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Over-the-air Array Calibration of mmWave Phased
Array in Beam-steering Mode Based on Measured

Complex Signals
Zhengpeng Wang, Fengchun Zhang, Huaqiang Gao, Ondrej Franek, Gert F. Pedersen and Wei Fan

Abstract—Accurate knowledge of initial complex excitation
coefficients for phased array elements is essential to ensure
accurate array performance. In the literature, many array
calibration algorithms have been proposed for this purpose,
which generally require customized phase setting for individual
phase shifters connected to array elements. In this paper, a new
array calibration method is proposed for phased array operating
in beam-steering mode only. That is, phase shifts of elements are
only simultaneously set according to the beam-steering directions
and therefore there is no need for dedicated individual element
phase tuning. The proposed method requires minimum number
of complex-signal measurements in principle, which enables fast
measurement. Furthermore, it is found that the performance of
the proposed method is determined by the beam steering matrix,
whose condition number is mainly ruled by the beam-steering
angle interval. The proposed method is numerically simulated
and experimentally validated in a millimeter-wave (mmWave)
phased array antenna-in-package (AiP) platform at 28 GHz. The
proposed method presents good agreement with the well-known
rotating element electric field vector (REV) array calibration
method, with an amplitude error and phase error within ±0.5
dB and ±5o, respectively. Furthermore, the reconstructed array
pattern with the proposed method offers excellent match with
the measured array pattern.

Index Terms—Over-the-air test, millimeter-wave phased array,
array calibration, beam-steering, in-situ antenna measurement,
antenna-in-package (AiP)

I. INTRODUCTION

The demand for ever-increasing data-rate for data-intensive
applications has motivated great interest in millimeter-wave
(mmWave) bands and beyond, which offer large available
bandwidths [1]–[5]. mmWave systems have found wide ap-
plications in satellite communication, radar and the fifth
generation (5G) radios. The large available bandwidths and
reduced physical size at high frequencies make mmWave
antenna systems attractive. However, the benefits are offset
to some extent by high propagation loss and low signal-to-
noise ratio (SNR) at mmWave frequencies [6]. Antenna-in-
package (AiP) technology, which integrates antenna systems
with radio transceiver circuits into a single package, is the

Zhengpeng Wang is with Electronics and Information Engineering, Beihang
University, Beijing 100191, China.

Fengchun Zhang, Huaqiang Gao, Ondrej Franek, Gert F. Pedersen and Wei
Fan are with the Antenna Propagation and Millimeter-wave Systems (APMS)
section, Aalborg University, Denmark.

Huaqiang Gao is also with the Beijing Key Laboratory of Work Safety Intel-
ligent Monitoring, Department of Electronic Engineering, Beijing University
of Posts and Telecommunications, Beijing 100876, China.

Corresponding author: Wei Fan (Email: wfa@es.aau.dk).

current mainstream solution for mmWave radios and radars.
AiP technology enables low lossy and low-cost integration
systems for mmWave systems [7].

Phased array antenna systems, where each of array elements
is fed by a complex excitation coefficient, have found wide
applications in the mmWave systems, e.g. beamforming for di-
rectional signal transmission or reception, nulling for interfer-
ence suppression, beam-steering to track dominant propagation
paths, and plane-wave generator (PWG) to synthesize a plane
wave in the proximity of the PWG array [8]–[10]. The phased
array performance demands precise control of the amplitude
and phase excitation of the array elements. Therefore, exact
knowledge of the amplitude and phase excitation is essential.
However, initial complex excitation coefficients among array
elements might differ in practical phased array systems, due to
component characteristics drift over temperature and age. Fur-
thermore, radio frequency (RF) impairments, e.g. uncertainty
of the attenuator and phase shifter control network, would
introduce inhomogeneities among phased array RF branches
as well. The objective of array calibration is to obtain the
complex excitation coefficients (amplitude and phase) of the
individual antenna elements and possibly to compensate the
element-to-element inhomogeneities (i.e. to ensure that the sig-
nal path to each element is identical). The array calibration is
essential to maintain an acceptable beamforming performance
since the complex excitation difference among array elements
might increase over temperature, humidity and age. In [11],
the antenna array is calibrated by injecting identical tones
directly into the array receiver ports and measuring the transfer
functions of all paths. However, individual element ports might
be not accessible for some phased arrays due to their highly
integrity and compact structures. Therefore, it is desirable that
array calibration should be performed in over-the-air radiated
mode, i.e., without access to the antenna element ports.

One popular and simple strategy adopted in the industry is
the single-element measurement, where the response of indi-
vidual elements are sequentially determined with only a single
element activated. This typically requires on-off operation of
the phased array (i.e. with the illuminated element enabled
and other elements properly terminated) and the help of an
accurate near-field scanner [12], [13]. However, for mmWave
phased array AiP, this strategy requires high repositioning
precision of the near field scanner system (which leads to high
system cost), and precise knowledge of the AiP antenna con-
figuration (which precludes application for “black-box” AiPs).
Furthermore, factors such as transceiver module variations,
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mutual coupling, and influence of antenna structures cannot
be considered in the single-element measurement [14].

In general, a phased array is designed to work in an “all-
on” mode, i.e., with all elements radiating simultaneously, to
electrically steer beams or nulls to the desired directions. The
element-to-element inhomogeneities in the “all-on” mode and
“on-off” mode might be different due to non-negligible mutual
coupling effect between elements. Hence, the phased array
calibration performed in the “all-on” mode is more reasonable
and accurate for practical phased arrays [15]. Some simultane-
ous measurement methods based on orthogonal encoded sig-
nals are proposed in [16], [17]. These methods might not work
for commercial user equipments (UEs), where the transmitted
signals from the UEs can not be designed (known). Below,
we focus on more general calibration methods applicable for
phased arrays only required phase tuning ability.

One effective calibration method is the so-called rotating
element electric field vector (REV) method [18]. The basic
principle is that the array power variation is measured while
the phase of a single element is successively tuned from 0o

to 360o, and the complex excitation of the corresponding
element can be determined. The REV procedure does not
require any phase measurements and has been widely applied
to many applications. Several methods were also proposed to
improve measurement speed and accuracy based on the REV
principle [14], [16], [19]–[24]. Besides the amplitude-only
measurements, the complex signal (i.e. both amplitude and
phase) measurement methods were applied as well for array
calibration [25], [26]. Compared to amplitude-only methods,
fewer number of measurements are typically required. How-
ever, all available “all-on” mode calibration methods (i.e. both
the amplitude-only and complex signal measurements) in the
literature generally require dedicated phase tuning operation
for individual elements, which is typically not supported for
in-situ commercial mmWave radios, without special chip-set
supports.

The default working mode of mmWave phased arrays is
beam-steering in commercial systems, e.g. 60 GHz WiFi in
the IEEE 802.11ad for short-range communication [27], 5G
mmWave new radio (NR) [28], etc. Beam-steering is essential
to align the transmitter (Tx) and receiver (Rx) beam, which
is required in mmWave directional links. Typically, phased
arrays employed at the Tx and Rx feature a set of pre-defined
beams in a wide angular interval, and the best Tx-Rx beam
pair can be selected via a brute-force search procedure. Beam-
steering operation is enabled via setting phase shifts of all an-
tenna elements simultaneously according to the beam-steering
direction, which is supported in the default mode. However,
other dedicated phase settings, e.g. to achieve a Hadamard
matrix, might be not supported by the phased array under test.
Therefore, it would be desirable that array calibration can be
performed with phased array operating in beam-steering mode
only. However, this has not been discussed in the literature, to
the best knowledge of the authors.

In this paper, a novel array calibration method based on
solving linear equations is proposed to measure the initial
complex excitation coefficients of individual elements for the
beam-steering uniform linear arrays (ULAs) that are widely

aN-1e
jfN-1jfN-1aN-1e
jfN-1aN-1e
jfN-1

aNe jfNjfNaNe jfNaNe jfN

a1e
jf1jf1a1e
jf1a1e
jf1

a2e
jf2jf2a2e
jf2a2e
jf2

… …

Measurement distance D

B C a

Probe

P phase shift settings N DUT elements

DUT

yp

d

…

r2

q 2

P
q 2

P

q 2

A

2

A
q 2

A

Figure 1. Beam-steering phase array calibration system schematic.

used for various applications (e.g. LTE base station antennas,
mmWave mobile handset antennas, etc.). The array complex
signal is measured with a single probe antenna placed in the
boresight while phase shifts of all elements are set according
to beam-steering directions. It is found that the performance
of the proposed method is mainly determined by the condition
number of the beam-steering matrix. The factors that affect the
beam-steering matrix condition, e.g. beam-steering interval,
number of antenna elements, element spacing and number
of steered beams, are investigated for ULAs. Furthermore, a
strategy to select beam-steering directions, which offers lowest
possible condition number for the ULA, is proposed. The
proposed method is then numerically simulated and experi-
mentally validated.

II. METHOD

A. Principle

The measurement system is illustrated in Fig. 1. Beam-
steering operation is enabled by setting phase shifts by the
phase shifters connected to the array elements according to
the beam-steering direction of the array. The feed of the
device under test (DUT) (which is enclosed by the dotted dark
line in Fig. 1) is split into N branches, each connected to a
phased shifter and an array element. The total number of phase
shifter settings is P (with P > N , which is a condition for
the proposed algorithm), allowing for beam-steering into P
different directions. The initial complex excitation coefficient
that needs to be determined in the n-th branch is denoted as
αne

jφn , with αn and φn denoting the initial amplitude and
phase terms to be determined, respectively, for n ∈ [1, N ].
The probe antenna is placed in the boresight direction of the
DUT (with a measurement distance D) and aligned with the
DUT’s center. Our discussion is limited to a single-polarized
ULA DUT, though its extension to the dual-polarized case is
straightforward.

It is worth noting that the proposed calibration method in
this paper is mainly discussed for the phased array architecture
shown in Fig. 1, where the phase shifters are tuned according
to beam steering angles for each antenna element. In many
mmWave systems, the phased array antenna elements can
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also be grouped into several subarrays, each of which is only
connected to one phase shifter. In this case, each subarray is
taken as an element in Fig. 1. The calibration is to compensate
subarray-to-subarray inhomogeneities via tuning the phase
shift according to beam steering angles for each subarray.
However, calibrating the antenna elements within the sub-
array is not possible without the phase tuning per element. The
proposed algorithm works as long as there is a phase shifter for
each antenna or subarray, regardless of phase shift operation in
the digital or analog domain. Therefore, the proposed method
can be applicable to the digital and hybrid beamforming
structure as well. In the proposed method, the phase tuning
is performed in a digital manner for the digital beamforming
structure. For the hybrid structure, the calibration might be
required to compensate element-to-element inhomogeneities
within each subarray independently or within the whole array.
For one-by-one subarray calibration, the proposed algorithm
can be directly applied only with the selected subarray ac-
tivated. For the whole array calibration, the required phase
shifts of individual elements can be generated via properly
combining the phase shift operated in the analog domain and in
the digital domain. Hence, the proposed calibration algorithm
is a general method that is applicable for any beamforming
structures.

According to Fig. 1, the signal model can be written as:

s = B ·C · a, (1)

where the matrices B ∈ CP×N and C ∈ CN×N , and vector
a ∈ CN×1 characterize three distinct sub-parts of vector s ∈
CP×1, respectively, as detailed below:

• Vector s = {sp} is the complex S-parameter vector
between the DUT antenna feed and probe antenna feed
for P phase shifter settings, with its element sp denoting
the complex S-parameter for the p-th phase shifter setting.
The complex vector s can be directly measured, e.g. via
a vector network analyzer (VNA), in the setup.

• Matrix B = {bpn}, with its element bpn denoting the
complex excitation applied to the n-th DUT element for
the p-th phase shifter setting. For a ULA shown in Fig.
1, bpn can be expressed as:

bpn = exp
[
− jk(n− 1)d sin(ψp)

]
=
[

exp
(
− jkd sin(ψp)

)]n−1

=
[

exp(−j2πfp)
]n−1

, (2)

where k, d and ψp denote the wave number, ULA
element spacing and beam-steering angle for the p-th
phase shifter setting, respectively. fp =

d sin(ψp)
λ is the

coefficient associated with ψp, which will be discussed
later. λ is the wavelength. Beam-steering matrix B can be
obtained using (2) with knowledge of the DUT antenna
configuration, operating frequency and beam-steering di-
rection settings, which is often available in phased array
specifications. Note that no amplitude tapering is assumed
for bpn for simplicity. If amplitude tapering is applied, the
tapering coefficient will be included in the calibration

matrix C. Therefore, the tapering coefficient can be
compensated if known.

• Matrix C = {cn} is the diagonal matrix to be determined,
with its diagonal element cn = αn exp(jφn). In the ideal
scenario, C is an identity matrix, indicating homogeneous
RF chains connected to each DUT element. As ex-
plained, inhomogeneity exists among RF chains in prac-
tical phased array design, which needs to be calibrated
out to ensure optimal phased array performance. The
objective therefore is to determine the calibration matrix
C based on knowledge of vector s. The objective of the
work is only to determine RF branch inhomogeneities via
bulit-in beam-steering phase shifts, which is important in
antenna system conformance and performance testing. In
order to calibrate out the RF branch inhomogeneities, we
still need to have the possibility to set the phase shifts
separately for each RF branch. Note that the phased array
is typically calibrated for a single carrier frequency. For a
system with a wide bandwidth, we might have to divide
the whole band into several small sub-bands and perform
calibration in the center frequency of each sub-bands.

• Vector a = {an} is the coupling vector between the N
DUT antenna element feeds and the probe antenna feed,
with its element an denoting the coupling coefficient
between the feed of the n-th element and the feed
of the probe antenna. Assuming free space propagation
scenario, we have

an = g1(θAn )g2(θPn )
λ exp(−jkrn)

4πrn
, (3)

where g1(θAn ) and g2(θPn ) are complex antenna patterns
for the n-th DUT antenna (in the direction of the probe
antenna θAn ) and the probe antenna (in the direction
of the n-th DUT antenna element θPn ), respectively.
The fractional term expresses the free-space propagation
coefficient. rn is the distance between the probe antenna
and n-th DUT antenna element. θA2 , θP2 , and r2 are
illustrated in Fig. 1, as an example. If the probe antenna is
located in the near field of DUT array, the DUT antenna
elements are in the different directions of the probe (i.e.
θA1 6= θA2 6= · · · 6= θAN and θP1 6= θP2 6= · · · 6= θPN ).
In the near field case, the unknown and non-negligible
antenna gain difference among all elements in the differ-
ent directions of the probe will be included in matrix C,
which would introduce deviations in the array calibration
results. The proposed array calibration method in this
paper works in the far field of the DUT array to avoid
this problem, i.e. the DUT antenna elements are all in the
same direction of the probe with θA1 = θA2 = · · · = θAN
and θP1 = θP2 = · · · = θPN . On the other hand, the
proposed method like the other array calibration methods
in the literature, works as well in principle when the
probe antenna is located in other directions different from
the boresight direction. However, the probe antenna is
generally placed in the boresight direction in practice.
By placing the probe antenna in the boresight direction
of the phased array, the signal condition is good since
the main beam of the element pattern is pointed towards
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the boresight direction (i.e. reducing calibration error).
Secondly, the phase response for each array element will
be the same due to the fact that the impinging direction
of the signal is perpendicular to the phased array (i.e.
without knowledge of the DUT antenna array structure).
Assuming the antenna pattern difference among all DUT
elements negligible in the boresight direction, (3) can be
simplified to an all-one vector.

From Eq. (1), the calibration matrix C can be determined by
solving linear equations as below:

C = B+ · s · a+, (4)

where ()+ is the pseudo-inverse operator. In practical phased
array system, phase shift operation in the phase shifters would
introduce uncertainties in amplitude and phase, besides their
quantization errors. Furthermore, it suffers from noise and
nonidealities introduced by active components in the phased
array (e.g. power amplifiers). Although the calibration matrix
C can be solved using (4) in principle, its accuracy, however,
is ruled by the condition number of matrix B. The condition
number of the matrix is an “amplification factor” that bounds
the maximum relative change in the solution due to a given
relative change in the noisy input data [25], [29]. To ensure
good array calibration accuracy, matrix B with a small con-
dition number is desirable.

B. Condition number of matrix B

Beam-steering matrix B has the Vandermonde structure
[29], with its complex node zp = exp(j2πfp) for p ∈ [1, P ].
Many mathematical works have been reported in the literature
on the condition numbers of Vandermonde matrices, see e.g.
[29], [30]. Unfortunately, the Vandermonde matrix is typically
ill-conditioned.

For a beam-steering phased array, depending on its applica-
tion scenarios, its beam-steering capability is widely different
in terms of beam-steering interval with respect to its nominal
tilt direction. The interval depends on the array element
radiation pattern (i.e. element pattern spatial filtering) and the
array element spacing (i.e. grating lobe issue). For example,
beam-steering intervals in the LTE base station are typically
reported up to 15o due to grating lobe effects introduced by
large element spacing (e.g. 0.65 λ). For mmWave phased array
employed in massive MIMO 5G base stations, the beam-
steering interval can be up to 60o in the azimuth plane
and 30o in the elevation plane, respectively. For mmWave
mobile antenna handset antennas, full spherical coverage can
be realized by employing multiple phased-arrays [31]. Wide-
angle scanning with small gain fluctuation is a hot research
topic for the mmWave phased array, see e.g. [31]. On the other
hand, beam-steering step resolution can be rather small, since
it is not very sensitive to phase shifter bits. Therefore, the
number of beam-steering directions P can be set much larger
than the number of DUT elements N in practice.

In principle, we can form a new matrix B̂ ∈ CM×N , which
is generated by selecting M rows from P rows in matrix B,
with N ≤M ≤ P . B̂ denotes the complex weights applied to
the N DUT elements for the selected M phase shifter settings.

Eq. (4) can be updated accordingly to obtain the calibration
matrix C, via replacing B by B̂. We have

C = B̂+ · ŝ · a+, (5)

where ŝ ∈ CM×1 is the corresponding S-parameter vector for
the selected M phase shifter settings.

To ensure an optimal condition number of B̂, we can

calculate the condition numbers of all possible B̂ for
(
M
P

)
total combinations, and select B̂ with the smallest condition
number. However, there are several drawbacks of such brute-
force search strategy. First, the computation complexity might
be high, especially when P is large. Furthermore, it does not
provide any insight into how condition number of B̂ is related
to phased array beam-steering settings. The objective of our
work is to achieve accurate array calibration for beam-steering
phased array. Several practical aspects should be addressed:

• How does beam-steering interval and beam-steering res-
olution of the phased array affect the condition number
of B̂?

• How does ULA phased array element spacing and num-
ber of elements affect the the condition number of B̂?

• How to set beam-steering directions (i.e. the number of
beams and beam-steering angles) of the phased array to
achieve the best algorithm performance?

Below, a novel strategy based on complex node distribution
on the unit circle is described to determine the optimal B̂.
Furthermore, the above-mentioned aspects are addressed in
Section III based on the proposed method. Note that the
proposed beam selection strategy in this paper is only ap-
plicable for the ULAs whose beam-steering matrix has the
Vandermonde structure with its entry bpn given by (2). For
the uniform rectangular arrays (URAs) whose beam-steering
matrixes are not Vandermonde, however, the proposed method
cannot be directly applied.

C. B̂ selection

Let us denote the complex node vector z ∈ CP×1 and
the node angle coefficient vector f , with its p-th element
zp = exp(j2πfp) and fp =

d sin(ψp)
λ for p ∈ [1, P ], respec-

tively. As explained, all complex nodes in the Vandermonde
matrix B in (2) are distributed on the unit circle. Assume
that we select M beam-steering directions from P directions,
with beam-steering angle ψ1 < ψ2 < ... < ψM with
ψm ∈ [−90o, 90o]. As discussed below, the optimized M
steering directions can be achieved with a uniform phase shift
between two adjacent directions. The selected steering matrix
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can thereby be expressed as:

B̂ =


1 ej

2πd sin(ψ1)
λ . . . ej

2πd sin(ψ1)
λ (N−1)

1 ej
2πd sin(ψ2)

λ . . . ej
2πd sin(ψ2)

λ (N−1)

...
...

. . .
...

1 ej
2πd sin(ψM )

λ . . . ej
2πd sin(ψM )

λ (N−1)



=


1 ej(−

M−1
2 σ+ε) . . . ej(−

M−1
2 σ+ε)(N−1)

1 ej(−
M−3

2 σ+ε) . . . ej(−
M−3

2 σ+ε)(N−1)

...
...

. . .
...

1 ej(
M−1

2 σ+ε) . . . ej(
M−1

2 σ+ε)(N−1)

 ,
(6)

where σ represents the phase shift between the two adjacent
steering directions and ε denotes the extra phase shift that one
can freely set within a given range. Once σ and ε are selected,
the steering matrix B̂ is determined and the steering angles
can be calculated according to ψm = arcsin{ λ

2πd [(−M−1
2 +

m − 1)σ + ε]}. Note that the selected steering angles ψm
will change with frequency if d and M are unchanged.
As explained in Section II-A, however, this is typically not
an issue in practice due to the small percent bandwidth at
mmWave bands.

The determination of σ and ε is mainly ruled by the maxi-
mum separation between node angle coefficient (i.e. distance
between fM and f1), which can be denoted as:

δ = fM − f1, (7)

with fm = d sin(ψm)
λ . As explained in [29], [30], a small condi-

tion number approaching 1 can be achieved for a Vandermonde
matrix if its complex nodes ẑm are uniformly distributed along
a unit circle. Therefore, we propose a beam-steering selection
method to achieve the optimal condition number of matrix B̂
in Eq. (5) as below:

1) With δ ≥ 1, the unit circle can be fully covered.
Therefore, the complex nodes ẑm can be uniformly
distributed along the unit circle with any small interval
between two adjacent nodes, implying that M can be
any integer (no smaller than N ). Under this condition,
we can easily determine M steering angles ψm whose
associated complex nodes are uniformly placed along the
unit circle. That is, σ = 2π/M and ε ∈ (−σ/2, σ/2).
The condition number of the steering matrix B̂ under
such condition is equal to 1, implying robust and accurate
array calibration performance. However, this condition
requires a full-range beam-steering angle interval (i.e.
[−90o, 90o]) and phased array element spacing d ≥ λ/2.

2) With δ < 1, the unit circle is only partially covered, as
shown in the black curve covered part in Fig. 2 (a) and (b)
(parameter setting of the ULA explained in Section III).
Under this condition, the beam-steering selection strategy
is proposed as below. The M complex nodes can still
distribute uniformly on the unit circle if M satisfies the
boundary below:

M ≤ 1/(1− δ). (8)

For a M within the above boundary, we can still select
M beam-steering angles ψm to ensure the complex nodes

2𝜋𝑓1

2𝜋𝑓𝑀

(a)

2𝜋𝑓1

2𝜋𝑓𝑀

(b)

Figure 2. An illustration of the complex node distribution for M within the
boundary condition with M = 4 (a) and beyond the boundary condition with
M = 15 (b). The half range steering angle is ΦP = 50o with Φ̄P = 48.6o.

having uniform spacing. However, the selection is not
as flexible as in condition 1). Instead, we have to make
sure the complex nodes are uniformly distributed along
the unit circle within the given range [2πf1, 2πfM ], as
illustrated in Fig. 2 (a). This figure demonstrates that
the complex nodes are uniformly located along the unit
circle when the condition in (8) is satisfied. In this
case, σ = 2π/M and ε ∈ (−εmax/2, εmax/2), where
εmax = 2π(fm−f1−1) +σ and εmax < σ. In this way,
the composed steering matrix B̂ is also well-conditioned.

3) If the condition in Eq (8) is not met, M selected complex
nodes can not be uniformly placed on the unit circle,
as illustrated in Fig. 2 (b). For the same unit circle
coverage (i.e. beam-steering angle interval) as in (a),
the complex nodes cannot uniformly distributed on the
unit circle when M is beyond the boundary defined in
(8). In this case, we select the beam-steering angles ψm
to have the complex nodes uniformly distributed within
[2πf1, 2πfM ]. That is, σ = 2π(fM−f1)

M−1 and ε = 0. The
condition number of the steering matrix B̂ will be larger
than 1, leading to unreliable and less accurate calibration
results.

According to the above discussion, we can conclude that the
full coverage of the unit circle can be achieved with δ ≥ 1 or
M−1
M ≤ δ < 1. Therefore, the minimum beam-steering range

to ensure the full circle coverage is given by

Φ̄P = arcsin(
M − 1

M
· λ

2d
). (9)

III. NUMERICAL SIMULATION

A ULA composed of four array element with 0.5λ element
spacing is used in the numerical simulation (to mimic the
ULA employed in the measurement as detailed later) unless
otherwise stated. Below we investigate how the bit number of
phase shifters, beam-steering interval, ULA parameters would
affect the condition number of B̂.

A. Bit number of phase shifters

As discussed, we should select beam-steering ψm such
that fm is uniformly distributed on the covered circle for
m ∈ [1,M ]. Note that the distribution will not be uniform
if the beam-steering angles have constant step, due to the sin
function relationshop between ψm and fm. To implement the
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selected steering matrix B̂, phase shifters should be used. For
digital phase shifters, the phase adjust resolution is determined
by the phase shifter bit number, with phase range 360o

typically supported. Assuming that we use the phase shifters
with a bit number of K, i.e. with a phase shift step-size
∆ = 2π

2K
, to implement the matrix B̂ in (6), the phase shift

errors will be bounded to [−∆/2,∆/2] (assume phase shifter
uncertainty is negligible). For instance, given N = 4, M = 5,
σ = 360o

M = 72o and ε = 5o, the round-off phase errors
of matrix B̂ in (6) by using the 2-bit phase shifters and the

3-bit phase shifters are


0o −41o 8o −33o

0o −23o 44o 21o

0o −5o −10o −15o

0o 13o 26o 39o

0o 31o −28o 3o

 and


0o 4o 8o 12o

0o 22o −1o 21o

0o −5o −10o −15o

0o 13o −19o −6o

0o −14o 17o 3o

, respectively. Both of them

are within [−∆/2,∆/2] as expected. In general, to implement
a given matrix matrix B̂, the phase shifters with a smaller bit-
number will introduce larger round-off phase errors, resulting
in a stronger impact on the condition number of B̂. Further-
more, the phase shifters with a bit number K1 might well
implement matrix B̂, i.e., without introducing any round-off
errors, which implies that any phase shifters with a bit number
K ≥ K1 can well implement the matrix B̂ as well. In this case,
the phased shifters have negligible impact on the condition
number of the matrix B̂, as long as the bit number satisfying
K ≥ K1.

The impact of the bit-number of a phase shifter is illustrated
in Fig. 3 for 4-beam cases (i.e. M = N = 4). We can see that
a smaller condition number can be achieved with a higher-bit
phase shifter as expected, due to more accurate phases can
be generated. The bit-number affects the condition number
only when the beam-steering interval is small. With bit-number
larger than 4, the impact of bit-number on condition number

Figure 4. The four selected complex nodes on the unit circle for ΦP = 20o

(left), 40o (middle) and 50o (right) (M = N = 4).
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Figure 5. Condition number of matrix B̂ for different ΦP settings (M =
N = 4).

is negligible. In the simulation results below, the phase shifter
bit is set to 6, i.e., with LSB 5.625o, to mimic settings for the
AiP employed in the measurement.

B. Beam-steering interval

As stated in Section II-C, we can ensure that the selected
M complex nodes can be uniformly distributed on the full
circle (thereby leading to a small condition number), when
we have half range steering interval ΦP ≥ Φ̄P . For the four-
element ULA with 0.5λ element spacing, we have Φ̄P = 48.6o

using Eq. (9). Following the complex node selection in Section
II-C, the selected four selected complex nodes are shown in
Fig. 4 for ΦP = 20o, 40o and 50o, respectively. The complex
nodes, though uniformly distributed, can only cover part of
the circle with ΦP < Φ̄P , while a full circle can be covered
with uniformly distributed complex nodes with ΦP ≥ Φ̄P .
The condition number of B̂ is shown in Fig. 5 for different
steering angle interval ΦP . A condition number approaching
1 can be achieved with ΦP ≥ Φ̄P , as expected. The condition
number converges to 1 when complex nodes can be uniformly
distributed on the unit circle. Therefore, we can conclude that
the condition number is mainly ruled by the phased array
steering angle interval.
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C. ULA parameters

1) Number of elements: From Eq. (9), we can also conclude
that a larger beam-steering interval threshold Φ̄P would be
required if the number of array elements N increases. For
example,we have Φ̄P = 30o, 48.6o, 61.0o and 69.6o for
half-wavelength ULA with N = 2, 4, 8, and 16 elements,
respectively.

2) Element spacing: According to Eq. (9), a larger element
spacing would lead to a smaller beam-steering interval thresh-
old Φ̄P , which can be clearly observed in Fig. 6.

3) Number of beam-steering directions: The impact of M
on the condition number is shown in Fig. 2 and Fig. 6. We
can conclude that for a ULA with a given element spacing,
the beam-steering interval threshold goes up as the number
of beams increases. Therefore M = N can render smallest
possible condition number and also minimum number of
measurements. Note that in practical measurement, a large M
setting might be beneficial due to statistical averaging effect.

IV. MEASUREMENT VALIDATIONS

A. Measurement system

A 4 × 4 mmWave phased array AiP operating from 26.5
GHz to 29.5 GHz was utilized in the experimental campaign.
The AiP integrates four AWMF-0158 chips with 16 single-
polarized patch antennas [32]. The patch element spacing
is 5.45 mm (i.e. roughly 0.5 λ at 28 GHz). Each AiP
element is connected to a 5-bit programmable attenuator
(with LSB 0.5 dB) and a 6-bit programmable phase shifter
(with LSB 5.625o). Individual amplitude and phase control
of each phased array AiP element is automated, with help
of the control computer, which can significantly facilitate the
measurement effort and time.

The measurement setup diagram is illustrated in Fig. 7 and
a measurement photo is shown in Fig. 8, which is composed
of the 4 × 4 mmWave phased array AiP, the probe antenna
(standard gain horn antenna Flann 22240-20), a vector network
analyzer (VNA), a DC power supply for the AiP and a

VNA

y x

z

mmWave AiP

Left

Right

Up

Down

FP

0
o

Probe antenna

Figure 7. Diagram of the measurement setup.

Probe antenna

mmWave AiP

VNA

Control computer

DC power

Figure 8. A photo of the measurement system.

control computer for automating the measurement campaign
and storing the measured data. The probe antenna was placed
to the boresight of the AiP, with aligned polarization. The
distance between the AiP and probe antenna was around 0.7
m, which is larger than the far field distance of the AiP
(around 0.1 m) at 28 GHz. The S-parameters between the
mmWave AiP antenna feed and the probe antenna feed were
recorded at 28 GHz for each complex excitation setting for the
AiP, with AiP operating in receive (Rx) mode. As discussed,
the developed mmWave phased AiP experimental platform
offers complex excitation coefficient control of individual AiP
elements, thereby enabling both the REV method measurement
and the conventional beam-steering operation in an automated
manner [32].

B. Calibration Measurement

To evaluate how accurate our proposed array calibration
method works in practice, a reference calibration method is
required to obtain the actual initial excitation of the AiP ele-
ments (i.e. the “ground truth”). As discussed, array calibration
with “on-off” method with the help of a near-field scanner is
dominantly used in the industry. However, such method re-
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quires highly accurate repositioning of the probe antenna, high
isolation between DUT elements, and precise knowledge of
the DUT element configuration. These requirements, however,
are typically difficult to be met for practical mmWave AiP
systems. For example, the mmWave AiP in our measurement
is a “black-box” design with its patch antenna array covered.
Furthermore, the isolation among AiP elements is less than
-15 dB according to manufacture specification. Therefore, it
is desirable to employ the “all-on” calibration method. In the
all-on calibration mode, it does not require knowledge of the
DUT antenna configuration, and it can include mutual coupling
effect in the calibration as in normal operation mode of the
phased array. In this paper, the well-known REV calibration
is adopted as the reference method.

1) REV calibration measurement: The REV calibration
method is an amplitude-only measurement method, which
is desirable especially when accurate phase measurement is
difficult. In the REV measurement, the complex S-parameters
of the AiP array are recorded in the VNA when phase of
one AiP element is rotated from 0o to 360o, with phase
excitation for the other AiP elements unchanged at 0o. This
process is repeated for all the AiP elements sequentially.
Note that the amplitude excitation of all AiP elements are
set to the same attenuation in the REV procedure. Only the
amplitudes of the S-parameter measurements are used in the
REV method, though phase measurements are available. In
our measurements, a total of 16 (number of AiP elements) ×
(26+1) (number of phase rotations per element) measurements
were performed. We can obtain the calibration matrix C for
all 16 AiP elements applying the REV algorithm.

2) Beam-steering calibration measurement: The proposed
method is a complex signal measurement method, which
requires both amplitude and phase measurement. In the beam-
forming measurement, the complex S-parameters are recorded
in the VNA when the phase excitation coefficients for all AiP
elements are set according to the beam-steering directions.
Beam-steering operations on two axes were performed, as
illustrated in Fig. 7, i.e. over the x axis (denoted as hori-
zontal beam-steering) and over the y axis (denoted as vertical
beam-steering). To exploit the mmWave AiP beam-steering
full capability, the linearly progressing phase shift between
elements was tuned from 0o to 360o with the LSB 5.625o

(i.e. a total of 65 steps), which corresponds to a steering angle
ψp ∈ [−79.2o, 79.2o] with a total of 65 steering directions.
The steering angles, which are set according to uniform phase
tuning step, are therefore non-uniformly distributed within the
steering angle interval. Note that only four complex signal
measurements (corresponding to four beam-steering direc-
tions) are needed in principle according to (5) to calibrate the
phased array. Note that the proposed complex-signal method
only requires N complex signal measurements, which is the
minimum number of required measurements in the literature.
In [25], [26], it was demonstrated that N + 1 complex signal
measurements would be needed even with individual phase
control of array elements. For amplitude-only measurements,
many more measurements are required [14].

In typical beam-steering operation, only relative phase re-
lationship is important to ensure beam-steering power pattern,
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Figure 9. Comparison of measured AiP beam patterns before and after
calibration with the ideal synthetic pattern (i.e. with uniform initial excitations)
for both horizontal and vertical beam-steering measurements.

while absolute phase setting of array elements for different
beams is not required. In our measurement, we need to obtain
both array amplitude and phase measurement for different
beam-steering angles. Therefore, the phases of AiP elements
are normalized to the first ULA element for different beams to
ensure consistent array phase measurement for different beam-
steering directions.

Based on our proposed method, the initial excitation coef-
ficients between the 1× 4 ULA elements can be determined.
Each ULA element is enclosed in red and it is a sub-
array composed of 4 × 1 patch elements based on horizontal
beam-steering measurements. Similarly, we can obtain the
initial excitation coefficients between the 4×1 ULA elements
based on the vertical beam-steering measurements, where each
element is enclosed in blue and is composed of 1 × 4 patch
elements.

3) Validation of AiP calibration algorithm: To examine the
effectiveness of array calibration for the AiP, beam-steering
measurements of the uncalibrated AiP and calibrated AiP were
performed. For the uncalibrated case, the default mode of the
AiP is utilized (i.e. with 0 dB attenuation and 0o phase shift
set in the attenuator and phase shifter of AiP, respectively,
for all elements). As explained, inhomogeneities exist among
RF chains in the uncalibrated AiP, though the same excitation
coefficients were set. For the calibrated case, the REV method
was applied to detect inhomogeneities in the uncalibrated AiP
first and the element-to-element inhomogeneities were then
compensated via setting the compensated phase and amplitude
excitation coefficient for each AiP element. As shown in
Fig. 9, the uncalibrated and calibrated AiP beam patterns are
compared with the ideal synthetic pattern where the initial
excitations of the array elements are set to 1 for both horizontal
and vertical beam-steering measurements. The patterns are
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normalized to the boresight direction. Although the main beam
pointing angle is not changed before and after calibration,
the measured beam pattern after calibration matches better
with the synthetic pattern than the measured pattern before
calibration, in terms of the shape of the main beam, the
locations and depth of the nulls, and the shape and level of the
sidelobes. As a comparison, null depths can be significantly
improved by the AiP calibration, where a null depth of 30 dB
can be achieved. Furthermore, more symmetric pattern can be
achieved after the AiP calibration. These observations indicate
that the AiP calibration indeed improves the beam pattern, as
expected in [32]. It can be found from the bottom of Fig.
9 that the uncalibrated pattern has a wider main beam and
lower side lobes than the calibrated pattern and the synthetic
pattern for the vertical beam-steering. This might due to the
amplitude tapering effect in the uncalibrated array, which can
be seen from the obtained excitation coefficients later. The
tapering effect will decrease the directivity of the phased
array. The wider main beam and lower side lobes imply that
the amplitude excitation coefficients of the individual antenna
elements are nonuniform. Thus, the calibration procedure
should be performed.

Note that a well-designed phased array might not need any
calibration, e.g. in [33] where a scalable 32-element phased
array based on a 2×2 unit cell is built. Symmetrically locating
the 2 × 2 unit cells, the built 32-element phased array can
achieve the array pattern with its main beam width close to
the theoretical value and the sidelobe level lower than −12 dB
without calibration. Basically, most commercial mmWave 5G
arrays rely on the tight manufacturing tolerance of integrated
circuits to avoid the requirement of calibration, if we only
focus on the main beam pointing angle and the sidelobe level
(e.g. the phased arrays on the user equipment side) since they
are not very sensitive to array element excitations. However,
for applications like base station antenna arrays, the locations
and depth of the nulls should be also considered, e.g. a 30-dB
stringent requirement on null depth, which requires performing
the phased array calibration to reduce the gain and phase
difference between the elements.

C. Measurement results

1) ULA reconstruction in the REV measurement: As ex-
plained, we can only obtain four initial excitation coefficients
for the 1 × 4 ULA elements in the horizontal beam-steering
measurements, and four for the 4 × 1 ULA elements in the
vertical beam-steering measurements. As a comparison, 16
initial excitation coefficients of all phased array elements can
be obtained in the REV measurements. Therefore, to be able
to evaluate the array calibration results achieved with the
proposed method, we need to reconstruct the same 1 × 4
ULA and 4 × 1 ULA from the 4 × 4 phased array for the
REV method. As illustrated in Fig. 7, a 1 × 4 ULA can
be reconstructed based on the 4 × 4 phased array once the
initial excitation coefficients for 16 elements are detected with
the REV method. We can sum up complex initial excitation
coefficients of AiP elements on the same column directly to
form a 1 × 4 ULA on the x axis, with the known initial
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Figure 10. The amplitude and phase errors for different steering angle
intervals in the measurement.

excitation coefficients in the REV method. Similar operations
can be performed to form a 4 × 1 ULA on the y axis,
by summing up complex initial excitation coefficients on
the same row. After the reconstruction, we can compare the
complex initial excitation coefficients of the reconstructed
ULAs in the REV measurement and in the beam-steering
measurements. Note that for the calibrated AiP case, complex
initial excitation coefficients of the reconstructed ULAs in the
REV measurement are compensated, and therefore we have the
same excitation coefficient for all AiP elements in principle.
However, the excitation coefficients for the calibrated AiP
might still slightly differ in practice due to uncertainties in the
AiP. This can be seen in Fig. 9 as well, where we have ideal
symmetric pattern in the synthesis yet only approximately
symmetric pattern in the measurement for the calibrated AiP.

2) mmWave AiP beam-steering setting: To investigate the
impact of beam-steering angle interval on the array calibration
accuracy, ΦP can be set to a value based on the available
beam-steering measurements. The results are shown in Fig. 10
for the horizontal and vertical beam-steering measurements for
the uncalibrated AiP as an example. The associated condition
numbers of B̂ for the four-element ULA for different steering
intervals are shown in Fig. 5. The amplitude and phase error
are the deviation of the estimated initial complex excitation
coefficients between the REV method and proposed method.
The four beam-steering directions in B̂ are selected according
to the proposal in Section II-C. As discussed, when ΦP < Φ̄P
is set, the array calibration accuracy will suffer due to large
condition number of B̂. For example, an amplitude peak-to-
peak error and a phase peak-to-peak error of up to 2.5 dB and
60o for the horizontal beam-steering measurements, and up to
1 dB and 10o for the vertical beam-steering measurements can
be seen, respectively, with ΦP = 20o. Although the condition
number is the same for horizontal and vertical beam-steering
measurements, the measured array calibration accuracy is
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Figure 11. The amplitude and phase errors for different number of steering
angles in the measurement.

different. This might be due to the fact that horizontal beam-
steering operation is more noisy and presents high uncertainty
in the mmWave AiP. When ΦP ≥ Φ̄P (Φ̄P = 48.6o) is
set, much smaller array calibration errors can be observed,
as expected. Note that it might not be beneficial to set a large
ΦP in practical measurements. The phase measurement of the
mmWave AiP might be inaccurate when the phased array beam
is steered too far away from the probe antenna direction, due
to low SNR when array power is significantly attenuated.

Besides the beam-steering interval, another parameter to be
set for the mmWave phased array AiP is the number of beam-
steering directions. In the measurement results shown in the
Fig. 11, we observe that the array calibration accuracy tends
not to depend on the number of beams. This might be due to
the fact that we can average out the measurement uncertainties
when the number of beams is large from the statistical point
of view. Worse array calibration accuracy is observed in the
horizontal beam-steering measurements, compared to that in
the vertical beam-steering measurements, which is consistent
with observation in Fig. 10. We use all the 65 beam-steering
directions with ΦP = 79.2o in the analysis below for simplic-
ity. Note that we often use as few measurements as possible
in practice to reduce the measurement time.

3) Array calibration accuracy:
a) Initial complex excitation coefficients: The initial

complex excitation coefficients obtained with the REV method
and the proposed method are shown in Fig. 12 for the
1 × 4 ULA (i.e. horizontal beam-steering on the x axis
direction) and 4×1 ULA (i.e. vertical beam-steering on the y
axis direction) for the uncalibrated AiP as an example. The
amplitude and phase excitation difference among elements
can vary up to 5 dB and 40o, respectively, indicating that
RF chains are not equal in the uncalibrated AiP. Note that
the excitation amplitude tapering effect can be observed in
the uncalibrated array for the vertical beam-steering, i.e. the

1 1.5 2 2.5 3 3.5 4

Antenna index

-4

-2

0

A
m

pl
itu

de
 [

dB
]

1 1.5 2 2.5 3 3.5 4

Antenna index

-20

-10

0

10

Ph
as

e 
[d

eg
]

Verti, REV method
Verti, proposed method
Hori, REV method
Hori, proposed method

Figure 12. Measured excitation coefficients for the AiP elements in the
uncalibrated AiP. The amplitude and phase coefficients are normalized to ULA
element 2.
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Figure 13. Measured excitation coefficient estimation accuracy for the AiP
elements. The amplitude and phase coefficients are normalized to ULA
element 2.

amplitude excitation values of the elements located around the
array center (elements 2 and 3) are larger than the amplitude
excitation values of the elements located around the array edge
(elements 1 and 4), which explains the uncalibrated pattern
in Section IV-B3. The measured phase terms are normalized
to the second ULA element for comparison purpose. This is
due to the fact that the phase terms estimated in the REV
method are relative to the composite complex field, which
is typically unknown. Therefore, only relative phase between
ULA elements can be detected. For the proposed method, we
can measure the absolute phase since it is based on complex
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Figure 14. Measured and simulated beam-steering array power (top) and
phase (below) in the horizontal beam-steering measurements for the uncali-
brated AiP.

signal measurements. Note that absolute phase measurement is
required when accurate distance is required, e.g. for the radar
applications.

The initial complex excitation coefficients estimated with
the proposed method match well with those achieved by the
REV method for all cases, as shown in Fig. 13. The amplitude
and phase errors of the calibration results achieved with the
two methods are shown in Fig. 13 for the uncalibrated and
calibrated AiP. The amplitude and phase deviation within ±0.5
dB and ±5o can be observed, respectively. The small deviation
demonstrates the calibration accuracy of the proposed method
is comparable to the REV method, which validates the feasibil-
ity and effectiveness of the proposed method. The deviations
might be introduced by the mmWave AiP amplitude and phase
control uncertainty. Furthermore, component characteristics
might drift over time as well, since the two measurements
were performed over 2 hours. As discussed, we should expect
0 dB and 0o for all ULA elements for the calibrated AiP cases
for ideal AiP. However, the AiP suffers from uncertainties in
practical setups.

b) Simulated and measured beam-steering array pattern:
Based on initial excitation coefficients estimated with the REV
method and the proposed method and the known mmWave
AiP antenna configuration, we can reconstruct the power and
phase array pattern for the beam-steering measurements. The
measured and simulated phased array AiP power and phase
patterns are shown in Fig. 14, Fig. 15, Fig. 16 and Fig. 17 for
the uncalibrated AiP horizontal beam-steering measurement,
calibrated AiP horizontal beam-steering measurement, uncali-
brated AiP vertical beam-steering measurement and calibrated
AiP vertical beam-steering measurement, respectively. As we
can see, when there exists a null in the amplitude pattern, a
180o phase reversal would appear, causing discontinuity in the
array phase pattern, as expected. Note that isotropic elements
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Figure 15. Measured and simulated beam-steering array power (top) and
phase (below) in the horizontal beam-steering measurements for the calibrated
AiP (with the REV method).

-60 -40 -20 0 20 40 60
 [deg]

-30

-20

-10

0

A
m

p 
[d

B
]

-60 -40 -20 0 20 40 60
 [deg]

0

100

200

300

Ph
as

e 
[d

eg
]

Measured
Simulated-REV
Simulated-proposed

Figure 16. Measured and simulated beam-steering array power (top) and
phase (below) in the vertical beam-steering measurements for the uncalibrated
AiP.

patterns are assumed in the simulation since patch element
patterns are unknown.

Generally speaking, a good agreement can be achieved
between simulated patterns (both with the REV method and
the proposed method) and measured patterns, where main
beams, side lobes and null directions can be well reproduced.
Small deviations exist in the pattern, e.g. in the null depth and
when the beam-steering directions |Φp| are larger than 60o.
The null depth is highly sensitive to array calibration accuracy.
The proposed method offers good agreement with measured
data even for the null depth, which indicates high accuracy of
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Figure 17. Measured and simulated beam-steering array power (top) and
phase (below) in the vertical beam-steering measurements for the calibrated
AiP (with the REV method).

the proposed method. The deviation in the power and phase
patterns where beam-steering directions are large is mainly
introduced by the assumption of isotropic element radiation
pattern. Although the patch antenna pattern in the mmWave
AiP has wide beam-width, its gain pattern is greatly attenuated
for large beam-steering directions. Note that the simulated
array power pattern with the REV method is symmetric for
the calibrated AiP due to the fact that the complex excitation
coefficients of array elements are compensated, as explained.

V. CONCLUSION AND FUTURE WORK

In this paper, a novel array calibration method based on
solving linear equations is proposed to measure the initial
complex excitation coefficients of the individual elements for
the phased arrays only supporting beam-steering mode. The
proposed method works for phased array operating in default
beam-steering mode and only requires minimum number of
measurements (i.e. the same as the number of the phased
array elements), compared to the state-of-art methods. The
performance of the proposed method is mainly determined by
the condition number of the beam-steering matrix, which is
found to be Vandermonde-structured for the ULA. To render
a small condition number for the beam-steering matrix, it
is proposed to select the beam-steering directions where the
associated complex nodes are uniformly distributed on the
unit circle. The factors that affect the beam-steering matrix
condition, e.g. beam-steering angle interval and resolution
angle, number of antenna elements and element spacing and
number of steered beams, are investigated for a ULA. It is
found that the condition number is mainly determined by
the beam-steering intervals, although other factors (i.e. AiP
element number and AiP element spacing) can affect the
condition number as well.

The proposed method is experimentally validated in a
mmWave phased array AiP at 28 GHz via comparing results
with the well-known REV calibration method. The initial
complex excitation coefficients estimated with the proposed
method match well with those achieved by the REV method
for both the calibrated AiP and uncalibrated AiP, with the
amplitude and phase errors within ±0.5 dB and ±5o, respec-
tively. A good agreement can be achieved between simulated
patterns (both with the REV method and the proposed method)
and measured patterns, where main beams, side lobes and null
directions can be well reproduced.

There are several logical extensions of the proposed method
in the future. The discussion is limited to ULAs in the paper,
and it is of interest to understand how we can extend it for
arbitrary array configuration. Further, the proposed method
requires complex signal measurement, which might be chal-
lenging for mmWave systems due to lack of antenna connec-
tors and inaccurate measurement of phase. Therefore, it would
be desirable that array calibration can be realized for beam-
steering mode phased array with amplitude-only measurement.
Furthermore, it is demonstrated the algorithm would fail when
beam-steering matrix is ill-conditioned (especially when the
beam-steering interval is small), which necessitates strategies
to reduce the condition number for such phase arrays.
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