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Abstract 

Lithium-Sulfur (Li-S) batteries are an emerging and appealing electrical energy storage technology. The literature on the State-

of-charge (SoC) estimation of Li-S is readily available. In real-world, battery operated vehicles and equipment need to monitor 

the electrical energy. This paper focuses on State-of-Eneergy (SoE) estimation of Li-S battery based electric propulsion system. 

This paper bridges literature gap of the SoE estimation of Li-S battery. While comparing mathematically, the definition of the 

SoC and SoE batteries are different. Reviewing the SoC estimation, this paper compares the SoC and SoE estimation for same 

data set. The challenges in Li-S SoC and SoE estimation include battery modelling and time-varying parameters and nonlinear 

voltage measurement, which has deeply skewed high-plateau and flatted low-plateau characteristics.  Modelling Li-S battery as 

a Thevenin’s equivalent circuit network (ECN), the battery parameters are estimated using Predict Error Minimization (PEM) 

approach. For estimate SoC and SoE, the extended Kalman filter (EKF) is used.   Since the parameters are high sensitive to 

battery current, the estimators use parameters obtained by polynomial fitting model. A simple switching logic based on SoC-

measurement voltage is used to join the high- and low-plateau. The degree of observability analysis is used to investigate the 

performance of SoE estimation by the EKF. Using experiment test data, simulation results demonstrate the performance of both 

SoC and SoE estimators. Results show that the SoE estimation is as close to the SoC estimation. 

1. 1 Introduction 

Lithium-sulfur (Li-S) battery technology has been active 

research since last few decade, for instance [1-6, 8]. The 

principal of Li-S battery chemistry reactions and features 

studied in [3]. Compared to Lithium-Ion (Li-Ion) and solid 

state batteries, the Li-S batteries are weightless, high energy 

storage capacity, more safe, fast charging and less cost. With 

these note, it may be better choice of energy source to 

applications where, weight and safety have concern that 

including electrically propelled aircraft [16] and electric 

ground vehicles [7]. Battery management system (BMS) are 

an essential and important component in such applications.  

The challenges for  battery management system 

(BMS) community is to develop the state-of charge(SoC), 

state-of-available power (SoAP) [10],  state-of-

energy(SoE)[14], and state-of-health (SoH) algorithms under 

nonlinear voltage measurement.  We need nonlinear 

estimation algorithms. Literature [1-5] explored on SoC 

estimation of Li-S battery using Kalman-variant filters [3,4] 

and adaptive neuro-fuzzy inference system (ANFIS) [5]. In [8-

9, 14] the SoE of Li-Ion explored.   

Compared to SoC, which indicates the residual 

capacity, the SoE provides the residual energy of battery. 

Power performance of battery due the power fluctuations 

caused by acceleration, climbing and regenerative braking can 

be monitored while estimating energy.  Compared to lithium-

ion Li-Ion [7] batteries, the Lithium-Sulfur (Li-S) cells have a 

distinctive open-circuit voltage (Voc) profile: at high states of 

charge there is a ‘high plateau’, starting at around 2.35 V, and 
at low states of charge there is a flatter ‘low plateau’ at near 
constant voltage. This distinctive behaviour results 

nonlinearity in the system and measurement models of battery.  

 This paper focus on the SoE estimation of Li-S battery 

using Extended Kalman Filter (EKF. As literature on Li-S 

battery’s SoE estimation is not available, this work would fill 

that the gap. This work differs from the literature as follow: In 

our previous presentation [8],  based on Coulomb counting 

(CC) of SoC formula and the theoretical SoE defined in terms 

of terminal power (𝑉𝑇𝐼𝑙) ,  we discussed the how much the SoC 

of Li-S cells is very close to SoE of Li-Ion and Li-S. Compared 

to [8], this paper focuses on EKF based SoE estimation. In 

addition to compare SoE to the SoC estimation, this work also 

investigates the impact of SoE defined as function of 

remaining power (𝑉𝑜𝑐(𝑆𝑜𝐸)𝐼𝑙) of Li-S. The EKF based SoC of 

Li-S [3] developed with a blend function in order to smooth 

linking of polynomial curve fitting of low and high-plateau. In 

contrast to [3], this work investigates the EKF based SoE and 

compared that to SoC estimation. 

 In this work the SoE estimation of Li-S battery 

problems are formulated, and designed the EKF for that. The 

SoE estimation problem formulation is very similar to SoC 
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estimation problem except mathematic model as outlined 

earlier. Modelling Li-S battery as Equivalent Circuit Network 

(ECN), nonlinear Prediction error minimization (PEM)[3, 12, 

17] is used for parameter estimation. The PEM uses a non-

linear grey model of ECN as [3]. While designing EKF for SoE 

and SoC problems, a simple switching logic based on the 

empirical SoC over Voc curve is used for high- and low-

plateau the priori state and measurement estimation, and 

Jacobian. Using test result of discharge profile of a sample Li-

S cell designed for aerospace propulsion, the EKF based SoE 

estimation and its comparison to SoC is demonstrated with 

simulation. The accuracy of estimation is investigated by 

analysing degree of observability.   

 The rest of paper is organised as follow. Section 2 

discusses the modelling of battery system and sensor, and 

estimation problem formulation. Battery parameter estimation 

and their curve fitting models are presented in section 3. 

Section 4 presents the EKF based SoC and SoE estimation. 

The simulation performance of estimators is described in 

section 5. Finally the conclusions and future research are given 

in section 6.  

2. Battery Modelling and Problem 

Formulation 

Experiment, which is prototype to real-world battery in use of 

electric vehicles, provides battery current and terminal 

voltage. Test result of the sample Li-S cell, the current and 

voltage with time stamp, obtained by laboratory experiment 

are shown in Fig.1. This data set has the mixed pulses current 

as Fig.1a, and mixed pulse voltage as Fig 1b. Mixed pulses 

represent the real-world load variation in electric propelled 

aircraft.  

 

Fig.1 The experimental test results of Li-S battery: a) Battery 

terminal voltage, and b) battery current.  

The voltage characteristic of battery is highly nonlinear that 

forces the problem as nonlinear. Having current as input and 

voltage as output, the battery might be a black box control 

system as shown in Fig. 2.  

 

Battery VoltageBattery Current Battery as a black box 

control system

 

Fig.2 Battery as a black box control system 

The battery can be modelled as equivalent circuit network 

(ECN) model, and then it can be used to estimate the 

parameters and states of battery.  
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Fig.3 SoC and SoE estimation problem formulation from 

experiment result. 

In this work, the EKF based the SoC and SoE estimation are 

presented. The EKF for SoC and SoE have designed separately 

as they are mathematically different. However, the problem 

formulation for both is very similar. For both estimation 

problem, the state-space model is formulated as the standard 

nonlinear functions as follows: 

The state equation is  �̇�(𝑡) = 𝑓(𝑥(𝑡), 𝑢(𝑡, ), 𝑡) + 𝑤(𝑡);                      (1) 

with initial condition 𝑥(0) = 𝑥(𝑡0). The measurement 

equation is  𝑦(𝑡) = ℎ(𝑥(𝑡), 𝑢(𝑡, ), 𝑡) + 𝑣(𝑡)                         (2) 

In above equations,   𝑥(𝑡) denotes the state vector, �̇�(𝑡) is first 

derivative of state vector, 𝑓(. ) and ℎ(. )  is state transition and 

measurement function, respectively, of 𝑥(𝑡), input 𝑢(𝑡)  and 

time 𝑡, and 𝑤(𝑡)~𝑁(0, 𝑄) and 𝑣(𝑡)~𝑁(0, 𝑅) is process and 

measurement noise, respectively.   

 

Both SoC and SoE problem, the input 𝑢(𝑡) is battery current 𝐼𝐿 , and the measurement 𝑦(𝑡) is battery terminal voltage 𝑉𝑇(𝑡) 

with additive noise 𝑣(𝑡). This terminal voltage of battery cell 

depends upon the current density and can be modelled as a 

function of polarization voltage. Therefore, the polarization 

voltage of cell 𝑉𝐹(𝑡) is one of the state variable in both SoC 

and SoE estimation problem. The following subsection discuss 

the state vector for SoC and SoE estimation.  

   

2.1 SoC estimation problem. 

The SoC estimation problem is formulated with a state vector 

 𝑥(𝑡) = ( 𝑥𝑠𝑜𝑐(𝑡)𝑉𝐹,𝑠𝑜𝑐(𝑡))               (3)         

Where  𝑥𝑠𝑜𝑐(𝑡) denotes the SoC, and 𝑉𝐹(𝑡) denotes the 

polarization voltage.     

The SoC is defined as [3]  𝑥𝑠𝑜𝑐(𝑡) = 𝑥𝑠𝑜𝑐(𝑡0) − ∫ 𝐼𝐿𝐶𝐵 𝑑𝜏𝜏0            (4) 

where  𝑥𝑠𝑜𝑐(𝑡0) is the SoC at the time 𝑡0 , 𝐼𝐿  is the battery 

current and 𝐶𝐵 is the capacity of battery. This empirical 

evaluation of SoC is referred as Coulomb counting approach. 

Since this paper uses discrete EKF, the discrete time, the 

equation (4) can be expressed in discrete-time as  𝑥𝑠𝑜𝑐(𝑘) = 𝑥𝑠𝑜𝑐(𝑘 − 1) − 𝐼𝐿(𝑘)∆𝑡𝐶𝐵            (5) 

The ∆𝑡 is the sampling time, and 𝑘 denotes time index.  

The dynamic of polarisation voltage 𝑉𝐹(𝑡) can be written as  
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The voltage sensor of battery can be modelled as 𝑦𝑠𝑜𝑐(𝑘) =  ℎ (𝑥𝑠𝑜𝑐(𝑘), 𝑉𝐹,𝑠𝑜𝑐(𝑘), 𝐼𝐿(𝑘)) + 𝑣(𝑘)                      (6) 

Where  ℎ(. ) = 𝑉𝑇,𝑠𝑜𝑐 = 𝑉𝑜𝑐𝑣(𝑠𝑜𝑐) − 𝑉𝐹(𝑠𝑜𝑐) − 𝑉𝑖(𝑠𝑜𝑐)                   (7) 

is measured terminal voltage that derived mathematically 

derived from ECN model given as Fig.4. for simplicity, 𝐼𝐿  and 𝑇 are droped in the output voltage.   

 The first-order differential of 𝑉𝐹(𝑠𝑜𝑐) and its discrete 

version we have used same as [1-3].  The differential of 

polarization voltage 𝑉𝐹(𝑡) is expressed as 𝑑𝑉𝐹(𝑡)𝑑𝑡 = −Ω(. )𝑉𝐹(𝑡) + 𝜌(. )𝑅𝑖𝑛𝑡(. )Ω(. )𝐼𝐿 ,           (8)   

and the measurement model is   𝑦𝑐(𝑡) = 𝑉𝑜𝑐𝑣(. ) − 𝑉𝐹(𝑡) − (1 − Ω(. ))𝑅𝑖𝑛𝑡(. )Ω(. )𝐼𝐿         (9) 

where  Ω(. ) = 1𝑅𝐹(.)𝐶𝐹(.)         (10) 𝑅𝑖𝑛𝑡(. ) = 𝑅𝑖(. ) + 𝑅𝐹(. )                    (11) ρ(. ) = 𝑅𝐹(.)𝑅𝑖𝑛𝑡(.)         (12) 

Thus the new parameters to the actual ECN parameters are 

related as [3].   

Using measured voltage, the EKF estimates the SoC and 

polarisation voltage.   

    

Ri(SoC,IL,T)

VT,soc

IL

RF(SoC,IL,T)

CF(SoC,IL,T)

Vocv(SoC,IL,T)

Vi(SoC,IL,T)

VF(SoC,IL,T)

 
Fig.4 Battery model for SoC estimation 

2.1 SoE estimation problem. 

 The SoE estimation problem assumes the state-of-energy 𝑥𝑠𝑜𝑒(𝑡), and the polarization voltage,  𝑉𝐹,𝑠𝑜𝑒(𝑡) as a state 

vector 

 𝑥(𝑡) = ( 𝑥𝑠𝑜𝑒(𝑡)𝑉𝐹,𝑠𝑜𝑒(𝑡))             (13)         

 As we found in literature, there are different concepts on 

energy and definition for SoE. Here we have listed a couple of 

definition for SoE.   

 As [13] the available energy of the battery is integration 

over time of the effective power as 𝑥𝑠𝑜𝑒(𝑡) = 𝑥𝑠𝑜𝑒(𝑡0) + ∫ 𝑃𝑒𝑓𝑓𝑑𝜏𝜏0          (14) 

Where 𝑃𝑒𝑓𝑓  is effective power of the battery. However, the 

authors did not specified the definition of 𝑃𝑒𝑓𝑓, where it is 

function of terminal voltage or internal opencircuit voltage of 

the battery. The 𝑃𝑒𝑓𝑓  relates to the requested power 𝑃𝐵 of the 

EV and power loss 𝑃𝑙𝑜𝑠𝑠 as  𝑃𝐵 = 𝑃𝑙𝑜𝑠𝑠 + 𝑃𝑒𝑓𝑓           (15) 

Alternatively, the literure [18] defined battery energy similar 

to (15) except relation of SoC and energy.  In [18] the battery 

power expressed as sum of power stored 𝑃𝑠 in the battery and 

power loss 𝑃𝑙𝑜𝑠𝑠  as   𝑃𝐵 = 𝑃𝑙𝑜𝑠𝑠 + 𝑃𝑠                   (16) 

Since 𝑃𝑙𝑜𝑠𝑠 depends on the storage power 𝑃𝑠, the energy, and 

temperature 𝑇, the power loss modelled as quadratic of 𝑃𝑠 . 

Thus battery power can be written as    𝑃𝐵 ≈ 𝛽𝑃𝑠2 + 𝑃𝑠                                (17) 

This work suggests that when power loss is negligible the 

battery power would be equal to effective power that same as 

storage power 𝑃𝐵 = 𝑃𝑒𝑓𝑓 = 𝑃𝑠                  (18) 

The stored power could be function of 𝑉𝑜𝑐𝑣, and its integration 

would lead to another definition of SoE. For example, in [15] 

the remaining discharge energy (RDE) was used to evaluate 

the energy storage of the battery  𝑥𝑠𝑜𝑒(𝑡) = ∫ 𝑉𝑜𝑐𝑣 . 𝐼𝐿𝐼. 𝑑𝜏 = ∫ 𝑉𝑜𝑐𝑣𝑑𝐼𝐿𝜏𝐶𝑡
𝐶𝑡2

𝑡2
𝑡  

              = 𝐶𝐵 ∫ 𝑉𝑜𝑐𝑣𝑑𝑆𝑜𝐶𝑆𝑜𝐶𝑡𝑆𝑜𝐶𝑡2          (19) 

The assuming the energy of the battery as a useful work at 

terminal of the battey the SoE is defined as [14]  𝑥𝑠𝑜𝑒(𝑡) = 𝑥𝑠𝑜𝑒(𝑡0) + ∫ 𝑉𝑇(𝑡)𝐼𝐿𝐶𝐵 𝑑𝜏𝜏0                                    (20) 

Where 𝑥𝑠𝑜𝑒(𝑡) is the state-of-charge at time t, 𝑥𝑠𝑜𝑒(𝑡0) is the 

SoE at the time 𝑡0 , 𝐼𝐵 is the battery current and 𝐶𝐵 is the 

capacity of battery. 

The required battery power for an aerospace vehicle can be 

wrttien as 𝑃𝐵 = 𝑣 𝐷𝜂𝑚𝑜𝑡𝑜𝑟 𝜂𝑝𝑟𝑜𝑝 + 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑 + 𝑃𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠         (21) 

Where 𝑣 and 𝐷 is the freestream velocity and the total air drag, 

respectively, of the air vehicle, 𝜂𝑚𝑜𝑡𝑜𝑟  is the powertrain motor 

efficiency, 𝜂𝑝𝑟𝑜𝑝 is the propeller efficiency, 𝑃𝑝𝑎𝑦𝑙𝑜𝑎𝑑  is the 

power for payload and 𝑃𝑎𝑣𝑖𝑜𝑛𝑖𝑐𝑠 is the power for avionics.  

In this work we assume that stored power 𝑃𝑠 = 𝑉𝑜𝑐𝑣𝐼𝐿  as 

effective power no-loss in power and maximum (unit) 

efficiency, the 𝑃𝑠   𝑥𝑠𝑜𝑒(𝑡) = 𝑥𝑠𝑜𝑒(𝑡0) + 1𝐸𝐵 ∫ 𝑉𝑜𝑐𝑣(𝑆𝑜𝐸)𝐼𝐿𝑑𝜏𝜏0         (22) 

Where 𝐸𝐵 is the energy capacity of the battery cell, this is not 

same as the  total capacity of battery cell 𝐶𝐵. 

Since this paper uses discrete EKF, the discrete time, the 

discreteequation (9) can be expressed in discrete-time as  𝑥𝑠𝑜𝑒(𝑘) = 𝑥𝑠𝑜𝑒(𝑘 − 1) + 𝑉𝑜𝑐𝑣,𝑠𝑜𝑒(𝑘)𝐼𝐿(𝑘)∆𝑡𝐸𝐵         (23) 

 For estimate SoE using the EKF, the measurement function 

can be written as  𝑦𝑠𝑜𝑒(𝑘) =  ℎ (𝑥𝑠𝑜𝑒(𝑘), 𝑉𝐹,𝑠𝑜𝑒(𝑘), 𝐼𝐿(𝑘)) + 𝑣(𝑘)      (24) 

where ℎ(. ) = 𝑉𝑇,𝑠𝑜𝑒 = 𝑉𝑜𝑐𝑣(𝑠𝑜𝑒) − 𝑉𝐹(𝑠𝑜𝑒) − 𝑉𝑖(𝑘)                       (25) 

is terminal voltage of battery that modelled from ECN as 

shown in Fig 5.  For SoE estimation problem, the Li-S battery 

cell is modelled as Thevenin’s equivalent circuit network 

model as shown in Fig.  

    

Ri(SoE,IL,T)

VT,soe

IL

RF(SoE,IL,T)

CF(SoE,IL,T)

Vocv(SoE,IL,T)

Vi(SoE,IL,T)

VF(SoE,IL,T)

 

 Fig.5 Battery model for SoE estimation 
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3. Battery Parameter Estimation 

The battery parameters are estimated using prediction error 

minimisation(PEM) approach as [1,3]. The parameters of cell 

represented can be expressed as new behaviour variables as 

[3]. We have battery system state vector 𝑥(𝑡). Assume that 

predicted state is �̂�(𝑡) and have initial condition of state �̂�(𝑡). 
Dynamic the state SoC and SoE   
These new parameters have to estimated using PEM. The 

parameter vector is defined as θ = [𝑉𝑜𝑐𝑣 , 𝑅𝑖𝑛𝑡, Ω, ρ ]′        (26) 

here ′ is the transpose operator.  

Let 𝑦𝑐(𝑘) and �̂�𝑐(𝑘) is the measured and estimated 

voltage for 𝑘 = 0,1, … , 𝑡. From equation (), the estimated  �̂�(𝑘) = ℎ((𝑥(𝑘)|𝜃)) = ℎ ( 𝑥𝑠𝑜𝑐(𝑘)(�̂�𝐹,𝑠𝑜𝑐(𝑘)|𝜃))     (27) 

Defining prediction error  𝜀 = 𝑦(𝑘) − �̂�(𝑘)        (28) 

The PEM minimizes the cost function 𝐽(θ) as  𝜀 max𝜃,𝑥(0) 𝐽(θ) = 𝑡𝑟𝑎𝑐𝑒(∑ 𝜀𝑡𝑘=1 𝜀′)       (29) 

Subject to  𝑥(𝑘 + 1) = 𝑓(𝑥(𝑘), 𝑢(𝑘)) ; 𝑘 = 0,1, … 𝑡 − 1          (30)  

with 𝑥(0) is the initial condition. The boundary 

condition on parameters is given as  𝜃𝑖,𝑚𝑖𝑛 < 𝜃𝑖 <𝜃𝑖,𝑚𝑎𝑥    , in which 𝑖 = 1,2,3,4 denote parameter vector 

index, and 𝜃𝑖,𝑚𝑖𝑛 and 𝜃𝑖,𝑚𝑎𝑥 represent respectively, 

maximum and minimum limit of value of parameter. 

4. The EKF based SoC and SoE Estimation 

The EKF is a conventional, however widely accepted by 

control community, recuressive  nonlinear estimation 

algorithm. The time and measurement update recursively as 

shown in Fig.  

   

Battery Parameter 

estimation using Prediction 

error Minimization(PEM)

State-of-Charge(SoC)/Sate-

of-Energy(SoE)  estimation 

using extended Kalman 

filter

SoC/SoE

Parameters: Voc,Rint, rho 

and omega

Parameter and State 

estimation

Terminal Voltage

Load Current

ECN model
ECN model

SoC/SoE  

Fig.6 The recursive process of EKF while estimating SoC 

and SoE 

The EKF uses first-order approximation of taylor series, is 

also known as Jacobian of nonlinear functions. In this 

problem, the Jacobain for state equation is evaluated as 𝐹 = [𝜕𝑓𝑠𝑜𝑒𝜕𝑥𝑠𝑜𝑒 𝜕𝑓𝑠𝑜𝑒𝜕𝑉𝐹𝜕𝑓𝑉𝜕𝑥𝑠𝑜𝑒 𝜕𝑓𝑉𝜕𝑉𝐹 ]        (31) 

And measured voltage is linearised with following Jacobain 𝐻 = [ 𝜕ℎ(.)𝜕𝑥𝑠𝑜𝑒 𝜕ℎ(.)𝜕𝑉𝐹 ]     (32) 

Thus the nonlinear state and measurement models, which are 

functions of the SoC/SoE are linearized. While estimating the 

SoC and SoE, the priori state estimate and Jacobians of EKF 

evaluate as shown in fig. 6. The EKF switches the polynomial 

fitting model of battery parameters based a value determined 

from voltage vs SoC, as shown in fig 7. curve while estimating 

SoC and SoE of low and high-plataeu.  
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At k=0, the 

estimated: 

x(0) & P(0) 

Low plateau polynomial 

models used by state and 

measurement prediction and 

Jacobian 

High-plateau polynomial 

models used by state and 

measurement prediction and 

Jacobian

No
Yes

SoC < 71%

Priori estimate error 

covariance  

Posteriori state & 

estima estimate error 

covariance  

k=k+1

Start

 

Fig.6 Flowchart for low- and high-plateau polynomial models 

in EKF. 

 

Fig.7 The empirical SoC vs battery voltage curve. 

Since the EKF uses analytical approximation of nonlinear 

functions, the investigating the performance of estimation 

could help to tune the parameter so that the estimation 

accuracy would be improved. For investigate the performance 

of EKF, an analysis of the degree of observability approach 

can be used [17] .  

In this work, the following observability matrix is used for 

DoO analysis of both SoC and SoE estimation by EKF: 𝑀(𝑘) = [ 𝐻(𝑘)𝐻(𝑘)𝐹(𝑘)]           (33)  

Defining the condition as a ratio between maximum and 

minimum of singular number of observability matrix 𝑀(𝑘) 𝑐𝑜𝑛𝑑(𝑀(𝑘)) = max (𝑀(𝑘))min (𝑀(𝑘))           (34) 

the degree of observability  𝐷𝑜𝑂(𝑘) = 1𝑐𝑜𝑛𝑑(𝑀(𝑘))          (35) 
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The DoO the measures of local observability, which is used 

to investigate the dependability of an estimation. 

5. Results 

The SoE estimation by the EKF, and comparison of SoE to 

SoC are demonstrated with MATLAB simulation results.  In 

this simulation, the SoE and SoC for the discharge test data of 

the sample cell, which is given Fig 1, is presented. While 

estimating SoC and SoE, the cofficients of polynomial fitting 

models for parameters given in Table 1 are used for priori state 

and measurement, and corresponding Jacobians at low and 

high-plateau appropriately. For instance, the open circuit 

voltage  8th order polynomial model  𝑽𝒐𝒄(𝒔𝒐𝒆) = −𝟕𝟓𝟐. 𝟔𝟐𝒙𝒔𝒐𝒆𝟖 + 𝟐𝟎𝟖𝟓𝒙𝒔𝒐𝒆𝟕 − 𝟐𝟑𝟗𝟐. 𝟖𝟕𝒙𝒔𝒐𝒆𝟔   +𝟏𝟒𝟔𝟔. 𝟗𝟖𝒙𝒔𝒐𝒆𝟓 − 𝟓𝟏𝟕. 𝟒𝟐𝒙𝒔𝒐𝒆𝟒 − 𝟏𝟎𝟓. 𝟐𝟏𝒙𝒔𝒐𝒆𝟑  
              −𝟏𝟏. 𝟔𝟗𝒙𝒔𝒐𝒆𝟐 + 𝟎. 𝟔𝟐𝒙𝒔𝒐𝒆𝟏 + 𝟐. 𝟏                                  (36) 

is used for low-plateau SoE estimation and whereas the 5th 

order polynomial is  𝑽𝒐𝒄(𝒔𝒐𝒆) = 𝟏𝟎𝟖. 𝟏𝒙𝒔𝒐𝒆𝟓 − 𝟑𝟔𝟏. 𝟏𝟑𝒙𝒔𝒐𝒆𝟒 + 𝟒𝟒𝟒. 𝟕𝟑𝒙𝒔𝒐𝒆𝟑  

                   −𝟐𝟑𝟖. 𝟏𝟖𝒙𝒔𝒐𝒆𝟐 + 𝟒𝟕. 𝟎𝟑𝒙𝒔𝒐𝒆 + 𝟏. 𝟖𝟖                  (37) 

used for high-plateau SoE estimation. Similarly the  𝑹𝒊𝒏𝒕, 𝛀,  
and 𝛒 have different order for low and high-plateau 

sepereately and their coefficients are listed in the Table 1.   

Table 1 The coefficients of parameter polynomial models 

plateau Voc Rint Rho omega 

 

low [-752.62 

2085.66 

-2392.87 

1466.98 

-517.42 

105.21 

-11.69 

0.62 

2.1] 

                  

[3.792 

-8.212 

6.428 

-1.56 

0.07346 

0.1458] 

[0.5087 

-0.6572 

0.6815] 

[6.8270 

-7.4220 

1.6850 

0.1407 

-0.1544 

0.1441] 

high [108.1 

-361.13 

444.73 

-238.18 

47.03 

1.88] 

[1.07 

-2.445 

1.457] 

[-0.0451 

0.4892] 

[0.415 

-0.7441 

0.3469] 

 

The estimated SoE and polarisation voltage obtained by SoE 

EKF is shown in Fig 8a and 8b, respectively. In Fig 8a, the y-

axis scale 1 denotes 100% and 0 denotes 0% of SoE. Since the 

test data is discharge, the initial SoE is very close to 1 and at 

end of discharge the SoE is close to 0 as expected.  These result 

seem to similar trend of the SoC EKF. The perfromance of 

SoC EKF is shown Fig 9. The Fig 9a shows the estimated SoC  

and Fig.9b polarization voltage of cell. For given parameters 

and conditions the accuracy of SoE and SoC estimation by 

EKF in terms of the degree of observability is shown in Fig 10. 

The range of the degree of observability of the SoE and SoC is 0 < 𝐷𝑜𝑂 < 1, which means the system for SoC and SOE 

estimation in BMS is locally observable entire period and 

estimators perform reasonable good. The DoO of SoE is close 

very close to DoO of SoC and this indicates that SoE of Li-S 

is very close SoC. It is worthy to analyse that at 70% SoE and 

SoC, the EKF switches from the high- to  low-plateau, and then 

follow ups slowly to reache the 10%. The perfromance over 

10% to 0% is almost flat, but not bad. However, this work need 

further investigation to improve the accuracy in estimation at 

low-plateau region. By tuning parameters the performance of 

low-plateau could be improved. In both SoE and SoC 

estimation, at 70% SoE/SoE the the performance of EKF at 

high-plateau is more accurate than the low-plateau. 

 

Fig.8 The performance of SoE EKF (a) the estimated SoE (b) 

estimated polarization voltage 

 

Fig.9 The performance of SoC EKF (a) the estimated SoC (b) 

estimated polarization voltage  

 

 

Fig.10 the degree of observability of EKF while estimating 

SoC and SoE  
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Fig.11 With unit, estimated and empirical comparison: (a) 

SoC and (b) SoE  

Figure 11 shows the estimated SoC in terms of Ah (Amphere-

hour) and SoE in terms of Wh (Watt-hour), and its comparison 

with empirical result. The squared error (Fig 12) between 

estimated and empherical one which can be observed in DoO 

analysis Fig 10 as well. Fig12a shows the error for SoC, and 

Fig12b for SoE. In both cases, the accuracy of high platea is 

better than the low plateau. In overall, the squared error for 

SoC estimation by the EKF is more than 0.03 (3%), whereas 

the SoE estimation error by is 2.5%, whic less than that of SoC.    

The estimation accuracy of EKF in the high plateau region is 

more than the low plateau. Moreover, the error for both SoC 

and SoE estimation is less than 5%, which is quite sensible and 

acceptable.      

 
Fig.12 The squared error : (a) SoC and (b) SoE  

6. Conclusion 

The SoE estimation of Li-S battery is formulated and it has 

been estimated using extended Kalman filter. In order to 

estimate Li-S battery parameters, the prediction error 

minimization is used. Assuming particular conditions and  

polynomial curve fitting models of parameters for high- and 

low-plateau, the EKF estimates SoE, and compared that to the 

SoC. Using degree of observability analysis, the estimation 

accuracy of SoE and SoC have been investigated. Having test 

result of discharge profile obtained by experiment, the SoE 

estimation is demonstrated and that compared to the SoC. 

Resuls show that though mathematically the SoE and SoC 

problems are differtent, the SoE and SoC estimation of Li-S 

battery by the EKF is similar. In both SoC and SoE estimation 

by EKF, the estimation error is 5%, which is acceptable.    
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