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ABSTRACT When localizing and detecting 3D objects for autonomous driving scenes, obtaining infor-
mation from multiple sensors (e.g., camera, LIDAR) is capable of mutually offering useful complementary
information to enhance the robustness of 3D detectors. In this paper, a deep neural network architecture,
named RoIFusion, is proposed to efficiently fuse the multi-modality features for 3D object detection by
leveraging the advantages of LIDAR and camera sensors. In order to achieve this task, instead of densely
combining the point-wise feature of the point cloud with the related pixel features, our fusion method novelly
aggregates a small set of 3D Region of Interests (RoIs) in the point clouds with the corresponding 2D RoIs in
the images, which are beneficial for reducing the computation cost and avoiding the viewpoint misalignment
during the feature aggregation from different sensors. Finally, Extensive experiments are performed on the
KITTI 3D object detection challenging benchmark to show the effectiveness of our fusion method and
demonstrate that our deep fusion approach achieves state-of-the-art performance.

INDEX TERMS Sensors fusion, 3D object detection, Region of Interests, neural network, segmentation
network, point cloud, image.

I. INTRODUCTION
Object detection with 3D bounding boxes is one of the
fundamental challenges of situational awareness and environ-
mental perception of autonomous systems (e.g., autonomous
vehicles, robots, unmanned aerial vehicles, etc.). In fact,
autonomous systems need to perceive objects in their sur-
rounding environment using different sensors (e.g., cameras,
LIDAR) for navigation and obstacle avoidance. In the past
few years, 2D object detection is one of the area of com-
puter vision that made the most significant progress [1]–[12],
especially with the advent of convolutional neural net-
work (CNN) technology [13]. However, 3D object detection
remains an open challenge, especially when multiple, hetero-
geneous sensors are used to obtain more diverse and robust
information.

Recently, many researchers focused on the exploitation of
point-cloud based methods for 3D object detection due to
the advantages of this type of data provide: precise depth
information and dense geometric shape features [14]–[19].
Surprisingly, recent approaches [20]–[25] outperform even
fusion-based methods.
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However, a standard point cloud is incapable of offering
high-resolution texture information of an object, which typ-
ically is very beneficial in capturing discriminative features.
In contrast, images provide rich colour and texture informa-
tion, but with a lack of depth and scale information without
resorting to complex and computationally intensive algo-
rithms (e.g., stereography). For example, objects (e.g., cars,
pedestrians) detected at long-distance results in few points,
which makes the classification or localization of these objects
very difficult resorting to point clouds data only. Meanwhile,
in the image domain, texture and colour features of objects
can still be visible even at longer distances, due to the higher
spatial density of images, and likely to be captured by existing
mature 2D CNNs technology. As a result, the fused features,
leveraging the advantages from both point clouds and images,
are beneficial in exploiting more reliable representations
and improving the performance of the 3D object detection
architecture.

The development of an efficient and effective sensor fusion
method proves yet challenging due to the viewpoint mis-
alignment of point clouds and images. In order to address
this issue, early methods MV3D [26] and AVOD [27] pro-
pose 3D bounding box regression on fused 2D images and
2D Bird-Eye-View (BEV) feature maps, although quanti-
zation for BEV generation gives rise to a lot of geometric
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information losses. Frustum Pointnets [28] and Pointfu-
sion [29] both project 2D bounding boxes from the image-
based 2D detector onto the point clouds to coarsely cluster
potential foreground points. Then, PointNets can be applied
for 3D bounding box estimation, but the overall procedure
heavily relies on the performance of 2D detectors. Point-
Painting [30] feeds the pixel-wise semantic features captured
from the image-based semantic segmentation model onto
corresponding point-wise semantic features in the point cloud
to boost the performance of 3D object detection.

It can be observed that the main disadvantage of using
dense point-pixel fusion methods such as [30] is that it leads
to a considerable amount of redundant computations. Mean-
while, using a BEV-image fusion method allows the deep
learning-based fusion of the feature maps captured from an
individual viewpoint but with geometric information losses.
However, the authors believe that it is not strictly necessary to
densely fuse the whole point clouds with images. Conversely,
it is feasible to generate a small set of potential Region of
Interests (RoIs) in the point clouds and the images, followed
by applying a deep fusion method only on those local regions
used for 3D object detection. The advantages of this fusion
method are that it considerably reduces the computation cost
and allows an easy alignment of the viewpoints on the local
regions.

Aiming at filling the aforementioned gap, we hereby
present an efficient and lightweight deep fusion method for
3D object detection for point clouds and images. Our main
contributions can be summarized as follows:

• We propose a lightweight deep fusion neural network,
named RoIFusion, aiming at sparsely fusing a small set
of RoIs from the point clouds and the images for 3D
object detection, which is beneficial for avoiding dense
point-pixel fusion.

• We propose a fused keypoints generation (FKG) layer
to estimate a small set of keypoints on the objects for
further ROIs generation, followed by a voting layer used
to generate the center points of the objects.

• We propose a RoIFusion layer to generate and aggregate
2D/3D RoIs for feature fusion, followed by a prediction
layer to regress the parameters of the 3D bounding boxes
and their orientation.

II. RELATED WORK
A. LIDAR-ONLY METHODS FOR 3D OBJECT DETECTION
Many existing methods explored the possibility of detecting
the objects with 3D bounding boxes only using point cloud
data, as they provide accurate geometric information. It is
possible to broadly classify these methods into four cat-
egories: projection-based methods, volumetric-based meth-
ods, pointnets-based methods, and point-voxel methods.

1) PROJECTION-BASED METHODS
Several works [23]–[25] apply 2D CNNs directly to Bird-
Eye-View (BEV) projected from the raw point clouds in

order to estimate the 3D bounding box and orientation of
an object. FVNet [31] projects the raw point clouds to the
front view, which is then fed to a proposal generation network
and a refinement network to estimate the parameters of the
3D bounding box (i.e. object location, size, and orientation).
This method allows for building a lightweight neural network
for real-time applications. However, it ignores the size and
the location of the objects and suffers from lots of geomet-
ric information losses during quantization. As a result, it is
unlikely to exploit sufficient discriminative features for 3D
object detection.

2) VOLUMETRIC-BASED METHODS
Volumetric-based methods convert the raw point clouds to
standard 3D grids and represents the point clouds as vox-
els. For instance, VoxelNet [21] learns discriminative voxel-
wise features for 3D region proposal generation and then
proceeds to solve the 3D bounding box regression problem.
SECOND [22] and PointPillars [32] improved VoxelNet [21]
by proposing an efficient method, named sparse convolu-
tion [33], to ignore the empty voxels.

3) POINTNETS-BASED METHODS
PointNets [14], [15] models are efficient in the exploitation
of point cloud features. PointRCNN [20] sets an example in
the classification and regression of 3D bounding box directly
from dense point clouds. However, the dense processing
leads to quite heavy computational costs. A recent one-
stage method, 3DSSD [34] abandons the refinement stage
and builds a one-stage anchor-free neural network to directly
regress 3D bounding box from the estimated candidate
3D RoIs.

4) POINT-VOXEL METHODS
In order to achieve high detection performance but also
to reduce the computational costs, several works [35]–[38]
introduced two-stages neural networks for 3D object detec-
tion. In the first stage, they coarsely localise the objects and
estimate the parameters of the bounding box from the voxel
grids generated from the raw point clouds. In the second
stage, they introduce a refinement module that leverages the
PointNets to refine the 3D bounding box.

B. IMAGE-ONLY METHODS FOR 3D OBJECT DETECTION
Wang et al. [39] apply LIDAR-only 3D detectors on the
Pseudo-LiDAR representations converted from the estimated
image-based depth maps. Stereo R-CNN [40] applies Faster
R-CNN [1] on both the left and right images and predicts 3D
bounding boxes by learning the projection relations between
the associated 2D left-right bounding boxes and 3D bounding
box corners.

C. MULTI-SENSOR FUSION METHODS FOR
3D OBJECT DETECTION
In order to leverage the strengths of each sensor, there are
several works attempting to fuse point clouds and 2D images

VOLUME 9, 2021 51711



C. Chen et al.: RoIFusion: 3D Object Detection From LiDAR and Vision

with various strategies. Early works such as MV3D [26]
and AVOD [27] firstly used off-the-shelf 2D feature extrac-
tors to capture the feature maps from the images and the
multi-view representations of the point clouds (e.g., Bird
Eye View and Front View), which are then typically fused
together by a sum or a concatenation operation. A Region
Proposal Network (RPN) is then applied to the fused feature
maps to generate 3D bounding box proposals, followed by
a refinement network for final 3D bounding box prediction.
The advantages of this method are that mature 2D object
detector and 2D feature extractor technologies are available
to be applied to the multi-view representations of the point
clouds. Furthermore, the features from different sensors can
interact over the stacked layers, as these features are normally
obtained from similar or even the same neural networks.
Liang et al. [41] utilizes the continuous convolution method
to fuse the feature maps of the images and BEVs. Specifi-
cally, this approach proposes a continuous fusion layer that
aggregates each pixel feature in the image feature maps with
the features of the neighbouring points in the BEV feature
maps to learn a fused local region, which allows us to extract
sufficient discriminative features for 3D object detection.

In order to narrow the searching space, Frustum point-
nets [28] and Frustum convnet [42] introduced the con-
cept of 3D bounding frustums. The 2D bounding boxes are
obtained from mature 2D detectors, and then the 3D frus-
tums are used to trim the point cloud data. Finally, Pointnets
methods are applied to the trimmed point clouds for carrying
out the 3D bounding box regression task. Similarly, Pointfu-
sion [29] aggregates the global features of the image obtained
from an off-the-shelf 2D feature extractor with the dense
semantic features of the point cloud, which are then captured
by Pointnet [14].

Finally, PointPainting [30] densely aggregates the output
of the image segmentation neural network with the point
clouds before applying LIDAR-only 3D detectors to boost the
performance of the 3D object detection task.

III. RoIFusion ARCHITECTURE
In this section, we introduce and describe our RoIFusion
neural network for 3D object detection as shown in Fig. 1,
which uses both raw point clouds and 2D images as input.
Our goal is to leverage the fused information captured from
both sensors to classify and localize the objects within the
oriented 3D bounding boxes. Three salient points of our
model architecture need to be highlighted:
• A fused keypoints generation layer (FKG layer) is pro-
posed, aimed at estimating a set of keypoints from the
point clouds and the images.

• ARoIs fusion layer is used to generate 3D/2DRoIs using
the obtained keypoints, followed by the 3D/2DRoI pool-
ing operations to obtain the corresponding features to
proceed to further RoIs fusion operations.

• A prediction layer is proposed to infer the parameters
of the oriented 3D bounding boxes and corresponding
classes.

FIGURE 1. Flow chart of the proposed RoIFusion architecture. The flow
chart consists of three main steps: keypoints generation, RoIs generation,
and 3D bounding boxes prediction. The FKG indicates keypoints
generation layer.

A. FUSED KEYPOINTS GENERATION (FKG) LAYER
Instead of generating 3D region proposals relying on all
the foreground points, we only estimate a small set of 3D
keypoints on the objects to generate the RoIs for deep fusion.
As illustrated in part (a) of Fig. 2, our FKG layer takes the
raw point clouds and the RGB images as input, and com-
bines point-guided keypoints and pixel-guided keypoints.
The fused keypoints are generated by leveraging the seg-
mented point-clouds and images. As a result, we obtain a set
of keypoints on the objects leveraging both the point cloud
and the image information.

We can define the point cloud as shown in Eq. (1), where xi
denotes the i-th point with the 3D space coordinates [xi, yi, zi]
and the measured reflectance ri. As a result, the dimension of
the point cloud data set is N × 4.

X =
{
xi = [xi, yi, zi, ri] ∈ R4, i = 1, 2, . . . ,N

}
(1)

1) POINT-GUIDED KEYPOINTS GENERATION
Our point-guided keypoints ˆX(pc) ∈ RM1,F , where M1,F
are the numbers of keypoints and corresponding features
respectively, are extracted by the set abstraction (SA) lay-
ers backbone, as illustrated in part (d) of Fig. 2. This is
done as proposed by PointNet++ [15], where a simultaneous
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FIGURE 2. RoIFusion framework. As a whole, the proposed architecture contains three parts: (a) a Fused Keypoints Generation (FKG) layer
which uses the raw point clouds and the images as input and aggregates the keypoints generated from both the point cloud set abstract
(SA) network and the image segmentation network respectively. (b) The keypoints are then used to estimate the center points of the
potential objects and the 3D Region of Interests (RoIs), which are projected to the image to obtain the 2D RoIs. (c) The 3D/2D RoI pooling
layers are employed to capture the respective local features, which are finally fused together for 3D bounding box prediction. (d) The
inputs of the SA module are the 3D points N1 × 3 and the corresponding features N1 × F1. We simultaneously downsample the points,
extract the corresponding deep features in the orange block, and obtain the downsampled 3D points N1 × 3 and corresponding features
N2 × F2. N1, F1,N2, F2 are the dimension number of the input points/features, output points/features respectively. (e) Feature
Propagation (FP) module: after applying a SA module, the number of the points is downsampled from N1 to N2. Successively, the FP
module takes layer1 with N1 points and layer2 with N2 points as input. After that, the number of points N2 in the layer2 is firstly
interpolated to N1, the output of which is then concatenated to layer1 to obtain the layer3 with the number of points N1.

FIGURE 3. Illustration for point-guided keypoints generation.

downsampling of the points and extraction of the correspond-
ing deep features are carried out.

Specifically, as shown in Fig. 3, a certain number of SA
layers can be applied, and jointly with a downsampling oper-
ation that makes the dimensionality of the raw point cloud
reduced. At each layer, a set of points are processed, and
a new, smaller set with higher-level features is generated.
Finally, in the last layer we obtain an extremely reduced
number of points that are used as keypoints.

For what concerns the downsampling strategy, we use an
iterative farthest point sampling (FPS) method to select the
points of the subset. Let us suppose an empty subset X1,

a random point is firstly picked and added to X1, then the
point having the farthest 3D geometric Euclidean distance
is iteratively added to X1 until the expected M points are
picked. This FPS strategy, named D-FPS, is characterised
by resulting in better coverage of the whole point set than
a random sampling strategy. In order to preserve sufficient
foreground points and filter out the background, inspired
by 3DSSD [34], we also decided to employ a specific FPS
strategy, named F-FPS, which calculates the Euclidean dis-
tances of the semantic features for the points selection. The
F-FPS method is beneficial to preserving foreground points
(e.g., points on the objects) and removing the useless back-
ground, such as points on the ground. Finally, we follow [34]
and combine both FPS strategies together to efficiently cap-
ture sufficient foreground points as the keypoints.

2) PIXEL-GUIDED KEYPOINTS GENERATION
Considering the fact that colour and texture representations
are useful to localize objects within point clouds, especially
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FIGURE 4. Illustration for pixel-guided keypoints generation.

for small objects that are difficult to be detected by LIDAR-
only detectors, we capture the segmentation features and
corresponding scores using an image segmentation network,
which is then used to guide the keypoints selection as shown
in Fig. 4.

Algorithm 1 Pixel-Guided Keypoints Generation

Input: Point clouds: X ∈ RN ,4.
Images: I ∈ RW ,H ,3.
Homogeneous transformation matrix: T ∈ R4,4.
Camera projection matrix:M ∈ R3,4.

Output: Pixel-guided keypoints features: X̂(img)
∈ RM2,F .

1: Apply point cloud segmentation network to obtain seg-
mentation features: Xs ∈ RFp .

2: Apply image segmentation network to obtain segmen-
tation features: Is ∈ RW ,H ,Fi and segmentation scores:
S ∈ RW ,H ,C .

3: Ximg, indices = Projection(M,T,X).
4: Xobj, ˆindices = Mask(Ximg,S, indices).
5: X(obj)

s = Mapping(Xs, ˆindices).
6: X̂(img)

= FPS(X(obj)
s ).

7: return X̂(img).

The detailed algorithm used to extract the pixel-guided
keypoints is shown in Alg. 1. Firstly, we generate the seg-
mentation features of the point cloud Xs using a Feature
Propagation (FP) layer as shown in part (e) of Fig. 2. In par-
ticular, we leverage the output of the SA layer as input, and
upsample the points by interpolating the point features using
the inverse squared Euclidean distance weighted average
function as shown in Eq. (2). Furthermore, we concatenate the
interpolated point features with the skip-linked point features
from the corresponding SA layer. As a result, our FP layer
outputs the 3D geometric points and corresponding semantic
features with the same number of points as the raw point
cloud.

f (x) =
∑k

i=1 ωi(x)fi∑k
i=1 ωi(x)

(2)

where ωi(x) = 1
(x−xi)2

is the inverse squared Euclidean
distance between a certain point x and corresponding
i-th neighbouring point xi of the k = 3 nearest neighbours.
For what concerns image processing, it is a common choice

in literature to use the mature 2D feature extractors to capture

the feature maps from the RGB images. However, these
feature maps are unlikely to localize the objects in the images.
Consequently, we use a lightweight image segmentation neu-
ral network DeepLabv3 [43] to efficiently capture pixel-wise
segmentation features Is and segmentation scores S, which
allows us to ignore the background and conduct the keypoints
selection. It is worth pointing out that our RoIFusion model
is agnostic to the development of the image segmentation
models.

After that, the Projection method (see Step 3 in Alg. 1)
projects the point cloud to the image viewpoint using a homo-
geneous transformation as shown in Equation 3. As a result,
the point clouds are painted by the corresponding images with
the segmentation scores S of the relevant pixels. Besides,
we also obtain the mapping indices that associate all the
points in the point cloud viewpoint with corresponding points
in the image viewpoint.

Then the Mask method (see Step 4 in Alg. 1) takes the
painted point cloud, corresponding scores S and indices as
input. We set a global threshold for all the obtained scores
S to convert the scores to the binary values, which allows us
to only select the pixel-guided foreground points and corre-
sponding indices that are associated with the binary value 1.

The Mapping method (see Step 5 in Alg. 1) further uses
the reserved indices to project these selected points from the
image viewpoint back to the point cloud viewpoint. Conse-
quently, these pixel-guided points are also the foreground in
the corresponding image, which is beneficial for selecting the
foreground points with few geometric features but sufficient
colour information.

At last, we use the F-FPS as our downsampling strategy
to further select a small set of point segmentation features
ˆX(img) with the dimension size of M2 × F , where M2 and

F are the numbers of keypoints and corresponding features
respectively.

y = Prect Rrect Tcam
velo x (3)

where x indicates a certain point in the point cloud, and
Prect,Rrect are the projection matrix and rotation matrix
respectively. The Tcam

velo is the homogeneous matrix for trans-
formation.

3) KEYPOINTS FUSION
The fused keypoints X̂ ∈ RM ,F are hence obtained by
aggregating the point-guided keypoints with the pixel-guided
keypoints along with the channel axis of the number of the
keypoints, where M is the number of fused keypoints. It is
worth highlighting that the points on objects that are difficult
to be detected are more likely to be selected due to the fact
that a part of the points are captured based on the image
segmentation scores.

B. RoIs FUSION LAYER
After the implementation of the FKG layer intertwined with
the point cloud segmentation network and the image seg-
mentation network, we obtain a set of keypoints scattered
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FIGURE 5. RoIs generation layer. The objects with all the oriented angles
are illustrated in the red dot circle. The length size of the objects (e.g.,
cars) are defined as l . η is the enlarged size for the object length. As a
result, η + l represents the size of the RoI in the Bird eye view (BEV).

over the objects. The keypoints are also used to predict the
center of the objects before we generate the RoIs. In fact,
considering that these keypoints lie on the objects, inspired
by [44], the spatial location and features of the keypoints can
be used to estimate the centers of the corresponding objects.
As shown in part (b) of Fig. 2, these high-level keypoints
are used to generate 3D RoIs in the point cloud view and
corresponding 2D RoIs in the camera view, followed by a RoI
fusion operation to obtain the fused RoI features. Specifically,
we build a subnetwork VoteNet with a single layer to learn
the spatial offset between predicted center points and the
corresponding ground truth. We treat each center point as the
centroid of the 3D bounding box of the object.

1) 3D RoIs GENERATION AND POOLING
The 3D RoIs are then generated for the previously estimated
center points. Successively, we apply a 3D RoI pooling layer
to pool the surrounding points of each center point and learn
the local features for those clustered points around each
center point.

We encode our RoIs using the axis-aligned 3D bounding
boxes. Specifically, the centroid of each RoI is parametrized
as (x(c), y(c), z(c)), whilst the length l and the width w of the
RoI are set to the enlarged length size of the objects, in order
to cover all the possible orientations of the object as shown
in Fig. 5. We finally use an enlarged height of the objects as
the height h for each RoI. As a result, the dimension of the
RoI is defined as (x(c)i , y

(c)
i , z

(c)
i , η+ hi, η+wi, η+ li), where

η is the parameter for extended size of the RoI.
After that, we shift the points inside each 3D RoI to the

relative locations based on the center points to improve the
local features learning and then apply a subnetwork equipped

with stacked Multi-Layer-Perceptron (MLP) layers on the
cluster the points inside the 3D RoIs to extract the local RoI
pooling features.

2) 2D RoIs GENERATION AND POOLING
Our 3D RoIs are then projected to the image to generate
the corresponding 2D RoIs, followed by a 2D RoI pooling
layer, inspired by [1], to learn the local texture features for the
2D RoIs.

3) RoI POOLING FEATURES FUSION
We finally fuse the point cloud 3D RoI and the image 2D
RoI by aggregating the pooling features along with feature
dimension axis as shown in Fig. 7. Specifically, we define a
fusion strategy by concatenation as in Eq. (4):

Ffuse = MLP(concat[F(pc)
roi ,F

(img)
roi ]) (4)

where Ffuse is the fused feature from the 3D RoI pooling
features F(pc)

roi and 2D RoI pooling features F(img)
roi .

C. PREDICTION LAYER
The prediction layer, inspired by [34], uses an anchor-free
method to directly predict the offset between the center points
and the corresponding ground truth of the center of the 3D
bounding box for regression. Besides, we also directly regress
the 3D bounding box size from the fused RoI features. For
the orientation regression, we follow the method introduced
in [28] relying on a hybrid classification and regression algo-
rithm to estimate the orientation angle of the 3D bounding
box. In particular, we split the orientation into H equal angle
bins and use the output of the RoI fusion layer to classify the
said angle bins, and then regress residuals with respect to the
classified bin.

IV. MODEL STRUCTURE
The model structure is presented in Fig. 2. In our experi-
ments, we firstly sampled randomly N = 16384 points from
the raw point cloud. Successively, we apply the SA layer
Fig. 6(a), the FP layer Fig. 6(b), and the image segmentation
network DeepLabv3 to capture M = 256 keypoints. The
hyper-parameters of the SA layer and the FP layer are rep-
resented in Fig. 6(a) and Fig. 6(b) respectively. Successively,
we employ a single layer Votenetwith filters (128) to estimate
the center points for the 3D bounding box of the objects.
The dimensions of the 3D RoIs are set to [h = 1.8 m,w =
5.0 m, l = 5.0 m], [h = 1.8 m,w = 1.0 m, l = 1.0 m],
[h = 1.8 m,w = 1.8 m, l = 1.8 m] for the car, pedestrians,
and cyclists objects respectively.We set the constant extended
value η = 1.0 m. We finally set the number of the angle bins
to H = 12.

V. EXPERIMENTS
In this section, we evaluate our deep fusion method on the
widely used KITTI 3D object detection benchmark [48], [49].
We firstly introduce the KITTI dataset and explain the
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FIGURE 6. Illustration of the SA and FP layers. The SA layer 6(a) takes N points as input, followed by stacked SA layers to downsample points and
extract corresponding features. After that, the FP layer 6(b) upsamples the points to the original 16384 points using stacked FP layers. R is the
radius of the ball query strategy for clustering local region points, and C is the number of the filters for the MLP layers.

FIGURE 7. RoIs fusion layer.

detailed training settings. Then, we compare our results with
recent state-of-the-art 3D detectors. We only test our model
on the car category due to a large amount of data after
preprocessing. However, we evaluate all the categories when
we compare our model to the backbone model 3DSSD [46]
to present the effectiveness of our fusion method. Finally,
we analyse the efficiency of our fusion method and visualize
some representative results for our 3D object detectionmodel.

A. DATASET
TheKITTI dataset [48] contains both 2D images and 3D point
clouds with the corresponding annotations for the cars, pedes-
trians, and cyclists categories in an urban driving scenario.
The sensors used for data collection are: 2 grayscale cam-
eras, 2 colour cameras, and 1 Velodyne HDL-64E LIDAR.
We only used the point clouds data and images from the left
colour camera to train our fusion model. The dataset provides
7481 samples for training and 7518 samples for testing. As a
standard good practice, we further split the KITTI training
dataset into 3712 samples for training and 3769 samples for
validation. We evaluated our model on the validation dataset
following the easy, moderate, and hard difficulty classifi-
cation levels officially introduced by KITTI. Specifically,
in order to align the performance of the algorithms and cover
most of the traffic scene scenarios, the object detection task is

divided into three levels for validation and testingwith respect
to the different size, occlusion, and truncation level as shown
in Table 2. Besides, the average precision (AP) metric is used
when we compare our results with other different models.

B. IMPLEMENTATION DETAILS
We used the Adam [50] algorithm as our training optimizer.
The batch size was set to 4 on an NVIDIA 1080Ti GPU. The
learning rate was initially set to 0.002, and then was divided
by 10 at 40 epochs. Our model has been trained for a total
of 50 epochs.

During training processing, we introduce two data aug-
mentation methods on the original KITTI dataset. Specif-
ically, we firstly separate the foreground objects with the
corresponding inner points out and then randomly add them
into the current point cloud. Then we augment the training
dataset by rotating the orientation of the bounding boxes
in a uniform distribution and translating the center of the
bounding boxes in random.

Wit respect to the testing processing, the batch size is
set to 1, and threshold of the classification confidence is
set to 0.3.

C. RESULTS
As shown in Table 1, for the 3D car detection, our model
also achieves the best performance compared to recent
state-of-the-art fusion methods on the test dataset. We choose
moderate difficulty as the main average precision (AP) met-
ric, and compare our model to BEV-image fusionMV3D [26]
and AVOD [27], our deep fusion method outperforms all
others by a large margin. For the frustummethod, our method
outperforms F-PointNet [28] by 7.12%. Besides, our model
significantly outperforms point-pixel-wise fusion method
Painted PointRCNN [30] by 6.21%. We also visualize some
examples for prediction results and corresponding ground
truth as shown in Fig. 9 for better representation. However,
the performance of our fusion method for 3D car detection
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TABLE 1. 3D car detection results on KITTI test dataset. Sen. indicates involved sensors by the methods. L and I denote LIDAR and images respectively.

TABLE 2. KITTI dataset difficulty classification levels for object detection.

is similar to our backbone model 3DSSD [46], and we dis-
cuss the reason that the results for each experiment have
fluctuations due to the random downsampling processing in
the model. Consequently, the model is actually applied on
the different points during inference, which leads to different
results.

However, it is easy to observe that our model performs
the worst for pedestrian detection when comparing to other
fusion methods [27], [28], [47]. We discuss that two-stage
detection methods, which include coarse detection module
and refinement module, normally perform better than one-
stage. Specifically, a large number of region proposals firstly
are generated in the coarse detection module, followed by
the refinement module for further finer estimation, which is
more likely to capture the small objects (e.g., pedestrians).
Besides, our one-stage method directly generates a small set
of keypoints from a large amount of points, which leads to
the fact that it is still difficult to select the small objects that
only contain quite few points. Last but not least, although our
fusion model could capture the points on the small objects
using the pixel information, the fused features from these
points and corresponding pixels are still not sufficient to

regress the 3D bounding boxes. With regard to the 3D cyclist
detection, our model achieves competitive performance com-
pared to other state-of-the-art fusion methods.

We also compare our model to the backbone network
3DSSD [46] on the validation dataset to show the effective-
ness of our fusion strategy as shown in Table 3. The bottom
line indicates the difference between our model and 3DSSD
for 3D car detection. It shows that our model outperforms
3DSSD in all the categories and all the difficulty levels,
which convincingly shows the efficiency of our RoI fusion
method. Take the moderate difficulty performance level on
the validation dataset as an example, our fusion method sig-
nificantly improves 3DSSD model by 3.29%, 1.93%, 1.73%
for car, pedestrian and cyclist detection respectively. Besides,
as shown in Table 3, we further introduce the average results
in all the difficulty classification levels performance for car,
pedestrian and cyclist objects detection, and it demonstrates
that our model outperforms 3DSSD by 2.14%. As a result,
the results verify the effectiveness of our fusion method.

In order to show the reproducibility of our model, we sta-
tistically perform our model in the same computing environ-
ment 10 times and then calculate the standard deviation of the
moderate results for the 3D car detection as shown in Table 4.

D. ABLATION STUDY
We carried out several ablation experiments to investigate
the effectiveness of extended value for RoI size and different
fusion methods. All the experiments are performed on the
KITTI validation dataset for the 3D car detection task.

1) EFFECTS OF THE EXTENDED SIZE OF RoI
In order to increase the number of selected points around
the objects, we can enlarge the RoI size by an extended
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TABLE 3. 3D Car detection average precision (AP) on KITTI validation dataset compared to 3DSSD model. The Delta indicates the difference between our
model and 3DSSD model that is our backbone for the point cloud processing. Avg is the average accuracy in all the difficulty classification levels for the
car, pedestrian and cyclist detection. repro represents that the results are reproduced on our own computer.

TABLE 4. The standard deviation of the reproducibility of the result. Dev indicates the standard deviation of the results for 10 evaluation experiments.

TABLE 5. Effectiveness of the extended value η for RoI size on KITTI car
validation dataset.

value η, and evaluate the effect using more contextual local
features. Table 5 shows that the model achieves the best
performance when η = 1.0. Besides, we notice that there
is a significant drop in performance when no extended size
is assumed (i.e. η = 0), especially for the hard difficulty
level of detection. In fact, in this case, typical objects are
either partially occluded by other objects or far away from
the sensor, which leads to having few points per objects.
As a result, involving more surrounding points is typically
beneficial to object classification and regression. On the other
hand, when a larger size of the box is assumed (i.e. η = 2),
sufficient information is provided to the network, but jointly
to redundant and harmful information leading to a decrease
of performance. In contrast, smaller values of η only could
provide partial information of the objects (i.e. cars), which is
insufficient to predict the parameters of the 3D bounding box.

2) EFFECTS OF THE FUSION STRATEGY
We further investigate the effectiveness of the different fusion
strategies. In addition to the concatenation operation as
described in Section III-B3, we also employ operations, such
as sum, max operation, and compare the results for different
choices. As shown in Table 6, the concatenation operation for
RoI features fusion achieves 91.36% 82.74% 80.22% perfor-
mance for easy, moderate, and hard difficulties, respectively.
The results show that the concatenation operation could fuse

TABLE 6. Effectiveness of the fusion strategy on KITTI car validation
dataset.

TABLE 7. Inference time, the parameters and accuracy on the moderate
level for different fusion methods. para. indicates the number of the
parameters (Million).

more discriminative features from the 3D RoIs and corre-
sponding 2D RoIs. This can be linked to the fact that both the
sum operation and the max operation could obtain signature
features, but the concatenation operation allows to keep all
the features from different sensors, which then is likely to
allow capturing more useful features for classification and
regression.

3) EFFECTS OF THE DISTANCE OF THE OBJECTS
As we previously discussed, detecting small-objects or far
away objects relying on point cloud data only is often difficult
due to the sparsity of the information. In order to present
the efficiency for our fusion method, we only compare the
difference to our backbone LIDAR-only model 3DSSD [46]
for the detection performance in the various distance ranges.
As illustrated in Fig. 8, it is easy to observe that our results
only have slight differences with the 3DSSD when detect-
ing the cars within 20 meters. We discuss that LIDAR-only
methods are likely to obtain sufficient features from the
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FIGURE 8. The comparison of the accuracy performance for the detected objects in the various distance ranges.

FIGURE 9. Qualitative results on the KITTI validation dataset. The predicted objects and the ground truth objects are shown in red and green
bounding boxes respectively. We also project the bounding boxes to the RGB images for better visualization.

points on the nearby cars. However, for objects at distances
greater than 20 meters, the performance decreases for both
models, but our fusion-based model performs significantly
better than 3DSSD when detecting the objects located in the
long distance. Besides, our fusionmethod remarkably outper-
forms 3DSSD for the pedestrians and cyclists detection in all
the distance ranges, although the performance dramatically
decreases when the pedestrians and cyclists located in the
long-distance (e.g., greater than 40 meters). As a result, these
results convincingly show that our fusion method has higher
accuracy in the long-distance range as a consequence of
learning more discriminative colour and texture information
than having to rely only on the point cloud information. It is

worthwhile to mention that the improvement is still restricted
for the small object detection (e.g., pedestrians, cyclist) due to
the fact that it is still difficult to regress the parameters of the
3D bounding boxes leveraging quite a few points information,
although the pixel features are beneficial for locating the
foreground points on the small objects.

4) INFERENCE TIME
We tested the inference time on KITTI validation dataset
with a NVIDIA 1080Ti GPU, and then compare to existing
fusion methods in Table 7. Our model achieves the best trade-
off compared to BEV-image fusion method AVOD [27] and
frustummethod F-PointNet [28]. We also note that our sparse
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RoI fusion method is much better than dense point-pixel
fusion method PointPainting [30] in terms of both accuracy
and inference time.

E. QUANTITATIVE ANALYSIS
The comparison of our model with other multi-sensor meth-
ods, as shown in Table 1, shows that our model achieves
higher efficiency and effectiveness. The RoI fusion enables
to globally fuse the local area from the point clouds and
the images, making it easier to align the viewpoint when
we concatenate the 3D/2D RoI pooling features. In contrast,
the point-pixel fusion is unlikely to obtain discriminative
features due to the fact that the point clouds are sparse and
irregular, conversely to images, which are always conforming
to a standard grid-like structure. Compared to BEV-image
fusion, our model outperforms others by a largemargin, prob-
ably due to the information losses during the BEV generation.

VI. CONCLUSION
In this paper, we proposed a novel deep fusion method,
named RoIFusion, which efficiently fuses 3D-point cloud
data and 2D-images for carrying out 3D object detection for
autonomous vehicle navigation. We proposed a lightweight
neural network able to generate 3DRoIs from the point clouds
and 2D RoIs from the images, and then employing a 3D RoI
pooling layer and a 2D RoI pooling layer in order to obtain
the geometric features and the texture features, respectively.
Finally, we fuse the extracted features together to predict
the oriented 3D bounding box for the final detected object.
Our fusion method is flexible and could combine any other
LIDAR-only segmentation network and/or image segmenta-
tion network. The state-of-the-art performance of our model
convincingly shows that the fusion method proposed can
successfully boost the performance of 3D object detection.
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