij − x̃ji +
∂R̂i

∂x̂i
(t̂j − t̂i − R̂it̃ij) .

At equilibrium, under consistency in the measurements, both
gradients evaluate to zero as each is a function of the
estimation system multiplied by a constant. The extra offset
terms in the gradients can also be considered as real-time
averaging terms such as the ones in (21) which are pairwise
consistent.

VI. NUMERICAL EXAMPLES

We demonstrate the results from Section IV with two sets
of simulations: one that inspects the effects of consistency
(Fig. 2) and one that illustrates convergence to the set of
equilibria (Fig. 3). In each simulation we consider two cases:

1) translation-only estimation with known, fixed rotations
(Section IV-A), and

2) full 3D pose estimation (Sections IV-B and IV-C).
In case 1, the fixed rotations are simply set to the ground truth
rotations. Note that case 2 considers both rotation-only and
coupled-translation estimation. In all examples, we consider
n = 5 agents for simplicity with global positions in a circular
configuration as depicted in Fig. 1 with randomly sampled
orientations in SO(3) [22]. The agents are connected in a
ring communication graph which is depicted by black lines.

The initial estimates for each agent are initialized via
randomly sampling from uniform distributions. The support
is defined by t̂i(0) ∼ [−1,1] for translation and ‖x̂i(0)‖2 ∼
[0, π] for rotation such that the conditions for Lemma 5 are
satisfied. The rotation axis itself is a random unit vector in
R3. The noisy translation measurements are corrupted by
zero-mean Guassian noise with covariance Qtij = 0.1I3

meters2 and the rotation measurements are corrupted by
Langevin noise with covariance QRij = 10I3 degrees2.

The first set of simulations in Fig. 2 demonstrate diver-
gence of the estimation if the consistency conditions are not
satisfied, even under small perturbations. We first enforce
pairwise consistency for all edges except one (agent 1’s
measurement of agent 2) where we disturb this measurement
by a 2.5% increase in magnitude (solid lines). We then
consider the same scenario except we do not enforce any
consistency in the network (dotted lines). Both scenarios lead
to divergent estimations in both rotation and translation. It
is interesting to note that the single inconsistent edge case
diverges more quickly than the completely inconsistent case.
The closed-form equilibria that should be reached according
to Theorem 3 (under minimal consistency) are plotted for
visualization (dashed lines).

The second set of simulations in Fig. 3 enforces minimal
consistency and demonstrates the convergence of the esti-
mate to the set of equilibria. The equilibrium point from
Theorem 3 is also plotted (dashed lines). Before running
the estimation for case 1 in Fig. 3(a), minimal consistency
on the noisy translation measurements is achieved by aver-
aging the measurements between each pair of agents that
contains an edge, i.e., pairwise consistency from (20). For
case 2 in Figs. 3(b) and 3(c), minimal consistency on the
noisy rotation measurements is first achieved by averaging
the measurements between pairs of agents containing an
edge as in (19). Pairwise consistency is enforced on the
noisy translation measurements upon each iteration of the
estimation using (20). This step is similar to the update
rule proposed in [13]. As expected, the 3D pose estimation
converges to the equilibrium point under these minimally
consistent measurement conditions.

VII. CONCLUSION

We have shown the necessary and sufficient conditions
for stability of the set of equilibria for a distributed 3D pose
estimation algorithm based on the consensus protocol. This
result proves that the noisy measurements must be minimally
consistent in order for the equilibria of a consensus-based
estimator to be stable. Specifically, we have shown stability
and the consistency condition for translation-only, nonlinear
rotational-only estimation, and the coupled translation esti-
mation using distributed estimation. The results are applica-
ble not only to distributed estimation as in our setting but to
any affine consensus law, such as formation control. Future
work includes proving similar results for rotation using other
representations such as the rotation matrix or quaternion as
well as different rotation objectives such as the geodesic
distance.
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