
 

  

 

Aalborg Universitet

Message Passing Algorithm and Linear Programming Decoding for LDPC and Linear
Block Codes

Jensen, Tobias; Thaore, Nano; Kant, Shashi

Creative Commons License
Unspecified

Publication date:
2007

Link to publication from Aalborg University

Citation for published version (APA):
Jensen, T., Thaore, N., & Kant, S. (2007). Message Passing Algorithm and Linear Programming Decoding for
LDPC and Linear Block Codes.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            ? You may not further distribute the material or use it for any profit-making activity or commercial gain
            ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: August 24, 2021

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/401935625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://vbn.aau.dk/en/publications/9976d695-7b61-4c6b-a44c-634f77e1af8a


Message Passing Algorithm

and

Linear Programming Decoding

for
LDPC and Linear Block Codes

Institute of Electronic Systems

Signal and Information Processing in Communications

Nana Traore · Shashi Kant · Tobias Lindstrøm Jensen





The Faculty of Engineering and Science
Aalborg University

9th Semester

TITLE:

Message Passing Algortihm and

Linear Programming Decoding for

LDPC and Linear Block Codes

PROJECT PERIOD:
P9,

4th September, 2006

- 4th January, 2007

PROJECT GROUP:
976

GROUP MEMBERS:
Nana Traore

Shashi Kant

Tobias Lindstrøm Jensen

SUPERVISORS:
Ingmar Land

Joachim Dahl

External:

Lars Kristensen

from Rohde-Schwarz

NUMBER OF COPIES: 7

REPORT PAGE COUNT: 100

APPENDIX PAGE COUNT: 6

TOTAL PAGE COUNT: 106

ABSTRACT:

Two iterative decoding methods, message

passing algorithm (MPA) and linear pro-

gramming (LP) decoding, are studied and

explained for an arbitrary LDPC and bi-

nary linear block codes.

The MPA, sum-product and max-

product/min-sum algorithm, perform

local decoding operations to compute

the marginal function from the global

code constraint defined by the parity

check matrix of the code. These local

operations are studied and the algorithm

is exemplified.

The LP decoding is based on a LP re-

laxation. An alternative formulation of

the LP decoding problem is explained

and proved. An improved LP decoding

method with better error correcting perfor-

mance is studied and exemplified.

The performance of two methods are also

compared under the BEC.





Preface

This 9th semester report serves as a documentation for the project work of the group

976 in the period from 4th September, 2006 to 4th January, 2007. It is to comply with

the demands at Aalborg University for the SIPCom specialization at 9th semester with

the theme "Systems and Networks".

Structure

The report is divided into a number of chapters whose contents are outlined here.

• ”Introduction” part contains the introduction of the project and the problem

scope.

• ”System Model” describes which model that is considered in the report along

with assumptions and different types of decoding.

• The chapter ”Binary Linear Block Codes” describes linear block codes and ex-

plain the concept of factor graphs and LDPC codes.

• In ”Message Passing Algorithm” different message passing algorithms are given

along with examples. Performance for decoding in the BEC is proven and ex-

emplified.

• ”Linear Programming Decoding” is about the formulation of the decoding prob-

lem as a linear programming problem. Interpretations of two different formula-

tions are given and decoding in the BEC is examined. A possible improvement

of the method is also described using an example.

• In the chapter ”Comparison” the two decoding methods message passing algo-

rithm and linear programming decoding are compared.

• ”Conclusion” summarizes everything and points out the results.



Reading Guidelines

The chapters ”System Model” and ”Binary Linear Block Codes” are considered as

background information for the rest of the report. If the reader is familiar with these

concepts he/she could skip these chapters and still understand the report.

Nomenclature

References to literature are denoted by brackets as [] and literature may also contain

a reference to a specific page. The number in the brackets refers to the bibliography

which can be found at the back of the main report on the page 99 . Reference to figures

(and tables) are denoted by ”Figure/Table x.y” and equations by ”equation (x.y)” where

x is a chapter number and y is a counting variable for the corresponding element in the

chapter.

A vector is denoted by bold face ”a” and matrix by ”A”, always capital. Stochastic

processes are in upper case ”X”, deterministic process are in lower case ”x”, but giving

reference to the ”same” variable. From section to section it is considered whether it is

more convenient to consider the variable as stochastic or deterministic. Be aware of

the differences between the use of the subscripts in ”x1” which means the first vector

and ”x1” which means the first symbol in the vector x.

The words in the italic form are used in the text to accentuate the matter.

Enclosed Material

A CD ROM containing MATLAB source code is enclosed in the back of the report.

Furthermore, a Postscript, DVI and PDF version of this report are also included in the

CD ROM. A version with hyperlinks is also included in DVI and PDF.
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Introduction 1

The channel coding is a rudimentary technique to transmit digital data reliably over

a noisy channel. If a user wants to send information reliably using a mobile phone

to another user, then the information will be transmitted through some channel to the

another user. However, the channel like the air is considered to be unreliable because

the transmission path varies, noise is introduced and there is also interference from the

other users. So, if the transmitted data is [001] and the received data is [011] which

is shown in the Figure 1.1, then the received data was corrupted by the noisy channel.

What could be the solution to cope with these problems?

?[001] [011]
Channel

Figure 1.1: Data transmitted and received across a channel without channel coding.

The solution to combat the noisy channel is channel coding so as to transmit and

receive the information reliably. In other words, the channel coding is a technique

which introduces the redundancy in the information before the transmission of the in-

formation across a channel. This redundancy is exploited at the receiver in order to

detect or correct the errors introduced by the noisy channel.

Figure 1.2 shows a basic channel coding system. For example, a repetition code

can be chosen having length 3. It means that the repetition code will transmit every bit



CHAPTER 1. INTRODUCTION

of an information 3 times. If the source transmits the information word say [001], then

the encoded data will be [000 000 111]. Therefore, the redundancy is introduced by the

encoder. If this encoded data or codeword is sent across a noisy channel which may

flip some of the bits, then say the received word may be [010 001 101]. Thereafter, this

received word is sent to the decoder which estimates the information word [001] by

exploiting the redundancy. So, if there are more 0s than 1s in the received word, then

the decoder will estimate the information word as 0 otherwise 1. Using this scheme, as

long as no more than 1 out of every block of 3 bits are flipped, the original information

can be recovered. Thus, the information from the source can be transmitted success-

fully across the channel to the receiver’s sink.

Sink

Source

Decoder

[001] [000 000 111]

[001] [010 001 101]

Channel

Encoder

Figure 1.2: The basic channel coding model.

The channel codes are also known as error-correcting codes. The study of channel

codes began with the pioneered work of Hamming [7] and Shannon [17].

In this project, two iterative methods message passing algorithm (MPA) and linear

programming (LP) decoding are studied and compared theoretically for the decoding

of LDPC (Low Density Parity Check) codes. However, simple linear binary block

codes are usually considered to explain the concepts behind these iterative decoding

methods. The LDPC codes are used as a motivation to be decoded by these two meth-

ods. LDPC codes were invented in 1960 by R. Gallager [6] but the LDPC codes were

obscured before the advent of Turbo-codes in 1993. After the invention of Turbo-codes

[2], the LDPC codes are now one of the intensely studied area in coding. It’s also been

proved recently that the LDPC codes have outperformed Turbo-codes while keeping

lower complexity [15]. The decoding of the LDPC codes are highly intensive research

arena. These are the motivations behind studying the decoding of LDPC codes using

iterative techniques.
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System Model 2

In this chapter, we consider the system model and different channel models that are

used through out this report. Moreover, we introduce commonly used assumptions and

definitions that are heavily used in the following chapters.

2.1 Basic System Model

Consider now the system showed in Figure 2.1.

Sink

Source
U

Û

Channel

X

Y
Decoding
Channel

X̂

Channel
Encoding

Channel coding

Encoding
Inverse

Figure 2.1: The basic system model considered in this report.

Where, the following definitions are used. All vectors will be column vectors, if it

is not specified whether it is column or row vector. The assumptions about the random

variables are described in section 2.3.

• Information word: U = [U1 U2 . . . UK ]T ∈ FK
2

• Codeword: X = [X1 X2 . . . XN ]T ∈ C
Where, X ∈ FN

2 and C is the set of all possible (legal) codewords |C| = 2K ,

defined as C = {X : X = enc(U );U ∈ FK
2 }

• Received word: Y = [Y1 Y2 . . . YN ]T ; Domain of Y depends on the channel used

• Estimated codeword: X̂ = [X̂1 X̂2 . . . X̂N ]T ∈ FN
2
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• Estimated information word: Û = [Û1 Û2 . . . ÛK ]T ∈ FK
2

• Code rate: R = K/N

In this report, only binary codes are considered. The domain of Y is defined by the

channel used. In the following section 2.2, the different channels and the corresponding

output alphabet for Y are described.

Considering Figure 2.1, the information words are generated from the (stochastic)

source. The information words are one-to-one mapped (encoded) to a codeword in

the set C depending on the information word. The codeword is transmitted across the

channel. The received word is decoded to the estimated codeword X̂ and mapped to

an information word as Û = enc−1(X̂). A successful transmission is when Û = U or

X̂ = X . Random variables are in upper case, deterministic variables are in lower case,

but giving reference to the ”same” variable. From section to section it is considered

whether it is more convenient to consider the variable as random or deterministic.

2.2 Channels

In this report, we consider the following three channels, the Binary Symmetric Chan-

nel (BSC), the Binary Erasure Channel (BEC) and the Binary Input Additive White

Gaussian Noise Channel (BI-AWGNC).

0

1

ε

ε

1

0

BSC

1 − ε

1 − ε

X Y

Figure 2.2: The BSC with cross over

probability ε.

0

1 1

0

BEC

∆

1 − δ

1 − δ

δ

X Y

δ

Figure 2.3: The BEC with erasure

probability δ.

For the BSC in Figure 2.2 some input values are with probability ε flipped at the

output, Y ∈ {0, 1}. In the BEC Figure 2.3 the input values can be erased (∆) with

probability δ, mapping X into Y ∈ {0,∆, 1}.
For the (normalized) BI-AWGNC in Figure 2.4, the input X is mapped into X ′ ∈

{+1,−1} which is added with Gaussian white noise, resulting in the output Y =

X ′ +W , where W ∼ N (0, N0/2Es). The conditional distribution of Y is

Pr( y |x′ ) = Pr W (y − x′) =
1√

2π(N0/2Es)
exp

(
−(y − x′)2

(N0/Es)

)
(2.1)

14



2.3. ASSUMPTIONS

W

Y0 7−→ +1
1 7−→ −1

BPSK Mapping

X X
′

Figure 2.4: The normalized BI-AWGNC.

The output alphabet for the BI-AWGNC is y ∈ R. The Signal to Noise Ratio (SNR)

per code symbol is Es
N0

.

2.3 Assumptions

The assumptions for a system model may not be true in ’real’ system. However, it is

common to use some assumptions for a system which will help in the analysis of the

system.

It is assumed that the source is identically and independently distributed (i.i.d.).

So, if the variables {Uk} are independent, then,

Pr(U) =
K∏

k=1

Pr(Uk) (2.2)

If the variables {Uk} ∈ F2 are identical, then

Pr(Uk) =
1

2
∀ k = 1, 2 . . . K (2.3)

Combining equation (2.2) and (2.3) yields that all sequences are equiprobable.

Pr(U ) =
1

2K
(2.4)

It is also assumed that the channel is a memoryless channel without feedback.

Memoryless mean that the noise/cross over probability/erasure probability is indepen-

dent for each symbol sent across the channel. Combining this with equation (2.2)

yields.

Pr(Y |X ) =
N∏

n=1

Pr(Yn |Xn ) (2.5)

Moreover, a channel without feedback means that Pr(Yn |X ) = Pr(Yn |Xn ).

15
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2.4 Log Likelihood Ratios

It is common to use ratio for a (binary) variable being one of two variables. Let us

define the log likelihood ratio (LLR) or L-value as:

l = λ = L( y |x ) = ln

(
Pr( y |x = 0 )

Pr( y |x = 1 )

)
(2.6)

The l-value describes how certain it is that x is 0 or 1. If l is positive then Pr( y |x =

0 ) > Pr( y |x = 1 ), and the estimate should be x̂ = 0. If the value of |l| is higher,

then the reliability of the symbol will be higher. A hard decision rule of l is

x̂ =





0 l ≥ 0

1 l < 0
(2.7)

For the different channels, the following l-values can be considered.

• BSC

LBSC( y |x ) =





ln 1−ε
ε

for y = 0

ln ε
1−ε

for y = 1
(2.8)

• BEC

LBEC( y |x ) =





∞ for y = 0

0 for y = ∆

−∞ for y = 1

(2.9)

• BI-AWGNC

LBI-AWGNC( y |x ) = 4
Es

N0

y (2.10)

2.5 Scaling of LLR

The scaling of LLR can be important for a channel considered during decoding.

Under BSC with ε the crossover probability (which also refers to the noise in the

channel), the scaling of LLR (λn) by a constant β is possible as,

β · λn = β · ln
(

Pr(yn|xn = 0)

Pr(yn|xn = 1)

)
=




β · ln 1−ε

ε
for yn = 0

β · ln ε
1−ε

for yn = 1
(2.11)

So, we can always scale λn to ±1 by β. Thus, it is not important to know the

crossover probability (noise) in the BSC while using any decoding algorithm which

allows scaling of LLR.

16
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Similarly, under BEC the scaling of LLR is also possible as,

β · λn = β · ln
(

Pr(yn|xn = 0)

Pr(yn|xn = 1)

)
=





β · ∞ for yn = 0

β · 0 for yn = ∆

β · −∞ for yn = 1

(2.12)

This observation is also valid for AWGN channel. If the LLR (λn) for AWGN

channel is multiplied by β,

β · λn = β ·
(

4
Es

N0

y

)
(2.13)

So, scaling signal to noise ratio Es

N0
by β implies that the knowledge of the noise is

not necessary while determining λn for decoding.

2.6 Types of Decoding

When the codeword x is transmitted across a channel, the word received is y which is

decoded to yield x̂. What could be the technique to decode y in order to estimate the

transmitted codeword x? One possible way to decode y is to maximize the a posteriori

probability (MAP), and then guess the transmitted codeword.

x̂ = argmax
x∈C

Pr(x |y ) (2.14)

The decoding described in equation (2.14) is called block-wise MAP decoding. It

is a block-wise because the entire block y is decoded to x̂.

If the maximization of a-posteriori probability (APP) is done symbol-wise rather

than block-wise, then it will be called as symbol-wise MAP:

x̂n = argmax
xn∈C

Pr(xn |y )︸ ︷︷ ︸
APP

n = 1, 2, . . . , N (2.15)

Where, x̂n is an estimated code symbol and x̂n ∈ F2.

Now, if Bayes’ rule is applied to (2.14).

x̂ = argmax
x∈C

Pr(x , y )

Pr(y )
(2.16)

= argmax
x∈C

Pr(y |x )
Pr(y )

Pr(x )
(2.17)

17
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If all the sequences are equiprobable as in equation 2.4, and the encoder is a one-

to-one mapping, then Pr(x ) = constant. Since, maximization is only done over x,

the received word y can be considered as a constant.

x̂ = argmax
x∈C

Pr(y |x ) (2.18)

Equation (2.18) is the block-wise maximum likelihood decoder (ML).

Similarly, the ML symbol-wise can be derived from the MAP symbol-wise in the

following way. So, from symbol-wise maximum a-posteriori probability (symbol-wise

MAP),

x̂n = argmax
xn ∈ {0, 1}

Pr(xn |y ) n = 1, 2, . . . , N (2.19)

= argmax
xn ∈ {0, 1}

Pr(xn,y)

Pr(y)

{
Bayes’ rule

}
(2.20)

= argmax
xn ∈ {0, 1}

Pr(y |xn ) · Pr(xn)

Pr(y)
(2.21)

Since, code symbols are equiprobable

= argmax
xn ∈ {0, 1}

Pr(y |xn )︸ ︷︷ ︸
ML symbol-wise

·
(

Pr(xn)

Pr(y)

)

︸ ︷︷ ︸
constant = α

(2.22)

The ML block-wise and symbol-wise decoding are mostly pondered over in this re-

port. The four possible decodings using MAP/ML and symbol/block-wise are shown

in the Table 2.1.

Decoder type Formula

ML block-wise x̂ = argmax
x∈C

Pr(y |x )

ML symbol-wise x̂n = argmax
xn∈{0,1}

Pr(y |xn ) ∀ n = 1 , 2 . . . N

MAP block-wise x̂ = argmax
x∈C

Pr(x |y )

MAP symbol-wise x̂n = argmax
xn∈{0,1}

Pr(xn |y ) ∀ n = 1 , 2 . . . N

Table 2.1: Four different decoders.

18



Binary Linear Block Codes 3

The goal of this chapter is to first give some definitions of important notions of binary

linear block codes. Then, the representation of a factor graph and all its components

will be described in section 3.2. Finally, section 3.3 will expound the low density

parity check codes. Moreover, it can be accentuated that all the vectors used in this

report are column vectors, but some equations are also shown considering row vectors.

However, the distinction is made between the equations considering column vectors

and row vectors.

3.1 Definitions

• A (n,k) binary linear block code is a finite set C ∈ FN
2 of codewords x. Each

codeword is binary with length N . C contains 2K codewords. The linearity of

this code means that any linear combination of codewords is still a codeword

[12].

This is an example of a binary block code (7, 4):

C =





(0000000), (1000101), (0100110), (0001111),

(0010011), (1100011), (1001010), (1101100),

(0110101), (1101100), (0011100), (1110000),

(1011001), (1011001), (0111010), (1111111).





(3.1)

• A code is generated by a generator matrix G ∈ FK×N
2 and an information word

u ∈ FK
2 according to this formula:

x = u⊗G (3.2)

where, x and u are row vectors.

We work in F2, so the modulo 2 multiplication ⊗ is applied.



CHAPTER 3. BINARY LINEAR BLOCK CODES

As only column vectors are used in the report, equation (3.2) becomes,

x = GT ⊗ u (3.3)

where, x and u are column vectors. The set of all u represents all linear indepen-

dent binary vectors of length K. For our example in the equation (3.1),

u ∈





(0000), (1000), (0100), (0010)

(0001), (1100), (1010), (1001)

(0110), (0101), (0011), (1110)

(1101), (1011), (0111), (1111)





(3.4)

The generator matrix G corresponding to the code C is,

G =




1 0 0 0 1 0 1

0 1 0 0 0 1 1

0 0 1 0 1 1 0

0 0 0 1 1 1 1




(3.5)

Note that for a linear code, the corresponding rows of the generator matrix are the

linear independent codewords.

• The rate of a code is given by the relation:

R = K/N (3.6)

After the definition of the generator matrix, a definition of the dual matrix of this

generator matrix could also be given.

• Indeed, H is called the parity check matrix and is dual to G because:

H⊗GT = 0 (3.7)

H belongs to FM×N
2 and satisfies:

H⊗ x = 0M×1 ∀ x ∈ C (3.8)

The rank of H is N −K and often, M ≥ N −K.

The matrix H of our example in the equation (3.1) is:

H =




1 1 0 1 1 0 0

0 1 1 1 0 1 0

0 0 0 1 1 1 1


 (3.9)
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3.2. FACTOR GRAPHS

• Finally, let us define the minimum distance dmin. The minimum distance for a

linear code is the minimum hamming weight of all nonzero codewords of the

code, with the hamming weight of a codeword corresponding to the number of

1s in this codeword [8].

dmin = argmin
x∈C\0

wH(x) (3.10)

For example, the hamming weight of (1000101) is 3.

Thus, always in our example in the equation (3.1), the minimum distance found is

3.

The code C of equation (3.1) is a (7, 4, 3) linear block code. This code, called a

Hamming code, will often be used as an example in the report and in the following

section 3.2 particularly.

3.2 Factor Graphs

A factor graph is the representation with edges and nodes of the parity check equation:

H⊗ x = 0M×1 (3.11)

Each variable node corresponds to a code symbol of the codeword and each check

node represents one check equation. An edge links a variable node to a check node. It

corresponds to a 1 in the parity check matrix H. A factor graph is a bipartite graph,

which means that there are two kind of nodes and the same kind of nodes are never

connected directly with an edge.

If the example of the (7, 4, 3) Hamming code is taken again, and it is considered

that xn is a code symbol of the codeword x, the set of parity check equation is,

H⊗ x =





chk(A) : x1 ⊕ x2 ⊕ x4 ⊕ x5 = 0

chk(B) : x2 ⊕ x3 ⊕ x4 ⊕ x6 = 0

chk(C) : x4 ⊕ x5 ⊕ x6 ⊕ x7 = 0





(3.12)

Figure 3.1 shows two factor graphs of a (7, 4, 3) Hamming code. These factor

graphs have 3 check nodes,7 variables nodes and, for example, there is an edge between

each variables x1, x2, x4 and x5 and the check node A.

As it can be seen in this Figure 3.1, there are some cycles in this graph, for instance

the cycle formed by x2, A, x4 and B. The presence of the cycles in a factor graph can

sometimes make the decoding difficult, as it will be shown later in the report. And of

course, graphs without cycles also exist and can be represented as a tree graph. The
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x4

x1
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x5

Figure 3.1: Factor graphs of a (7, 4, 3) Hamming code.

Figure 3.2 corresponding to the following parity check matrix is an example of a factor

graph without cycle.

H =

[
1 1 1 0 0

0 0 1 1 1

]
(3.13)

A

B

x1

x2

x3

x4

x5
x4

x2x1

x5

x3

B

A

Figure 3.2: A factor graph without cycles.

While using the factor graph, it is frequently useful to have the set of neighbours

of both variable and check nodes. So, let us define what these sets of neighbours are.

• The set of indices of variables nodes, which are in the neighbourhood of a check

node m, is calledN (m). For instance (7, 4, 3) Hamming code in the Figure 3.1,

N (B) = {2, 3, 4, 6}
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• In the same way,M(n) is defined as the set of check nodes linked to the variable

node n. According to Figure 3.1,

M(4) = {A,B,C}

Factor graphs are a nice graphical way to represent the environment of decoding

and is also used for the message passing algorithm which will be described in chapter

4.

3.3 Low Density Parity Check Codes

In the following section, the Low Density Parity Check (LDPC) Codes will be intro-

duced and described.

LDPC codes were discovered by Robert Gallager in the 60s. They were forgotten

for almost 30 years before being rediscovered again thanks to their most important ad-

vantage, which is that they allow data transmission rates close to the Shannon limit, the

theoretical rate [21]. A design of a LDPC code, which comes within 0.0045 dB of the

Shannon limit, has been found [4]. This discovery motivates the interest of researchers

on LDPC codes and decoders, as the decoding gives a really small probability of lost

information. LDPC codes are becoming now the standard in error correction for appli-

cations such as mobile phones and satellite transmission of digital television [18][21].

LDPC codes can be classified in two categories, regular and irregular LDPC codes.

• A regular LDPC code is characterized by two values: dv, and dc.

dv is the number of ones in each column of the parity check matrix H ∈ FM×N
2 .

dc represents the number of ones in each row.

• There are two different rates in LDPC codes.

The true rate is the normal rate:

R = K/N (3.14)

The second rate is called as design rate:

Rd = 1− dv

dc

(3.15)

The relation between those two rates is:

R ≥ Rd (3.16)
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Let us prove the equation(3.16):

The number of ones in the parity check matrix H is: Mdc = Ndv. In H, some

check equations can be repeated; so the number of rows M could be greater or

equal to (N-K). Thus,

R =
K

N
=
N − (N −K)

N
= 1− N −K

N
≥ 1− M

N
= 1− dv

dc

The following equation represents a regular LDPC code with its parameters:

H =




1 1 0 1 0 0

1 0 1 0 1 0

0 1 1 0 0 1

0 0 0 1 1 1




(3.17)

dv = 2; dc = 3; M = 4; N = 6; rank(H) = 4

K = N − rank(H) = 2; R = Rd = 1/3.

Note that a real LDPC code, as its name tells it, has a small number of ones in

rows and columns compare to its really large dimensions. LDPC codes can work

well for code length N > 1000 [11], so for instance the dimensions of the code

can be N = 1000, M = 500 and the degrees dv = 5, dc = 10.

• An irregular LDPC code is a code with different numbers of ones in each row

and columns. They are known to be better than the regular one [10]. According

to this difference, new variables are defined for these irregular LDPC codes (see

appendix A).

The following example is not a real irregular LDPC code but it is an irregular

linear code and will help to understand what can be an irregular LDPC code.

H =




1 0 1 0 0 0

1 1 0 0 1 0

1 1 0 0 0 1

0 0 1 1 1 0

0 0 0 1 0 1




(3.18)

We can see in the Figure 3.3 that the number of ones in some columns is 3 and in

others it is 2. We have also the same situation for rows, some rows have 3 ones and

others have 2 ones.
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Figure 3.3: Irregular LDPC Code.
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Message Passing Algorithm 4

Linear block and LDPC codes can iteratively be decoded on the factor graph by Message-

Passing Algorithm (MPA) (it is also known as Sum-Product (Belief/Probability Propa-

gation) or Max-Product (Min-Sum) Algorithm [11]). As it is known that a factor graph

(cf. section 3.2) represents a factorization of the global code constraint

H ⊗ x = 0

into the local code constraints which are represented by the connection between vari-

able and check nodes. These nodes perform local decoding operations and exchange

the messages along the edges of the factor graph. It can be construed that the extrinsic

message is a soft-value for a symbol when the direct observation of the symbol is not

considered in the computation (local decoding operation) of this specific value.

The message passing algorithm is an iterative decoding technique. So, in the first

iteration, the incoming messages received from the channel at the variable nodes are

directly passed along the edges to the neighbouring check nodes because there are no

incoming messages (extrinsic) from the check nodes in the first iteration. The check

nodes perform local decoding operations to compute outgoing messages (extrinsic)

depending on the incoming messages received from the neighbouring variable nodes.

Thereafter, these new outgoing messages are sent back along the edges to the neigh-

bouring variable nodes. The meaning of one complete iteration can be comprehended

that the one outgoing message (extrinsic) has passed in both directions along every

edge. One iteration is illustrated in the Figure 4.1 for the (7, 4, 3) Hamming code by

showing the direction of the message in each direction along every edge. The variable-

to-check (µvc) and check-to-variable (µcv) are extrinsic messages which are also shown

in the same Figure 4.1.

After every one complete iteration, it will be checked whether a valid codeword is
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Figure 4.1: To illustrate one complete iteration in a factor graph for (7, 4, 3) Hamming code.

The messages for instance µvc(1, A) and µcv(A, 1) are extrinsic. µch are the messages coming

from the channel.

found or not. If the estimated code symbols form a valid codeword such that

H ⊗ x̂ = 0

( where, x̂ is an estimated codeword. )

then the iteration will be terminated otherwise it will continue. After the first com-

plete iteration, the variable nodes will perform the local decoding operations in the

same way to compute the outgoing messages (extrinsic) from the incoming messages

received from both the channel and the neighbouring check nodes. In this way, the

iterations will continue to update the extrinsic messages unless the valid codeword is

found or some stopping criterion is fulfilled.

4.1 Message Passing Algorithm and Node Operations

Considering any factor graph in general, the message passing algorithm is listed below

in order to give an overview of this algorithm. The extrinsic messages which are com-

puted by the local decoding operations at the variable nodes are denoted as µvc which

means message from variable → check while at the check nodes are denoted as µcv

which means message from check→ variable.
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1. The initial message coming from the channel at variable node n is denoted as

µch(n).

2. The extrinsic message from the variable to check node is

µvc(n,m) = fctv
(
µch(n), µcv(m′, n)

)
(4.1)

where,

◦ n = variable node

◦ m ∈M(n): check nodes which are the neighbour of the variable node n.

◦ m′ ∈ M(n)\m: check nodes except m which are the neighbour of the

variable node n.

The new or updated extrinsic message µvc(n,m) which is computed by the

local decoding operation or function fctv, will be sent to the check node

m. Therefore, the incoming extrinsic message µcv(m,n) from the check

node m is not considered for updating the message µvc(n,m).

3. The extrinsic message from the check to variable node is

µcv(m,n) = fctc
(
µvc(n

′,m)
)

(4.2)

where, fctc is the local decoding operation at a check node and n′ ∈ N (m)\n:

variable nodes except n which are the neighbour of the check node m.

4. The final message that is computed at the variable node n in order to estimate

the code symbol.

µv(n) = fctv
(
µch(n), µcv(m,n)

)
(4.3)

5. The estimation of a code symbol Xn can be done by hard decision

x̂n =





0 if Pr(Xn = 0 |µv(n) ) ≥ Pr(Xn = 1 |µv(n) )

1 else
(4.4)

6. If these symbol-wise estimated code symbols are stacked to form vector x̂ of

length N , then it can be checked whether the x̂ is a valid codeword by

H ⊗ x̂ = 0 (4.5)

7. If the above equation (4.5) is satisfied or the current number of iteration is equal

to some defined maximum number of iterations then stop the iteration otherwise

repeat the algorithm from step 2 to step 7.
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4.1.1 Example of Node Operations

Considering the factor graph of (7, 4, 3) Hamming code which is shown in Figure 4.1,

the above steps the algorithm is shown.

of algorithm can be seen.

At the variable node 2:

• The initial message at the variable node 2 is µch(2).

• In general, the incoming (extrinsic) messages at the node 2:

µch(2), µcv(A, 2), µcv(B, 2) (4.6)

• In general, the outgoing (extrinsic) message from the node 2:

µvc(2, A), µvc(2, B) (4.7)

• The local decoding operation at the node 2 to compute the extrinsic(outgoing)

message say µvc(2, B):

µvc(2, B) = fctv
(
µch(2), µcv(A, 2)

)
(4.8)

So, the message µcv(B, 2) is excluded for the computation of µvc(2, B).

At the check node B:

• The incoming (extrinsic) messages at the check node B:

µvc(2, B), µvc(3, B), µvc(4, B), µvc(6, B) (4.9)

• The outgoing (extrinsic) message from the check node B:

µcv(B, 2), µcv(B, 3), µcv(B, 4), µcv(B, 6) (4.10)

• the local decoding operation at the check node B to compute the extrinsic (out-

going) message say µcv(B, 2):

µcv(B, 2) = fctc
(
µvc(3, B), µvc(4, B), µvc(6, B)

)
(4.11)

It can be noticed that the message µvc(2, B) is excluded for the computation of

µcv(B, 2).

It shall be noted that these messages µ can be in terms of either probabilities or log

likelihood ratios LLR.

30



4.2. DEFINITIONS AND NOTATIONS

4.2 Definitions and Notations

Some terms and notations are introduced here to show extrinsic, a-posteriori and in-

trinsic probabilities only for the simplification of further derivations and proofs. We

assume that these short notations won’t be repellent to the reader. However, these

notations are easy to assimilate as this report goes on.

If codeword x having length N is sent across any memoryless channel and y is a

received word such that the extrinsic a-posteriori probability after decoding is given in

equation (4.12) for the nth symbol to be b = {0, 1}

pb
e,n = Pr(Xn = b |y\n ) n = 1, 2, . . . , N ; b = 0, 1 (4.12)

where, y\n = [y1 y2 . . . yn−1 yn+1 yN ]T

y\n means yn is excluded from the received word y

However, the a-posteriori probability (APP) after decoding is given in equation (4.13)

to show the disparity between APP and extrinsic a-posteriori probability,

pb
p,n = Pr(Xn = b |y ) n = 1, 2, . . . , N ; b = 0, 1 (4.13)

So, the difference between APP and extrinsic a-posteriori probability can easily be

seen that only yn is excluded from the received word y in the formulation of extrinsic

a-posteriori probability. Now, one more definition thrusts here to introduce intrinsic

probability before decoding which is defined as

pb
ch,n = Pr( yn |Xn = b ) n = 1, 2, . . . , N ; b = 0, 1 (4.14)

The channel is assumed to be binary-input memoryless symmetric channel. The

channel properties are reiterated here to prove the independency assumption in the

factor graph. So, the channel being binary-input means that the data transmitted is a

discrete symbol from Galois Field F2 i.e., {0, 1}, memoryless means that each symbol

is affected independently by the noise in the channel and symmetric means the noise

in the channel affects the 0s and 1s in the same way. As, there is no direct connection

between any two variable nodes in the factor graph, the decoding of the code symbol

can be pondered on each variable node independently. It means that the local decoding

operations can be performed independently at both variable and check nodes side in

the factor graph. If the factor graph is cycle free, then the independency assumption is

valid whereas if the factor graph has cycles, then the assumption will be valid for few

iterations until the messages have travelled the entire cycles.
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The MPA algorithm is optimal
(
i.e., maximum likelihood (ML) decoding

)
for

those codes whose factor graph is cycle free otherwise sub-optimal due to cycles in

the factor graph. So, if the codes have cycles then still the MPA decoder will perform

close to ML decoder [9]. Furthermore, the overall decoding complexity is linear with

the code length [15]. So, these are the motivations behind studying the MPA decoder.

In this chapter, sum-product and max-product/min-sum algorithms are described

and the performance of the message passing algorithm is also explained under binary-

erasure channel (BEC). The BEC is considered because it is easy to explain the con-

cepts behind the update rules. The stopping set (a set of code symbols which is not

resolvable) is also explained in detail under BEC.

4.3 Sum-Product Algorithm

The sum-product algorithm was invented by Gallager [6] as a decoding algorithm for

LDPC codes which is still the standard algorithm for the decoding of LDPC codes [11].

The sum-product algorithm operates in a factor graph and attempts to compute various

marginal functions associated with the global function or global code constraint by

iterative computation of local functions or local code constraints.

In this section, the sum-product algorithm is shown as a method for maximum

likelihood symbol-wise decoding. The update rules for independent and isolated vari-

able and check nodes in terms of probabilities and LLR (L values) are derived. The

algorithm is explained in an intuitive way such that it can show the concepts behind it.

4.3.1 Maximum Likelihood

The property of the sum-product algorithm is that for cycle free factor graphs it per-

forms maximum likelihood (ML) symbol-wise decoding. In this section, the sum-

product formulation is derived from ML symbol-wise (cf. section 2.6 for types of

decoding).

Considering the linear block code C ∈ FN
2 , where |C| = 2K , information word

length K, code rate R = K
N . The code is defined by a parity check matrix H ∈

FM×N
2 , M ≥ N −K.
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Formally,

C =
{
x : x = enc(u), information word u ∈ FK

2

}

=
{
x ∈ FN

2 : H ⊗ x = 0
}

If the code C has cycle free factor graph and a codeword x ∈ C is transmitted

through any binary-input memoryless channel then the sum-product algorithm can de-

code or estimate an optimal (ML) codeword from the received word y. It is assumed

that the code symbols and codewords are equiprobable.

In general, if the code symbols are equiprobable then maximum a-posteriori prob-

ability (MAP) Pr(xn |y ) and maximum likelihood (ML) Pr(y |xn ) are same.

Let’s contemplate that x̂i is an estimated code symbol, such that x̂i ∈ F2.

So, symbol-wise ML:

x̂n = argmax
xn ∈ {0, 1}

Pr(y |xn ) n = 1, 2, . . . , N (4.15)

= argmax
xn ∈ {0, 1}

Pr(xn,y)

Pr(xn)︸ ︷︷ ︸
constant

{ Applying Bayes’ rule;
code symbols xn are equiprobable

}
(4.16)

= argmax
xn ∈ {0, 1}

Pr(xn,y) (4.17)

= argmax
xn ∈ {0, 1}

∑

x ∈ C
xn fixed

Pr(x,y) (4.18)

= argmax
xn ∈ {0, 1}

∑

x ∈ C
xn fixed

Pr(y |x ) Pr(x)︸ ︷︷ ︸
constant

{
since, codewords
x are equiprobable

}
(4.19)

= argmax
xn ∈ {0, 1}

∑

x ∈ C
xn fixed

Pr(y |x )
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Since, channel is assumed to be memoryless

x̂n = argmax
xn ∈ {0, 1}

︸ ︷︷ ︸
Decision

∑

x ∈ C
xn fixed︸ ︷︷ ︸
Sum

N∏

j = 1

︸ ︷︷ ︸
Product

Pr( yj |xj ) (4.20)

So, the sum-product formulation can be derived from the maximum likelihood

symbol-wise for any code. However, if there are cycles in the factor graph of the

code, then the factor graph will not have tree structure and the sum-product algorithm

will be sub-optimal but close to the ML decoder [10].

4.3.2 The General Formulation of APP

The general form of APP can easily be construed from equation (4.20) and (2.22) i.e.,

(APP) pxn
p,n = Pr(Xn = xn |y ) (4.21)

= α ·
∑

x ∈ C
xn fixed

N∏

j=1

Pr( yj |Xj = xj )
{

where, α is scaling factor
}

(4.22)

= α ·
∑

x ∈ C
xn fixed

N∏

j=1

p
xj

ch,j (4.23)

So, the above equation can also be written as

p0
p,n = Pr(Xn = 0 |y ) = α ·

∑

x ∈ C
xn = 0

N∏

j=1

p
xj

ch,j (4.24)

p1
p,n = Pr(Xn = 1 |y ) = α ·

∑

x ∈ C
xn = 1

N∏

j=1

p
xj

ch,j (4.25)

with scaling factor α such that p0
p,n + p1

p,n = 1.
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4.3.3 The General Formulation of Extrinsic A-Posteriori Proba-
bility

The general formulation of extrinsic a-posteriori probability can be derived from the

general form of APP using equation (4.22).

(APP) pxn
p,n = α ·

∑

x ∈ C
xn fixed

Pr( yn |Xn = xn ) ·





N∏

j = 1
j 6= n

p
xj

ch,j





(4.26)

= Pr( yn |Xn = xn ) ·




α ·

∑

x ∈ C
xn fixed

N∏

j = 1
j 6= n

p
xj

ch,j





(4.27)

= Pr( yn |Xn = xn )︸ ︷︷ ︸
pxn

ch,n

Intrinsic Probability

·




α ·

∑

x ∈ C
xn fixed

N∏

j = 1
j 6= n

Pr( yj |Xj = xj )





︸ ︷︷ ︸
Pr(Xn = xn |y\n )

Extrinsic Probability
(4.28)

So, Extrinsic a-posteriori probability in general is

pxn
e,n = Pr(Xn = xn |y\n ) (4.29)

= α ·
∑

x ∈ C
xn fixed

N∏

j = 1
j 6= n

Pr( yj |Xj = xj ) (4.30)

= α ·
∑

x ∈ C
xn fixed

N∏

j = 1
j 6= n

p
xj

ch,j (4.31)
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Moreover, the extrinsic a-posteriori probability can be rewritten as

p0
e,n = α ·

∑

x ∈ C
xn = 0

N∏

j = 1
j 6= n

p
xj

ch,j (4.32)

p1
e,n = α ·

∑

x ∈ C
xn = 1

N∏

j = 1
j 6= n

p
xj

ch,j (4.33)

with scaling factor α such that p0
e,n + p1

e,n = 1.

4.3.4 Intrinsic, A-posteriori and Extrinsic L-values

Before getting further, it can be accentuated that log likelihood ratios (LLR or L-

values) of the intrinsic, a-posteriori and extrinsic can be shown now as log ratios of

the intrinsic, a-posteriori and extrinsic probabilities formulations respectively. In fact,

L-values have lower complexity and are more convenient to use than the messages in

terms of probabilities. Moreover, the log likelihood ratio is a special L-value [9].

Intrinsic L-value:

lch,n = L( yn |Xn ) = ln

(
Pr( yn |Xn = 0 )

Pr( yn |Xn = 1 )

)
= ln

(
p0

ch,n

p1
ch,n

)
(4.34)

A-posteriori L-value:

lp,n = L(Xn |y ) = ln

(
Pr(Xn = 0 |y )

Pr(Xn = 1 |y )

)
= ln

(
p0

p,n

p1
p,n

)
(4.35)

Extrinsic L-value:

le,n = L(Xn |y\n ) = ln

(
Pr(Xn = 0 |y\n )

Pr(Xn = 1 |y\n )

)
= ln

(
p0

e,n

p1
e,n

)
(4.36)

It should be noted that the intrinsic, a-posteriori and extrinsic probabilities can also

be found, if the respective L-values (LLR) are given. For the convenience, all the

notations in the subscripts can be removed from both L-values (as, l) and probabilities

(as, p) to derive the relation i.e., Pr(X | l ).
Since,

p0 + p1 = 1 (4.37)

and

l = ln

(
p0

p1

)
(4.38)
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So, from the above two relations (4.37) and (4.38),

l = ln
p0

1− p0 (4.39)

⇔
(
1− p0

)
· el = p0 (4.40)

⇔ el =
(
1 + el

)
· p0 (4.41)

⇔ p0 =
e−l/2

e−l/2
· el

(
1 + el

) (4.42)

⇔ p0 = Pr(X = 0 | l ) =
e+l/2

(
e−l/2 + e+l/2

) (4.43)

Similarly, it can be found for

p1 = Pr(X = 1 | l ) =
e−l/2

(
e−l/2 + e+l/2

) (4.44)

As it is known that the sum-product algorithm does local decoding operations at

both variable nodes and check nodes individually and independently in order to update

the extrinsic messages iteratively unless the valid codeword is found or some other

stopping criterion is fulfilled. In the next section, the update rules are shown for both

variable and check nodes which are the sum-product formulation basically.

4.3.5 Sum-Product Message Update Rules

The property of the message passing algorithm is that the individual and indepen-

dent variable nodes have repetition code constraints while the check nodes have single

parity check code constraints which is proved in this subsection. The Forney factor

graphs (FFG) [11] are considered to prove the repetition code constraints at the vari-

able nodes and the single parity check code constraints at the check nodes because of

simplicity. It shall be accentuated that the Forney style factor graphs and the factor

graphs/Tanner graph/Tanner-Wiberg graph [9] have same code constraints at variable

and check nodes, so they are same but with different representations. For more infor-

mation regarding Forney style factor graphs refer [11]. In this subsection, the the up-

date rules are also shown in terms of probabilities and log likelihood ratios (L-values)

in an intuitive way considering small examples before it is generalized.
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4.3.5.1 Message Update Rules for Variable Nodes

The standard coding model is considered in which a codeword x having length N is

selected from a code C ∈ FN
2 , |C| = 2K and transmitted across a memoryless channel

with the corresponding received word y having length N .

A small example is considered whose code is represented by a parity-check matrix

H =

[
1 1 1 0 0

0 0 1 1 1

]
(4.45)

and the Forney style factor graph with the coding model is shown in Figure 4.2 and

the individual variable node 3 of the Figure 4.2 is shown in Figure 4.3. The repetition

code constraint for a variable node is proved in an intuitive way.
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Memoryless Channel Model
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MPA Decoder
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x3
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x5

y1

y2

y3

y4

y5

f1(x1, x1A)

x
1A

Pr( y1 | x1 )

Pr( y2 | x2 )

Pr( y3 | x3 )

Pr( y4 | x4 )

Pr( y5 | x5 )

f3(x3, x3A, x3B)

x3A

x
3B

A

B

gA(x1A, x2A, x3A)

Figure 4.2: Forney style factor graph (FFG) with the coding model of the code defined by the

check matrix in equation (4.45).

=
x3

x
3B

x3A

f3(x3, x3A, x3B)

Figure 4.3: The individual and isolated variable node 3 of the Figure 4.2.
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The indicator function of a variable node 3 is defined as f3(x3, x3A, x3B) [11]

where x3, x3A and x3B are the variables, such that

f3(x3, x3A, x3B) =





1, if x3 = x3A = x3B

0, otherwise
(4.46)

So, the equation (4.46) implies that all the edges which are connected to a vari-

able node have got the same value in the variables i.e., x3 = x3A = x3B = 0 or

x3 = x3A = x3B = 1 like a repetition code. Thus, the message update rules of the

variable nodes can be defined considering the variable node has got the repetition code

constraint.

Now a small example of repetition code having length N = 3 is considered to ex-

plain the message update rules for variable nodes having degree 3. Thereafter, the mes-

sage update rules for variable nodes are generalized. It is also shown that these message

update rules are instances of sum-product formulation. Let the repetition/repeat code

be C =
{

000, 111
}

such that the codeword x = [x1 x2 x3]
T ∈ C is transmitted

across the memoryless channel and the received word is y = [y1 y2 y3]
T . The FFG

and Factor graph of the repetition code of length N = 3 is shown in Figure 4.4 which

is represented by the parity-check matrix,

H =

[
1 1 0

0 1 1

]
(4.47)

=

+

=

=

+

Forney style factor graph Factor graph / Tanner graph / Tanner−Wiberg graph

x3

x2

x1x1

B B

A
A

x2

x3

Figure 4.4: Forney factor graph (FFG) and the factor graph of the repetition code of length

N = 3.

39



CHAPTER 4. MESSAGE PASSING ALGORITHM

The extrinsic message of the code symbol x2 is considered to explain the update

rules for the repetition code of length N = 3. So, from equation (4.32) and (4.33),

Pr(x2 = 0 |y\2 ) = Pr(x2 = 0 | y1, y3 ) = p0
e,2︸︷︷︸

µ2(0)

(4.48)

= α ·
∑

x ∈ C
x2 = 0

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.49)

= α ·
∑

x = [000]

Pr( y1 |X1 = 0 ) · Pr( y3 |X3 = 0 ) (4.50)

= α · Pr( y1 |X1 = 0 ) · Pr( y3 |X3 = 0 ) (4.51)

p0
e,2 = α · p0

ch,1︸︷︷︸
µ1(0)

· p0
ch,3︸︷︷︸

µ3(0)

(4.52)

Similarly,

Pr(x2 = 1 |y\2 ) = Pr(x2 = 1 | y1, y3 ) = p1
e,2︸︷︷︸

µ2(1)

(4.53)

= α ·
∑

x ∈ C
x2 = 1

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.54)

= α ·
∑

x = [111]

Pr( y1 |X1 = 1 ) · Pr( y3 |X3 = 1 ) (4.55)

= α · Pr( y1 |X1 = 1 ) · Pr( y3 |X3 = 1 ) (4.56)

p1
e,2 = α · p1

ch,1︸︷︷︸
µ1(1)

· p1
ch,3︸︷︷︸

µ3(1)

(4.57)

The scaling factor α can be found such that p0
e,2 + p1

e,2 = 1.
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In terms of log likelihood ratios (L-values)

The message update rule for the variable node 2 in terms of log likelihood ratios

are,

le,2︸︷︷︸
l2

= L(x2 | y1, y3 ) = ln

(
Pr(x2 = 0 | y1, y3 )

Pr(x2 = 1 | y1, y3 )

)
(4.58)

By using equation (4.51) and (4.56) (4.59)

= ln
α · Pr( y1 |X1 = 0 ) · Pr( y3 |X3 = 0 )

α · Pr( y1 |X1 = 1 ) · Pr( y3 |X3 = 1 )
(4.60)

= ln
Pr( y1 |X1 = 0 )

Pr( y1 |X1 = 1 )︸ ︷︷ ︸
lch,1

+ ln
Pr( y3 |X3 = 0 )

Pr( y3 |X3 = 1 )︸ ︷︷ ︸
lch,3

(4.61)

le,2 = lch,1︸︷︷︸
l1

+ lch,3︸︷︷︸
l3

(4.62)

Summary of the message update rules for a variable node degree
three

It should be noted that there will always be at least one intrinsic message from

the channel and the rest incoming extrinsic messages are from the neighbouring check

nodes. Moreover, if the variable node has degree (dv) 2, then the only incoming mes-

sage from the channel is equal to the outgoing extrinsic message. However, if the

variable node has degree at least (dv) 3 ( see Figure 4.5 ), the general extrinsic message

update rules can be shown in terms of probabilities and L-values.

The update rules are generalized and summarized for a variable node having degree

3 using equations (4.52) and (4.57) for messages in terms of probabilities and (4.61)

for messages in terms of L-values.
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Here new notations (VAR and CHK) are also introduced [9] which can also be used

for the generalization of the update rules easily. In the Figure 4.5 the two incoming

messages are (µ1, µ3) or (l1, l3) and the outgoing message is µ2 or l2. These notations

can be used in such a way,

Probabilities L−values

dv = 3

µ1 l1

µ
2

µ3

l
2

l3

dv = 3

Figure 4.5: Variable node having degree (dv) 3, the outgoing extrinsic message is µ2 (l2) and

the two incoming messages are µ1 (l1) and µ3 (l3).

In terms of probabilities:
(
µ2(0)

µ2(1)

)
= V AR

(
µ1, µ3

)
=

(
α · µ1(0)µ3(0)

α · µ1(1)µ3(1)

)
(4.63)

where, α is a scaling factor such that µ2(0) + µ2(1) = 1.

In terms of L-values:

l2 = V AR
(
l1, l3

)
= l1 + l3 (4.64)

It can be shown that these L-values at the variable node side can be scaled by any

constant β.

β · l2 = β · V AR
(
l1, l3

)
= β · l1 + β · l3 (4.65)

Generalization of the update rules for a variable node of any de-
gree

The repetition code of length N can be pondered over after taking the repetition

code of length 3. The generalization can easily be seen because the repetition code

has always two codewords either all-zeros or all-ones. Therefore, in the sum-product

formulation of both extrinsic and a-posteriori there will be no summation over both

codewords when one code symbol is fixed and in terms of log likelihood ratios (LLR

or L-values), the formulation can be shown as,
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Extrinsic L-value of the repetition code having length N can be found in such a

way, (4.32) and (4.33)

le,i = ln

(
p0

e,i

p1
e,i

)
(4.66)

= ln




α ·
∑

x∈C
xi=0

N∏

j=1
j 6=i

p
xj

ch,j

α ·
∑

x∈C
xi=1

N∏

j=1
j 6=i

p
xj

ch,j




(4.67)

= ln




∑

x={0, 0, . . . 0}︸ ︷︷ ︸
length N

N∏

j=1
j 6=i

p
xj

ch,j

∑

x={1, 1, . . . 1}︸ ︷︷ ︸
length N

N∏

j=1
j 6=i

p
xj

ch,j




(4.68)

= ln




N∏

j = 1
j 6= i

(
p0

ch,j

p1
ch,j

)



(4.69)

=
N∑

j = 1
j 6= i

ln

(
p0

ch,j

p1
ch,j

)
(4.70)

hence,

le,i =
N∑

j = 1
j 6= i

lch,j (4.71)
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Similarly, A-posteriori L-value of the repetition code having lengthN can be found

in the same way as for extrinsic L-value using equations (4.24) and (4.25).

lp,i =
N∑

j = 1

ln

(
p0

ch,j

p1
ch,j

)
(4.72)

=
N∑

j = 1

lch,j (4.73)

= lch,i + le,i (4.74)

Finally, it can be construed from the property of the extrinsic L-value of the repe-

tition code having length N that the all incoming L-values, i.e., at least one incoming

L-value from the channel and the rest from the neighbouring check nodes, will be

summed up to render extrinsic or a-posteriori L-value.

The proof of the message update rules of a variable node having degree (dv) is

not shown, but it is just summarized and generalized from [9]. Figure 4.6 shows a

variable node of any cycle free factor graph. However, the generalized update rules

can be proved by induction. In this generalized figure, a variable node n of any factor

graph represented by check matrix H ∈ FM×N
2 . The extrinsic outgoing message, say

µvc(n,D), needs dv − 1 incoming messages at the variable node n, so the update rule

can be generalized in the following way,

==
B

A

C

lvc (n,D
)

lcv (C, n)

M

B

A

C

M

D D

dv dv

lch(n) lcv(B, n)

l cv
(A

, n
)

µ
cv (C, n)

µcv(B, n)

µ cv
(A

, n
)

µ
vc (n,D

)

µch(n)

Figure 4.6: The general view of a variable node of any cycle free factor graph.
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Extrinsic outgoing message:

In terms of probabilities:

µvc(n,D) = V AR
(
µch(n), µcv(A, n), µcv(B, n), µcv(C, n), . . .︸ ︷︷ ︸

(dv − 1) messages

)
(4.75)

= V AR

(
µch(n), V AR

(
µcv(A, n), µcv(B, n), µcv(C, n), . . .

) )

(4.76)

Similarly, in terms of L-values:

lvc(n,D) = V AR
(
lch(n), lcv(A, n), lcv(B, n), lcv(C, n), . . .︸ ︷︷ ︸

(dv − 1) L-values

)
(4.77)

= V AR

(
lch(n), V AR

(
lcv(A, n), lcv(B, n), lcv(C, n), . . .

) )
(4.78)

= lch(n) + lcv(A, n) + lcv(B, n) + lcv(C, n) + . . . (4.79)

4.3.5.2 Message Update Rules for Check Nodes

The message update rules for check nodes can be derived in a similar way as for vari-

able nodes. The same example can be considered whose Forney factor graph is shown

in the Figure 4.2. The independent and isolated check node A of this figure is shown

in the Figure 4.7.

+

x
1A

A
x3A

x
2A

gA(x1A, x2A, x3A)

Figure 4.7: The check node A of the Figure 4.2 is considered to show the single parity check

code constraint.
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The indicator function of a check node A is defined as gA(x1A, x2A, x3A) [11]

where x1A, x2A and x3A are the variables, such that

gA(x1A, x2A, x3A) =





1, if x1A ⊕ x2A ⊕ x3A = 0

0, otherwise
(4.80)

So, the equation (4.80) implies that all the edges which are connected to a check

node must fulfill the parity constraint i.e., x1A ⊕ x2A ⊕ x3A = 0. Thus, the message

update rules of the check nodes can be defined considering the check node has got the

single parity check code constraint.

Now an example of a single parity check code length N = 3 can be considered

to explain the message update rules for the check nodes having degree (dc) 3. There-

after, the message update rules for check nodes having degree more than 3 can also be

generalized.

A single parity check code having length 3 is assumed such that C =
{

000, 011, 101,

110
}

. The codeword x = [x1 x2 x3]
T ∈ C is transmitted across the memoryless

channel and the received word is y = [y1 y2 y3]
T . The single parity check code is

represented by the following check matrix whose Forney factor graph is shown in the

Figure 4.8.

H =
[

1 1 1
]

(4.81)

=

=

=

+
gA(x1A, x2A, x3A)

x3A

x2A

x
1A

x1

x2

x3

A

Figure 4.8: The Forney factor graph of a single parity check code having length 3.
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The extrinsic message of the code symbol x2 is considered to explain the update

rules for the single parity check code of length N = 3. So, from equation (4.32) and

(4.33),

Pr(x2 = 0 | y\2 ) = Pr(x2 = 0 | y1, y3 ) = p0
e,2︸︷︷︸

µ2(0)

(4.82)

= α ·
∑

x ∈ C
x2 = 0

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.83)

= α ·
∑

x = {000, 101}

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.84)

= α ·





∑

x = {000}
Pr( y1 |X1 = 0 ) · Pr( y3 |X3 = 0 )





+

+ α ·





∑

x = {101}
Pr( y1 |X1 = 1 ) · Pr( y3 |X3 = 1 )





(4.85)

p0
e,2 = α · p0

ch,1︸︷︷︸
µ1(0)

· p0
ch,3︸︷︷︸

µ3(0)

+ α · p1
ch,1︸︷︷︸

µ1(1)

· p1
ch,3︸︷︷︸

µ3(1)

(4.86)

Similarly,

Pr(x2 = 1 | y\2 ) = Pr(x2 = 1 | y1, y3 ) = p1
e,2︸︷︷︸

µ2(1)

(4.87)

= α ·
∑

x ∈ C
x2 = 1

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.88)
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p1
e,2 = α ·

∑

x = {011, 110}

N = 3∏

j = 1
j 6= 2

Pr( yj |Xj = xj ) (4.89)

= α ·





∑

x = {011}
Pr( y1 |X1 = 0 ) · Pr( y3 |X3 = 1 )





+

+ α ·





∑

x = {110}
Pr( y1 |X1 = 1 ) · Pr( y3 |X3 = 0 )





(4.90)

p1
e,2 = α · p0

ch,1︸︷︷︸
µ1(0)

· p1
ch,3︸︷︷︸

µ3(1)

+ α · p1
ch,1︸︷︷︸

µ1(1)

· p0
ch,3︸︷︷︸

µ3(0)

(4.91)

where, the scaling factor α can be found such that p0
e,2 + p1

e,2 = 1.

In terms of log likelihood ratios (L-values)

From equations (4.86) and (4.91), the extrinsic message can be derived as,

L(x2 | y1, y3 )︸ ︷︷ ︸
l2

= ln

(
Pr(x2 = 0 | y1, y3 )

Pr(x2 = 1 | y1, y3 )

)
= ln

(
p0

e,2

p1
e,2

)
(4.92)

= ln

(
p0

ch,1 · p0
ch,3 + p1

ch,1 · p1
ch,3

p0
ch,1 · p1

ch,3 + p1
ch,1 · p0

ch,3

)
(4.93)

= l1 � l3 See Appendix B for the proof (4.94)

= 2 tanh-1

(
tanh

(
l1
2

)
· tanh

(
l3
2

))
(4.95)

It can be seen that the L-values at the check node side of the sum-product algorithm

can not be scaled by any constant β.

β · l2 6= β · l1 � β · l3 (4.96)
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Summary of the message update rules for a check node degree
three
In the above example of single parity check code having length 3, the local decoding

operation performed by the check node renders box-plus summation on incoming L-

values from the neighbouring variable nodes. The meaning of the box-plus of L-values

can be seen as the transform of modulo 2 addition into box-plus of L-values which is

caused by the property of the single parity check code constraint at the check node,

i.e.,

x1 ⊕ x2 ⊕ x3 = 0 (4.97)

⇔ x2 = x1 ⊕ x3 (4.98)

⇒ L(x2) = L(x1) � L(x3) (4.99)

where, x1, x2, x3 ∈ F2. The update rules are summarized for a check node having de-

gree (dc) 3 using equations (4.86) and (4.91) for messages in terms of probabilities and

(4.94) for messages in terms of L-values. In the Figure 4.9 the two incoming messages

are (µ1, µ3) or (l1, l3) and the outgoing message is µ2 or l2. The notation/function

CHK can be used in such a way,

In terms of probabilities:
(
µ2(0)

µ2(1)

)
= CHK

(
µ1, µ3

)
= α ·

(
µ1(0)µ3(0) + µ1(1)µ3(1)

µ1(0)µ3(1) + µ1(1)µ3(0)

)

(4.100)

where, α is a scaling factor such that µ2(0) + µ2(1) = 1.

In terms of L-values:

l2 = CHK
(
l1, l3

)
= l1 � l3 = 2 tanh-1

(
tanh

(
l1
2

)
· tanh

(
l3
2

))
(4.101)

L−valuesProbabilities

⊕
µ2

µ
1

l2

l3

l
1

µ3

⊕

Figure 4.9: Check node having degree (dc) 3, the outgoing extrinsic message is µ2 (l2) and

the two incoming messages are µ1 (l1) and µ3 (l3).
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Generalization of the update rules for a check node

Similar to variable node, the proof of the message update rules of a check node

having degree (dc) is not shown but it is summarized and generalized from [9]. Figure

4.10 shows a check node of any cycle free factor graph. In this generalized figure,

the check node m of any factor graph represented by check matrix H ∈ FM×N
2 . The

extrinsic outgoing message, say µcv(m, 2), needs dc − 1 incoming messages at the

check node n, so the update rule can be generalized in the following way,

3

µvc
(3,

m)

dc dc

1

2

1

3

2

NN

µcv(m, 2)

µ
vc(1,m)

lvc(1,m)

lcv(m, 2)

lvc(
3,m

)

Figure 4.10: The general view of a check node of any factor graph.

Extrinsic outgoing message:

In terms of probabilities:

µcv(m, 2) = CHK
(
µvc(1,m), µvc(3,m), . . .︸ ︷︷ ︸

(dc − 1) messages

)
(4.102)

= CHK

(
µvc(1,m), CHK

(
µvc(3,m) . . .

) )
(4.103)
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Similarly, in terms of L-values:

lcv(m, 2) = CHK
(
lvc(1,m), lvc(3,m), . . .︸ ︷︷ ︸

(dc − 1) L-values

)
(4.104)

= CHK

(
lvc(1,m), CHK

(
lvc(3,m) . . .

) )
(4.105)

= lvc(1,m) � lvc(3,m) � . . . (4.106)

4.3.6 Example for Sum-Product Algorithm

The message update rules for the sum-product algorithm has been shown in the pre-

vious sections. Now, a small example is considered to show the process of decoding

by the sum-product algorithm such that the update rules of a variable node and check

node can be used to show the concepts of decoding.

A simple repetition code C =
{

00000, 11111
}

is considered which is represented

in the Figure 4.11 with the channel coding model. It is assumed that a codeword

x = [x1 x2 x3 x4 x5]
T ∈ C is transmitted across the BSC with the cross over probability

ε = 0.2 (cf. section 2.2 for BSC). So, the probabilities can be defined as

Pr( yn |xn ) =





0.8, if yn = xn

0.2, if yn 6= xn

(4.107)

for n = 1, 2, 3, 4, 5. It is assumed that the received word is y = [y1 y2 y3 y4 y5]
T =

[0 0 1 0 0]T . The messages in terms of probabilities are shown in the Figure 4.11 and

4.12 as

(
µn(0)

µn(1)

)
such that they can be scaled in order to be µn(0) + µn(1) = 1.

The received symbol 0 is represented as the message

(
0.8

0.2

)
while 1 is repre-

sented as the message

(
0.2

0.8

)
.

Initially, the received messages at the variable nodes are sent along the edges to the

neighbouring check nodes which is shown in the Figure 4.12 (i). Then, check nodes

compute the outgoing extrinsic messages (for update rules, see Page 41 and 49), for

example the outgoing message µcv(A, 1) from check node A to variable node 1 is

µcv(A, 1) = CHK

((
0.8

0.2

)
,

(
0.2

0.8

))
=

(
0.8 · 0.2 + 0.8 · 0.2 = 0.32

0.8 · 0.8 + 0.2 · 0.2 = 0.68

)

(4.108)
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Similarly, the rest 5 outgoing messages are calculated which are shown in the Figure

4.12 (ii).

Memoryless BSC Model

Sum−Product Algorithm Decoder

R
ec

ei
ve

d 
w

or
d 

(

0.8

0.2

)

x3

x4

x5

x1y1 = 0

y2 = 0

y3 = 1

y4 = 0

y5 = 0

Pr( y1 | x1 )

Pr( y2 | x2 )

Pr( y3 | x3 )

Pr( y4 | x4 )

Pr( y5 | x5 )

A

B

(

0.8

0.2

)

(

0.8

0.2

)

(

0.2

0.8

)

(

0.8

0.2

)

x2

Figure 4.11: The factor graph of a repetition code having length 5 with the coding model is

shown. The received word is y = [0 0 1 0 0]T .
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Figure 4.12: (i) Initially, the messages received from the channel at the variable nodes are

passed to the neighbouring check nodes; (ii) Representing the outgoing extrinsic messages out

of the check nodes in blue colour.

Now, before the termination of the one complete iteration, the variable nodes have

to compute the new messages µv(n) to check whether the estimated codeword x̂which

is formed by stacking all 5 code symbols in a vector fulfills H⊗ x̂ = 0. For example,
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the variable node 3 computes the message µv(3) as

µv(3) = V AR

( (
0.2

0.8

)
,

(
0.68

0.32

)
,

(
0.68

0.32

) )
(4.109)

= V AR

( (
0.2

0.8

)
, V AR

{(
0.68

0.32

)
,

(
0.68

0.32

)} )
(4.110)

= V AR

( (
0.2

0.8

)
,

(
α · 0.68 · 0.68 = α · 0.4624

α · 0.32 · 0.32 = α · 0.1024

) )
(4.111)

=

(
0.2 · α · 0.4624 = α · 0.09248

0.8 · α · 0.1024 = α · 0.08192

)
=

(
µ3(0)

µ3(1)

)
(4.112)

where α is a scaling factor.

By the hard-decision of each message [µv(1), µv(2), µv(3), µv(4), µv(5)], each code

symbols can be estimated. So, the hard-decision of µv(n) can be done in this way,

x̂n =





0, if µn(0) ≥ µn(1)

1, if µn(0) < µn(1)
(4.113)

For example, for µv(3) : µ3(0) = α · 0.09248, µ3(1) = α · 0.08192, so the code

symbol x̂3 = 0 because µ3(0) ≥ µ3(1). Thus, the estimated codeword x̂ comes out to

be [0 0 0 0 0]T by hard-decisions. If it fulfills the H ⊗ x̂ = 0, then the iteration will

be terminated. Hence, the received word is decoded successfully and the iteration is

terminated.

4.4 Max-Product / Min-Sum Algorithm

It can be accentuated here that if the "sum" are replaced by the "max" everywhere in

the sum-product formulation then the variant will be max-product algorithm. More-

over, the sum-product algorithm decodes symbol-wise while the max-product decodes

block-wise.

Similar to the sum-product formulation derivation, if a code C which is defined by

a parity check matrix H ∈ FM×N
2 , M ≥ N − K is considered such that C ∈ FN

2 ,

where |C| = 2K , information word length K and code rate R = K
N . If a codeword
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from the code is transmitted across the memoryless channel, then the max-product al-

gorithm can be used to decode the received word. If the factor graph of this code is

cycle-free then the decoding will be maximum likelihood (optimal) otherwise for the

non-cycle free, the decoding will be sub-optimal. The assumptions are same that the

code symbols and codewords in a code are equiprobable.

Formally,

C =
{
x : x = enc(u), information word u ∈ FK

2

}

=
{
x ∈ FN

2 : H ⊗ x = 0
}

The max-product formulation can be derived, if "sum" are replaced by the "max"

everywhere in the sum-product formulation (4.20) such that

xn = argmax
xn ∈ {0, 1}

max
x ∈ C
xn fixed︸ ︷︷ ︸
Max

N∏

j=1︸︷︷︸
Product

Pr( yj |xj )

︸ ︷︷ ︸
max Pr(xn | y ) = maxAPP

(4.114)

= argmax
xn ∈ {0, 1}

max
x ∈ C
xn fixed

Pr(y |x ) (4.115)

It is very conspicuous from the equation (4.115) that the max-product algorithm

performs decoding ML-block wise, i.e.,

x̂ML = argmax
x ∈ C

Pr(y |x ) (4.116)

Hence, it can be reiterated that the max-product decodes block-wise while sum-

product decodes symbol-wise optimally for cycle free factor graphs. In terms of L-

values, the max-product algorithm is called as the min-sum algorithm. It is shown in

this section that the the approximation of the box-plus operator in the sum-product

algorithm renders min-sum algorithm [9] [10].

It can be said in other words that the message update rules for the max-product

algorithm at the variable node side is similar to the sum-product algorithm because in

the sum-product formulation there is no "sum", and hence both of them have the same

update rules at the variable node side. However, the max-product has different update

rules at the check node side because the "sum" is replaced by the "max" everywhere.

So, the max-product/min-sum algorithm has different update rules for the check node.
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It can be possible that the sum-product algorithm may estimate a codeword which

does not exist in the code (cycle or cycle-free) specified at the encoder and decoder be-

cause sum-product decodes symbol-wise. But, the max-product algorithm will always

estimate a codeword from the code (cycle or cycle-free) because max-product decodes

block-wise. However, the max-product/min-sum algorithm’s performance is bit worse

(higher word-error rate) than the sum-product algorithm for the same signal to noise

ratio (SNR) [1].

4.4.1 Update Rules of Max-Product/Min-Sum Algorithm

The message update rules of the max-product/min-sum algorithm can be summarized

and derived for any variable and check node having degree dv and dc respectively of a

cycle free factor graph.

1. The message update rules of the max-product algorithm for a variable node are

exactly same as to the sum-product algorithm. The update rules of the max-

product algorithm are summarized and reiterated for a variable node degree 3

and any degree dv.

◦ For a variable node having degree dv = 3, see Figure 4.5.

In terms of probabilities:
(
µ2(0)

µ2(1)

)
= V AR

(
µ1, µ3

)
=

(
α · µ1(0)µ3(0)

α · µ1(1)µ3(1)

)
(4.117)

(4.118)

where, α is a scaling factor.

In terms of L-values:

l2 = V AR
(
l1, l3

)
= l1 + l3 (4.119)

β · l2 = β · V AR
(
l1, l3

)
= β · l1 + β · l3 (4.120)

where, µ2 (l2) is outgoing extrinsic message and µ1 (l1) and µ3 (l3) are

incoming extrinsic messages. The equation 4.120 shows that the L-values

can be scaled by a constant β which implies that the knowledge of signal

to noise ratio is not important (cf. section 2.5).
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◦ For a variable node having any degree dv, see Figure 4.6.

Extrinsic outgoing message:

In terms of probabilities:

µvc(n,D) = V AR
(
µch(n), µcv(A, n), µcv(B, n), µcv(C, n), . . .︸ ︷︷ ︸

(dv − 1) messages

)

(4.121)

= V AR

(
µch(n), V AR

(
µcv(A, n), µcv(B, n), µcv(C, n), . . .

) )

(4.122)

Similarly, in terms of L-values:

lvc(n,D) = V AR
(
lch(n), lcv(A, n), lcv(B, n), lcv(C, n), . . .︸ ︷︷ ︸

(dv − 1) L-values

)
(4.123)

= V AR

(
lch(n), V AR

(
lcv(A, n), lcv(B, n), lcv(C, n), . . .

) )

(4.124)

= lch(n) + lcv(A, n) + lcv(B, n) + lcv(C, n) + . . . (4.125)

2. The message update rules of the max-product algorithm for a check node are

different from the sum-product algorithm. As it was discoursed before, that the

max-product / min-sum algorithm finds the maximum of the APP in terms of

probabilities and approximates the box-plus in terms of L-values (LLR).

◦ For a check node degree having dc = 3, see Figure 4.9, where two incoming

messages are (µ1, µ3) or (l1, l3) and the outgoing message is µ2 or l2.

Then,

In terms of probabilities:
(
µ2(0)

µ2(1)

)
= CHK

(
µ1, µ3

)
= α ·

(
max {µ1(0)µ3(0), µ1(1)µ3(1)}
max {µ1(0)µ3(1), µ1(1)µ3(0)}

)

(4.126)

where, α is a scaling factor. It should be noticed that in the update rules

of the sum-product algorithm the "sum" is replaced by "max" rendering

max-product algorithm.
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In terms of L-values:

In the sum-product algorithm, the update rules for a check node degree 3

were

l2 = CHK
(
l1, l3

)
= l1 � l3 = 2 tanh-1

(
tanh

(
l1
2

)
· tanh

(
l3
2

))

(4.127)

= ln

(
cosh ((l1 + l3) /2)

cosh ((l1 − l3) /2)

)
(see Appendix B for proof) (4.128)

= ln (cosh ((l1 + l3) /2)) − ln (cosh ((l1 − l3) /2)) (4.129)

It is known [9] that

ln
(

cosh(Z)
)
≈ |Z| − ln(2) for Z � 1 (4.130)

Then, continuing equation (4.129),

CHK
(
l1, l3

)
≈ |(l1 + l3) /2| − |(l1 − l3) /2| (4.131)

= sgn(l1) sgn(l3) min (|l1| , |l3|) (4.132)

So, it turns out that the approximation of the box-plus operator in the sum-

product algorithm is called as min-sum algorithm [9].

It can be seen that the L-values of the min-sum algorithm can be scaled by

any constant β.

β · l2 = β · CHK
(
l1, l3

)
= sgn(β · l1) sgn(β · l3) min (|β · l1| , |β · l3|)

(4.133)

◦ For a check node having any degree dc, see Figure 4.10

Extrinsic outgoing message:

In terms of probabilities:

µcv(m, 2) = CHK
(
µvc(1,m), µvc(3,m), . . .︸ ︷︷ ︸

(dc − 1) messages

)
(4.134)

= CHK
(
µvc(1,m), CHK

(
µvc(3,m) . . .

) )
(4.135)
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Similarly, in terms of L-values:

lcv(m, 2) = CHK
(
lvc(1,m), lvc(3,m), . . .︸ ︷︷ ︸

(dc − 1) L-values

)
(4.136)

= CHK
(
lvc(1,m), CHK

(
lvc(3,m) . . . ldc−2, ldc−1

) )

(4.137)

Before getting further, it shall be noted that the the sum-product and min-sum al-

gorithms were implemented using L-values to decode a (7, 4, 3) Hamming code under

BSC in MATLAB (cf. the MATLAB code named as test_mpa.m in the CD-ROM

attached with the report).

4.5 Message Passing Algorithm for the BEC

The sum-product and max-product/min-sum algorithm has been described in the pre-

vious sections. If the channel is presumed to be Binary Erasure Channel (BEC), then

the performance of the MPA can easily be described without considering probabilistic

decoding for update rules.

4.5.1 Node Operations and Algorithm

Initially, a code C ∈ FN
2 is contemplated, where |C| = 2K . A codeword x ∈ C is sent

across the BEC and received at the receiver. Thereafter, the received word is decoded

using the message passing algorithm. So, all the received messages are only from the

set {0, 1,∆} (where, ∆ means "erasure") because of the property of BEC (cf. section

2.2).

1. Variable node operation:

If any one of the incoming messages is either 0 or 1 at the variable node, then

the outgoing message will be 0 or 1 respectively because of the repetition code

constraint at the variable node. It can be expounded in this way that if any one

of the incoming message at the variable node is 0, then it will be sure that the

local code constraint is all-zeros because of the property of the repetition code

at the variable node. It can also be said that the outgoing message will be ∆, if

and only if all the incoming messages are ∆. The variable node operations for

the BEC are shown in the Figure 4.13.
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µ
cv (D, 1) = ∆

µcv(C, 1) = ∆
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µ
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µvc(1
, B) = ∆

If any one incoming message is either 0 or 1,

µcv
(A

, 1)
= ∆

µcv
(A

, 1)
= 0/1

µvc(1
, B) = 0/1

dv = 5 dv = 5

µch = ∆µch = ∆

If all incoming messages are ∆,
then the outgoing message will be 0 or 1 respectively.then the outgoing message will be ∆.

Figure 4.13: An isolated and independent variable node operation for the BEC.

2. Check node operation:

If any one incoming message is ∆ at the check node, then the outgoing message

will be ∆ because of the single parity check code constraint, see Figure 4.14 (i).

It can be reiterated in this way that if any one of the incoming message is ∆ at

the check node, then the local code constraint will be in dilemma that what it

should consider incoming ∆ as 0 or 1 to fulfill the local code constraint which

is a single parity check code. It can also be said that if the incoming messages

are 0 and 1, then the outgoing message will be either 0 or 1 to fulfill the single

parity check code constraint, see Figure 4.14 (ii).

dc = 4 dc = 4

If all the incoming messages are either 0 or 1,
then the outgoing message will be either 0 or 1
to fulfill the single parity check constraint.

(ii)(i)

1

2

4

3

A

µ
vc (1, A) =

∆
µcv(A, 2) = ∆

µvc(3, A) = 1

µvc
(4,

A) = 1

1

2

4

3

A

If any one of the incoming message is ∆,
then the outgoing message will be ∆.

µ
vc (1, A) =

0
µcv(A, 2) = 0

µvc(3, A) = 1

µvc
(4,

A) = 1

Figure 4.14: An isolated and independent check node operation for the BEC.

3. Termination of the iteration:

The iteration will terminate when all the code symbols are recovered or the max-

imum number of iterations have reached, otherwise go to step 1. After the ter-

mination of the algorithm, if all the code symbols are not recovered, then the set

of code symbols which are not resolvable will be called as a stopping set.
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4.5.2 Stopping Sets

A stopping set is a set of the code symbols which are not resolvable by the MPA.

Formally, the stopping set S is a subset of V (where, V is the set of all variable nodes n),

such that the all neighbours of S i.e., N
(
S
)

have at least two connections to S . It can

be said that if the neighbouring check nodes N
(
S
)

have at least 2 incoming erasures

from the variable nodes in the set S , then the outgoing message µcv will always be

an erasure. Thus, the erasures travel back and forth through the edges between the

stopping set S and the neighbouring check nodes. Therefore, the stopping set S will

have unresolvable variable nodes.

To be precise, a set E is considered as a subset of V having erasures from the

channel. So, if E ⊇ S , then the set S will form a set of non-resolvable code symbols

and it won’t be possible to decode the variable nodes in the set S under BEC.

The (7, 4, 3) Hamming code C is cogitated on to explain the concepts of a stopping

set. If a codeword x ∈ C is transmitted across BEC, then the received word will be

y which is decoded by the MPA. It can be construed that the various combinations of

the variable nodes can be found to form a stopping set. So, one of the stopping set

S = {1, 2, 3} is considered and shown in the Figure 4.15 such that the N
(
S
)

= A,B

must have at least two connections to S by the definition of the stopping set. If the

received word y is
[
∆ ∆ ∆ 0 0 0 ∆

]
, then the erasure set will be E = {1, 2, 3, 7}

such that E ⊇ S , which have received erasures from the channel. It can easily be

seen in the Figure 4.15 that the set S = {1, 2, 3} can never be decoded under these

conditions except x7 which is decoded by the MPA. In this figure, the different colours

are used to denote the various messages. It should also be seen that the messages shown

within the variable nodes are the messages recovered finally (x̂n) after one iteration.

So after the termination of the iteration, the decoded codeword x̂ is
[
∆ ∆ ∆ 0 0 0 0

]
,

thus the set S = {1, 2, 3} is a stopping set of unresolvable code symbols. Furthermore,

it can easily be seen that the messages within the variable nodes remain the same after

any further iterations too.

If E ⊂ S , then all the code symbols can be resolved. If the received word y is[
∆ 0 ∆ 0 0 0 0

]
, then the erasure set will be E = {1, 3}. The set S = {1, 2, 3} is

considered to represent the factor graph in the Figure 4.16 of the (7, 4, 3) Hamming

code that all the code symbols are resolvable. So after the termination of the one

complete iteration, the decoded codeword x̂ is
[
0 0 0 0 0 0 0

]
. Hence, the stopping

set S = {1, 2, 3} is resolvable when E ⊂ S otherwise it is not resolvable when E ⊇ S .
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Figure 4.15: The set S = {1, 2, 3} is shown to be a stopping set in the (7, 4, 3) Hamming code.
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Figure 4.16: The stopping set S = {1, 2, 3} will be resolvable, if E = {1, 3} such that E ⊂ S .
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Linear Programming Decoding 5

5.1 Introduction

Generally, the decoding of linear block codes, and particularly the LDPC codes can be

carried out by several methods. One of the well-known method, the message passing

algorithm (MPA) was studied in the previous chapter. Another method will be de-

scribed in this chapter, the linear programming decoding.

The Linear Programming (LP) method is an optimization method to solve a problem

defined by a linear objective function using linear constraints in R.

The optimization problem can be considered as,

Given a binary linear code C ∈ FN
2 , a codeword x = [x1 x2 . . . xN ]T is transmitted

over a memoryless channel, the received vector is y = [y1 y2 . . . yN ]T and the

log likelihood ratio (LLR) vector is λ = [λ1 λ2 . . . λN ]. The parity check matrix

H ∈ FM×N
2 . The goal of the optimization problem is to find the maximum likelihood

codeword,

minimize λTx (5.1)

subject to x ∈ C

From now onwards the optimization problem is written with the notation ”min.” as

minimum and ”s.t.” as subject to. If x ∈ C , then H ⊗ x = 0. So, the equation (5.1)

becomes,

min. λTx (5.2)

s.t. H⊗ x = 0

x ∈ {0, 1}
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The different parts of this optimization problem are,

• An objective function which is minimized (or sometimes maximized):

min. λTx (5.3)

• The problem constraint,

H⊗ x = 0 (5.4)

If we split H into its M rows, the equation (5.4) will be,

hm ⊗ x = 0, m = A,B,C, ...︸ ︷︷ ︸
M

(5.5)

We have now M equations, each corresponding to

a1x1 ⊕ a2x2 ⊕ ...⊕ aNxN = 0 (5.6)

with an ∈ {0, 1}, n = 1, .., N .

• The integer (binary) variable,

xn ∈ {0, 1} (5.7)

The optimization problem will be described to solve through linear programming

in this chapter. In section 5.2, a linear maximum likelihood function is derived in

order to be used in the LP formulation which is explained in the section 5.3. After the

analytical formulation of the LP decoding problem, a geometrical interpretation will

be given in section 5.4. An alternative formulation of LP decoding is described in the

section 5.5. In section 5.6, the notion of pseudocodewords which are specific to our

problem will be described before ending with some ideas to improve the performance

of LP. The end of this chapter shows some problems observed through the particular

case of the binary symmetric channel in section 5.7 and an improved algorithm for the

LP decoder is given in section 5.8.

5.2 Maximum Likelihood Decoding for LP

After the transmission of an error-correcting code, the receiver has to decode the trans-

mitted codeword. So, one way to decode is to choose a codeword which has the maxi-

mum likelihood probability of a received word given a transmitted codeword. It means
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that it will find a maximum likelihood codeword. This section will show how the max-

imum likelihood codeword can be derived in a linear form in order to be used in the

LP formulation.

If a codeword x ∈ C is transmitted over a memoryless channel and the correspond-

ing received vector is y, then the maximum likelihood codeword can be:

x̂ = argmax
x∈C

Pr(y |x ) (5.8)

Since, the variables are independent and the channel is memoryless without feedback,

equation (5.8) becomes:

x̂ = argmax
x∈C

N∏

n=1

Pr( yn |xn ) (5.9)

= argmin
x∈C

(
− ln

N∏

n=1

Pr( yn |xn )

)
(5.10)

= argmin
x∈C

(
−

N∑

n=1

ln Pr( yn |xn )

)
(5.11)

One trick is now used. The term
∑N

n=1 ln Pr( yn | 0 ) is independent of x. So, it can be

considered as a constant since minimization is done over x. Equation (5.11) will be,

x̂ = argmin
x∈C

N∑

n=1

ln Pr( yn | 0 )−
N∑

n=1

ln Pr( yn |xi ) (5.12)

= argmin
x∈C

N∑

n=1

ln
Pr( yn | 0 )

Pr( yn |xn )
(5.13)

The sum,
N∑

n=1

ln
Pr( yn | 0 )

Pr( yn |xn )

is equal to 0 when xn = 0 and for xn = 1, it is equal to,
N∑

n=1

ln
Pr( yn |xn = 0 )

Pr( yn |xn = 1 )
=

N∑

n=1

λn

So, equation (5.13) is now,

x̂ = argmin
x∈C

N∑

n=1

xn ·
(

ln
Pr( yn |xn = 0 )

Pr( yn |xn = 1 )

)
(5.14)

Finally, the log likelihood ratio can be replaced by its value such that,

x̂ = argmin
x∈C

N∑

n=1

λnxn (5.15)

x̂ = argmin
x∈C

λTx (5.16)

We see that the equation (5.16) is exactly equal to our optimization problem des-

cribed in equation (5.1).
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5.3 Linear Programming Formulation

In this section, we will first state the problem of linear programming decoding and then

describe the results.

5.3.1 Problem Formulation

An example will be taken in this section to derive a formulation of LP decoding. After-

wards the general formulation is shown.

Our goal is still,

min. λTx (5.17)

s.t. hm ⊗ x = 0, m = A,B,C, ...︸ ︷︷ ︸
M

xn ∈ {0, 1}

We want to use a linear programming decoder such that the variables and constraint

function are in R. A simple example is considered to formulate the integer LP problem

before relaxation of the constraints. The relaxation of the constraints means that the

constraint xn ∈ {0, 1} is changed to xn ∈ [0, 1].

The check equations in F2 will be reformulated as linear equations in R which is

described further. So, consider the following parity check matrix H,

H =




1 0 0 1 1 0

0 1 0 1 0 1

0 0 1 0 1 1


 (5.18)

If x = [x1 x2 x3 x4 x5 x6]
T , the set of check equations corresponding to the H

matrix will be,

H⊗ x =





chk(A) : x1 ⊕ x4 ⊕ x5 = 0

chk(B) : x2 ⊕ x4 ⊕ x6 = 0

chk(C) : x3 ⊕ x5 ⊕ x6 = 0





(5.19)

In order to use the parity check equation in R, a new formulation with new variables

is used. Let us define them for example for chk(A),

• SA is the set of indices of the code symbols used in the check equation chk(A)

SA = {1, 4, 5} (5.20)
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• xSA
is the local codeword formed with the corresponding code symbols used in

check equation chk(A):

xSA
= (x1, x4, x5)

T (5.21)

• The matrix which will be able to extract xSA
from x is called BA

BA =




1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


 (5.22)

It can be verified that

xSA
= BAx (5.23)

Notice that in equation (5.23), the addition and multiplication in R are used

instead of the modulo 2 operation.

• Now, another matrix AA is defined as follows.

The columns of AA are composed of the local codewords satisfying chk(A).

These local codewords are even weight vectors of length dc, including the zero

vector. In our case dc = 3, so:

xSA
∈ {(0, 0, 0)T ; (0, 1, 1)T ; (1, 0, 1)T ; (1, 1, 0)T}

Thus,

AA =




0 0 1 1

0 1 0 1

0 1 1 0


 (5.24)

• An indicator vector wA that select the right configuration for chk(A) is defined

in this way:

wA =




wA,{∅}

wA,{4,5}

wA,{1,5}

wA,{1,4}



∈ F4

2, 1
TwA = 1 (5.25)

It shall be noted that the 4 in F4
2 corresponds to the number of different local

codewords satisfying chk(A) and also to the number of columns in the matrix

AA.

67



CHAPTER 5. LINEAR PROGRAMMING DECODING

And 1 is the all-ones vector, 


1

1

1

1




(5.26)

So, wA belongs to the set because of the definition in equation 5.25,

wA ∈








1

0

0

0



,




0

1

0

0



,




0

0

1

0



,




0

0

0

1








(5.27)

All these vectors will satisfy, 1TwA = 1.

It can be seen that

xSA
= AAwA (5.28)

In the equation (5.28), the multiplication and addition are used in R. If for example

wA = [0 1 0 0]T , then wA,{4,5} = 1 and wA,{∅} = wA,{1,5} = wA,{1,4} = 0 such

that xSA
= [0 1 1]T . wA is an indicator/auxiliary variable which selects the correct

configuration for the local codeword from the columns of AA.

The equations (5.23) and (5.28) are combined such that,

BAx = AAwA wA ∈ F4
2, 1

TwA = 1 (5.29)

Equation (5.29) has been formed in such a way that it satisfies the check equation

chk(A). Thus, equation (5.29) is equivalent to chk(A).

For each check equation of (5.19), the following settings for the new linear equa-

tions can be deduced,

chk(A) :





x1 ⊕ x4 ⊕ x5 = 0, SA = {1, 4, 5}

wA =
[
wA,{∅} wA,{4,5} wA,{1,5} wA,{1,4}

]T

BA =




1 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


 , AA =




0 0 1 1

0 1 0 1

0 1 1 0








(5.30)
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chk(B) :





x2 ⊕ x4 ⊕ x6 = 0, SB = {2, 4, 6}

wB =
[
wB,{∅} wB,{4,6} wB,{2,6} wB,{2,4}

]T

BB =




0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


 , AB =




0 0 1 1

0 1 0 1

0 1 1 0








(5.31)

chk(C) :





x3 ⊕ x5 ⊕ x6 = 0, SC = {3, 5, 6}

wC =
[
wC,{∅} wC,{5,6} wC,{3,6} wC,{3,5}

]T

BC =




0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


 , AC =




0 0 1 1

0 1 0 1

0 1 1 0








(5.32)

So, if the number of ones is the same in each row of H (dc = 3), Am will be the

same matrix for each check equation (m corresponds to the index of the check equa-

tion). Let us generalize the formulation. For each mth row of the parity check matrix,

let dc(m) be the number of ones in this row, Sm be the set of indices of the code sym-

bols participating in the check equation m, Bm be a dc(m)×N matrix which extracts

the local codeword xSA
from the codeword x and Am be a matrix dc(m) × 2dc(m)−1

whose columns are formed by the local codewords satisfying mth check equation. The

mth parity check equation can be written as,

Bmx = Amwm wm ∈ {0, 1}2
dc(m)−1

, 1
Twm = 1 (5.33)

It can be noticed that all the operations used in this equation are over R. By replacing

the check constraint in (5.17) by this new equation (5.33), the optimization formulation

becomes:

min. λTx (5.34)

s.t. Bmx = Amwm, m = A,B,C, ...︸ ︷︷ ︸
M

wm ∈ {0, 1}2
dc(m)−1

, 1
Twm = 1,

xn ∈ {0, 1}, n = 1, .., N

69



CHAPTER 5. LINEAR PROGRAMMING DECODING

Now, all the constraints are linear operations over R but we are in the case of Integer

Linear Programming (ILP) because xn and wm are integer. ILP can be NP-hard in

practical situations i.e., in worst case undecidable [19] [22]. In this project, we are

not interested in using ILP but linear programming decoding. So, the relaxation of the

constraints are done. wm and xn are taken in [0, 1] instead of {0, 1} such that they can

have values between 0 and 1. The ILP decoder in equation (5.34) will be changed to

relaxed LP decoder which is shown in the equation 5.35,

min. λTx (5.35)

s.t. Bmx = Amwm, m = A,B,C, ...︸ ︷︷ ︸
M

wm ∈ [0, 1]2
dc(m)−1

, 1
Twm = 1,

xn ∈ [0, 1], n = 1, .., N

5.3.2 Solution of LP

After the formulation of the problem, the result given by a LP decoder could be known.

And of course, we are looking for a successful decoding. In other words, the codeword

decoded should exactly be the maximum likelihood codeword.

The solution of the LP problem is not always a binary codeword (we talk about

integer solution) because of the relaxation of the problem. The LP decoder gives non-

integer or integer solution.

If a solution is a non-integer solution, the LP decoder will fail. The non-integer

solution is also called as a fractional solution and will be studied later in section 5.4.3.

Fortunately, some methods like the addition of redundant parity check equations are

studied in section 5.8 which may change the fractional solution to integer solution. So,

an LP decoder can be improved to render an integer solution or a ML codeword after

some iterations by addition of redundant parity check cuts.

When the solution is integer, it is not exactly sure to be a real transmitted codeword,

but it is sure to be a ML codeword. Thus, the property of a linear programming decoder

is ML certificate. The ML certificate is one of the greatest advantage of LP. It is said

that if the LP decoding algorithm outputs a codeword (integer solution), it will be

guaranteed to be a ML codeword [4]. It shall be accentuated that the sum-product

algorithm (SPA) may give a non codeword binary vector; however the LP decoder

will always give a ML codeword, if the solution is integer [4]. This property can be

demonstrated as follows,

Consider an integer solution output by the solver, x̂ and w. Our LP formulation

states that 1Twm = 1. So, when w is integer all the bits of wm are 0 except one bit
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which is 1. Thus, according to equation (5.28), x̂Sm will be a local codeword. Hence,

from equation (5.23), x̂ is a codeword. And if we remind the following definition of

ML decoding:

x̂ = argmin
x∈C

λTx (5.36)

By definition, x̂ is then the ML codeword. The ML certificate is really important in

the field of decoding and allows a great attraction for LP decoding. Another important

theorem of LP decoding is that it is optimal (ML decoding) for cycle free graphs. We

did not prove it in the project but it is referred in [4][5]. Note that the algorithm of LP

decoding has been implemented during the project and can be seen in the Matlab code

lclp_example.m or lclp.m in the CD-ROM provided with the report.

5.3.3 Scaling of λ (noise)

Indeed, the LP formulation consists in minimizing the linear cost function: argmin λTx.

This means that if a factor β is added, the estimation will still be same,

x̂ = argminλTx = argmin(β · λT )x (5.37)

Asλ can be scaled by a constant β, then the knowledge of the noise is not important

(cf. section 2.5).

5.4 Geometric Interpretation

In this section some geometric interpretations of the linear programming formulation

will be shown.

5.4.1 The Local Codeword Constraint gives a Convex Hull

Consider now the constraints for check node A in the example, shown in equation 5.38

for convenience.



x1

x4

x5


 =




0 1 1 0

0 1 0 1

0 0 1 1







wA,{∅}

wA,{1,4}

wA,{1,5}

wA,{4,5}




, wA,S ≥ 0 , 1
Tw = 1 (5.38)

Where, wA has been written out, such that for example wA,{1,4} is the indicator auxil-

iary variable selecting x1 = x4 = 1 and x5 = 0. Consider now the definition of the
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convex hull of a set L.

conv(L) =

{∑

l∈L

γl l : γl ≥ 0 ,
∑

l∈L

γl = 1

}
(5.39)

The convex hull of a set, is all the points that are a linear combinations of points in

the set, where all weights are non-negative and sum to one. The constraints in (5.38)

on w are equivalent to those for the convex hull γ in (5.39). Defining the matrix

AA = [p1 p2 p3 p4] (5.40)

such that the set EA = {pi : i = 1, 2 . . .2(dc−1)}, are the columns of AA. When

describing the convex hull, the elastic band analogy is often used [20], where a rubber

band is released around the points in the set. The rubber band is then the surface of

the solid figure that the convex hull describes. The Figure 5.1 shows the convex hull

of EA, a solid tetrahedron.

[01
0]

x4

x1

p1

p2

p3

p4x5

x4

x5

x1

[110]

[011]

[100]

[001]

[111]

conv(EA)

[000]

[10
1]

Figure 5.1: Points pi of the set EA to the left is applied with a rubber band which render a

solid tetrahedron shown in the figure to the right.

This means that xSA
∈ conv(EA), i.e. all the points in the tetrahedron. For a weight

3 (dc = 3) check equation, the solution space will be a tetrahedron in 3 dimensions.

For higher degree it will be polytopes in multiple dimensions. Each check equation

A,B,C in the example has a solution space as a tetrahedron as shown in the Figure

5.2.

In the Figure 5.1, only constraints on x1, x4, x5 are considered whereas the rest,

x2, x3, x6, are free in check equation A. If it’s written as an optimization problem, it

can be formulated as,

min. λTx (5.41)

s.t. x ∈ conv(Cm) ∀ m = A,B,C . . .︸ ︷︷ ︸
M
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x4

x5

x4

x2 x3

x5

x6

x1

x6

conv(EA) conv(EB) conv(EC)

Figure 5.2: The three tetrahedrons of the example considered in LP chapter.

We are considering the intersection of our solution space, which means that the

total solution space for our LP relaxation will be the polytope P , in general.

P = conv(CA) ∩ conv(CB) ∩ conv(CC) · · · (5.42)

Note the similarity between (5.42) and the definition C = CA ∩ CB ∩ CC . Equation

(5.41) can easily be rewritten as,

min. λTx (5.43)

s.t. x ∈ P

5.4.2 Possible Solutions

One question arises. Have we not introduced an infinite number of solution to our

optimization problem by considering the convex hull instead of just the vertices? The

solution space is not just a set of vertices but a solid polytope. This problem occurred

when we considered the relaxations in the interval xn ∈ [0, 1] instead of the binary

values xn ∈ {0, 1}. Consider now the following theorem,

A basic feasible solution is an extreme point to the linear program Ax = b,

x ≥ 0, cTx is minimum [3, p.17]

This means that x∗ ∈ V (P ), i.e., the solution will always be a vertex (extreme

point) of the polytope P (the solution space is bounded). So, even though the constraint

space is large, optimization will only yield the vertices of the constrained space. This

means that the following two optimization problems will exactly give the same solution

considering our results from the definition of the convex hull in section 5.4.1.

argmin
x∈C

λTx = argmin
x∈conv(C)

λTx (5.44)
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So, if we just are considering the convex hull of the code C, the solution will be the

(optimal) ML solution. But, in general, we are solving the problem.

min. λTx

s.t. x ∈ P

Where, P ⊇ conv(C)[4]. The polytope P is larger than conv(C). This means that

all codewords (integer solutions) are vertices of the polytope P along with some other

solutions which are called fractional solutions. The reason for this is that [4, p.61].

C = P ∩ {0, 1}N (5.45)

The set of vertices having integer points in the polytope P is the code C. The rest

vertices having non-integer solutions are fractional solutions. Equation (5.45) says that

the polytope is ”proper”. It was exactly this property that proved the ML certificate in

section 5.3.2, just written in term of the polytope P .

5.4.3 Description of the Polytope P

In this section the previous definitions will be described in a more intuitive and logical

way. Consider the Figure 5.3, where the polytope P is described as a 2 dimensional

figure.

−λ P

Codewords

Fractional
solutions

(a)(b)
(c)

(d)

(e)

V (P )

conv(C)

x3

x1

x2

x4

Figure 5.3: Description of the relation between the polytope P , conv(C), codewords, fractional

solutions and LLR vector λ. Idea from [4, p.43].
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Figure 5.3 shows the polytope P and all the vertices as circles (•/◦). It is clear that

conv(C) is a subset of P . The optimization problem is described in an intuitive way

as described in [4, p.44]. Turn the polytope such that −λ points in the direction of

gravity. Then drop a ball within the polytope. The vertex where the ball settles down is

the optimal solution. Observe now the outcome of the different received LLR vector λ

given that the codeword x1 was transmitted. The cases (a)-(e) corresponds to increased

amount of noise added to the transmitted codeword.

(a) No noise. Both ML and LP decoder succeed.

(b) Both ML and LP decoder succeed.

(c) LP decoder will give a fractional solution. LP fails, but it will be detected be-

cause it renders a non-integer solution (fractional solution). ML decoder suc-

ceeds.

(d) Both ML and LP decoder fails. But for the LP decoder, the failure is detected

because the solution is non-integer.

(e) Both ML and LP decoder fails. Failure is not detected for LP because it renders

an integer (codeword) solution.

Under a MPAM scheme we can also understand the cases (a)-(e) as in the Figure 5.4,

where the transmitted vector x′
1 is added with ”Gaussian distributed” noise.

y

(b) (b)

(d) (c) (d) (e)(c)(e)

LP decoding yields
a fractional solution

LP decoding

ML detection threshold

ML decoding fails ML decoding failsML decoding succeeds

succeeds

x
′
1

(a)
P (y|x)

Figure 5.4: The different cases (a)-(e) under a MPAM scheme. Giving meaning to the increased

noise from the cases (a) to (e).
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5.5 Alternative Formulation

In this section, an alternative way of defining the constraints of the LP are given. The

motivation for the alternative formulation is to reduce the complexity of LP by remov-

ing the auxiliary variable wm,S . We know that for each check equation, the number

of different auxiliary variables wm,S grows exponentially (2dc−1), so removing these

could simplify the problem significantly. However, we are minimizing λTx and the

objective function is independent of the wm,S , so it can be possible to remove the aux-

iliary variable.

5.5.1 Exemplification of the Alternative Formulation

In this section, an example is given to show how the alternative formulation can be

derived. Consider the constraints for the degree 3 check equation A in equation (5.46),

where the constraint 1TwA = 1 has been added to the matrix.




1

x1

x4

x5




=




1 1 1 1

0 1 1 0

0 1 0 1

0 0 1 1







wA,{∅}

wA,{1,4}

wA,{1,5}

wA,{4,5}




, wA,S ≥ 0 (5.46)

Formulating this in an augmented matrix form and bringing it into row reduced echelon

form.




1 1 1 1 1

0 1 1 0 x1

0 1 0 1 x4

0 0 1 1 x5




∼



1 0 0 0 2−x1−x4−x5

2

0 1 0 0 x1+x4−x5

2

0 0 1 0 x1−x4+x5

2

0 0 0 1 −x1+x4+x5

2




(5.47)

If we add add the constraint that wA,S ≥ 0 and multiply with −1, we obtain the fol-

lowing 4 equations in (5.48).

−2 + x1 + x4 + x5 ≤0 (hs1)

−x1 − x4 + x5 ≤0 (hs2)

−x1 + x4 − x5 ≤0 (hs3)

+x1 − x4 − x5 ≥0 (hs4) (5.48)

First note that the solution space of xn in (5.48) should be equivalent with the

solution space of xn in (5.46) (all the constraints are utilized). We can now describe

76



5.5. ALTERNATIVE FORMULATION

the local check equation constraints in another way without the indicator variablewA,S .

Further, the new constraints have a nice interpretation. The equation (5.48) describes

4 half-spaces (hs1)− (hs4). Contemplate now the tetrahedron in the Figure 5.5.

x4

x5

x1

(hs2)

(hs1)

(hs4)

(hs3)

Figure 5.5: The 4 half-spaces defining the tetrahedron.

For equality in the equations (5.48), the faces of the tetrahedron is described by the

4 planes, and the solid tetrahedron is described by the 4 half-spaces (hs1)− (hs4).

5.5.2 The Alternative Formulation in General

From the previous section’s results, it can be construed that the convex hull can be

described as a set of inequalities without using the auxiliary variable wm,S . Firstly,

the example of the previous section with half space (hs2) is described after which the

alternative formulation is derived in general. In the Figure 5.6, the example with (hs2)

is shown.

x4

x5

x1

n

po

[101]

[011]

[001]

[000]

(hs2)
[

1

2

1

2

1

2

]

[x1 x4 x5]

Figure 5.6: Half-space 2 (hs2) with the normal n.
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The normal to the half-space is n = po − 1
2
1, i.e. the vector from the center of the

unit cube to an odd weighted vertex po. Then, the plane can be defined such that all

xSm satisfy equation (5.49).

nT (xSm − x0,Sm) = 0 (5.49)

where n is the normal, and x0,Sm is a point on the plane. Inserting the example

from (hs2) yields.

2 · nT (xSm − x0,Sm) = 2 · (po −
1

2
1)T (xSm − x0,Sm) = 0 (5.50)

= 2 ·







0

0

1


−




1/2

1/2

1/2







T 




x1

x4

x5


−




0

0

0





 = 0 (5.51)

=



−1

−1

+1




T 

x1

x4

x5


 = 0 (5.52)

= −x1 − x4 + x5 = 0 (5.53)

Not surprisingly, we have obtained the surface corresponding to half space (hs2) in

equation (5.48). From this example, we now generalize this procedure for the half-

spaces.

nT (xSm − x0,Sm) ≤ 0 (5.54)

2 · nTxSm ≤ 2 · nTx0,Sm (5.55)

As n always point towards an odd weighted vertex, it will have the following form.

2nT =




N (m)︷ ︸︸ ︷
+1 + 1 · · · +1︸ ︷︷ ︸

V, |V |is odd

−1− 1 · · · −1︸ ︷︷ ︸
N (m)\V


 (5.56)

2nT can be permuted and just shown in this regular form for convenience. V is defined

as a subset of indices fromN (m) where nT has positive signs. The negative signs (the

rest) are then N (m) excluding V . We can further see that we can select x0,Sm as one

of the even weighted vertices defining the plane. The number of positions where the

symbols in x0,Sm and po differs is 1 i.e., Hamming weight or distance wH(x0,Sm ⊕
po) = 1. This fact can be construed by observing the Figure 5.6. Any walk from an

even weight vertex along an edge in the hyper cube will give an odd weight vertex, and
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vice versa. The total weight change from an odd to an even vertex is ±1, such that the

sum of x0,Sm is 1Tx0,Sm = |V | ± 1.

x0,Sm =




N (m)︷ ︸︸ ︷
11 · · · 1︸ ︷︷ ︸
# even =|V |±1

0 0 · · · 0


 (5.57)

x0,Sm can be permuted and just shown in this regular form for convenience. It can

be comprehended that 2nTx0,Sm = |V | − 1 from the contention. Continuing from

equation (5.55).

2nTxSm ≤ 2nTx0,Sm (5.58)
∑

n∈V

xn −
∑

n∈N (m)\V

≤ |V | − 1 (5.59)

Since we want a set of inequalities for all the surfaces, we need to find the respective

half-spaces for each odd weighted vertex in the unit cube, which corresponds to the all

odd combinations of the subset V taken fromN (m). All the solutions should be within

the unit cube, so the general check constraint in the alternative formulation is given by

[5] [13].

∑

n∈V

xn −
∑

n∈N (m)\V

xn ≤ |V | − 1 ∀ V ⊆ N (m), |V | odd 0 ≤ xn ≤ 1

(5.60)

Equation (5.60) is bit hard to interpret, so if these inequalities are written in matrix

form then they have a nice structure. The constraints from the degree 4 check equation

A of the (7, 4, 3) Hamming code is considered such that N (A) = {1, 2, 4, 5} (cf. the

Matlab code lclpa.m or lclpa_example.m in the CD-ROM for the implementation of

the alternative formulation).




1 −1 −1 −1

−1 1 −1 −1

−1 −1 1 −1

−1 −1 −1 1

1 1 1 −1

1 1 −1 1

1 −1 1 1

−1 1 1 1







x1

x2

x4

x5



≤




0

0

0

0

2

2

2

2




V = {1}
V = {2}
V = {4}
V = {5}
V = {1, 2, 4}
V = {1, 2, 5}
V = {1, 4, 5}
V = {2, 4, 5}

(5.61)

Note that the matrix has a nice diagonal symmetry with the signs when the rows are in

the order shown.
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5.5.3 Special Properties for a Degree 3 Check Equation

Now turn back to the degree 3 check equation, which turns out to have special proper-

ties. Consider now a different way of deriving the alternative formulation.




1

x1

x4

x5




=




1 1 1 1

0 1 1 0

0 1 0 1

0 0 1 1







wA,{∅}

wA,{1,4}

wA,{1,5}

wA,{4,5}




, wA,S ≥ 0 (5.62)

[
1

xSA

]
= AA,ew (5.63)

where, AA,e is the extended (e) version of the AA with 1
Tw added in the first row.

AA,e is non-singular and square, so calculating the inverse yields.

2w = 2A−1
A,e

[
1

xSA

]
=




2 −1 −1 −1

0 1 1 −1

0 1 −1 1

0 −1 1 1




[
1

xSA

]
(5.64)

The factor 2 is used to bring the matrix entries to integer values. Again using the

side constraint wm,S ≥ 0 and multiply by −1,




−2 1 1 1

0 −1 −1 1

0 −1 1 −1

0 1 −1 −1




[
1

xSA

]
≤




0

0

0

0




(hs1)

(hs2)

(hs3)

(hs4)

(5.65)

which will give us the four half spaces. This manoeuvre can only be accomplished

for a degree 3 check equation, because only this matrix is square. For higher degrees

more unknown occurs since AA,e has dimension (dc + 1) × (2dc−1). Further, a check

equation of degree 3 has a special property. To see this, add now the equations corre-

sponding to the two half-spaces (hs2) and (hs3).

(−x1 − x4 + x5)︸ ︷︷ ︸
(hs2)

+ (−x1 + x4 − x5)︸ ︷︷ ︸
(hs3)

≤ 0 + 0 ⇔ x1 ≥ 0 (5.66)

Further by adding (hs1) and (hs4).

(−2 + x1 + x4 + x5)︸ ︷︷ ︸
(hs1)

+ (x1 − x4 − x5)︸ ︷︷ ︸
(hs4)

≤ 0 + 0 ⇔ x1 ≤ 1 (5.67)
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This means that the bounding 0 ≤ x1 ≤ 1 of the variables is implied in the equa-

tions. It is also implied for x4 and x5. If one observes the tetrahedron in the Figure

5.5 and imagine the four planes, it is possible to see that no solutions are outside the

unit cube [0, 1]3. That is, all the variables in a degree 3 check equation are bounded

automatically because it is implied in the definition. The side constraints 0 ≤ xn ≤ 1

are not needed if xn participates in a check equation of degree 3.

The consequence of this observation is that the complexity of LP decoding may

be reduced. If all variable xn participates in a check equation of degree 3, then no

bounding is needed. The complexity in terms of the number of constraints can be

reduced by 2N since there are 2 inequalities for each variable and N variables.

5.6 Pseudocodewords and Decoding in the BEC

Pseudocodeword is an important concept in LP decoding and vital when working with

the relation to message passing algorithms. We will especially use the definition of

pseudocodewords to show that decoding using MPA and LP is equivalent in the BEC.

A strong indication of how well we can expect the performance of LP to be.

5.6.1 Pseudocodewords

Consider the following example, which will show the definition of pseudocodewords.

For check equation A in the degree 3 example.


h1

h4

h5


 =




1 1 0

1 0 1

0 1 1






uA,{1,4}

uA,{1,5}

uA,{4,5}


 uA,S, hn ∈ Z+ (non-negative integers) (5.68)

The notation of pseudocodewords has much similarity to the local codeword con-

straint. The difference is that the all-zero local codeword setting is not considered (the

first column of the matrix is not all-zero) and the only constraint on the variables are

that they are non-negative integers. Nothing about that the auxiliary variables should

sum to one. By considering all check equations, the vector h = [h1 h2 . . . hN ]T is

defined as a pseudocodeword.

Look now upon the relation between pseudocodewords and our previous definition

of constraint for a local codeword. We know that our polyhedron is rational, as all

entries are rational, which mean that all vertices and thereby solutions are rational

[16].
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This means that we can find an integer β such that

hn = βxn = β
kn

ln
(5.69)

hn is a non-negative integer. This comes immediately from the definition of rational

numbers since both kn and ln are integers. Further, we can find the same β such that all

our constraints are fulfilled. Let E−
m = Em\{∅}, that is we are excluding the all-zero

settings as in equation (5.68), and consider the side constraints.

0 ≤ xn ≤ 1 ; 0 ≤ wm,S ≤ 1 ; 1
Twm = 1 ; ∀S ∈ Em (5.70)

0 ≤ 1

β
hn ≤ 1 ; 0 ≤ 1

β
um,S ≤ 1 ; ∀S ∈ E−

m (5.71)

If we consider the last equation, 1Twm , and write it out.

wm,{∅} +
∑

S∈E−

m

wm,S = wm,{∅} +
1

β

∑

S∈E−

m

um,S = 1 (5.72)

If we now choose β = maxm

∑
S∈E−

m
um,S , then 0 ≤ 1

β

∑
S∈E−

m
um,S ≤ 1. This

means that wm,{∅} can be selected within the bound 0 ≤ wm,{∅} ≤ 1 such that the sum

indeed will be 1. The bounding constraints in equation (5.71) will also be fulfilled by

this setting of β.

This means that a pseudocodeword is a scaled and normalized point in the polytope

P . This is useful for proving the performance of decoding in the BEC.

5.6.2 Decoding in the BEC

The objective in this section is to show that the LP decoder fails, if and only if the

received message is a stopping set. First we introduce three important theorems which

will help us to show the performance in the BEC.

”The probability that the LP decoder fails is independent of the codeword that was

transmitted” [5].

Because of this theorem, we can always assume that the all-zero codeword is trans-

mitted when analyzing the behavior of the LP decoder. It is straightforward to show

that the zero codeword has zero cost, which make analysis easier.

λTx = λT 0 = 0 (5.73)
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If we now consider multiple optima where two or more codewords x1 and x2 have

same the cost.

λTx1 = λTx2 (5.74)

If there are multiple optima, it is chosen that this corresponds to failure. We can

then give the following theorem.

Given that the all-zero codeword was transmitted, the LP decoder will fail if and only

if there is some point in P other than x = 0N with λTx ≤ 0 [5].

This can also be rewritten in terms of a pseudocodeword.

Given that the all-zero codeword was transmitted, the LP decoder will fail if and only

if there is some pseudocodeword h 6= 0N , with λTh ≤ 0 [4, p.64].

Another important consequence of the all-zero codeword assumption when consid-

ering the BEC is shown in the Figure 5.7. All λn ≥ 0

0

1 1

0

∆

1 − δ

1 − δ

δ

+1

0

−1

All-zero codeword assumption

xn yn λn

δ

x = 0N ⇔ λn ≥ 0

Figure 5.7: By the all zero codeword assumption in the BEC, λn ≥ 0

We should now have the background to prove the following theorem.

In the BEC, there is a non-zero pseudocodeword with zero cost if and only if there

is a stopping set [4, p.126-127].

The proofs follows the concept from [4, p.126-127], which are written out and changed

a little for understanding. Start by considering the one way proof, if there is a zero cost

pseudocodeword, there is a stopping set, i.e.
∑

n λnhn = 0. If we define the set

S = {n, hn > 0}, we can split the sum into two parts.

∑

n∈S

λnhn +
∑

n/∈S

λnhn = 0 (5.75)
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We know that hn = 0 ∀ n /∈ S , because by the definition of pseudocodewords

hn ≥ 0 and hn > 0 ∀ n ∈ S . To bring it all to zero, λn = 0 ∀ n ∈ S . Then

yn = ∆ ∀ n ∈ S follows directly from the Figure 5.7. This means that E ⊇ S , where

E = {n : yn = ∆}. Decoding fails if E ⊇ S . Let us now show that the definition of S
is indeed a stopping set by our previous definition in section 4.5.2.

Suppose S is not a stopping set. This mean that there exist at least one check node

m′ which has only one edge connected to the S , variable node n′. By the definition of

S , hn′ > 0. Consider now equation (5.68), if one hn > 0 then there has to be another

hl > 0 because of the system of the matrix, where all columns have at least weight 2.

By definition, then l ∈ S , that is both l and n′ are in the set, and connected to check

equation m′. That is, m′ is at least connected twice to S , which contradict our initial

statement that m′ has only one connection. So, S is a stopping set.

Considering now the proof in the opposite direction, if there is a stopping set, there

is a zero-cost pseudocodeword. We have that E ⊇ S . Set now hn > 0 ∀ n ∈ S and

hn = 0 ∀ n /∈ S . Then ∑

n∈S

λnhn +
∑

n/∈S

λnhn = 0 (5.76)

because λn = 0 ∀ n ∈ S and the setting hn = 0 ∀ n /∈ S . So if there is

a stopping set, there is zero cost. Let us now show that these settings form a legal

pseudocodeword, or in other word, we can find a set of um,S that will allow the settings

of hn when using our previous definition of a pseudocodeword. We know that there

is a stopping set, so for each check node there should be at least two or none variable

nodes with hn > 0. Consider now the example in (5.68) for one check equation. By

proper selection of uA,S we can make hn > 0 for at least two or none variable nodes.

This is also possible for check constraints of other degrees. Since each um,S is unique

from check equation to check equation, it will always be possible to find a set of um,S

that will satisfy our initial settings of hn. So, h is a pseudocodeword.

5.7 Multiple Optima in the BSC

This section is on the existence of multiple optima in the BSC. It will be derived how

multiple optima occurs while decoding the (7, 4, 3) Hamming code.

A leaf node is a variable node having degree one such that it is only connected with

one check node. By example it was identified with the LP decoder, that if an error

occurs in a leaf node of the (7, 4, 3) Hamming code, the LP decoder may fail because

of the occurrence of multiple optima. For an error anywhere else, decoding always

succeeds. In this section we will investigate this observation.
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We will start by convincing us that for ML decoding, a leaf node error is possible

to decode. The (7, 4, 3) Hamming code has dmin = 3, which means that we should be

able to correct at minimum t = b dmin−1
2
c = 1 error anywhere in the codeword [12]. So

the loss of decoding performance is due to the degradation of the LP decoder compared

to the ML decoder.

For the example, the alternative formulation is used for decoding and MOSEK 4 is

used as a solver to yield two solutions, a basic point solution x∗
b and an interior point

solution x∗
i . If an error is placed in the leaf node for this code under the BSC, then we

have,

λTx∗
b = λTx∗

i where x∗
b 6= x∗

i (5.77)

It states that both solutions have the same cost and there exist thereby multiple

optima for this optimization problem. Both of them should be considered as correct

solutions. However, there are more than two solutions to an error in the leaf node for

the Hamming code. In fact there are infinitely many solutions as we will show now.

Because there is equal cost in equation (5.77), then

λT (x∗
b − x∗

i ) = λTr = 0 (5.78)

The vector of direction r is orthogonal to the cost vector λ. The problem of multiple

optima could look like the Figure 5.8.

λ

xb

xi

r

Intersection of a set of inequalities

Figure 5.8: Overview of multiple optima and MOSEK solutions.

The reason why x∗
b is a vertex, is because by example x∗

b has always given an

integer point solution. We now want to find the set of inequalities such that we can

find the intersection that seems to be orthogonal to the cost vector λ. Say that we

are solving the following problem, where G and h defines the inequalities from the

alternative formulation.
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min. λTx (5.79)

s.t. Gx ≤ h
0 ≤ xn ≤ 1 ∀ n = 1, 2, . . . N

Let now each row equation of Gx ≤ h be gT
kx ≤ hk. The set of inequalities

defining the intersection, is all the active constraints for the solution x = x∗
i . An

active constraint is where equality holds such that the solution is on the bound of the

polytope, i.e., the equations k for which gT
kx

∗
i = hk instead of just gT

kx
∗
i ≤ hk. All

the active constraints are then the constraints for which one of the following equations

holds.

gT
kx

∗
i = hk or xn = 0 or xn = 1 (5.80)

Let’s now consider a specific example where y = x ⊕ e (the BSC error model)

x = 0 and e = [0 0 0 0 0 0 1]T . Then λ = [1 1 1 1 1 1 −1]T and the solution given by

LP decoding is x∗
i = [0 0 0 0.28 0.28 0.28 0.85]T . All the active constraints for this

example are k = 3, 4, 11, 12, 20 and n = 1, 2, 3. The result is as in equation (5.81),

where the active constraints are stacked in an augmented matrix..

x1 x2 x3 x4 x5 x6 x7 h

gT
3 x = h3

gT
4 x = h4

gT
11x = h11

gT
12x = h12

gT
20x = h20

x1 = 0

x2 = 0

x3 = 0





=




−1 −1 0 1 −1 0 0 0

−1 −1 0 −1 1 0 0 0

0 −1 −1 1 0 −1 0 0

0 −1 −1 −1 0 1 0 0

0 0 0 −1 −1 −1 1 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0




(5.81)

Equation (5.81) is then brought to row reduced echelon form.

∼



1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 −1
3

0

0 0 0 0 1 0 −1
3

0

0 0 0 0 0 1 −1
3

0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0




(5.82)
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There is one free variable, x7. Selecting the free variable x7 = t, the solution space is

then a line.

x1 = 0

x2 = 0

x3 = 0

x4 − 1
3
x7 = 0

x5 − 1
3
x7 = 0

x5 − 1
3
x7 = 0

x7 = x7





⇔




x1

x2

x3

x4

x5

x6

x7




= t




0

0

0
1
3
1
3
1
3

1




= ts t ∈ R (5.83)

The direction vector of this line is s. This line is orthogonal to the cost vector

since λTs = 0 + 0 + 0 + 1
3

+ 1
3

+ 1
3
− 1 = 0. So, all the points on this line have

same cost, and thereby all are solutions to the LP decoding problem for this example.

The same calculations can be done for the two other leaf node errors. The reason why

the solution space is a line is because the intersection matrix is rank deficient by one

(has rank one less than full rank). For 1 error anywhere else other than the leaf nodes,

the intersection matrix has full rank, such that the solution is a single point, an unique

solution.

It has not been possible to generalize the problem of multiple optima in the BSC

for other codes. That is, identify under which conditions a linear code with a certain

error pattern will have multiple optima when using LP decoding in the BSC.

5.8 Improving Performance using Redundant Constraints

In section 5.3.2, it was shown that LP decoding can sometimes fail by generating

fractional solutions. The goal of this section is to improve the performance of the

LP decoder. An algorithm using redundant parity checks will be explained that may

change a fractional solution of LP decoder to a ML codeword after some iterations.

5.8.1 Background Information

Consider a transmitted vector x over a memoryless channel and its cost vector λ. In

section 5.5, the check constraint of the alternative formulation of the LP decoding

problem was defined as,
∑

n∈V

xn −
∑

n∈N (m)\V

xn ≤ |V | − 1 ∀ V ⊆ N (m), |V | odd 0 ≤ xn ≤ 1

(5.84)

With N (m) the neighbourhood of a check equation m and V is a subset of N (m).
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The idea in this section is, the LP decoder will begin with all constraints given by

the parity checks and then afterwards, progressively, add more constraints by combin-

ing the parity checks to redundant parity checks until the ML codeword is found.

This method improves the error-rate performance of the LP decoder [13]. It might

also reduces the complexity of the problem compared to the method which consists

in adding from the beginning, all redundant parity checks to the constraints of the LP

decoder.

Let us introduce an important term of this method, the redundant parity check.

Consider the rows hA and hB of a parity check matrix. In equations (5.85) and (5.86),

we have:

hA ⊗ x = 0 ∧ hB ⊗ x = 0 (5.85)

m
hA ⊗ x = 0 ∧ hB ⊗ x = 0 ∧ (hA ⊕ hB)⊗ x = 0 (5.86)

The new equation (hA ⊕ hB) ⊗ x = 0 is redundant. So a redundant parity check

is a check equation obtained by modulo 2 addition of some rows of the parity check

matrix.

Moreover, the notion of cut is introduced. A cut can be considered as a half-plane

which removes a fractional solution from the search domain of the polytope P . If

the LP decoder gives a fractional solution, a cut can be used in order to remove this

solution from the polytope. Thus, a new polytope is created and LP decoding can be

executed again. We can proceed in this way until we find the ML codeword [13] or an

upper bound of the number of iterations has reached.

If the solution x∗
j from iteration j fulfills the equation (5.87):

∑

n∈V

x∗j,n −
∑

n∈N (m)\V

x∗j,n > |V | − 1 (5.87)

then the equation (5.88)

∑

n∈V

xn −
∑

n∈N (m)\V

xn ≤ |V | − 1 (5.88)

is a cut at x∗
j . When a redundant parity check introduces a cut, it is called a re-

dundant parity check cut. The following subsection will describe the algorithm which

uses these redundant parity check cuts.
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5.8.2 Algorithm of Redundant Parity Check Cuts

The algorithm has 4 steps:

1. If a fractional solution x̂ is output by the LP decoder for a given received cost

vector λ, then prune all the variable nodes in the factor graph corresponding to

an integer code symbol. The resulting new factor graph can be called F .

2. Try to find a cycle in the factor graph F .

3. Add by modulo 2 the rows of the parity check matrix of the corresponding check

nodes in the cycle.

4. If this new check equation introduces a cut, run the LP decoder and go to step 1.

Else, go to step 2.

Step 1− 4 is guided by this theorem:

A redundant parity check constraint can introduce a cut only if the factor graph

F contains cycle [13]. That is why in step 1, all the variables nodes having integer

solutions are pruned from the factor graph in order to have a graph F with only variable

and check nodes corresponding to the fractional solutions. Afterwards, in step 2, a

cycle is identified. We know that if we find a cycle, we may be able to introduce a

redundant parity check cut. Because we only may find a cut, we check for it in step 4

otherwise we search for another cycle.

5.8.3 Example

In this subsection the previous algorithm will be explained through an example (cf. the

Matlab code rpca_example.m in the CD-ROM for this example).

Consider the (7, 4, 3) Hamming code with the cost vector λ = [− 7
4

1 1 1 1 1 1]T .

This looks like that the codeword x = [0 0 0 0 0 0 0]T was send across a BI-AWGNC

with some error on the first symbol. The LP decoder outputs at first the fractional

solution x∗
0 = [1 1

3
0 1

3
1
3

0 0]T . According to the first step of our algorithm, the

variables nodes having integer solutions x1, x3, x6 and x7 have to be removed from

the factor graph of this Hamming code. The Figure 5.9 corresponds to the new factor

graph F1:

From the second step, we decide to add check equation A and C because these

participates in the selected cycle. The new parity check constraint is:

chk(A)⊕ chk(C) = x1 ⊕ x2 ⊕ x6 ⊕ x7 (5.89)
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B

x6

C

x7

x2

A

x4

x1
x3

x5

B

C

x2

A

x4

x5

Pruning

Figure 5.9: The new factor graph F1

We verify next that this redundant check constraint generates a cut. This means

that we need to verify that (5.84) is violated. In this case, we need to see, with

[x1 x2 x3 x4 x5 x6 x7]
T = [1 1

3
0 1

3
1
3

0 0]T , if any of the following row equa-

tions are violated:



1 −1 0 0 0 −1 −1

−1 1 0 0 0 −1 −1

−1 −1 0 0 0 1 −1

−1 −1 0 0 0 −1 1

1 1 0 0 0 1 −1

1 1 0 0 0 −1 1

1 −1 0 0 0 1 1

−1 1 0 0 0 1 1







x1

x2

x3

x4

x5

x6

x7




≤




0

0

0

0

2

2

2

2




(5.90)

The first row does not satisfy equation (5.84) because: 1(1) + 1
3
(−1) = 2

3
� 0. So,

the redundant check constraint introduces a cut (cut 1 in the Figure 5.10).

We now add this redundant parity check cut to the constraints to the LP decoding

problem. LP decoder is executed again, and again it gives a fractional solution. But

this time a different one: x∗
1 = [1 2

3
0 1

3
0 1

3
0]T . Indeed we have introduced a cut,

because the optimal solution is now another one. The solution is still fractional and

therefore we again search for a new cut to remove the fractional solution x∗
1.

By following the same steps 4 times, as it is shown in the Figure 5.10 and Ta-

ble 5.1, the LP decoder finally outputs the ML codeword after the fourth cut. x∗
4 =

[0 0 0 0 0 0 0]T . The LP decoder succeeds with the improved algorithm of adding

redundant parity check cuts to the original constraints.
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x
∗
0

cut 1 cut 3

conv(C)

cut 2

P

x
∗
2

x1 ∈ C

x2 ∈ C

cut 4

x
∗
4

x
∗
3

Fractional solution

x
∗
1

Figure 5.10: Figure illustrates intuitively the algorithm of redundant parity check cuts for the

example used.

Iteration Checks in cycle Redundant parity LP solution x∗
i

(i) check cut

0 —– —– [1 1
3

0 1
3

1
3

0 0]T

1 chk(A)⊕ chk(C) x1 − x2 − x6 − x7 ≤ 0 [1 2
3

0 1
3

0 1
3

0]T

2 chk(B)⊕ chk(C) x2 − x3 − x5 − x7 ≤ 0 [1 1
2

0 1
2

0 0 1
2
]T

3 chk(A)⊕ chk(B) x1 − x3 − x5 − x6 ≤ 0 [1 1
2

0 0 1
2

1
2

0]T

4 chk(A)⊕ chk(B)⊕ chk(C) x1 − x3 − x4 − x7 ≤ 0 [0 0 0 0 0 0 0]T

Table 5.1: Table of different iterations for the algorithm of redundant parity check cuts.

In the article [13], it can be seen that the algorithm of using redundant parity checks

outperformed the normal LP decoding. This algorithm really improves the normal LP

decoder and gives a satisfaction in the linear programming domain. Nevertheless, the

performance of the improved algorithm with redundant parity check cuts goes only

closer to the performance of the ML decoder. It never reaches it [4, p. 75-76].
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Comparison 6

In this chapter, the similarities and differences between the message passing algorithm

and the LP decoding are accentuated but not in detail. However, all the points that are

discussed here have already been explained in detail in the previous chapters. So, the

intention is to comprehend those points such that they can show the similarities and

differences between the message passing algorithm and the LP decoding.

6.1 Optimal for Cycle Free Graphs

It was proved in section 4.3.1 and 4.4 that the sum-product and max-product/min-

sum algorithm respectively are maximum likelihood for the cycle free factor graphs

of the codes. However, sum-product algorithm is ML symbol-wise and max-product

algorithm is ML block-wise. Then, it can also be reiterated that the sum-product al-

gorithm may estimate a codeword which doesn’t belong to the respective code C i.e.,

x̂ /∈ C whereas max-product will estimate a codeword from the respective code C i.e.,

x̂ ∈ C. However, the performance of the max-product/min-sum algorithm is bit worse

(higher word-error rate) than the sum-product algorithm for the same signal to noise

ratio (SNR).

LP decoding is also optimal for cycle free factor graph of a code. However, in this

report, it was not proved to be optimal for a cycle free factor graph but it was taken

for granted from the Jon Feldman’s thesis [4][5]. LP decoder decodes block-wise like

max-product/min-sum algorithm. LP decoder has got the ML certificate. Thus, if

LP decoder outputs an integer solution, then it will always be a codeword from the

respective code i.e., x̂ ∈ C.
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6.2 Estimation/Scaling of Noise

It is quite interesting to know that the noise can’t be scaled by any constant β in the

sum-product algorithm whereas the noise can be scaled in the min-sum algorithm and

LP decoder. The knowledge of the noise is necessary in the sum-product algorithm’s

check node operation because the check node operation uses box-plus summation of L-

values. The scaling of noise means the scaling of log likelihood ratios (LLR/L-values).

However, it is possible to scale the LLR in min-sum algorithm and LP decoder because

the node operations in the min-sum algorithm at both variable and check nodes allow

the scaling of LLR and the objective function of the LP decoder allows the scaling of

LLR (λ).

6.3 Decoding in the BEC

It was proved in the section 4.5.2 that in the BEC, message passing algorithm fails if

and only if a stopping set S exists among the erasure set E i.e., E ⊇ S . On the other

hand, the LP decoding fails under BEC when there are multiple optima i.e., non-zero

pseudocodeword with zero cost. So, in the BEC for LP decoder, there is a non-zero

pseudocodeword with zero cost if and only if there is a stopping set which was also

proved in the section 5.6. Thus the performance of both message passing algorithm

and LP decoder are equivalent under the BEC.

6.4 Word Error Rate (WER) Comparison Under BSC

We have not done any simulations to measure WER of all three decoders. So, from

the simulations done in [5], the performance of these three decoders under BSC can be

construed and compared. The LP decoder performs better than the min-sum decoder

but not as good as sum-product decoder. However, if the 3 decoders are compared

to ML decoder, then they seem to have relatively similar performance for random

codes. Moreover, in this article they have shown that the LP decoder surpasses the

sum-product at very low noise levels.

6.5 Improvement by Adding Redundant Parity Checks

It was also proved in the section 5.8 that if the LP decoder renders a fractional solution

then the fractional solution can be changed to an integer solution by adding redundant

parity check constraints in the alternative formulation of LP decoding. The addition of
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redundant parity check constraints in LP will never degrade the performance whereas

in message passing algorithm, it may degrade the performance [5].

6.6 Complexity

It’s been known from the article [15] that the MPA decoder has overall linear complex-

ity. However, the complexity of LP decoder is found to be approximately polynomial

in time by performing a small simulation in MATLAB (cf. the MATLAB code

test_lp_complexity.m in the CD-ROM). A LDPC code is randomly designed [14] with

almost regular check node degree dc = 6 and almost regular variable node degree

dv = 3 and R = 1/2. The time is considered from the call of the MOSEK 4 solver to

the solver returns a solution using the tic-toc command in MATLAB. Averaged over

100 trials with a SNR = Es/N0|dB = 2, 6, 10 dB. The specifications of the machine

used for the calculation of the time are: 2 Ghz Pentium 4 CPU with 710 MB ram, run-

ning on a Linux kernel 2.6.3-7mdk, distribution Mandrake 10.0. The results, which are

given in the Table 6.1, show that the computation time seems polynomial with the code

length N and/or number of check equations M . The computational time increases as

SNR decreases.

N M li/ri SNR = 2 SNR = 6 SNR = 10

250 125
l2 = 5/250, l3 = 245/250

r5 = 5/125, r6 = 120/125
0.35s 0.33s 0.30s

500 250
l2 = 12/500, l3 = 488/500

r5 = 12/250, r6 = 238/250
0.76s 0.70s 0.67s

1000 500
l2 = 6/1000, l3 = 994/1000

r5 = 6/500, r6 = 494/500
2.54s 2.27s 2.06s

2000 1000
l2 = 12/2000, l3 = 1988/2000

r5 = 12/1000, r6 = 988/1000
11.81s 10.71s 6.69s

4000 2000
l2 = 6/4000, l3 = 3994/4000

r5 = 6/2000, r6 = 1994/2000
78.16s 72.24s 67.49s

Table 6.1: The computational time measured in seconds [s] for different SNR and design cri-

teria for a LDPC code. li is the proportion of variable nodes of degree i. ri is the proportion

of check nodes of degree i (cf. appendix A).
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These results are found by solving the linear programming formulation which has

the form,

min. λTx (6.1)

s.t. Gx ≤ h
0 ≤ xn ≤ 1 ∀ n = 1, 2, . . . N

where the matrix G has dimensionM ·2dc−1×N for a regular code. The dimension

grows both in M and N . Further, the dimension is independent of dv. The variable

node degree only determines the block dependencies in the matrix G. For example, if

dv = 3, then each variable node is participating in 3 blocks of constraints. Each block

could look like equation 5.61.
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Conclusion 7

The goal of the project was basically to study two iterative methods to decode linear

block and LDPC codes. These two iterative techniques were message passing algo-

rithm and LP decoding. They were compared in the chapter 6.

LDPC codes were introduced in section 3.3. LDPC codes are sparse in nature and

have the potential to approach Shannon limit. The decoding of LDPC codes can be

done by the two algorithms which are studied in this project. A code can be repre-

sented by a factor graph such that the global code constraint can be factored into local

code constraints defined by the parity check matrix of the code.

In the message passing algorithm, sum-product and min-sum algorithm were stud-

ied and expounded. The message passing algorithm operates in the factor graph and

computes the marginal functions associated with the global code constraint. The mes-

sage passing algorithm exchange the extrinsic messages along the edges of the factor

graph. At the nodes, local decoding operations update the extrinsic messages accord-

ing to the message update rules. The messages can be either in terms of probabilities

or L-values. The sum-product algorithm is symbol-wise decoding whereas min-sum

algorithm is block-wise decoding. However, the performance of the sum-product al-

gorithm is better (lower word error rate) than the min-sum algorithm for fixed SNR.

The min-sum algorithm can be considered as an approximation of the sum-product al-

gorithm. If the factor graph is cycle free, then the message passing algorithm will be

optimal (maximum likelihood) otherwise sub-optimal.

The LP decoder is defined by a cost function and the set of linear constraints. The

optimization problem having addition and multiplication in F2 was reformulated such

that all the operations are in R. The LP constraints are formulated for each check equa-

tions of the parity check matrix of a code. The solution of the LP is always the vertex
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of the polytope. A solution of LP can be fractional too because of the relaxation of

the LP. If the solution is integer, then it will be the ML codeword. So, the LP decoder

has got the ML certificate property. The LP decoder is also ML block-wise for a cycle

free factor graph. The LP decoder will succeed if and only if the lowest cost pseu-

docodeword is the transmitted codeword. The alternative formulation of LP without

the indicator variable w was also studied and explained. Some interesting points were

shown that for check node degree three, no variable bounding is needed. LP decoding

of a (7, 4, 3) Hamming code has shown that multiple optima exist under the BSC. An-

other aspect of the LP decoder is that it has the potential to improve the performance

by the addition of the redundant parity check constraints.

The message passing algorithm under the BEC will fail if and only if a stopping

set S exists among the erasure set E i.e., E ⊇ S . The LP decoder will fail in the

BEC, if and only if there exists a stopping set. The performance of message passing

algorithm and LP decoding is then equivalent under the BEC. Moreover, the overall

decoding complexity of the message passing algorithm is linear whereas LP decoding

seems polynomial by experiment.
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Irregular Linear Codes A

An irregular LDPC code is a code with different numbers of ones in each row and

columns. Thus, new variables are defined for these irregular LDPC codes.

• li Proportion of variable nodes (left) of degree i

• ri Proportion of check nodes (right) of degree i

• λj Proportion of edges going from variables nodes of degree j

• ρj Proportion of edges going from check nodes of degree j

The Figure A.1 can help to understand these relations:

x1

x2

x3

x4

x5

x6

A

B

C

D

E

Figure A.1: Irregular LDPC code.



APPENDIX A. IRREGULAR LINEAR CODES

l2 = 5/6 , l3 = 1/6

r2 = 2/5 , r3 = 3/5

λ2 = 10/13 , λ3 = 3/13

ρ2 = 4/13 , ρ3 = 9/13

Two relations can be derived from the set of definitions:

◦ From the variable node point of view:

λi =
i · li∑
j j · lj

(A.1)

◦ For check nodes:

ρi =
i · ri∑
j j · rj

(A.2)

Here is the proof for the first relation (A.1).

Let us define E as the total number of edges and N the number of variables. Ac-

cording to the definitions of λi and li, the number of variable nodes of degree i is equal

to

li ·N =
λi · E
i

(A.3)

In fact, λi ·E gives the total number of edges going from all variable nodes of degree i.

If λi · E is divided by i (degree which corresponds to the number of edges going from

each variable node), it will render the total number of variable nodes of degree i.

So,

λi =
i · li ·N
E

(A.4)

But, E could be defined as equal to:

E =
∑

k

k · lk ·N = N ·
∑

k

k · lk (A.5)

The number of edges going from all variables nodes of degree k is k · lk · N .

When this number is summed over all the degrees, the total number of edges E is then

obtained. By replacing E by its value, we obtain:

λi =
i · li∑
k k · lk

(A.6)

102



Similarly, the proof of the equation (A.2) is given below.

M is defined as the total number of check nodes.

E =
∑

k

k · rk ·M = M ·
∑

k

k · rk (A.7)

According to the definitions of rj and ρj , the number of check nodes of degree j is

rj ·M =
ρj · E
j

(A.8)

So, by replacing E by its value, we obtain:

ρj =
j · rj∑
k k · rk

(A.9)

The definition of an irregular LDPC code by the the degree polynomials can also

be shown. So, the degree polynomials can be defined for the variable nodes and check

nodes as,

λ(z) =
∑

i

λi · zi−1 (A.10)

ρ(z) =
∑

i

ρi · zi−1 (A.11)

The designed rate Rd for irregular LDPC code becomes:

Rd = 1−
∫ 1

0
ρ(z)dz∫ 1

0
λ(z)dz

(A.12)

The equation (A.12) can be proved as given below.

Consider a graph with M (number of check nodes) N (number of variable nodes)

and E (total number of edges). λi ·E is the number of edges connected to the variable

nodes of degree i. So, λi · E
i is the number of variable nodes of degree i. By summing

over all the degrees, we obtain the total number of variable nodes:
∑

i

λi · E
i

= E ·
∑

i

λi

i
= N (A.13)

Similarly, the number of check nodes
∑

j

ρj · E
j

= E ·
∑

j

ρj

j
= M (A.14)

According to equation (3.16),

Rd = 1− M

N
= 1−

∑
j

ρj

j∑
i

λi

i

= 1−
∫ 1

0
ρ(z)dz∫ 1

0
λ(z)dz

(A.15)
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Proof of the Box-plus Operator B

The proof of the box-plus operator is derived here for the single parity check code

having length 3 such that the outgoing extrinsic message l2 of a check node A has box-

plus summation of both incoming extrinsic messages l1 and l3 from the variable node

x1 and x3 respectively, see figure B.1.

L−values

3

l2

l3

l
1

1

2

Figure B.1: A factor graph of a single parity check code of length 3. The outgoing extrinsic

message is l2 and the two incoming messages are l1 and l3.

It should be remembered that the probabilities and L-values have relation which

are given in equations (4.43) and (4.44) as,

p0 =
el/2

(
e−l/2 + el/2

) (B.1)

p1 =
e−l/2

(
e−l/2 + el/2

) (B.2)

where, p0 + p1 = 1.



So, from equation (4.93), the proof of the box-plus can be continued as,

l2 = ln

(
p0

ch,1 · p0
ch,3 + p1

ch,1 · p1
ch,3

p0
ch,1 · p1

ch,3 + p1
ch,1 · p0

ch,3

)

The notations in the subscripts are dropped for the simplicity of the proof such that

p defines pch,1 and q defines pch,3. Thus,

l2 = ln

(
p0 · q0 + p1 · q1

p0 · q1 + p1 · q0

)
(B.3)

= ln




el1/2(
e−l1/2+el1/2

) · el3/2(
e−l3/2+el3/2

) + e−l1/2(
e−l1/2+el1/2

) · e−l3/2(
e−l3/2+el3/2

)

el1/2(
e−l1/2+el1/2

) · e−l3/2(
e−l3/2+el3/2

) + e−l1/2(
e−l1/2+el1/2

) · el3/2(
e−l3/2+el3/2

)


 (B.4)

= ln

(
el1/2 · el3/2 + e−l1/2 · e−l3/2

el1/2 · e−l3/2 + e−l1/2 · el3/2

)
(B.5)

= ln

((
2

2

)
·
(
el1/2 · el3/2 + e−l1/2 · e−l3/2

el1/2 · e−l3/2 + e−l1/2 · el3/2

))
(B.6)

= ln




((
el1/2 + e−l1/2

)
·
(
el3/2 + e−l3/2

))
+
((
el1/2 − e−l1/2

)
·
(
el3/2 − e−l3/2

))

((
el1/2 + e−l1/2

)
·
(
el3/2 + e−l3/2

))
−
((
el1/2 − e−l1/2

)
·
(
el3/2 − e−l3/2

))




(B.7)

= ln




1 +

((
el1/2−e−l1/2

)
·
(

el3/2−e−l3/2
))

((
el1/2+e−l1/2

)
·
(

el3/2+e−l3/2
))

1 −

((
el1/2−e−l1/2

)
·
(

el3/2−e−l3/2
))

((
el1/2+e−l1/2

)
·
(

el3/2+e−l3/2
))




(B.8)

(B.9)

It should be noted that

tanh(Z) =
eZ − eZ

eZ + eZ
(B.10)

So, the formulation of tanh(l/2) can be seen in the above equation (B.8).
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APPENDIX B. PROOF OF THE BOX-PLUS OPERATOR

Thus, this equation simplifies as,

l2 = ln

(
1 + tanh(l1/2) · tanh(l3/2)

)

(
1− tanh(l1/2) · tanh(l3/2)

) (B.11)

As it is known that

tanh-1(Z) =
1

2
· ln
(

(1 + Z)

(1− Z)

)
(B.12)

Hence, the relation of tanh-1 is very conspicuous in the equation (B.11) such that

l2 = 2 tanh-1

(
tanh

(
l1
2

)
· tanh

(
l3
2

))
(B.13)

This relation of l2 with l1 and l3 is also represented as [10],

l2 = l1 � l3 (B.14)

Now, If the equation (B.6) is re-considered, then

l2 = ln

((
2

2

)
·
(
el1/2 · el3/2 + e−l1/2 · e−l3/2

el1/2 · e−l3/2 + e−l1/2 · el3/2

))
(B.15)

= ln

((
2

2

)
·
(
e(l1+l3)/2 + e−(l1+l3)/2

e(l1−l3)/2 + e−(l1−l3)/2

))
(B.16)

As it is known that

cosh(Z) =
eZ + e−Z

2
(B.17)

Then, from equation (B.16), it can be easily seen that

l2 = ln

(
cosh ((l1 + l3) /2)

cosh ((l1 − l3) /2)

)
(B.18)
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