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Abstract— Research into autonomous control and behaviour
of mobile vehicles has become more and more widespread.
Unmanned aerial vehicles (UAVs) have seen an upsurge of
interest and of the many UAVs available, the quadrotor has
shown significant potential in monitoring and surveillance tasks.
This paper examines the performance of iterative learning
control (ILC) in gradient-based control that enhances a quadro-
tor’s controllability and stability during attitude control. It
describes the development of the learning algorithms which
exploit the repeated nature of the fault-finding task. Iterative
learning control algorithms are derived and implemented on
a quadrotor in a test bench. The proposed ILC algorithms
on the quadrotor model are evaluated for system stability,
convergence speed, and trajectory tracking error. Finally, the
performance of the proposed algorithms is compared against a
baseline performance of the PID control schemes.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are being increasingly

applied to civilian and commercial operations, rather than

predominantly in military applications as in the past. The

Unmanned Vehicles can fly and perform a multitude of

tasks without pilot involvement, and may be designed to

operate on the ground or under water. Figure. 1 shows the

most common commercially available quadrotors as well as

the Hummingbird quadrotor which is used in this research.

Whilst primary fields of commercial and research interests

include surveillance, monitoring and object tracking systems,

autonomous UAVs have been used to move goods in industry

and deliver products and services directly to the customer’s

home. These vehicles have also shown significant potential in

applications including disaster monitoring (e.g. recent natural

disasters of Indonesia, and the earthquake in Nepal), 3D

mapping, and aerial photography. Recently, an American

presidential candidate proposed using UAVs for monitoring

USA borders as a countermeasure against illegal immigration

[1].

The global UAV payload market was valued at $43.7

billion at the end of 2012, and is estimated to increase

to $68.6 billion by 2022. The number of UAVs increased

dramatically in civilian use such as the registered number of

UAVs in use in the U.S. exceeded 200000 in the first 20 days

of January 2016, just days after the USA Federal Aviation
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Fig. 1. (a) Ascending Hummingbird, (b) Phantom 3 Standard DJI, (c)
Firefly, (d) Indago

Administration (FAA) started requiring owners to officially

register [2].

The quadrotor performance depends critically on control

strategies, which in turn depend on the underlying dynamic

model. This area is non-trivial since quadrotors are always

under-actuated and unstable with significant non-linearity

and strong dynamic coupling. Moreover, quadrotor stability

can easily be compromised by environmental disturbances

[3]. In general, the quadcopter consists of four actuators

connected with identical arms as shown in Figure. 2. It is im-

portant to note that there are two approaches to modelling the

dynamics of quadrotors, Newton-Euler and Euler-Lagrange

formulation. Newton-Euler depends on the spatial Cartesian

coordinates to describe the system equations of motion and

it is obtained by projecting the external forces that affect

the quadrotor onto these coordinates. The Euler-Lagrange

approach is less dependent on the coordinate system and

makes use of the conservation of energy to derive the

equations of motion instead [4].

The most important key point in using the quadrotors is

how to control a quadrotor. Researchers tend to use different

control approaches, some of them is based on the classical

control such as PID [5], or Optimal Control such as Linear

Quadratic Regulation (LQR) [6], whilst others use sliding-

mode control [7], back-stepping control [8], and learning

control which includes iterative learning control (ILC) [9].

Iterative Learning Control (ILC) is an advanced control

method that aims to reduce the error between a desired

reference trajectory signal and the system output by updating

the control input signal in a repetitive manner each itera-

tion. In a small number of cases Iterative learning control

(ILC) has been applied to quadrotors. ILC can be used for

systems in which the finite-duration task is repeated. Each

trial must have the same initial conditions and ILC updates

the input signal with the aim of ensuring that the system
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output converge to a reference signal as the number of trials

increase. In [10] iterative learning control was applied to a

quadrotor to obtain increased performance through learning.

The emphasis was on combining classical control methods

with ILC. To control the quadcopter, three different methods

were applied involving iterative learning control as follows:

off-line ILC, on-line ILC, and a combination of both on-line

and off-line ILC. Pipatpaibul et al. designed an on-line ILC

update for quadrotor trajectory tracking control, employing

an inner PD controller to stabilize the system [11]. The

system showed large tracking error but ILC could reduce

it in subsequent iterations. Another study was conducted

by Zhaowei et al. who implemented ILC with an adaptive

component to enhance the controller performance and ro-

bustness. This was applied to a XAIRCRAFT quadrotor and

experimental results showed good tracking performance in

the presence of disturbances [12].
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Fig. 2. Quadcopter movements with a) Thrust, b) Roll, c) Pitch, and d)
Yaw.

Very few ILC algorithms have been implemented in this

area, and no analysis or practical results exist to investigate

robustness to modelling uncertainty and exogenous distur-

bances. No further applications of ILC have been applied to

quadrotors, and the above methods are limited in terms of the

accuracy they have attained. They also require a significant

level of computation, as well as initial identification proce-

dures and tuning. There is clear scope to evaluate a wider

range of ILC methods on quadrotors. A prime example is

the gradient-based method which seeks to minimize a cost

function involving the tracking error. Our focus in this paper

is the design of iterative learning controller based on the

gradient method in which the Roll and Pitch will be more

stable.

II. SYSTEM DYNAMICS

A. Dynamic for Hummingbird Quadrotor

The model complexity depends highly on underlying as-

sumptions of the geometry and mass distribution. In term of

quadrotors, most studies in the field of UAV used model

based on the first order approximation which has been

successfully utilized in various quadrotor control designs so

far. The most common assumptions are as follows:

• The structure is rigid.

• The structure is symmetrical.

• The CoG (center of gravity) and the body fixed frame

origin coincide.

Euler angle is the most commonly used approach to

describe the orientation of a rigid body. Therefore, they will

be adopted in representation of angles. Also, the reference

system frames of the quadcopter is shown in Fig.3. The

position of the quadcopter is expressed in the inertial frame

F i as (x,y,z)T axes with ξ . The attitude, is defined with three

Euler angles η , First frame F i is rotated around its z by ψ ,

to produce frame Fv2. Then Fv2 is rotated about its y axis

by θ to produce Fv1. Lastly Fv1 is rotated about its x axis

by φ to produce Fv. The frame Fv has the same orientation

as body frame Fb as shown in Figure. 3. As defined in the

equation (1) include the linear and angular position vectors

R1

R4

R3

R2

F v

Vehicle Frame

xv

yv

zv

F i

Inertial Frame

xi

yi

zi

Fig. 3. The configuration of quadrotor UAV with respect to its frames

ξ =





x

y

z



 , η =





φ
θ
ψ



 (1)

The origin of the body frame is in the center of mass of

the quadrotor. The velocity (u,v,w)T and the angular velocity

(p,q,r)T of the quadrotor are defined with respect to the

body frame Fb.





u

v

w



 ,





p

q

r



 (2)

The transformation from a point pv in Fv to a point pv1

in Fv1 is given by pv1 = Rv1
v (ψ)pv, where

Rv1
v (ψ) =





Cψ −Sψ 0

Sψ Cψ 0

0 0 1



 (3)

Rv2
v1(θ) =





Cθ 0 Sθ

0 1 0

−Sθ 0 Cθ



 (4)

Rb
v2(φ) =





1 0 0

0 Cφ −Sφ

0 Sφ Cφ



 (5)
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The transformation from the vehicle frame to the body

frame is given by

Rb
v(φ ;θ ;ψ) = Rb

v2(φ)R
v2
v1(θ)R

v1
v (ψ) =





CψCθ SψCθ −Sθ

Cψ Sθ Sφ −SψCφ Sψ Sθ Sφ +CψCφ Cθ Sφ

Cψ SθCφ +Sψ Sφ Sψ SθCφ −Cψ Sφ CθCφ



 (6)

The positions (x,y,z)T are inertial frame quantities, where

velocities (u,v,w)T are body frame quantities. Therefore the

relationship between position and velocities is given by

d

dt





x

y

z



= (Rv
b)

−1





u

v

w



= (Rb
v)

T





u

v

w



 (7)

in which Sx = sin(x) and Cx = cos(x). Therefore, Rb
v





CψCθ Cψ Sθ Sφ −SψCφ Cψ SθCφ +Sψ Sφ

SψCθ Sψ Sθ Sφ +CψCφ Sψ SθCφ −Cψ Sφ

−Sθ Cθ Sφ CθCφ



 (8)

It is important to find the transformation between body

angular velocities (p,q,r)T and rate of change of Euler

angles (φ̇ , θ̇ , ψ̇)T .





φ̇
θ̇
ψ̇



=





1 Sφ Tθ Cφ Tθ

0 Cφ -Sφ

0 Sφ /Cθ Cφ /Cθ









p

q

r



 , (9)

It is possible to describe the quadrotor dynamics by

considering the the formulation of Newton-Euler is most

common due to its efficiency which can be rearranged as

follows

m
dν

dti
= F (10)

where F is the total applied to the CoG, and d
dti

is the time

derivative in the inertial frame. The translational equation of

motion can be derived from Newton’s law as follows

m

(

dν

dti
+ωb/i ×ν

)

= F (11)

where ωb/i is the angular velocity of the airframe with

respect to the inertial frame. Since the control force is

computed and applied in the body coordinate system, and

since ω is measured in body coordinates, we will express

the equation (11) in body coordinates, where vb = (u,v,w)T

, and ωb
b/i

=(p,q,r)T . Therefore, in the body frame, equation

(11) can be defined as





u̇

v̇

ẇ



=





rv−qw

pw− ru

qu− pv



+
1

m





fx

fy

fz



 (12)

The rotational equation of motion can also be derived from

Newton’s law as follow

I
dω

dt
+ω × Iω = T (13)

where T is the total moments applied to the quadrotor. The

control inputs related to each rotor speed Ωi are defined as

follows:

u =









u1

u2

u3

u4









=









b b b b

0 lb 0 −lb

lb 0 −lb 0

d d d d

















Ω
2
1

Ω
2
2

Ω
2
3

Ω
2
4









(14)

where b is the thrust coefficient, d is the drag coefficient and

l is the arm length.

The full dynamic model for 3 DOF as following:

ṗ =
1

Ixx

[u2 +qr(Iyy − Izz)+qJPΩr] (15)

q̇ =
1

Iyy

[u3 + pr(Izz − Ixx)+ pJPΩr] (16)

ṙ =
1

Izz

[u4 +qp(Ixx − Iyy)] (17)

B. Design the Test Frame

In case of Hummingbird quadrotor only six physical

parameters (m, l, Ixx, Iyy, Izz and JP) are required to realise the

3 DOF system model as shown in the Table I. A test frame

is design to hold the use Hummingbird quadrotor in place to

allow for analysis of the quadrotor performance whilst tuning

the control parameters was designed and built as shown in

Figure. 4.

TABLE I

PHYSICAL PARAMETERS OF THE QUADROTOR

Parameter Value

I x x 10.7 ×10−3kgm2

I y y 10.7 ×10−3kgm2

I z z 18.4 ×10−3kgm2

Rotor I z z (J P) 47 ×10−6kgm2

Quadrotor Mass 0.547 kg
Arm Length 0.168 m

The test bed is constructed from 21.5 (mm) PVC pipe and

bearings to allow for one DOF of rotation. PVC pipe was

chosen as it was easy to obtain and allows for reconfiguration

of the test bed if required. The quadrotor is locked in place,

minimising the risk of damage during controller testing. The

quadrotor sits in-between the two uprights, connected by

dowels to the bearings.

Fig. 4. A test frame design to control Hummingbird quadrotor



III. ILC DESIGN

The purpose of this section is to introduce the gradient-

based algorithm. The system is assumed to be operating in a

repetitive mode where at the end of each repetition, the state

is reset to a specified repetition independent initial condition

for the next operation during which a new control signal can

be used. A reference signal r(t) is assumed to be specified

and the ultimate control objective is to find an input function

u∗(t) so that the resultant output function y(t) tracks this

reference signal r(t) exactly on [1;N]. The process model is

written in the form:

xk(t +1) = Axk(t)+Buk(t), 0 6 t 6 N

yk(t) =Cxk(t)
(18)

where xk(t)∈R
n, uk(t)∈R

m, yk(t)∈R
p and A ∈R

n×n, B ∈
R

n×m, C ∈ R
p×n are the system matrices. Moreover, xk, uk

and yk are the states, inputs and outputs vectors respectively

as trial k.

A. Gradient-based ILC (G-ILC)

Comparing to a simple ILC controllers, gradient-based

ILC relies on the system model to achieve faster error

convergence and uses the properties of gradient descent to

construct the ILC control action update. This is done by

minimizing a cost function of the form

min
u

J(uk) =
1

2
‖ek‖

2=
1

2
‖yd −Guk‖

2 (19)

where

G =













g0 0 · · · 0

g1 g0 · · ·
...

...
...

. . . 0

gN−1 gN−2 · · · g0













(20)

gk =CAk+nr−1B k = 0,1,2....,N −1

and the tracking error ek from the kth trial which is the error

between the actual outputs yk of the system and their desired

reference signal yd is then

ek = yd −yk (21)

Using gradient descent to solve equation (19) optimization

problem yields

uk+1 = uk −β ▽ J(uk) (22)

= uk −β ▽
1

2
‖yd −Guk‖

2 (23)

= uk −βGT (yd −G(uk)) (24)

= uk +βGT ek (25)

where β is the learning gain.

From equation (25), the error evolution for the gradient ILC

can be derived as

ek+1 = yd −Guk+1 (26)

= yd −G(uk +βGT ek) (27)

= (I −βGGT )ek (28)

by choosing the learning gain β from the range 0 < β <
2/σ̄(G) where σ̄(G) is the largest singular of the matrix G,

it can be easily shown that ‖I −βGGT‖< 1. Therefore, the

error converges monotonically to zero as the trials k goes to

infinity [13].

Instead of heuristically selecting the learning gain β from

the previous range, the author in [14] proposed that the

learning gain is to be chosen every iteration so that the error

convergence rate is optimized. For this purpose, equations

(24) and (28) could be rewritten as

uk+1 = uk +βkGT ek (29)

ek+1 = (I −βkGGT )ek (30)

where the iteration varying learning gain βk is obtained by

minimizing:

J(βk) = ‖ek+1‖
2 +wβ 2

k (31)

where w is a small positive weighting number. Substituting

equation (30) in equation (31) we can write

J(βk) = ((I −βkGGT )ek)
T ((I −βkGGT )ek)+wβ 2

k (32)

= eT
k ek −2βkeT

k GGT ek +β 2
k eT

k GGT GGT ek +wβ 2
k

(33)

After differentiating equation (33) with respect to βk and set

it to zero, the optimal learning gain is given by

βk =
eT

k GGT ek

eT
k GGT GGT ek +w

(34)

=
(GT ek)

T GT ek

(GGT ek)T GGT ek +w
(35)

=
‖GT ek‖

2

‖GGT ek‖2 +w
(36)

The necessary and sufficient conditions to ensure error con-

vergence are

‖ek+1‖< ‖ek‖ ∀ k ≥ 0 and lim
k→∞

ek = 0 (37)

From equation (30) we can write

‖ek+1‖
2 −‖ek‖

2 = eT
k (I −βkGGT )T (I −βkGGT )ek − eT

k ek

(38)

= eT
k ((I −βkGGT )2 − I)ek (39)

= eT
k (−2βkGGT +β 2

k GGT GGT )ek (40)

= β 2
k (−2

eT
k GGT ek

βk

+ eT
k GGT GGT ek) (41)

= β 2
k (−2

‖GT ek‖
2

βk

+‖GGT ek‖
2) (42)

From equation (36) we have

‖GT ek‖
2

βk

= ‖GGT ek‖
2 +w (43)



Substituting equation (42) in equation (43)

‖ek+1‖
2 −‖ek‖

2 = β 2
k (−2(‖GGT ek‖

2 +w)+‖GGT ek‖
2

=−β 2
k (2w+‖GGT ek‖

2)6 0

(44)

From equation (44) it can be deduced that ‖ek+1‖ = ‖ek‖
iff βk = 0 and from equation (36), βk = 0 iff ek = 0 since

GGT is a positive definite matrix. Therefore the conditions in

equation (37) are satisfied and the convergence is monotonic.

IV. RESULTS AND DISCUSSION

In this section, simulations and experiments are carried

out in order to assess the performance of G-ILC applied

to the linearized quadrotor dynamics. The simulations here

achieved using MATLAB with fixed-step size solver to

produce a suitable estimation of a real-time commercial

flight controller. The assessment criteria in comparing the

results will rely on the second norm of the error between the

reference signal and the actual output and for fair comparison

the duration of all simulated algorithms for both trajectories

will be 8 seconds with a step size of 0.02 seconds which

is achievable by most commercial microcontrollers. Initially,

the baseline evaluation for quadrotor control will be taken

from a PID controller and the performance compared with

G-ILC.

A. Experimental Result for 3 DOF

The input demand using here is θre f = sinθ as shown

in Figure. 5 (Trajectory I). The following figure shows the

variation in pitch over a time of about 30s.

Fig. 5. The PI controller on trajectory I for during variation of φ .

Table II shows the norm error reduction, where the error

value was at the highest level when using integral gain Ki =

0.02 and the tuning parameters chosen with the Kp=0.95 with

value at 0.1117 but this reduce the error when the integral

gain Ki = 0.9 is increased and with the Kp=0.98 at value

0.0455. Unfortunately, any time reduction such as reduction

from t=30s to t=15s or t=10s will impact the results in an

undesirable way, where there is no effect of the increase or

decrease by the gain.

The step response (Trajectory II) of the controller Hum-

mingbird quadrotor shown below includes the demand θre f =

TABLE II

EXPERIMENTAL VIA TRAJECTORY I AND II WITH Ki AND Kd

RESPECTIVELY

Ki ‖θ̂ −θ‖ Kd ‖θ̂ −θ‖
0.02 0.1117 0.1 0.0678
0.01 0.0885 0.2 0.0624
0.03 0.0732 0.3 0.0549

0.055 0.0543 0.5 0.0496
0.065 0.0539 0.7 0.0522
0.09 0.0455 0.9 0.0543

H(t − t0). Figure. 5 demonstrates that there is no delay due

to the simulations only without a practical experiment, while

the Figure. 6 proves that this slightly delay is in the case of

practical application within the laboratory environment.

Fig. 6. The PD controller on trajectory II for during variation of θ .

The gradient ILC update equation (28) has been applied

to track the reference and an optimal gain β is choose to be

from 0.01 to 1. After applying a wide range of values β the

best performance has been found to correspond to 0.1. The

experimental results has shown a significant decrease of the

error during first five iterations as shown in Figure. 7, just

slightly fluctuation happen after the 6th iteration but didn’t

impact the performance.

Fig. 7. Experimental Gradient-based ILC with different iteration.



Again it is important to prove that the system of G-ILC

has monotonic convergence as shown in Figure. 8, this can

be proven by the 2-norm condition of the error, the decrease

happen from 1.315 at first iteration to the value of 0.548 at

the 6th iteration.

Fig. 8. Monotonic convergence result for gradient based ILC.

B. Comparison

The results of the proposed learning scheme are applied to

Hummingbird quadrotor. In order to evaluate the quadcopter

performance, the PID control is considered to compare.

Therefore the tracking and step response will quantitatively

evaluate the Gradient ILC performance as shown in Table III.

It is also important to prove that the system of Gradient-

based ILC has monotonic convergence. The simulation re-

sults show a significant decrease of the error during different

iteration. This can be proved by the condition of 2nd norm of

the errors as shown in Table III with 0.3092 at the iteration

16th.

For experiment, the gradient-based ILC with the optimal

gain formulation had a good overall performance and the

error norm converged below the baseline value after the

2nd iteration for the attitude angles. Furthermore, as seen

in Table IV, gradient-base ILC exhibited fluctuations in

the error norms as the iteration increased, although it was

minimal for the attitude angles. These fluctuations however

did not affect the general trend as the error norm still

converged after 10 iterations.

TABLE III

SIMULATION COMPARISON FOR φ AND θ WITH DIFFERENT CONTROL

APPROACHES.

Control

Approaches

Trial

No

Norm of Error Norm of Error

‖θ̂ −θ‖ ‖φ̂ −φ‖
PID - 2.82 2.82

Gradient

ILC

1 1.92 1.93
3 1.38 1.38
6 0.332 0.331
16 0.309 0.303

In this comparison, the baseline evaluation of quadrotor

control has been taken from a PID controller scheme as

shown in Table III and IV at value 2.82 for φ and θ and

3.366 for ψ . On the other hand, the PID had the poorest

performance for attitude. This outcome was expected for

several reasons, such as the unguaranteed monotonic con-

vergence and increases sensitivity to noise due to derivative

action. The baseline result was generated for a unit step and

sinusoidal reference signal trajectories, These outcomes were

compared with the proposed ILC algorithms. The ILC algo-

rithms performed better than the baseline controller (PID)

for both trajectory and the G-ILC method had a dominating

performance overall, and managed to substantially reduce the

tracking error within 16 iterations as shown in Table III.

TABLE IV

EXPERIMENTAL COMPARISON FOR PID AND ILC ALGORITHMS ERROR

2-NORM.

ILC methods
Iteration(1) Iteration(3) Iteration(7) Iteration(10)

‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖ ‖eθ‖ ‖eψ‖
PID 3.392 3.366 3.392 3.366 3.392 3.366 3.392 3.366

G-ILC 1.277 1.277 0.920 0.920 0.612 0.612 0.534 0.534

V. CONCLUSIONS

The proposed ILC controllers (G-ILC) have been for-

mulated and implemented, and the results are compared

against a standard PID controller, where the G-ILC has

shown superior performance in terms tracking performance.

Furthermore, the G-ILC controllers proposed here have

demonstrated significant improvement over the existing PID

controllers regarding error reduction and monotonic conver-

gence.

The results in this paper serve to demonstrate that standard

PID controllers alone cannot adequately track the reference

in case the length time decreases to more than 30s. So,

in order to produce better performance, the G-ILC control

has been taken with a combined PID controller rather than

implementing each controller individually. The combined

controller can be tuned to perform very well and from this

the reliability of the attitude controller for 3 DOF derived

can be inferred. However, this combined control may yet

produce give the desired performance and robustness for

advanced applications. It is therefore important to develop

more advanced and novel ILC controllers to achieve better

performance in future.

In addition, the G-ILC managed to achieve monotonic

error convergence and reduced the error norm below the

baseline values for attitude angles, which justifies the fact

that ILC algorithm have good performance and has smoother

transitions in a way of tracking this type of reference. These

confirm the theoretical predictions given in this paper. Only

bench tests on the controllers under specific conditions have

been reported here. It shows that there is an urgent need to

look at the additional work that is needed to expand ILC

to specify tracking, for example, along a straight line for a

power line monitoring task, and to explore viable ways to

achieve similar applications.
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