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Abstract 

The generation and acquisition of the ultrasonic guided wave in metallic or composite structures to investigate the structural 

defects are quite straightforward; however, the interpretation and evaluation of the reflected/transmitted signal to extract the 

useful information is a challenging task. It is primarily due to the dispersion, and multi-modal behaviour of the Lamb waves 

which is dependent on the exciting wave frequency and thickness of the material under investigation. These multi-modes and 

dispersion behaviour lead to a complex waveform structure, and therefore, require an advanced signal processing technique to 

decipher the useful information in time and/or frequency domain. For this purpose, Wigner-Ville Distribution, due to its 

desirable mathematical properties, is considered as a powerful tool for generating time-frequency spectrum and estimating 

temporal and spectral features of this type of complex signals. However, because of its quadratic nature, the undesirable cross-

terms and spurious energies are also generated, which limit the readability and the interpretation of the spectrum. To suppress 

this effect, the autoregressive model based upon Burg’s Maximum Entropy method was employed in the paper to modify the 
kernels of the discrete Wigner-Ville Distribution. This technique was applied to ultrasonic Lamb wave signals obtained 

numerically and experimentally under the different configuration to extract useful discriminating spectral and temporal 

information that was required for mode identification, structural damage localization, and its quantification. For damage 

localization, based upon excellent time-frequency energy distribution, the proposed method precisely estimated the distance 

between two closely spaced notches in a metallic plate from different simulated noisy signals with a maximum uncertainty of 

5%. Moreover, the energy concentration of the time-frequency energy distribution in a combination with variation of its 

instantaneous frequency curve was also effective in identifying the overlapping modes of the Lamb wave signal. Lastly, for 

damage quantification, three time-frequency based damage indices namely, energy concentration, time-frequency flux, and 

instantaneous frequency were extracted from the five sets of specimens using the proposed time-frequency scheme and trained 

them for the regression model. The model testing proved that the damage indices have the potential to predict the crack sizes 

precisely and reliably. 

Keywords: Lamb waves, signal processing, time-frequency analysis, Wigner-Ville distribution, autoregressive model, 

maximum entropy method, Non-destructive testing,  

 

1. Introduction: 

Damage identification techniques in metallic or composite 

structures based upon the generation and acquisition of the 

Guided Ultrasonic Waves (GUW) have been widely 

acknowledged as an effective tool for Non-Destructive 

Testing and Evaluation (NDT&E) [1–4]. These waves have 

advantages of long-distance propagation and hence can be 

used to inspect the large area with minimum equipment 

installation [5]. The accuracy and precision of this approach 

are largely dependent on the processing and interpretation of 

the signal. When the guided wave such as Lamb wave is 

excited in a structure, the wave propagates and encounters 
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different interferences in its path, causing wave scattering. 

These scattered waves contain comprehensive information 

about the state-of-health of the structure [6]. However, they 

are extremely complicated to interpret and extract useful 

information as they contain multimode and exhibit dispersions 

[7]. Therefore, in order to extract useful information from such 

non-stationary complex signals, the use of an effective signal 

processing scheme is necessitated. 

Several signal processing techniques have been 

developed to identify the wave features. A method, called 

Dispersion Compensation proposed by Wilcox [8] may be a 

possible solution. This technique is based upon the fact that 

the dispersion compensated signal can be acquired by tracing 

backward the recorded signal to its source. Fundamentally, 

this method fits best for single wave component, however 

recent works have advanced this method for multi-

components [9]. This approach is limited by the requirement 

of theoretical information about dispersion curve of the 

structure and works best if the dispersion characteristics 

matches well with the actual one. Moreover, the compensated 

wave packet is deformed compared with original excitation 

[10]. 

Recent work in time-frequency signal processing have 

shown promising results. Aiming to overcome uncertainty 

principle in linear TFR and cross-terms in bilinear TFR, and 

to extract the maximum features of the signal, some improved 

TF techniques have been proposed. For example, linear TF 

method such as Chriplet transform (CT) and wavelet 

transform (WT), have been developed for the analysis of 

multicomponent lamb wave signals. For example, Zhao [11] 

used Ploy Chriplet transform (PCT) along with time-varying 

Vold-Kalman filter to identify the different overlapped modes 

of the signal. However, the method requires prior knowledge 

of the dispersion curve of the structure.  Similarly, Liu [12] 

used synchrosqueezed WT method to improve TFR resolution 

and identify mode energies in TF plane. It’s a special case of 
post-processing reassignment technique which only reassigns 

the scale variable of WT into frequency variable. By doing so, 

the time resolution of the signal may be preserved. However, 

the reassignment method may still generate blurry TFDs for 

fast-varying overlapping signal components [13].  

In case of bilinear TFD, Wigner-Ville distribution, a 

Cohen’s class, offers best TF resolution while exhibiting least 
amount of spread in TF plane and satisfies a large number of 

desirable mathematical properties like reality, symmetry, 

marginality, time and frequency shift, etc. [14]. These 

desirable properties are attained with some limitations. For 

example, if a signal has multiple components; the negative 

energy levels or spurious energies and cross-terms 

(interferencse terms) which do not have any physical 

interpretation, may appear in the distribution [15,16]. 

Additionally, bilinear TF methods are also sensitive to the 

signal-to-noise ratio (SNR) therefore, multiple components 

along with low SNR value may exacerbate the TF spectral 

resolution which severely affects the accuracy of the Lamb 

wave inspection [17]. In the literature, these cross-terms are 

mostly attenuated by exploiting the smooth operation. 

Designing the smooth kernel in a 2-D Fourier domain or 

filtering the definition by introducing a low-pass window 

function can significantly reduce the influence of the cross-

terms. These are Smoothed-Pseudo Wigner-Ville Distribution 

(SPWVD) [18] or its reassigned version i.e. Reassigned 

Smooth-Pseudo Wigner-Ville Distribution (RSPWVD) [19], 

Choi-William Distribution (CWD) [20,21] and Cone-Shape 

Distribution (CSD) [22]. However, all these methods have 

limitations [23] and cannot be implemented in all types of 

complex signals [7]. For example, smoothing in SPWVD 

causes auto-terms to be smeared and as a result, the 

distribution reduces its concentration [23].  On the other hand, 

the efficiency of the CWD and CSD are highly dependent on 

the nature of the analysed signal; If some components of the 

signal are synchronized in time, both CWD and CSD will 

present strong interference [24].   

The Maximum Entropy (ME) method developed by Burg 

[25] has been widely used for the spectral analysis. Recently, 

Zoukaneri [26] and Wang [27] have exploited ME algorithm 

based upon the Autoregressive (AR) model for the calculation 

of high-resolution Wigner-Ville TF distribution for low-

frequency seismic applications. Zoukaneri [26] used 

conventional Burg’s Maximum Entropy Spectral Analysis 
(MESA) algorithm to compute the coefficients of the AR 

model/ prediction error operator (PEO) for each discrete 

Wigner-Ville kernel sequences. The application of MESA is, 

however, limited to the standard autocorrelation sequences 

and does not work for Wigner-Ville; which is categorized in 

instantaneous autocorrelation sequences [27]. Instead of the 

conventional Burg ME algorithm, Wang [27] used Andreson 

ME algorithm [28] in the Multichannel fashion in which the 

average of the multiple kernel sequences was used to 

determine the coefficients of the AR model/ PEO. In this 

paper, we use a segment-based ME method for the multi-

modal ultrasonic lamb waves signals. For this purpose, first, 

the discrete Wigner-Ville Kernel sequences are calculated by 

exploiting the instantaneous autocorrelation sequence of 

infinite lag, and then a short window is assigned to a part of 

the kernel sequences where there is no cross-terms present. 

Here, these kernel sequences would serve as several separate 

segments of the missing data and, therefore, Wael and 

Broersen [29] Burg algorithm for segments is employed to 

compute the reflection coefficients. The conventional Burg 

algorithm determines the reflection coefficient by minimizing 

the backward and forward prediction error of a single 

sequence or segment. Whereas Wael and Broersen algorithm 
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is highly efficient in estimating the prediction error of all the 

segments taken together and hence a single model can be 

exploited for all the kernel sequences at a time. This model is 

more robust, stable, less biased, and computationally efficient 

that generates minimum phase PEO. These operators are then 

exploited to generate high resolution time-frequency 

distribution. The main contributions of the work are: (1) an 

improved segment based ME algorithm is employed to 

improve the kernels of WVD by using segment based ME 

method, (2) the proposed scheme is then employed for Lamb 

wave modes identification and structural damage localization, 

(3) Three time-frequency based damage indices are calculated 

by the proposed method to quantify the structural damage.  

The remainder of this paper is organized as follows: The first 

section explains the theoretical background of the Time-

Frequency (TF) signal processing techniques and their general 

limitations. While in the second section, the methodology and 

proposed ME algorithm is derived and discussed at length. In 

the third section, Lamb wave signals obtained under different 

configurations are exploited to verify the credibility and 

effectiveness of the proposed method. The conclusions are 

outlined in the last section. 

2. Theoretical Background: 

2.1 Time-Frequency Analyses and Their General 

Limitation: 

A time-domain representation or its Fourier spectrum 

does not provide adequate information about the frequencies 

of the signal generated as a function of time. Separate analysis 

(either in time or frequency domain) compromises the 

information available in the other dimension of the signal. The 

logical resolve is to represent the signal or distribution whose 

domain in both dimensional spaces (𝑡, 𝑓). Such type of 

distribution is called the Time-Frequency Distribution (TFD) 

[6]. 

The basic objective of the TFD is to represent the energy 

density of the signal in both time and frequency. However 

linear TFD suffers from the Heisenberg Uncertainty Principal 

making it almost impossible to simultaneously generate a 

spectrogram that has a perfect resolution in both time and 

frequency [7].  The Linear TFD e.g. Short-Time Fourier 

Transform (STFT), Chriplet Transform (CT) or Wavelet 

Transform (WT) are based on the Fourier Transform using 

linear superposition principle that weighs the density of the 

signal by decomposing the signal into the time and frequency 

domain. This method achieves the signal localization in the 

time domain by dividing the signal into a series of small 

overlapping segments called window and then the Fourier 

Transformed (FT) is applied to each segment. Each FT 

provides a frequency domain information associated with the 

time value at the window centre. STFT uses fixed window 

function while CT and WT performs this operation by a 

flexible and time-varying window. However, the obtained 

resolution of the spectrograms by these methods entirely 

depends upon the type of the window and its size. A wide 

window function provides good frequency resolution but 

worsens the time resolution. Similarly, the vice-versa in case 

of a narrow window and hence generates smearing of temporal 

and/or spectral information [30]. On the other hand, the 

bilinear or quadratic TFD, where the signal enters twice in its 

calculation e.g. Wigner-Ville Distribution (WVD), is not 

constrained by this uncertainty principle [31] as it does not 

require any window functions and therefore WVD has the 

characteristic of the perfect resolution, time-frequency edges, 

and energy concentration. Moreover, unlike the linear TF 

distribution which can only express the approximate energy 

distribution in TF domain, WVD can well represent the true 

TF energy distribution of the signal [32]. However, being 

quadratic in nature, the accuracy of the WVD seriously suffers 

from the inherent cross/interference terms when a signal 

contains multiple components and high noises [33].   

2.2 Wigner-Ville Distribution and Cross Terms: 

The Winger distribution, at any given instant of time, is 

the FT of the instantaneous autocorrelation sequence (kernel) 

of the infinite lag [14]. The Wigner distribution in terms of the 

analytical signal z(t) of the raw signal s(t) is called the Winger-

Ville Distribution (WVD), which is, 

𝑊𝑧(𝑡, 𝜔) =  ∫ 𝑧+∞
−∞ (𝑡 + τ2) 𝑧∗ (𝑡 + 𝜏2) 𝑒−𝑖𝜔𝜏𝑑𝜏 (1) 

Now if the signal s(t) contains two mono-components 𝑠(𝑡)  =  𝑠1(𝑡) + 𝑠2(𝑡)  
Equation 1 will become, 𝑊12(𝑡, 𝜔)  =  𝑊11(𝑡, 𝜔) + 𝑊22(𝑡, 𝜔)+ 𝑊12(𝑡, 𝜔) + 𝑊21(𝑡, 𝜔)    

Since 𝑊12(𝑡, 𝜔) and 𝑊21(𝑡, 𝜔) are the complex 

conjugate of each other i.e. 𝑊12(𝑡, 𝜔)  =  𝑊22∗ (𝑡, 𝜔) 

therefore, 𝑊12(𝑡, 𝜔)  =  𝑊11(𝑡, 𝜔) + 𝑊22(𝑡, 𝜔)+ 2𝑅𝑒{𝑊12(𝑡, 𝜔)}    (2) 

Unlike the linear TFD, the WVD of the signal containing 

two mono-components is the sum of WVD of each 

component, called the auto-term, 𝑊11(𝑡, 𝜔) & 𝑊22(𝑡, 𝜔), in 
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equation 2, and has an additional term, 2𝑅𝑒{𝑊12(𝑡, 𝜔)}, 

which is the cross-term or interference term. If a multi-

component signal has n components, then n(n-1)/2 cross-terms 

will generate in the distribution [34]. These cross-terms are 

oscillatory in nature and exist between the auto-terms which 

give rise to an artifact and give false impressions about the 

distribution. Therefore, cross-terms in bilinear TFD cause 

serious problems in interpreting the distribution especially if 

the signal contains numerous components and noises [35].  

3. Methodology: 

In this paper, the cross terms in WVD were suppressed by 

Burg’s ME method proposed by Zoukaneri and Porsani [26]. 

The intuition of this method is to modify the discrete WV 

kernels by extending its sequence from the part without cross-

terms to the outside of this part. This method computes the 

minimum phase prediction error operators (PEO) using Burg’s 
ME algorithm for segments which are then used to estimate 

the coefficients of the extended discrete WVD kernel 

sequences and provides high-resolution Time-Frequency 

spectrum. 

3.1 Discrete Wigner-Ville Distribution (DWVD) 

First, in order to avoid the spectral aliasing, the signal x(n) 

is sampled at the twice the normal Nyquist rate and then 

calculate the analytical signal z(n) by using Hilbert Transform 

(HT) which is, 𝑧(𝑛)  =  𝑥(𝑛) + 𝐽𝐻[𝑥(𝑛)]  
Where n is the time sample index, H[x(n)] is HT of the signal 

x(n). Now in equation 1 if 𝑡 = 𝑛𝑇𝑠, and 𝜏 = 2𝑙𝑇𝑠, the Wigner-

Ville kernels can be discretized as, 𝐾(𝑙) =  𝑍(𝑛 + 𝑙)𝑍∗(𝑛 − 𝑙)  
Where the power of 𝐾 indicates the indices of the kernel. 𝑙 = {−𝐿, … − 1,0,1, … , 𝐿}; 𝐾(0)  =  𝑍(𝑛). 𝑍(𝑛). Moreover, due 

to conjugate symmetry of the kernels, 𝐾(−𝑙)  =   𝐾(𝑙).  

The Fourier Transform of these kernels generates discrete 

Wigner-Ville distribution. 

𝑊(𝑚) = ∑ 𝐾(𝑙)𝑊4𝑚𝑙(𝑁−1)/2
−(𝑁−1)/2  

 

 

(3) 

Because here the DWVD has the periodicity of (N-1), the 

frequency interval of the above equation is half of the 

frequency interval of the standard discrete FT. Therefore, 

additional power 2 represents the scaling factor, is appearing 

in the twiddle factor.  

3.2 Maximum Entropy Wigner-Ville Distribution (ME-

WVD) 

The general equation of Burg’s Maximum entropy spectrum 
is given as, 𝑃(𝑓) =  𝑃𝑚𝐵|1 + ∑ 𝛼𝑖𝑒−𝑗2𝜋𝑓𝑖𝑇𝐽𝑖=1 |2 

 

(4) 

Where P is the final prediction error; B is the signal Bandwidth 

corresponding to the signal period of 𝑇 =  1 2𝐵⁄ . The 

equation indicates that the Maximum Entropy spectrum is 

similar to that of the Autoregressive model with coefficient 𝛼𝑖 
[36]. The Burg method directly estimates the reflection 

coefficient Rα and then uses the Levinson recursion algorithm 

to estimate the Prediction Error Operator (PEO) or Prediction 

Error Filter (PEF). The reflection coefficients Rα are estimated 

by minimizing the average energy of forward and backward 

prediction error while satisfying the Levinson Durbin 

recursion.  

A forward and backward linear prediction with PEO αj of 

segment S can be given as, 

𝐾𝑆(𝑙)̂ =  − ∑ α[𝐽](𝑖)𝐾𝑆(𝑙−𝑖)𝐽
𝑖=1  

𝐾𝑆(𝑙)̂ =  − ∑ α[𝐽]∗(𝑖)𝐾𝑆(𝑙+𝑖)𝐽
𝑖=1  

Where J is the prediction order. The residual between the 

actual and the predicted kernel is known as the prediction error 

e(l) which is, 𝑒(𝑙) = 𝐾𝑆(𝑙) − 𝐾𝑆(𝑙)̂  

Similarly, the forward and the backward residual can be 

calculated by 

𝑓𝑆[𝐽](𝑙) = 𝐾𝑆(𝑙) − [− ∑ α[𝐽](𝑖)𝐾𝑆(𝑙−𝑖)𝐽
𝑖=1 ] 

𝑏𝑆[𝐽](𝑙) = 𝐾𝑆(𝑙) − [− ∑ α[𝐽]∗(𝑖)𝐾𝑆(𝑙−𝑖)𝐽
𝑖=1 ] 

If RJ is the reflection coefficient then the forward and 

backward prediction error can also be written as, 
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 𝑓𝑆[𝐽](𝑙) =  𝑓𝑆[𝐽−1](𝑙) + 𝑅[𝐽]𝑏𝑆[𝐽](𝑙−𝐽) 𝑏𝑆[𝐽](𝑙) =  𝑏𝑆[𝐽−1](𝑙) + 𝑅[𝐽]∗ 𝑓𝑆[𝐽](𝑙+𝐽) 
Note the average estimated prediction error energy is given as, 

𝐸[𝐽] =  12 ∑ (∑ |𝑓𝑆[𝐽](𝑙)|2 +𝑁
𝑙=𝐽 ∑|𝑏𝑆[𝐽](𝑙)|2𝑁−𝐽

𝑙=0 )𝑆  

 

(5) 

Since in each iteration the number of residual decreases i.e. the 

size of the vector of the backward and forward residual 

between the two consecutive steps would not have the same 

length, therefore for the convenience, we use 𝑓′ and 𝑏′ for the 

residuals of previous steps. 𝑓𝑆[𝐽] =  𝑓𝑆[𝐽]′ + 𝑅[𝐽] 𝑏𝑆[𝐽]′  𝑏𝑆[𝐽] =  𝑏𝑆[𝐽]′ +  𝑅[𝐽]∗ 𝑓𝑆[𝐽]′
 

For the minimum phase prediction error filter and to make the 

condition for the filter to be stable, the average error energy 

must be minimum. Therefore, by taking 
𝜕𝐸[𝐽] 𝜕𝑅[𝐽]⁄ = 0 in 

equation 5, a general equation for the reflection coefficients 

can be deduced as, 

 

𝑅𝐽 = −2 ∑ 〈 𝑓𝑆[𝐽]′ ,  𝑏𝑆[𝐽]′ 〉𝑠  ∑ (‖ 𝑓𝑆[𝐽]′ ‖2 + ‖ 𝑏𝑆[𝐽]′ ‖2)𝑆  

 

(6) 

 

Where < . > denote the inner product and ‖. ‖ shows the 

induce norm i.e. ‖𝑥‖ = √〈𝑥, 𝑥〉    

The above equation shows that all the |𝑅𝐽| ≤ 1 that proves the 

stability and generates minimum phase PEO which can be 

estimated by the Levinson-Durbin algorithm.  α𝐽(𝑖) = α𝐽−1(𝑖) + 𝑅𝐽α𝐽−1∗ (𝐽−𝑖),   𝑖 = 0,1, … . , 𝐽 

In the above equation, α𝐽(0) = 0 and α𝐽(𝐽) = 𝑅𝐽 Therefore, Jth 

prediction order generates (J+1)th PEO. 

The number of kernels appears at the front part of the 

sequence, which is supposed to have no cross-terms [27], are 

used to predict the other kernels sequence outside of this free-

interference window. The size of this window, let say W, 

controls the spectral resolution of the distribution. To get the 

spectrum sharper with reasonable accuracy, the size of W 

should be small and finer [26]. Mostly, for the ultrasonic Lamb 

wave signals, the window size is usually between 5% and 7% 

of the total number of kernels in a segment which is enough to 

generate a high-resolution spectrum. However, the range may 

be greater depending upon the nature of the signal. For 

example, if the signal has a very low SNR value, the range 

must be higher. Moreover, due to the conjugate symmetry of 

the kernel i.e.  𝐾(𝑙) = 𝐾(−𝑙), only half of the kernel sequence 

will be considered for the modification of Wigner-Ville Kernel 

sequences.  

To compute the extended kernel, the forward prediction is,

  

𝐾(𝑊+𝑛) = − ∑ α[𝐽]𝐾𝑆(𝑊+𝑛−𝑖)𝑁
𝑖=1  

After applying the conjugate symmetry of the kernels, the DFT 

is performed on the predicted kernel to obtain the maximum 

entropy WVD.  

𝑊(𝑚) = ∑ 𝐾(𝑙)𝑊4𝑚𝑙(𝑁−1)/2
−(𝑁−1)/2  

 

(7) 

3.3 AR Model Estimation 

The Burg method ensures a stable AR model, but its 

accuracy is highly dependent upon its order. Therefore, a 

perfect order that is used to describe the given data, is essential 

for generating high-resolution TF spectrum. This can be 

estimated by selecting appropriate information criterion. In 

this study we use the Akaike Information Criterion (AIC) for 

multiple segments of length N is 

 𝐴𝐼𝐶 = ln(𝑅𝑒𝑠(𝐽)) + 2𝐽𝑆𝑁 
(8) 

  Where, 

𝑅𝑒𝑠(𝐽) =  𝛿2 ∏(1 − 𝑅𝑖2)𝐽
𝑖=1  

 

In the above equation, 𝛿2 is the residual variance for a fitted 

AR(J) model. The best model is the one with minimum AIC 

value. Our experience indicates that for the Lamb wave signal, 

the model order greater than 5 does not put any significant 

effect on the accuracy of the AR model. Therefore, the order 

within the range of 5 is enough to ensure the high resolution 
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of the distribution. Figure 1 summarizes the steps of the ME-

WVD algorithm, used in this study. 

4. Numerical Investigation of Proposed Method: 

4.1 Synthetic Chirp Signals: 

First in order to check the concentration of the TFD generated 

by the different TF method, intersecting concave and convex 

chirps were sampled at 1kHz for 4 sec. The instantaneous 

frequencies of each chirp are given by figure 2. 

Figure 3 shows that the proposed method significantly reduces 

the cross-term effect, maintains the sharpness of the spectrum 

with the small spread on time-frequency plane. On the other 

hand, PCT has better resolution but high spread on time-

frequency plane. SPWVD and CWD are blurred and difficult 

to interpret while RSPWVD and CSD generate sharp and 

high-resolution distribution but their performance deteriorated 

due to the presence of discontinuities. 

 Moreover, to quantify the concentration of the TFD, the most 

promising approach based upon the entropy function has been 

exploited. Peaky and concentrated TFDs would generate small 

entropy values [37]. In this paper Rényi entropy, normalized 

with distribution volume is utilized to measure the distribution 

concentration. Which is given by equation 9. Normalized 

Rényi entropy detect the zero mean cross terms and therefore 

if the signal contains oscillatory cross terms, then the high 

entropy value would be generated which indicates low 

concentration. 

Figure 4 represents that RSPWVD generates the smallest 

entropy while MEM, PCT and CSD estimate comparatively 

similar entropy values but slightly larger than RSPWVD 

which means that these methods generate peaky and highly 

concentrated TFD. However, there are some shortcomings in 

visual inspection of PCT, CSD and RSPWVD method which 

has already been discussed.  

From the next section, we shall apply the proposed method to 

guided wave signals obtained numerically and experimentally 

to extract useful discriminating spectral and temporal 

information that is required for mode identification, structural 

damage localization, and its quantification.  

 

Figure 2: Instantaneous frequency of two intersecting chirp 

𝑅𝑉𝑛𝑜𝑟𝑚 =  − 12 𝑙𝑜𝑔2 (∑ ∑ ( 𝑊3(𝑇, 𝐹)∑ ∑ (|𝑊(𝑇, 𝐹)|)𝐹𝑇 )𝐹𝑇 ) (9) 

 Figure 1: Steps of computing Wigner-Ville Distribution with Maximum Entropy Method 
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4.2 Damage Localization: 

Simulation for generation and acquisition of Lamb wave 

signals was done by using the commercial software   

Abaqus/Explicit® finite-difference module. Due to the 

computational limitation, the Multiphysics approach had not 

been utilized, therefore a specific modelling technique for PZT 

actuator and sensor was used, introduced in [38]. The 

convergence of the numerical results depends upon the 

temporal and spatial resolution of the finite element model 

[39]. The high time step results in high-frequency components 

that could not be resolved accurately. Hence to avoid the 

numerical instability, Moser [40] recommended that the 

integration time step must be small that there are minimum 20 

times steps during each cycle of the wave at the maximum 

frequency to keep the explicit algorithm stable i.e. 𝛿𝑡 <1 20𝑓𝑚𝑎𝑥⁄ .  In this study, 2MHz frequency was used to 

generate the desired mode of the Lamb wave, therefore, 𝛿𝑡 was 

set to be 1.0 × 10−9 which satisfied the general requirement. 

Moreover, mesh density is also an essential factor. Moser [40] 

suggested that for a good spatial resolution at least 10 elements 

must be allocated in the shortest wavelength of the wave. The 

group velocity of the fundamental symmetric 𝑆0 mode at this 

frequency is approximately 5243m/s which makes the 

wavelength of about 2.6mm. Therefore, the element size was 

set to be 0.20mm. It ensured that there were more than ten 

nodes across the shortest wavelength.  

For the pulse echo-configuration, a two-dimensional 

FEM model in which four-node plane strain elements with 

encastre boundary condition was employed for an aluminium 

plate. The thickness of the plate was 0.4mm and its nominal 

properties are given in Table 1. The plate contained two 

adjacent notches of same the dimensions as shown in figure5. 

Different simulated results were obtained by changing the 

distance d between two adjacent notches (3.5, 4, 5, 6, and 

7mm). The depth of each notch was 0.2mm. The excitation 

signal of the five-cycle wave pulse, which was modulated by 

Gaussian function, was applied parallel on the upper and lower 

surfaces of the plate. 

 

Figure 4: Value of criterion (Entropy) vs TFR methods. 

Figure 3: Time-frequency domain energy distribution: (a) proposed ME-WVD; (b) PCT; (c) WVD; (d) SPWVD (Kaiser 

Window, g = N/10, h = N/4); (e) RSPWVD; (f) CWT (δ = 0.25) and (g) CSD. 
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Table 1: Nominal properties of the aluminum plate (6061-T6). 

Young’s 
Modulus,  

E (GPa) 

Poisson’s 
ratio,  

Ν 

Density,  

Ρ (kg/m3) 

Yield 

Stress,  

Y (MPa) 

72.4  0.33 2780  276 MPa 

 

 

Figure 5: Two-dimensional numerical model with two 

notches. 

Due to in-plane stresses, the symmetric mode 𝑆0 was the 

dominant signal. The wave propagated and upon the 

interaction with the notches, some part of the wave energy 

reflected from the notches along with the reverberating echoes 

[41]. The two notches are very closed to each other; therefore, 

the reflected waves will overlap, making it more difficult to 

determine the position and gap between the notches from the 

measured signal precisely. Moreover, artificial noises were 

also added to original signals to check the noise robustness of 

the proposed method. The reflected signals from the notches 

are presented in figure 6. 

The kernels of DWVD were stored in  4000 ×4000 matrix. In order to compute the prediction error 

coefficient α𝑖 for S = 4000 samples, the optimum order of 

the PEO was found to be J = 4. figure 7 represents the 

contour plot of time-frequency distributions along with 

energy distribution in the time domain (instantaneous 

amplitude) of the given signal using the proposed ME-

WVD, PCT, WVD, SPWVD, RSPWVD, CWD, and CSD 

when the distance between the notches was 4mm. As 

compared with the other methods, ME-WVD generated a 

sharp TF spectrum and two echoes can easily be observed 

by the energy distribution in the time domain. 

Theoretically, the wave velocity of the 𝑆0 mode is equal to 

5243m/s. The arrival time of the echoes computed by the 

different TF methods is exhibited in Table 2. The proposed 

ME-WVD based method worked much better and localized 

structural damages more precisely, whereas in all the other 

methods, smoothing significantly shift the auto-terms from 

their original location in the time-frequency domain and 

thus generate errors. Therefore, the results obtained by 

these kernel-based methods are rather unreliable. Similar 

results were obtained for different values of d, and 

maximum error in the estimation of the separation gap by 

the ME-WVD method were not more than 5% which is 

shown in figure 8. The main source of this error is attributed 

to the fact that the scattered waves coming from the notches 

would experience dispersion. 

5. Experimental Investigation of Proposed Method: 

5.1 Wave Mode Identification: 

To generate the different modes of the Lamb wave, 

experiment, based on pitch-catch configuration, were 

performed to generate the lamb waves in an aluminium plate 

alloy 6061-T6. The nominal properties of the alloy were the 

same as used in the numerical analysis. This aluminium alloy 

has a wide range of industrial application and most commonly 

used in the manufacturing of aerospace and automotive 

components such as wings and chassis. For experimental 

measurement, two small radials Piezoelectric Wafer Active 

Sensor (PWAS), 10mm diameter, and 1mm thickness with a 

silver electrode on both sides were used. The rigid bond 

between the PWAS and plate was done by using cyanoacrylate 

adhesive. A rectangular notch of dimensions 

40mm×2mm×0.8mm etched through a pantograph machine 

was placed between the actuator and the sensor. A five-cycle 

Gaussian modulated sine wave signal with a central frequency 

of 200kHz was computed through Matlab®. At this 

configuration, 𝑆0 mode would activate with larger  amplitude 

than 𝐴0. When these modes pass through damage, mode 

conversion phenomenon would be observed, breaking down 

the symmetrical nature of the signal, and extra waves would 

generate simultaneously.  

 

Figure 6: Reflected simulated signals from the two notches 

separated by: (a) 3.5mm; (b) 4mm; (c) 5mm; (d) 6mm; (e) 

7mm. The signal-to-noise ratio (SNR) of all signal = 5 dB. 
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 The distance between the actuator and the sensor was 

150mm while the crack was etched exactly at the centre i.e. 

75mm. The complete experimental setup is represented in 

figure 9. The original damage signal along with its pristine 

signal received at the sensor is presented in figure 10. It can 

be observed that newly generated 𝐴0., due to damage, is 

present between the actuating 𝑆0 and 𝐴0 mode, and due to 

the dispersion and the time-delay, the last two modes and 

overlapped with each other. This makes the extraction of 

different wave energy content and identification of 

different modes from the signal more difficult. 

The sampling rate of the signal was 25MHz which 

generated 4001 samples within the given time range. To 

compute the prediction error operator α𝑖 for the ME 

method, the optimum order was found to be J = 2. The time-

frequency energy distribution obtained by the proposed 

method and other TF methods are given in figure11. The 

proposed ME method significantly reduced the spurious 

TF methods Arrival time of 

first echo (µs) 

Arrival time of 

second echo (µs) 

Distance between 

the notches (mm) 

Percentage 

error  

 

ME-WVD 31.107 32.664 4.1 2.5  

PCT 31.098 32.787 4.4 10.0  

WVD 31.684 32.901 3.2 20.0  

SPWVD 31.188 32.538 3.5 12.5  

RSPWVD 31.216 32.678 3.8 5.0  

CWD 31.212 32.604 3.6 10.0  

CSD 31.248 32.597 3.5 11.2  

      

Figure 7: Contour plot and time-domain energy distribution for pulse-echo configuration (d = 4mm): (a) proposed 

ME-WVD; (b) PCT; (c) WVD; (d) SPWVD (Kaiser Window, g = N/10, h = N/4); (e) RSPWVD; (f) CWT (δ = 0.25) 
and (g) CSD. 

Table 2: Measurements of the arrival time of the echoes for the localization of two adjacent notches based on different TF. 
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energies and interference terms between the components of 

the signal such that the incident 𝑆0, reflected 𝐴0′  from 

damage, and incident 𝐴0 modes are clearly observed in ME-

WVD by suppressing the cross-terms and its spurious 

energies, enhancing energy spots and non-stationary 

tendencies. PCT also separated the signal components but 

their localization become coarser due to increase of TF 

spread of the component. Similarly, the bilinear TFA in 

figure 11(d)-11(g), the smoothing failed to resolve the modes 

of the lamb wave signals composed by synchronized 

components that occur at the same time or the same frequency. 

 

Figure 8: Percentage error when computing the gap 

between the notches by different TF methods. 

Instantaneous frequency (IF), one of the important signal 

parameters obtained directly from the time-frequency 

distribution, provides essential information about the time 

varying spectral changes in a non-stationary signal and hence 

may be used for the mode identification. The robust and stable 

IF can be generated from the time-frequency distribution by 

estimating the first moment of WVD. This can be expressed 

as,  

𝑓(𝑡) = ∫ 𝑓𝑊𝑀𝐸𝑀(𝑡, 𝑓)+∞−∞∫ 𝑊𝑀𝐸𝑀(𝑡, 𝑓)+∞−∞  
 

(9) 

 

In figure 12, IF and instantaneous amplitude (IP) of the 

underlying signal are compared with its baseline (undamaged) 

signal.  In the figure, different trajectories are clearly shown in 

the IF curves of the damaged signal corresponding to their 

envelops in IP. The highlighted trajectory represents the 

reflection from the crack. Similar trend is also observed in the 

signal received from the smaller crack size (10mm) of a 

different specimen, presented in figure 13, along with its IM 

and IF curves. The signal contains actuating 𝑆0, and 𝐴0, 

reflected 𝐴0′ . from the crack, and 𝑆0 reflections from 

boundaries. However, due to severe modes interference and 

overlapping, they cannot be straightforwardly distinguished 

from simple time-domain signal, figure 13(a).  On the 

contrary, peaks in IF corresponding to its IA curve, clearly 

reveals the phase changes in the signal with respect to time. 

The arrival of different mode packets results in sudden 

variation in the IF curve. These variations are also noted at the 

end of each wave packets and hence a   trajectory is formed. 

The length of these trajectories i.e. the distance between the 

wave-front and the trailing end in the IF curve can be used to 

estimate the wave travelled distance and velocity, and its time 

of arrival (ToA). Moreover, the information can be exploited 

to track the damage location if a network of transducers, 

offering multiple reflected or forward-scattering waves, is 

used [6]. It is also observed that the size of the trajectory 

formed by the forward-scattering waves increase with size of 

the crack. Moreover, greater crack sizes correspond to higher 

variations of phase pristine signal is taken as a reference, IF of 

the damage signal increases with the severity of the damage. 

This technique will be used to estimate the size of the damage 

in the next section. 

Figure 9: Experimental Setup for wave generation using pitch-catch configuration. 

Figure 10: Original waveform of the damaged Lamb wave. 
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6 Crack Quantification: 

In the previous sections, the proposed algorithm was 

successfully applied for damage identification and 

localization. To further extend this algorithm, the size of the 

damage will be estimated in this part which requires more 

information from the signal than damage location 

estimation[42]. 

6.1 Feature Extraction: 

Damage feature extraction is the method of identifying 

the damage-modulated properties and parameters in a 

measured signal[6]. It is therefore an essential stage of an 

overall scheme for recognizing the pattern and classifying the 

abnormalities from the given signal for any regression tool or 

machine learning algorithm[43]. To characterize the damage, 

appropriate signal features must be selected with great care 

which are the most sensitive to variation in damage parameter. 

Traditionally, separate temporal, or spectral characteristics of 

a signal are used to estimate the damage indices for NDT 

applications. However, for the non-stationary signals i.e., a 

signal whose spectra change with time, these separate domain 

features may lack sufficient discriminating information about 

the underlying signal. TFD provides additional information 

about the non-stationary signal that cannot be directly obtained 

from the time or frequency domain. In this study, joint time-

Figure 12: Instantaneous amplitude and instantaneous 

frequency of the damage and pristine signals. 

Figure 13: Instantaneous amplitude and instantaneous 

frequency of the damage signals: (a) original signal; (b) IA; (c) 

IF.

Figure 11: Time-frequency domain energy distribution for damaged signal: (a) proposed ME-WVD; (b) PCT; (c) WVD; 

(d) SPWVD (Kaiser Window, g = N/10, h = N/4); (e) RSPWVD; (f) CWT (δ = 0.25) and (g) CSD. 
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frequency (𝑡, 𝑓) based damage indices were used to estimate 

the variation of the signals to quantify crack size. These are, 

 Energy concentration (EC); it represents the energy 

distribution over the time-frequency plane. Its 

mathematical expression is given in equation 10.  

𝐸𝐶 =  (∑ ∑ |𝑊𝑀𝐸𝑀(𝑡, 𝑓)|𝐹𝑓=1𝑇𝑡=1 )2
 

 

(10) 

 

 Time-Frequency Flux (TFF); It is the rate of change 

of energy content of a signal in time-frequency plane. 

It is expressed as, 𝑇𝐹𝐹 =  ∑ ∑ |𝑊𝑀𝐸𝑀(𝑡 + 𝑙, 𝑓 + 𝑞)𝐹−𝑞𝑓=1𝑇−𝑙𝑡=1 − 𝑊𝑀𝐸𝑀(𝑡, 𝑓)| 
 

 

(11) 

Where l and k are the predefined values correlated 

with the rate of change of the signal energy which can 

be any integer value from 0 to T-1 and 0 to F-1. In 

this study, we used l = 1 and q=1 to estimate TFF. It 

can estimate small variations in energy of the signal 

which takes place either in time or spectral axis[35]  

 Instantaneous frequency (IF); It accounts for the 

spectral variation of a signal as a function of time. Its 

general expression is given in equation 9. Since IF is 

sensitive to noise and may generate ambiguous peaks 

if signals have low SNR values. Therefore, to avoid 

this undesirable effect and to make the results more 

precise, the typical time-domain signals having high-

frequency electromagnetic noises were first filtered 

through the fourth order Butterworth low-pass filter. 

The proposed ME-WVD was then applied to the 

filtered signal and then using equation 9, IF curves 

were extracted in the time-frequency domain. It was 

noted that when the wave passes through damage 

present in its path, its phase change (IF) varies with 

the size of the crack and increases with larger crack 

sizes.  

6.2 Crack Size Quantification Model: 

Different sets of specimens, made of 6061-T6 aluminium, 

with artificial cracks of varying lengths were used to obtain 

the required measurement data while the width and depth of 

the crack (2mm and 0.8mm respectively) were kept constant 

while the length of the crack varied depicting crack 

propagation. Moreover, the orientation of the cracks was 

perpendicular to the monitoring path. All the arrangements are 

the same as shown in figure 9. Table 3 presents the 

experimental values of the required features i.e., TFF, IF and 

EC versus crack lengths, obtained by pitch-catch 

configuration of the first set of specimens. The first row is the 

benchmark signal obtained from the undamaged plate. Some 

of their received signals are given in figure 14. The relation 

between these parameters and crack length of all the 

specimens are shown in figure 15.  It can be observed that all 

damage sensitive features exhibit a linear relationship with 

Crack 

Length 

(mm) 

Energy 

Concentration 

(EC) 

(109) 

Normalized  

Amplitude 

(EC/EC*) 

Time-

Frequency 

Flux (TFF) 

(108) 

Normalized 

Amplitude 

(TFF/TFF*) 

Instantaneous 

Frequency (IF) 

 (106) 

IF 

Increment 

(IF/IF*) 

0 13.2* 1.00 7.73* 1.00 3.0726* 1.00 

5 10.3 0.7812 5.83 0.7535 3.0814 1.0028 

10 7.42 0.5621 3.92 0.5071 3.0902 1.0057 

15 6.94 0.5257 3.51 0.4541 3.1350 1.0203 

20 6.54 0.4889 3.10 0.4011 3.1838 1.0362 

30 5.48 0.4155 2.28 0.2949 3.2774 1.0667 

40 4.51 0.3422 1.46 0.1889 3.3710 1.0971 

50 4.17 0.3158 1.40 0.1815 3.5216 1.1461 

60 3.82 0.2894 1.35 0.1742 3.6721 1.1951 

70 3.47 0.2631 1.29 0.1668 3.8227 1.2441 
(Asterisk) = pristine signal values (first row) 
 

Table 3: Experimental values of three damage indices estimated through the proposed time-frequency technique for S1 

Figure 14: Received signals from the sensor for specimen S1 

at different crack lengths: (a) pristine condition; (b) 10mm; 

(c) 40mm; and (d) 70mm. 
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crack size. EC and TFF both parameters decrease with the 

increase of crack length while peaks of IF increase with it. 

Moreover, it is also noted that each specimen has non-

overlapping unique trends and follow different routes due to 

manufacturing and loading variabilities [44]. 

In order to establish the relationship between crack size 

and damage features, a linear regression model was trained 

using training data sets and evaluated using the validation sets 

in Matlab® regression learner app. In the first case, first four 

sets of specimens (S1, S2, S3, and S5) were used for training 

the model while S4 was used for testing while in the second 

case, (S1,S3, and S4) were exploited for training purpose and 

S3 and S5 for the model testing. Similarly, for the third case, 

training model sets were S1 and S2. Figure 16 compares the 

actual size of cracks and the model prediction of crack size. 

To further estimate the fitting performance of the model, 

median prediction, and 95% confidence interval are presented 

in the figure. It is observed that all the predicted values 

(squares) in figure 16(a) and (squares/triangles) in figure 16(b) 

follow the general trends of training data (circles) and the 

values are within the 95% confidence interval. A good 

agreement between actual and predicted measurements is 

observed. Moreover, prediction residue standard deviation for 

all cases were found to be 0.4891 and 0.4753 and 0.5257, 

respectively. Hence these damage features obtained by the 

proposed algorithm are found to be effective and generates 

satisfactory prediction results for the crack quantification.  

In addition, the robustness and stability of the proposed 

time-frequency based regression model are further checked by 

predicting the values outside the horizon of the training size 

limit by using the extrapolation method. Extrapolation is 

usually not recommended for the machine learning regression 

model because the trends in the training data do not necessarily 

hold outside the scope of the model, therefore cannot be used 

for realistic models. However, here the main intuition is to 

check the stability and reliability of the damage indices and 

their correlation with damage sizes. For this purpose, 

maximum 100mm crack size specimens were used to estimate 

the values of the damage indices. The original signal received 

from the first specimen is presented in figure 17. Three 

damage indices i.e. EC, TFF and IF of all the 100mm crack 

size specimen are given in table 4. The first and the third 

specimen generate more reliable values with a maximum 

uncertainty of less than 3%. However, the second specimen 

gives some higher error value than expected which is <10%, 

mainly due to high manufacturing variabilities. 

7. Conclusion: 

In this paper, the autoregression model based upon Burg’s 
maximum entropy method was employed to improve the 

Figure 15: Crack size versus all three time-frequency based signal features for all five sets of specimens: (a) Energy 

concentration; (b) time-frequency flux; (c) Instantaneous frequency. 
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kernels of discrete Wigner Ville distribution which suppressed 

the inherent cross-terms and spurious events present in the 

quadratic time-frequency distribution. For the stability of the 

AR model and to make it more robust, we employed Burg’s 
algorithm for segments in which all the kernel sequences were 

exploited simultaneously to compute the prediction error 

operator. To check the validity of this method for the 

ultrasonic Lamb waves, the numerical and experimental 

analyses were performed to generate waves in an aluminium 

plate for damage localization and quantification. Since 

inherent dispersion behaviour and multimodal nature of Lamb 

waves making the interpretation of the signal extremely 

difficult for the NDT applications, the proposed algorithm has 

been proved to be effective in expressing the true time-

frequency energy distribution of the damage signal. The 

proposed scheme precisely estimated the distance between the 

two closely spaced damages in a plate from simulated noisy 

signals with maximum uncertainty of 5%. Moreover, the 

method was also effective in localizing the multiple 

overlapping Lamb modes in the time-frequency domain. For 

damage quantification, three damage sensitive features, 

namely, energy concentration, time-frequency flux, and 

instantaneous frequency were extracted by the proposed 

maximum entropy-based Wigner-Ville time-frequency 

distribution of pristine and damage signals. These were 

obtained from the five different sets of specimens. Minimum 

three sets of data were used for linear regression model 

training and a maximum of two sets for model testing. The 

results show that the damage indices obtained from the 

proposed time-frequency method has the potential to predict 

the crack sizes precisely and reliably. It is important to 

mention here that the current study used a supervised machine 

learning model in which the other dimensions of crack and its 

orientation were fixed for all sets of specimens. For a realistic 

case, these parameters are unknown and significantly affect 

the damaged signal. Future work will consider all these issues 

and more tests on different materials and more complex 

structures may be needed to validate the effectiveness of the 

proposed technique of signal processing.  

Figure 17: Original signal of 100mm crack size for first 

specimen. 

Figure 16: predicted size vs actual size of the crack using machine learning linear regression mode: (a) S4 testing 

data; (b) S3 and S5 testing data; (c) S1 and S2 testing data. 
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 Table 4: Experimental values of three damage indices 

estimated through the proposed time-frequency technique for 

100mm crack sizes. 
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