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Abstract: Interest in adipose tissue is fast becoming a focus of research after many years of being
considered as a simple connective tissue. It is becoming increasingly apparent that adipose tissue
contains a number of diverse cell types, including adipose-derived stem cells (ASCs) with the potential
to differentiate into a number of cell lineages, and thus has significant potential for developing
therapies for regenerative medicine. Currently, there is no gold standard treatment for scars and
impaired wound healing continues to be a challenge faced by clinicians worldwide. This review
describes the current understanding of the origin, different types, anatomical location, and genetics of
adipose tissue before discussing the properties of ASCs and their promising applications for tissue
engineering, scarring, and wound healing.
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1. Introduction

The obesity epidemic has transformed the way we think about adipose tissue. Adipose tissue,
once considered as a simple inert tissue functioning as insulation and energy storage, is now seen
as one of the largest endocrine organs in the body, containing a variety of cell types, with multiple
potential applications for regenerative medicine. Just one-third of adipose tissue volume is comprised
of mature adipocytes; the remainder consists of a heterogenous group of preadipocytes, fibroblasts,
mesenchymal stem cells (MSCs), endothelial progenitor cells (EPCs), pericytes, macrophages, T-cells,
and erythrocytes in a stromal vascular cell network (Figure 1) [1]. Enzymatic digestion of adipose
tissue produces a heterogeneous population of precursor cells within a cell pellet which is referred to
as the stromal vascular fraction (SVF). Components of the SVF were quantified by the International
Federation for Adipose Therapeutics and Science (IFATS) and International Society for Cellular Therapy
(ISCT) who reported cells were present in the following proportions: 15–30% stromal cells, 10–20%
endothelial cells, 10–15% lymphocytes, 10–15% granulocytes, 5–15% monocytes, 3–5% pericytes,
and <0.1% stem and progenitor cells [2]. This diverse SVF cell population, derived from adipose tissue,
has been investigated for its potential therapeutic use in regenerative medicine. More specifically,
MSCs present in the SVF, termed adipose-derived stem cells (ASCs), have been explored as the key cell
type responsible for the beneficial effects of SVF. ASCs have been shown in vitro to promote human
dermal fibroblast proliferation and migration and production of collagen by both direct cell-to-cell
contact and paracrine activation [3]. It remains to be seen whether these observed beneficial effects
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may be harnessed into suitable therapy options for chronic and nonhealing wounds. This paper aims
to explore the characteristics of adipose tissue and its role in wound healing in order to look towards
the potential therapeutic implications of this diverse tissue.
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Figure 1. Composition of adipose tissue. Adipose tissue comprises a complex mixture of cells,
one-third of which are mature adipocytes. Following enzymatic digestion, the remaining two-thirds
contains multiple cell types known as the stromal vascular fraction.

2. Adipose Tissue: Origins, Types, Distribution, and Genetics

Adipose tissue, like muscle and bone, is generally regarded as having a mesodermal origin.
However, stem cells derived from the mouse neural crest have been reported to be able to differentiate
into adipocytes in culture, indicating that craniofacial adipose depots may originate from the neural
crest [4]. The emerging view is that the origins of adipose tissue are complex and in-depth lineage
tracing has yet to be fully explored.

Adipose tissue depots are classically separated into two distinct types: white adipose tissue (WAT)
and brown adipose tissue (BAT) [5]. Adipocyte morphology in WAT and BAT is distinctly different
and gives rise to their diverse roles. WAT contains adipocytes with a single large lipid droplet that
accounts for >90% cell volume, whereas BAT adipocytes contain numerous smaller lipid compartments
and abundant mitochondria giving rise to the brown appearance after which they are named [5,6].
The white adipocytes predominantly function to store energy as triglycerides and provide thermal
insulation and physical cushioning of the body, whereas brown multilocular adipocytes are active in
the dissipation of energy through the production of heat [6].

WAT is the predominant form of adipose tissue in the human body whereas BAT is much less
common and can be found in the supraclavicular, periadrenal, and paravertebral regions of the body [1].
Anatomical sites in which WAT develops are called ‘depots’; one example of a depot is the visceral
white adipose tissue (vWAT) which surrounds human internal organs [7]. WAT associated with the
skin has been further described as two separate populations by Driskell et al. in 2014. They suggest
that dermal white adipose tissue (dWAT) describes a depot in the dermis underlying the reticular
dermis whereas subcutaneous white adipose tissue (sWAT) defines a unique and separate population
with no anatomical division in humans but is situated below striated muscle (the panniculus carnosus)
in mice [7]. As anatomical separation of the two populations is poorly defined in humans and these
two populations were, until recently, considered synonymous, there is little evidence of the differences
in the behavior between these two populations [8]. The subcutaneous adipose layer varies in thickness
and is determined by multiple variables such as sex, age, body site, and nutritional status, and is
completely absent in certain body sites, namely, the eyelids, clitoris, and penis [9].
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Major human depots include vWAT in the omentum, intestines, and perirenal areas, and sWAT in
the buttocks, thighs, and abdomen (Figure 2). WAT can be found in other less apparent areas such as
the retro-orbital space and within the bone marrow [10]. The anatomical distribution of adipose tissue is
believed to influence the occurrence of metabolic disease. An increased central distribution of adipose
tissue (apple-shaped) is thought to promote a higher risk of metabolic diseases, such as cardiovascular
disease and type two diabetes, whereas increased deposits of subcutaneous adipose tissue in the thighs
and hips (pear-shaped) have been shown to have little or no risk associated with metabolic disease [11].
Different anatomical depots are responsive to different steroids; for example, the breast and thighs are
influenced by gonadocorticoids, whereas the neck and upper back are influenced by glucocorticoids.
This is observed in Cushing’s syndrome; the “buffalo-hump” is a characteristic sign of an excess of the
glucocorticoid cortisol [10]. Twin and population studies in humans have shown that genetics account for
30—70% of the variability seen in adipose tissue distribution, independent of BMI, with the remaining
influences believed to be unique environmental effects and age [12]. One example of heritable control of
adipose tissue distribution is observed in southern Africa in women of Khoikhoi ethnicity; they display
steatopygia [13]. This accumulation of large amounts of fat on the buttocks gives a curvaceous figure
which is a modern characteristic of feminine beauty often requested in aesthetic augmentation procedures
and may be achieved by gluteal fat grafting.

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 4 of 16 

Figure 2. Adipose tissue distribution in humans. WAT is widely distributed around the body; principal 

WAT depots are illustrated in gold and BAT depots in brown. Silhouette indicates the anterior and 

posterior anatomical position on the left and right, respectively.  

Anterior Posterior

Supraclavicular

Cervical

Paravertebral

Upper arm

Breast

Abdomen

Thigh Buttock

Figure 2. Adipose tissue distribution in humans. WAT is widely distributed around the body;
principal WAT depots are illustrated in gold and BAT depots in brown. Silhouette indicates the anterior
and posterior anatomical position on the left and right, respectively.
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3. Wound Healing

Effective wound healing is essential to restore the continuity of the skin barrier following damage.
Cutaneous wound healing is a complex and dynamic process which is dependent on numerous
coordinated interactions between cells, growth factors, and extracellular molecules. This intricate
series of events attempts to restore the integrity, function, and tensile strength of an injured tissue.
Wound healing is classically divided into three sequential but overlapping stages: inflammation,
proliferation, and remodeling [14]. Hemostasis begins immediately after tissue injury and is achieved
by vasoconstriction, platelet aggregation, and the formation of a fibrin clot, through activation of
the coagulation cascade [15]. The fibrin clot provides a provisional matrix for the migration of
inflammatory cells to the wound site [15]. The inflammatory phase prepares the wound environment
for healing by removing debris and bacteria from the wound to prevent infection, much like the
purpose of surgical debridement. Proinflammatory cytokines are released by macrophages including
platelet-derived growth factor (PDGF) which stimulate the migration of dermal fibroblasts to the
wound [15]. The proliferative stage of wound healing is composed of the synthesis of tissue granulation,
contraction, and re-epithelialization. Migrating fibroblasts recruited to the wound bed produce
extracellular matrix (ECM) proteins and growth factors. Their movement into the wound is assisted
by their secretion of ECM-cleaving matrix metalloproteinases (MMPs) [15]. Macrophages provide a
source of growth factors required for angiogenesis and new capillaries formed give the stroma a pink
granular appearance; this granulation tissue functions as a scaffold for dermal fibroblast migration [16].
The provisional ECM is constructed of fibrin, fibronectin, and hyaluronic acid which are gradually
replaced by collagens [15,16]. Some fibroblasts assume a myofibroblast phenotype distinguished by
the presence of alpha smooth muscle actin (α-SMA) myofilaments which allow contraction of the
wound [16,17]. Transforming growth factor beta (TGFβ) signaling facilitates myofibroblast contraction
and ECM deposition in wound healing and scar formation [7]. Once abundant collagen has been
deposited into the granulation tissue, many fibroblasts in the wound undergo apoptosis [16,18].
Physical connections between keratinocytes named desmosomes are broken and they no longer adhere
to one another, allowing migration of epidermal keratinocytes laterally across the wound behind which
epidermal keratinocytes proliferate [16]. These keratinocytes migrate across the wound bed until the
epithelial tongues meet and seal the wound [18]. During the remodeling phase, which can last up to
one year, the wound matures by the simultaneous formation and degradation of collagen fibers [19].
Disorganized type III collagen is remodeled into aligned type I fibers in order to more closely resemble
the structure of surrounding tissue. This is achieved by the action of MMPs, which are endopeptidases
secreted by fibroblasts, macrophages, and endothelial cells [20]. Water is resorbed so collagen fibers lie
closer and cross-link, which reduces scar thickness and increases its tensile strength. Nevertheless,
despite these changes, the tensile strength of the formed scar tissue will only reach approximately 80%
of the tensile strength of uninjured skin [19]. Remodeling requires a stable balance between MMPs and
tissue inhibitors of matrix metalloproteinases (TIMPs). Excessive accumulation of disorganized fibrous
molecules results in fibrosis, which impairs skin function and appearance [21]. Due to the central role
of growth factors and cytokines in the regulation of wound healing, abnormal growth factor or cytokine
expression may negatively affect this coordinated process leading to chronic wound healing and
excessive scarring. Numerous factors such as advancing age, metabolic disorders, and environmental
influences may disrupt the normal wound healing process and result in inadequate healing or
pathological dermal scarring such as hypertrophic/keloids scarring. These present clinical burdens to
which management could potentially be improved through the use of regenerative medicine techniques.

4. Adipose Tissue as a Source of Stem Cells

Human MSCs are adult stem cells with the potential to differentiate into multiple cell linages
of mesenchymal tissues [22]. Minimal criteria to define MSC were proposed by the Mesenchymal
and Tissue Stem Cell Committee of the ISCT in 2006. These criteria have been described in order to
generate standardization in comparing research observed by different investigators. According to these
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criteria, in order for a cell to be considered an MSC, it must demonstrate plastic adherence in standard
culture conditions. Cells must express the cell surface markers CD105, CD73, CD90, and a lack of
expression of the cell surface markers CD45, CD34, CD14 or CD11b, CD79α or CD19, and HLA-DR.
Finally, they must have the potential to differentiate into osteoblast, adipocyte, and chondroblast cell
linages in vitro [23]. A single unique surface marker to characterize ASCs has not been identified
and therefore the ISCT criteria are still used to identify ASCs. A small core of stem cell transcription
factors, namely, octamer-binding transcription factor 4 (OCT4), sex determining region Y-box 2 (SOX2),
and nanog homeobox (NANOG), are essential for maintaining the pluripotency of embryonic stem
cells [24]. A recent study has demonstrated that the knockdown of NANOG in human ASCs cultured
from sWAT triggers a loss of pluripotency, demonstrating that expression of this transcription factor is
also essential for maintaining the properties of human ASC in culture [25].

The term “preadipocyte” has been used by researchers to describe a progenitor cell population
that is adipose lineage-committed, whereas ASCs are defined as multipotent stem cells with osteogenic,
adipogenic, and chondrogenic potential [1]. Both populations are present in WAT and can be isolated
from the SVF of subcutaneous adipose tissue. In contrast to bone marrow, adipose tissue is more
abundant and accessible, and MSCs can be harvested through liposuction procedures under local
anaesthetic [26]. The prevalence of obesity is on the rise in the Western world and elective liposuction
procedures are performed frequently. ASCs have been shown to have a longer culture period and
higher proliferative capacity than bone marrow MSCs [27]. Adipose tissue therefore represents a more
favourable source of MSCs than bone marrow due to these qualities.

Peroxisome proliferator-activated receptor gamma (PPARγ) is the central regulator for
differentiation of progenitors into adipocytes in all adipose tissue depots [28]. PPARγ is a nuclear
receptor of which there are two isoforms: PPARγ1 and PPARγ2. As well as this important role in
adipogenesis, PPARγ along with CCAAT-enhancer-binding protein alpha (C/EBPα) appear to be
dually required for the maintenance of terminally differentiated adipocytes as knockout of PPARγ and
C/EBPα in mouse studies in vivo leads to widespread death of adipocytes and reduction in sWAT [29].
PPARγ2 is a key component of adipogenesis and maintenance, and expression in humans has been
shown to be variable in ASCs isolated from different depots [30].

The various anatomical depots of adipose tissue vary in volume and composition and therefore it is
reasonable to postulate that the ASCs situated in different depots may also have variable characteristics.
It has been identified that adipose donor site impacts on the characteristics of the ASCs harvested.
One study revealed the proliferative rate of ASCs derived from the abdomen, limb, and knee was
significantly higher than that of ASCs derived from the thigh and hip of human donors. In contrast,
osteogenic characteristics were shown to be increased in the less proliferative hip and thigh ASCs [31].
Another study compared ASCs derived from different human adipose depots including: the upper arm,
medial thigh, trochanteric, and both superficial and deep (below scarpas fascia) abdominal. ASCs isolated
from superficial abdominal adipose tissue have been shown to be less susceptible to apoptotic stimuli
than those isolated from these other sites [30]. The survival of ASCs following grafting is one of the key
challenges in regenerative ASC grafting techniques, therefore the identification of this characteristic of
abdominal ASCs makes this depot a favorable location for harvesting. Another study also showed that
human ASCs derived from abdominal subcutaneous adipose tissue had more advantageous properties.
They demonstrated higher rates of proliferation and increased adipogenic potential in ASCs that were
derived from abdominal subcutaneous adipose tissue than in those from abdominal visceral adipose
tissue [32]. It appears both ASC phenotypes vary with both depth and location and therefore are
important to consider in the selection of an appropriate anatomical site for ASC harvest. In addition
to the perceived advantages of harvesting ASCs from the superficial abdominal anatomical depot,
liposuction of the abdomen is a popular site choice for surgeons due to its accessibility, abundance,
and aesthetic improvements for the patient.

As well as anatomical site, another variant shown to impact on ASC properties is donor age.
Human ASCs derived from younger patients were shown to proliferate at higher rates and have an
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enhanced ability to differentiate into mature adipocytes than those isolated from older patients [30],
while ASCs harvested from infants had enhanced osteogenic and angiogenic capabilities compared to
those from older age groups [33]. Better characterization of donor phenotype will enable us to better
utilize the appropriate characteristics to achieve the desired effects of cell-based therapies.

Liposuction is a minimally invasive cosmetic procedure which involves aspirating subcutaneous
fat using a cannula under negative pressure. Liposuction aspirate primarily consist of saline and local
anesthetic solution, blood, and adipose tissue fragments which separate into fluid and fatty portions.
Cells isolated from the fatty portion of this suspension are termed processed lipoaspirate (PLA) and
have been the predominant source of ASCs for investigation [34]. However, it has been suggested
that the fluid portion of liposuction aspirated, termed liposuction aspirate fluid (LAF), also contains
ASCs [35]. ASCs can also be harvested from surgical excision of subcutaneous adipose tissue which
ensures a purer sample of adipose tissue is obtained.

Rodbell (1966) was the pioneer of a procedure to isolate SVF cells from adipose tissue using
collagenase digestion [36]. This method has since been adapted over many years and published
methods for isolating ASCs from adipose tissue involve the same core steps. Protocols begin with
mincing the adipose tissue to increase surface area before incubating with collagenase solution in
order to digest the tissue. Collagenase digestion is stopped after a period of incubation by adding an
equal volume of culture medium containing 10% fetal bovine serum. The resultant digestion medium
is then filtered to remove tissue debris before being centrifuged (700G for 10 min). This separates
the contents into three distinct fractions of floating mature adipocytes, a middle aqueous fraction,
and a reddish cellular pellet containing SVF cells at the bottom. The other contents are discarded
to leave the SVF pellet. Erythrocytes are a major contaminant present in the SVF pellet and may be
lysed to isolate a purer population using an ammonium-chloride-potassium lysis buffer. The buffer is
then diluted by the addition of an equal volume of media before repeating centrifugation. The cell
pellet is resuspended in media and the cells are seeded into dishes/plates and incubated at 37 ◦C to
allow attachment [37]. This step allows for selection of the plastic adherent population of cells which
includes ASCs. Mincing of fat may be done by hand but may be omitted from the methodology if
lipoaspirates are used, provided the cannula dimensions are small enough to provide finely minced
tissue fragments [26]. Liposuction therefore reduces the time taken to harvest cells, although if
ultrasound-assisted liposuction is used, the number of ASC cells isolated and their proliferative
capacity are reduced [38].

5. Tissue Engineering Techniques for Wound Healing

Precursor cells from adipose tissue are of great interest within the field of reconstructive surgery.
However, as described previously, isolation techniques for human ASCs for in vitro studies currently
include collagenase digestion. Collagenase is derived from a bacterial source (Clostridium histolyticum),
and its use is currently prohibited for the manipulation of fat grafts for human use. The US Food
and Drug Administration (FDA) regulations state that fat grafts must be minimally manipulated,
enzyme-free, and used in the same surgical procedure as harvesting [39]. Consequently, nonenzymatic
methods using mechanical forces to loosen the structural integrity of adipose tissue extracellular matrix
(ECM), such as centrifugation, have been used in human clinical trials to purify liposuction aspirates.
In 2008, Yoshimura et al. reported their novel method of supplementing fat grafts with simultaneously
extracted SVF cells in a process termed cell-assisted lipotransfer (CAL) for cosmetic breast surgery
and reported an increase in breast circumference in centrifuged fat grafts [35]. Beneficial effects have
since been reported from the transplant of lipoaspirates containing ASCs into chronic wounds caused
by oncologic radiotherapy in human clinical trials [40]. Poorly healing burn wounds have also been
shown to respond to novel adipose tissue treatment of fat grafting around and beneath the wound
bed in an Indian tertiary burns center. This large study of 60 patients showed statistically significant
improvements in measurable outcomes of wound healing such as granulation tissue production,
epithelialization, and reduction in wound surface area and was observed in patients treated with
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autologous fat grafts for the treatment of three-week-old burn wounds that had previously shown no
signs of healing [41]. Fat grafting has been repeatedly reported to reduce pain and enhance cosmetic
appearance of scars by improving color, elasticity, and thickness [42]. However, some of the reported
outcomes observed following fat grafting may be due to technique and needle insertion causing release
of fibrotic tissue that improves scar maturation. The benefits of improvements observed in skin cannot
be fully attributed to ASCs due to restrictions preventing solitary isolation of ASCs for human use
and procedural impacts on tissue. It is therefore important for ASCs to be studied in vitro in order to
control the many variables and clearly establish mechanisms of action.

One proposed mechanism for the action of ASCs is through their secretome (see Table 1).
ASCs secrete cytokines, growth factors, adipokines, neurotrophic factors, and angiogenic factors such
as PDGF, fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), and angiopoietin into their secretome [43]. This diverse mix of various components exert
their beneficial effect through their paracrine activity and can be harnessed by the use of conditioned
media (CM) to deliver this to target cells. Human ASCs have been shown through qPCR and Western
blot techniques to express FGF-2 and it has been demonstrated by ELISA that they secrete FGF-2.
Both expression and secretion were more pronounced when they were cultured as spheroids [44].
FGF-2 has an important role in cutaneous wound healing in promoting fibroblast proliferation and
migration via the extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK)
pathways [45,46]. One study quantified the concentration of FGF-2 and HGF in cultured media
generated from commercially acquired human ASCs by ELISA and found that there was an 18-fold
greater concentration of FGF-2 than HGF in the secretome [47]. As a potent component of CM with
known beneficial influences on fibroblasts, it may contribute to the favorable effects of ASC CM in
wound healing. The adipokine, adiponectin, has been identified in the proteome of human ASCs
through two-dimensional gel electrophoresis–tandem mass spectroscopy and Western immunoblot [48].
In one study, it was demonstrated by qPCR that human neonatal dermal fibroblasts express receptors
for adiponectin and these cultures were shown by ELISA to increase production of collagen I in response
to adiponectin at a concentration of above 1 µg/mL in a dose-dependent manner [49]. It therefore
appears that adiponectin secreted by ASCs has a role in upregulating matrix production by dermal
fibroblasts and may have a role in wound healing (Figure 3).

ASC CM has been shown to improve properties of wound healing in dermal fibroblasts when
observed in vitro. One study showed that human keloid-derived fibroblast proliferation was reduced
following treatment with human ASC CM in a BrdU proliferation assay [50]. This suggests that ASCs
may downregulate proliferation of diseased fibroblasts causing problematic scarring via excessive
ECM deposition in wounded skin. Cooper et al. demonstrated treatment with ASC CM increased
dermal fibroblast migration in a scratch wound assay by 43% [45].

In addition to soluble factors, extracellular vesicles are secreted by ASCs serving as vectors
for the transfer of nonsoluble components including proteins, lipids, messenger RNA (mRNA),
microRNA (miRNA), and long noncoding RNA (lncRNA). These can all contribute to the paracrine
signaling of ASCs and may also influence wound healing [45]. Extracellular vesicles range from 30
to 100 nm in size and originate from endosomes in the cytoplasm, or from the plasma membrane,
and are an important mode of intercellular communication. Once released, these vesicles can then
either fuse directly with the plasma membrane of the target cell or enter the target cell by endocytosis
where they can exert a regulatory function [51]. Two main types of extracellular vesicles have been
described on the basis of their size, exosomes, and microvesicles. Exosomes are small membrane-bound
lipid vesicles, approximately 30–100 nm in diameter [52]. In comparison, microvesicles are generally
larger extracellular vesicles, ranging from 50 to 1000 nm in diameter [52]. Extracellular vesicles
transfer a cargo of non-soluble components, including RNA, from one cell to another. Furthermore,
mRNA contained in these vesicles can be translated into proteins by the recipient cell. Messenger RNA
is single-stranded RNA, which can be translated into a protein molecule within the target cell.
Messenger RNA vector-mediated transgene expression has a rapid and transient effect on cells and is one
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mechanism by which cells exert their effects through paracrine signaling [53]. In contrast, miRNAs are
single-stranded RNA molecules that influence the post-transcriptional regulation of gene expression by
binding specific targets on mRNAs, downregulating their expression and thereby ultimately shaping
the cell transcriptome [54]. Long noncoding RNAs are RNA strands that exceed 200 nucleotides in
length, exhibiting a wide range of sizes, shapes, and functions. They are described as noncoding as
they are not translated into proteins, although recent studies have demonstrated their involvement in
different aspects of gene regulation by various mechanisms of action [55]. Exosomes derived from
human ACSs have been shown to accelerate wound healing by promoting the migration, proliferation,
and collagen synthesis of human dermal fibroblasts [45,56]. Microvesicles secreted by human ASCs
have also been shown to enhance the proliferation and migration of human foreskin fibroblasts
in vitro [57]. It therefore appears that both exosomes and microvesicles secreted by ASCs have a key
role in wound healing, however, further clarification as to their unique composition has yet to be
illustrated [52].
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Figure 3. Adipose-derived stem cells promote wound healing. Adipose-derived stem cells have
a complex secretome that includes, for example, growth factors and adipokines. These induce
migration, proliferation, and matrix remodeling in neighboring dermal fibroblasts through various
intracellular signaling pathways to enhance wound healing. PDGF, platelet-derived growth factor; FGF,
fibroblast growth factor; VEGF, vascular endothelial growth factor; HGF, hepatocyte growth factor; ERK,
extracellular signal-regulated kinase; JNK, c-Jun N-terminal kinase; AMPK, adenosine monophosphate
protein kinase; MMPs, matrix metalloproteinases; miRNA, microRNA; lncRNA, long noncoding RNA.

The paracrine activity of ASCs has been extensively researched to date, although there remains
potential to harness other desirable characteristics of these cells for regenerative medicine techniques.
In vivo transplantation of ACS in mice revealed that engrafted cells displayed keratinocyte markers
and released keratinocyte growth factor (KGF), providing evidence in support of the potential ability
to differentiate into keratinocytes [58]. Also, in the same study, ASCs were able to differentiate into
cells expressing endothelial cell markers, providing evidence for the differentiation of ASCs into
endothelial cells to aid neovascularization [58]. Another in vivo study demonstrated that labeled
human ASCs seeded into silk fibroin–chitosan scaffolds and implanted into full-thickness murine skin
defects significantly increased wound closure [59]. This study demonstrated that engrafted ACSs
displayed expression of epidermal epithelial cell markers at four weeks post-op, thus suggesting that
wound closure was aided by the differentiation of ASCs into epidermal cells [59]. It is well established
that ASCs have the capability to differentiate into osteogenic, adipogenic, and chondrogenic lineages,



J. Clin. Med. 2020, 9, 2161 9 of 14

a characteristic which is fundamental to their unique identity [1]. However, the hypothesis that ASCs
may aid wound healing through differentiation is still poorly explored.

Table 1. The modulation of dermal fibroblast function by the ASC secretome: implications for improved
wound healing.

Stimulatory Effect of ASC Secretome on Dermal Fibroblast
Function

Paracrine Factors Secreted by
ASCs References

FGF-2 [45,46,60]

HGF [60]

Exosomes [56,61]
Increased proliferation

Microvesicles [57]

FGF-2 [45,46]

Increased migration Exosomes [45,56,61]

Microvesicles [57]

Adiponectin [49]Matrix Remodeling
(increased production of collagen I and III, TGFβ, FGF2, and MMP1) Exosomes [56,61]

6. Further Adipose-Derived Targets with Implications for Wound Healing

Despite the mounting evidence in favor of ASCs as the principal component of adipose responsible
for improved wound healing, it appears that additional cell types may also have a role which must
be explored further. In murine skin, immature adipocytes have been shown to be activated during
the proliferative phase of wound healing, and that mature adipocytes and fibroblasts appear in
healing wounds concurrently [62]. PPARγ inhibitors prevent the occurrence of this observation and
therefore it appears the population of adipocytes present in the wound bed occurs via adipogenesis [62].
Human mature adipocytes, cultured in 3D spheroids, have been shown to stimulate the differentiation
of fibroblasts into myofibroblasts through the secretion of paracrine factors. Adipocyte CM increased
fibroblast migration, contractility, α-SMA expression and collagen production when compared to
pre-adipocyte CM [63]. Furthermore, endothelial progenitor cells isolated from the SVF appear to have
a role in neovascularization during the proliferative phase of wound healing. Endothelial progenitor
cells have been cultured from the SVF of adipose tissue and have demonstrated the ability to form
capillary-like structures in three-dimensional scaffolds [64].

Fibroblasts are another one of the many cell types which comprise the SVF. Given dermal fibroblasts
are the key cell type involved in extracellular matrix formation and remodeling, it is important to
distinguish the role of this subpopulation of fibroblasts as they have the potential to demonstrate
similar properties. Fibroblasts isolated from the dermo–hypodermal junction have been shown to
have distinct characteristics including a lower proliferative rate and a reduced capacity for collagen
lattice contraction when compared to intermediate reticular fibroblasts and superficial papillary
fibroblasts [65]. Fibroblasts isolated from the dermo–hypodermal junction have also demonstrated
the capacity for three-lineage mesenchymal differentiation, giving them an MSC-like cellular identity.
Despite these similarities to MSCs and their anatomical proximity to subcutaneous adipose tissue
within the hypodermis, hierarchical clustering based on transcriptome profiling has shown they still
exhibit a clear “fibroblast” molecular identity that is quite distinct from MSCs [65]. It therefore appears
that fibroblasts from the dermal–hypodermal junction have a separate role to both ASCs and reticular
or papillary dermal fibroblasts in wound healing due to their unique properties.

In contrast to the apparent positive role of adipose tissue during wound healing, a detrimental
effect of obesity on wound healing has long been established. This converse relationship may be in part
due to the composition of adipose in obese individuals. Obesity induces adipocyte hypertrophy and
hyperplasia, which impairs the metabolic function of adipocytes [66]. The rate of angiogenesis in obese
individuals does not increase proportionally to meet the rate of adipocyte growth, and consequently,
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a relative hypoxia is also likely to contribute to poorer wound healing [66]. Another paradox observed
in obese individuals is a reduced concentration of the adipose-derived cytokine adiponectin [66].
Adiponectin is a potent mediator in the regulation of cutaneous wound healing and has been shown to
enhance mouse keratinocyte proliferation and migration in vitro in a dose-dependent manner through
ERK activation [67]. It is important to understand these limitations of adipose tissue in order to ensure
new techniques benefit patient outcomes rather than increase the complications encountered.

7. Future Outlook

There is currently no gold standard treatment for scars, and wound healing is a challenge faced
by clinicians across the globe. Regenerative techniques exploiting the benefits of ASCs are still in the
primitive stages of development, however, promising therapeutic potential has been shown by the
pioneers of autologous fat grafting. Fat grafting has revealed improvements of both function and
form in patients with abnormal wound healing and scarring, while in vitro studies have shown that
ASCs isolated from human adipose tissue may be responsible for these effects. Limitations, owing to
the restrictions in place by the FDA, on the manipulation of adipose tissue prior to transplantation,
in addition to the difficulties associated with viability and graft-take post-fat graft transplantation,
have led to the need to utilize alternative mechanisms for ASC regenerative therapies. The ASC
secretome, composed of soluble factors and extracellular vesicles, has therefore been explored as a
resolution to these obstructions which may enable clinicians to harness their therapeutic potential
for improved wound healing. In order to explore the significance of findings from in vitro studies
supporting the ASC secretome as a stimulant for proliferation, migration, and matrix remodeling,
in vivo wound healing studies are also required. Future research will help to explore this large gap
in understanding from bench to bedside and allow for new breakthroughs in this up-and-coming
specialty of regenerative medicine.
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Abbreviations

AMPK Adenosine monophosphate protein kinase
ASCs Adipose-derived stem cells
α-SMA Alpha smooth muscle actin
BAT Brown adipose tissue
JNK C-Jun N-terminal kinase
C/EBPα CCAAT-enhancer-binding protein alpha
CAL Cell-assisted lipotransfer
CM Conditioned media
dWAT Dermal white adipose tissue
EPCs Endothelial progenitor cells
ECM Extracellular matrix
ERK Extracellular signal-regulated kinase
FGF Fibroblast growth factor
FDA Food and Drug Administration
HGF Hepatocyte growth factor
ISCT International Society for Cellular Therapy
KGF Keratinocyte growth factor
LAF Liposuction aspirate fluid
lncRNA Long noncoding RNA



J. Clin. Med. 2020, 9, 2161 11 of 14

MMP Matrix metalloproteinase
MSCs Mesenchymal stem cells
mRNA Messenger RNA
miRNA MicroRNA
NANOG Nanog homeobox
OCT4 Octamer-binding transcription factor 4
PPARγ Peroxisome proliferator-activated receptor gamma
PDGF Platelet-derived growth factor
PLA Processed lipoaspirate
SOX2 Sex-determining region Y-box 2
SVF Stromal vascular fraction
sWAT Subcutaneous white adipose tissue
TIMPs Tissue inhibitors of matrix metalloproteinases
TGFβ Transforming growth factor beta
VEGF Vascular endothelial growth factor
vWAT Visceral white adipose tissue
WAT White adipose tissue

References

1. Sarantopoulos, C.N.; Banyard, D.; Ziegler, M.E.; Sun, B.; Shaterian, A.; Widgerow, A.D. Elucidating the
Preadipocyte and Its Role in Adipocyte Formation: A Comprehensive Review. Stem Cell Rev. Rep. 2017, 14,
27–42. [CrossRef] [PubMed]

2. Bourin, P.; Bunnell, B.A.; Casteilla, L.; Dominici, M.; Katz, A.J.; March, K.L.; Redl, H.; Rubin, J.P.; Yoshimura, K.;
Gimble, J.M. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded
adipose tissue-derived stromal/stem cells: A joint statement of the International Federation for Adipose
Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy
2013, 15, 641–648. [CrossRef] [PubMed]

3. Kim, W.-S.; Park, B.-S.; Sung, J.-H.; Yang, J.-M.; Park, S.-B.; Kwak, S.-J.; Park, J.-S. Wound healing effect of
adipose-derived stem cells: A critical role of secretory factors on human dermal fibroblasts. J. Dermatol. Sci.
2007, 48, 15–24. [CrossRef]

4. Billon, N.; Iannarelli, P.; Monteiro, M.C.; Glavieux-Pardanaud, C.; Richardson, W.D.; Kessaris, N.; Dani, C.;
Dupin, E. The generation of adipocytes by the neural crest. Development 2007, 134, 2283–2292. [CrossRef]

5. Lee, Y.-H.; Mottillo, E.P.; Granneman, J.G. Adipose tissue plasticity from WAT to BAT and in between.
Biochim. Biophys. Acta Mol. Basis Dis. 2013, 1842, 358–369. [CrossRef] [PubMed]

6. Saely, C.H.; Geiger, K.; Drexel, H. Brown versus White Adipose Tissue: A Mini-Review. Gerontology 2012, 58,
15–23. [CrossRef]

7. Driskell, R.R.; Jahoda, C.A.B.; Chuong, C.-M.; Watt, F.M.; Horsley, V. Defining dermal adipose tissue.
Exp. Dermatol. 2014, 23, 629–631. [CrossRef]

8. Kruglikov, I.L.; Scherer, P.E. Dermal Adipocytes: From Irrelevance to Metabolic Targets?
Trends Endocrinol. Metab. 2015, 27, 1–10. [CrossRef]

9. Arda, O.; Goksugur, N.; Tüzün, Y.; Tüzün, Y. Basic histological structure and functions of facial skin.
Clin. Dermatol. 2014, 32, 3–13. [CrossRef]

10. Gesta, S.; Tseng, Y.-H.; Kahn, C.R. Developmental Origin of Fat: Tracking Obesity to Its Source. Cell
2007, 131, 242–256. [CrossRef] [PubMed]

11. Kissebah, A.H.; Krakower, G.R. Regional adiposity and morbidity. Physiol. Rev. 1994, 74, 761–811. [CrossRef]
[PubMed]

12. Nelson, T.L.; Brandon, D.T.; Wiggins, S.A.; Whitfield, K.E. Genetic and Environmental Influences on Body-Fat
Measures among African-American Twins. Obes. Res. 2002, 10, 733–739. [CrossRef] [PubMed]

13. Schleinitz, R.; Böttcher, Y.; Blüher, M.; Kovács, P. The genetics of fat distribution. Diabetology 2014, 57,
1276–1286. [CrossRef]

14. Tibbs, M.K. Wound healing following radiation therapy: A review. Radiother. Oncol. 1997, 42, 99–106.
[CrossRef]

http://dx.doi.org/10.1007/s12015-017-9774-9
http://www.ncbi.nlm.nih.gov/pubmed/29027120
http://dx.doi.org/10.1016/j.jcyt.2013.02.006
http://www.ncbi.nlm.nih.gov/pubmed/23570660
http://dx.doi.org/10.1016/j.jdermsci.2007.05.018
http://dx.doi.org/10.1242/dev.002642
http://dx.doi.org/10.1016/j.bbadis.2013.05.011
http://www.ncbi.nlm.nih.gov/pubmed/23688783
http://dx.doi.org/10.1159/000321319
http://dx.doi.org/10.1111/exd.12450
http://dx.doi.org/10.1016/j.tem.2015.11.002
http://dx.doi.org/10.1016/j.clindermatol.2013.05.021
http://dx.doi.org/10.1016/j.cell.2007.10.004
http://www.ncbi.nlm.nih.gov/pubmed/17956727
http://dx.doi.org/10.1152/physrev.1994.74.4.761
http://www.ncbi.nlm.nih.gov/pubmed/7938225
http://dx.doi.org/10.1038/oby.2002.100
http://www.ncbi.nlm.nih.gov/pubmed/12181381
http://dx.doi.org/10.1007/s00125-014-3214-z
http://dx.doi.org/10.1016/S0167-8140(96)01880-4


J. Clin. Med. 2020, 9, 2161 12 of 14

15. Bielefeld, K.A.; Amini-Nik, S.; Alman, B.A. Cutaneous wound healing: Recruiting developmental pathways
for regeneration. Cell. Mol. Life Sci. 2012, 70, 2059–2081. [CrossRef]

16. Singer, A.J.; Clark, R.A. Cutaneous Wound Healing. N. Engl. J. Med. 1999, 341, 738–746. [CrossRef]
17. Yarnold, J.R.; Brotons, M.-C.V. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97,

149–161. [CrossRef]
18. Evans, N.D.; Oreffo, R.O.; Healy, E.; Thurner, P.J.; Man, Y.H. Epithelial mechanobiology, skin wound healing,

and the stem cell niche. J. Mech. Behav. Biomed. Mater. 2013, 28, 397–409. [CrossRef] [PubMed]
19. Xue, M.; Jackson, C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on

Abnormal Scarring. Adv. Wound Care 2015, 4, 119–136. [CrossRef]
20. Gieringer, M.; Gosepath, J.; Naim, R. Radiotherapy and wound healing: Principles, management and

prospects (Review). Oncol. Rep. 2011, 26, 299–307. [CrossRef] [PubMed]
21. Hiraoka, C.; Toki, F.; Shiraishi, K.; Sayama, K.; Nishimura, E.K.; Miura, H.; Higashiyama, S.; Nanba, D.

Two clonal types of human skin fibroblasts with different potentials for proliferation and tissue remodeling
ability. J. Dermatol. Sci. 2016, 82, 84–94. [CrossRef]

22. Pittenger, M.F. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147.
[CrossRef] [PubMed]

23. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.;
Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal
cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317.
[CrossRef] [PubMed]

24. Wang, Z.; Oron, E.; Nelson, B.; Razis, S.; Ivanova, N. Distinct Lineage Specification Roles for NANOG, OCT4,
and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell 2012, 10, 440–454. [CrossRef] [PubMed]

25. Pitrone, M.; Pizzolanti, G.; Coppola, A.; Tomasello, L.; Martorana, S.; Pantuso, G.; Giordano, C. Knockdown
of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells.
Int. J. Mol. Sci. 2019, 20, 2580. [CrossRef] [PubMed]

26. Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion
and differentiation

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 14 of 16 

17. Yarnold, J.R.; Brotons, M.-C.V. Pathogenetic mechanisms in radiation fibrosis. Radiother. Oncol. 2010, 97, 149–
161, doi:10.1016/j.radonc.2010.09.002. 

18. Evans, N.D.; Oreffo, R.O.; Healy, E.; Thurner, P.J.; Man, Y.H. Epithelial mechanobiology, skin wound healing, 
and the stem cell niche. J. Mech. Behav. Biomed. Mater. 2013, 28, 397–409, doi:10.1016/j.jmbbm.2013.04.023. 

19. Xue, M.; Jackson, C.J. Extracellular Matrix Reorganization During Wound Healing and Its Impact on 
Abnormal Scarring. Adv. Wound Care 2015, 4, 119–136, doi:10.1089/wound.2013.0485. 

20. Gieringer, M.; Gosepath, J.; Naim, R. Radiotherapy and wound healing: Principles, management and 
prospects (Review). Oncol. Rep. 2011, 26, 299–307, doi:10.3892/or.2011.1319. 

21. Hiraoka, C.; Toki, F.; Shiraishi, K.; Sayama, K.; Nishimura, E.K.; Miura, H.; Higashiyama, S.; Nanba, D. Two 
clonal types of human skin fibroblasts with different potentials for proliferation and tissue remodeling ability. 
J. Dermatol. Sci. 2016, 82, 84–94. 

22. Pittenger, M.F. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science 1999, 284, 143–147, 
doi:10.1126/science.284.5411.143. 

23. Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; 
Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The 
International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317, 
doi:10.1080/14653240600855905. 

24. Wang, Z.; Oron, E.; Nelson, B.; Razis, S.; Ivanova, N. Distinct Lineage Specification Roles for NANOG, OCT4, 
and SOX2 in Human Embryonic Stem Cells. Cell Stem Cell 2012, 10, 440–454, doi:10.1016/j.stem.2012.02.016. 

25. Pitrone, M.; Pizzolanti, G.; Coppola, A.; Tomasello, L.; Martorana, S.; Pantuso, G.; Giordano, C. Knockdown 
of NANOG Reduces Cell Proliferation and Induces G0/G1 Cell Cycle Arrest in Human Adipose Stem Cells. 
Int. J. Mol. Sci. 2019, 20, 2580. 

26. Bunnell, B.A.; Flaat, M.; Gagliardi, C.; Patel, B.; Ripoll, C. Adipose-derived stem cells: Isolation, expansion 
and differentiation ☆ . Methods 2008, 45, 115–120, doi:10.1016/j.ymeth.2008.03.006. 

27. Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative Analysis of Mesenchymal Stem Cells from 
Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells 2006, 24, 1294–1301, 
doi:10.1634/stemcells.2005-0342. 

28. Tang, W.; Zeve, D.; Suh, J.M.; Bosnakovski, D.; Kyba, M.; Hammer, R.E.; Tallquist, M.D.; Graff, J.M. White 
Fat Progenitor Cells Reside in the Adipose Vasculature. Science 2008, 322, 583–586, 
doi:10.1126/science.1156232. 

29. Wang, Q.A.; Zhang, F.; Jiang, L.; Ye, R.; An, Y.A.; Shao, M.; Tao, C.; Gupta, R.K.; Scherer, P.E. Peroxisome 
Proliferator-Activated Receptor γ and Its Role in Adipocyte Homeostasis and Thiazolidinedione-Mediated 
Insulin Sensitization. Mol. Cell. Biol. 2018, 38, e00677–17, doi:10.1128/mcb.00677-17. 

30. Schipper, B.M.; Marra, K.G.; Zhang, W.; Donnenberg, A.D.; Rubin, J.P. Regional Anatomic and Age Effects 
on Cell Function of Human Adipose-Derived Stem Cells. Ann. Plast. Surg. 2008, 60, 538–544, 
doi:10.1097/sap.0b013e3181723bbe. 

31. Reumann, M.K.; Linnemann, C.; Aspera-Werz, R.H.; Arnold, S.; Held, M.; Seeliger, C.; Nussler, A.K.; Ehnert, 
S. Donor Site Location Is Critical for Proliferation, Stem Cell Capacity, and Osteogenic Differentiation of 
Adipose Mesenchymal Stem/Stromal Cells: Implications for Bone Tissue Engineering. Int. J. Mol. Sci. 2018, 19, 
1868, doi:10.3390/ijms19071868. 

32. Baglioni, S.; Cantini, G.; Poli, G.; Francalanci, M.; Squecco, R.; Di Franco, A.; Borgogni, E.; Frontera, S.; Nesi, 
G.; Liotta, F.; et al. Functional Differences in Visceral and Subcutaneous Fat Pads Originate from Differences 
in the Adipose Stem Cell. PLoS ONE 2012, 7, e36569, doi:10.1371/journal.pone.0036569. 

33. Wu, W.; Niklason, L.; Steinbacher, D. The Effect of Age on Human Adipose-Derived Stem Cells. Plast. Reconstr. 
Surg. 2013, 131, 27–37, doi:10.1097/prs.0b013e3182729cfc. 

34. Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H. 
Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7, 
211–228, doi:10.1089/107632701300062859. 

35. Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.; Nagase, 
T.; Koshima, I.; et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid 
portions of liposuction aspirates. J. Cell. Physiol. 2006, 208, 64–76, doi:10.1002/jcp.20636. 

. Methods 2008, 45, 115–120. [CrossRef] [PubMed]
27. Kern, S.; Eichler, H.; Stoeve, J.; Klüter, H.; Bieback, K. Comparative Analysis of Mesenchymal Stem Cells

from Bone Marrow, Umbilical Cord Blood, or Adipose Tissue. Stem Cells 2006, 24, 1294–1301. [CrossRef]
28. Tang, W.; Zeve, D.; Suh, J.M.; Bosnakovski, D.; Kyba, M.; Hammer, R.E.; Tallquist, M.D.; Graff, J.M. White Fat

Progenitor Cells Reside in the Adipose Vasculature. Science 2008, 322, 583–586. [CrossRef]
29. Wang, Q.A.; Zhang, F.; Jiang, L.; Ye, R.; An, Y.A.; Shao, M.; Tao, C.; Gupta, R.K.;

Scherer, P.E. Peroxisome Proliferator-Activated Receptor γ and Its Role in Adipocyte Homeostasis and
Thiazolidinedione-Mediated Insulin Sensitization. Mol. Cell. Biol. 2018, 38, e00677-17. [CrossRef]

30. Schipper, B.M.; Marra, K.G.; Zhang, W.; Donnenberg, A.D.; Rubin, J.P. Regional Anatomic and Age Effects on
Cell Function of Human Adipose-Derived Stem Cells. Ann. Plast. Surg. 2008, 60, 538–544. [CrossRef]

31. Reumann, M.K.; Linnemann, C.; Aspera-Werz, R.H.; Arnold, S.; Held, M.; Seeliger, C.; Nussler, A.K.;
Ehnert, S. Donor Site Location Is Critical for Proliferation, Stem Cell Capacity, and Osteogenic Differentiation
of Adipose Mesenchymal Stem/Stromal Cells: Implications for Bone Tissue Engineering. Int. J. Mol. Sci.
2018, 19, 1868. [CrossRef]

32. Baglioni, S.; Cantini, G.; Poli, G.; Francalanci, M.; Squecco, R.; Di Franco, A.; Borgogni, E.; Frontera, S.;
Nesi, G.; Liotta, F.; et al. Functional Differences in Visceral and Subcutaneous Fat Pads Originate from
Differences in the Adipose Stem Cell. PLoS ONE 2012, 7, e36569. [CrossRef] [PubMed]

33. Wu, W.; Niklason, L.; Steinbacher, D. The Effect of Age on Human Adipose-Derived Stem Cells.
Plast. Reconstr. Surg. 2013, 131, 27–37. [CrossRef]

34. Zuk, P.A.; Zhu, M.; Mizuno, H.; Huang, J.; Futrell, J.W.; Katz, A.J.; Benhaim, P.; Lorenz, H.P.; Hedrick, M.H.
Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. Tissue Eng. 2001, 7,
211–228. [CrossRef] [PubMed]

35. Yoshimura, K.; Shigeura, T.; Matsumoto, D.; Sato, T.; Takaki, Y.; Aiba-Kojima, E.; Sato, K.; Inoue, K.; Nagase, T.;
Koshima, I.; et al. Characterization of freshly isolated and cultured cells derived from the fatty and fluid
portions of liposuction aspirates. J. Cell. Physiol. 2006, 208, 64–76. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s00018-012-1152-9
http://dx.doi.org/10.1056/NEJM199909023411006
http://dx.doi.org/10.1016/j.radonc.2010.09.002
http://dx.doi.org/10.1016/j.jmbbm.2013.04.023
http://www.ncbi.nlm.nih.gov/pubmed/23746929
http://dx.doi.org/10.1089/wound.2013.0485
http://dx.doi.org/10.3892/or.2011.1319
http://www.ncbi.nlm.nih.gov/pubmed/21617873
http://dx.doi.org/10.1016/j.jdermsci.2016.01.009
http://dx.doi.org/10.1126/science.284.5411.143
http://www.ncbi.nlm.nih.gov/pubmed/10102814
http://dx.doi.org/10.1080/14653240600855905
http://www.ncbi.nlm.nih.gov/pubmed/16923606
http://dx.doi.org/10.1016/j.stem.2012.02.016
http://www.ncbi.nlm.nih.gov/pubmed/22482508
http://dx.doi.org/10.3390/ijms20102580
http://www.ncbi.nlm.nih.gov/pubmed/31130693
http://dx.doi.org/10.1016/j.ymeth.2008.03.006
http://www.ncbi.nlm.nih.gov/pubmed/18593609
http://dx.doi.org/10.1634/stemcells.2005-0342
http://dx.doi.org/10.1126/science.1156232
http://dx.doi.org/10.1128/MCB.00677-17
http://dx.doi.org/10.1097/SAP.0b013e3181723bbe
http://dx.doi.org/10.3390/ijms19071868
http://dx.doi.org/10.1371/journal.pone.0036569
http://www.ncbi.nlm.nih.gov/pubmed/22574183
http://dx.doi.org/10.1097/PRS.0b013e3182729cfc
http://dx.doi.org/10.1089/107632701300062859
http://www.ncbi.nlm.nih.gov/pubmed/11304456
http://dx.doi.org/10.1002/jcp.20636
http://www.ncbi.nlm.nih.gov/pubmed/16557516


J. Clin. Med. 2020, 9, 2161 13 of 14

36. Rodbell, M. Metabolism of isolated fat cells. II. The similar effects of phospholipase C (Clostridium
perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J. Biol. Chem. 1966, 241,
130–139. [PubMed]

37. Chen, Y.-J.; Liu, H.-Y.; Chang, Y.-T.; Cheng, Y.-H.; Mersmann, H.J.; Kuo, W.-H.; Ding, S.-T. Isolation and
Differentiation of Adipose-Derived Stem Cells from Porcine Subcutaneous Adipose Tissues. J. Vis. Exp.
2016, 109, e53886. [CrossRef]

38. Oedayrajsingh-Varma, M.; Van Ham, S.; Knippenberg, M.; Helder, M.; Klein-Nulend, J.; Schouten, T.; Ritt, M.;
Van Milligen, F. Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected
by the tissue-harvesting procedure. Cytotherapy 2006, 8, 166–177. [CrossRef]

39. Johnson, M.L.; Johnson, L.; Mahabir, R.C.; Bernard, R. Perspectives on the FDA Draft Guidances for Use of
Adipose Tissue. Aesthetic Surg. J. 2017, 37, 622–625. [CrossRef]

40. Rigotti, G.; Marchi, A.; Galie’, M.; Baroni, G.; Benati, D.; Krampera, M.; Pasini, A.; Sbarbati, A. Clinical
Treatment of Radiotherapy Tissue Damage by Lipoaspirate Transplant: A Healing Process Mediated by
Adipose-Derived Adult Stem Cells. Plast. Reconstr. Surg. 2007, 119, 1409–1422. [CrossRef]

41. Sharma, S.; Rahul, M. Role of autologous fat grafting in burn wounds. Indian J. Burn. 2018, 26, 15. [CrossRef]
42. Riyat, H.; Touil, L.L.; Briggs, M.; Shokrollahi, K. Autologous fat grafting for scars, healing and pain: A review.

Scars Burns Heal. 2017, 3, 205951311772820. [CrossRef] [PubMed]
43. Dubey, N.K.; Mishra, V.K.; Dubey, R.; Deng, Y.-H.; Tsai, F.-C.; Deng, W.-P. Revisiting the Advances in Isolation,

Characterization and Secretome of Adipose-Derived Stromal/Stem Cells. Int. J. Mol. Sci. 2018, 19, 2200.
[CrossRef]

44. Bhang, S.H.; Cho, S.-W.; La, W.-G.; Lee, T.-J.; Yang, H.S.; Sun, A.-Y.; Baek, S.-H.; Rhie, J.-W.; Kim, B.-S.
Angiogenesis in ischemic tissue produced by spheroid grafting of human adipose-derived stromal cells.
Biomaterials 2011, 32, 2734–2747. [CrossRef] [PubMed]

45. Cooper, D.; Wang, C.; Patel, R.; Trujillo, A.; Patel, N.A.; Prather, J.; Gould, L.J.; Wu, M.H. Human
Adipose-Derived Stem Cell Conditioned Media and Exosomes Containing MALAT1 Promote Human
Dermal Fibroblast Migration and Ischemic Wound Healing. Adv. Wound Care 2018, 7, 299–308. [CrossRef]

46. Makino, T.; Jinnin, M.; Muchemwa, F.; Fukushima, S.; Kogushi-Nishi, H.; Moriya, C.; Igata, T.; Fujisawa, A.;
Johno, T.; Ihn, H. Basic fibroblast growth factor stimulates the proliferation of human dermal fibroblasts via
the ERK1/2 and JNK pathways. Br. J. Dermatol. 2009, 162, 717–723. [CrossRef]

47. Yuan, B.; Broadbent, J.A.; Huan, J.; Yang, H. The Effects of Adipose Stem Cell-Conditioned Media on
Fibrogenesis of Dermal Fibroblasts Stimulated by Transforming Growth Factor-β1. J. Burn Care Res. 2018, 39,
129–140. [CrossRef]

48. Zvonic, S.; Lefevre, M.; Kilroy, G.; Floyd, Z.E.; Delany, J.P.; Kheterpal, I.; Gravois, A.; Dow, R.; White, A.;
Wu, X.; et al. Secretome of Primary Cultures of Human Adipose-derived Stem Cells. Mol. Cell. Proteom.
2006, 6, 18–28. [CrossRef]

49. Ezure, T.; Amano, S. Adiponectin and leptin up-regulate extracellular matrix production by dermal fibroblasts.
BioFactors 2007, 31, 229–236. [CrossRef] [PubMed]

50. Liu, J.; Ren, J.; Su, L.; Cheng, S.; Zhou, J.; Ye, X.; Dong, Y.; Sun, S.; Qi, F.-Z.; Liu, Z.; et al. Human adipose
tissue-derived stem cells inhibit the activity of keloid fibroblasts and fibrosis in a keloid model by paracrine
signaling. Burn 2018, 44, 370–385. [CrossRef] [PubMed]

51. Raposo, G.; Stoorvogel, W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013, 200,
373–383. [CrossRef] [PubMed]

52. Laberge, A.; Arif, S.; Moulin, V. Microvesicles: Intercellular messengers in cutaneous wound healing.
J. Cell. Physiol. 2018, 233, 5550–5563. [CrossRef] [PubMed]

53. Clancy, S.; Brown, W. Translation: DNA to mRNA to Protein. Nat. Educ. 2008, 1, 101.
54. Pogue, A.I.; Clement, C.; Hill, J.M.; Lukiw, W.J. Evolution of microRNA (miRNA) Structure and Function in

Plants and Animals: Relevance to Aging and Disease. J. Aging Sci. 2014, 2, 119. [CrossRef]
55. Yao, R.; Wang, Y.; Chen, L.-L. Cellular functions of long noncoding RNAs. Nature 2019, 21, 542–551. [CrossRef]
56. Hu, L.; Wang, J.; Zhou, X.; Xiong, Z.; Zhao, J.; Yu, R.; Huang, F.; Zhang, H.; Chen, L. Exosomes derived

from human adipose mensenchymal stem cells accelerates cutaneous wound healing via optimizing the
characteristics of fibroblasts. Sci. Rep. 2016, 6, 32993. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/4379054
http://dx.doi.org/10.3791/53886
http://dx.doi.org/10.1080/14653240600621125
http://dx.doi.org/10.1093/asj/sjx049
http://dx.doi.org/10.1097/01.prs.0000256047.47909.71
http://dx.doi.org/10.4103/ijb.ijb_24_18
http://dx.doi.org/10.1177/2059513117728200
http://www.ncbi.nlm.nih.gov/pubmed/29799544
http://dx.doi.org/10.3390/ijms19082200
http://dx.doi.org/10.1016/j.biomaterials.2010.12.035
http://www.ncbi.nlm.nih.gov/pubmed/21262528
http://dx.doi.org/10.1089/wound.2017.0775
http://dx.doi.org/10.1111/j.1365-2133.2009.09581.x
http://dx.doi.org/10.1097/BCR.0000000000000558
http://dx.doi.org/10.1074/mcp.M600217-MCP200
http://dx.doi.org/10.1002/biof.5520310310
http://www.ncbi.nlm.nih.gov/pubmed/18997286
http://dx.doi.org/10.1016/j.burns.2017.08.017
http://www.ncbi.nlm.nih.gov/pubmed/29029852
http://dx.doi.org/10.1083/jcb.201211138
http://www.ncbi.nlm.nih.gov/pubmed/23420871
http://dx.doi.org/10.1002/jcp.26426
http://www.ncbi.nlm.nih.gov/pubmed/29319164
http://dx.doi.org/10.4172/2329-8847.1000119
http://dx.doi.org/10.1038/s41556-019-0311-8
http://dx.doi.org/10.1038/srep32993


J. Clin. Med. 2020, 9, 2161 14 of 14

57. Ren, S.; Chen, J.; Duscher, D.; Liu, Y.; Guo, G.; Kang, Y.; Xiong, H.; Zhan, P.; Wang, Y.; Wang, C.; et al.
Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via
AKT and ERK signaling pathways. Stem Cell Res. Ther. 2019, 10, 47. [CrossRef] [PubMed]

58. Ebrahimian, T.; Pouzoulet, F.; Squiban, C.; Buard, V.; André, M.; Cousin, B.; Gourmelon, P.; Benderitter, M.;
Casteilla, L.; Tamarat, R. Cell Therapy Based on Adipose Tissue-Derived Stromal Cells Promotes Physiological
and Pathological Wound Healing. Arter. Thromb. Vasc. Biol. 2009, 29, 503–510. [CrossRef] [PubMed]

59. Altman, A.M.; Yan, Y.; Matthias, N.; Bai, X.; Rios, C.; Mathur, A.; Song, Y.-H.; Alt, E.U. IFATS Collection:
Human Adipose-Derived Stem Cells Seeded on a Silk Fibroin-Chitosan Scaffold Enhance Wound Repair in a
Murine Soft Tissue Injury Model. Stem Cells 2009, 27, 250–258. [CrossRef]

60. Park, S.-R.; Kim, J.-W.; Jun, H.-S.; Roh, J.Y.; Lee, H.-Y.; Hong, I.-S. Stem Cell Secretome and Its Effect on
Cellular Mechanisms Relevant to Wound Healing. Mol. Ther. 2017, 26, 606–617. [CrossRef]

61. Zhang, W.; Bai, X.; Zhao, B.; Li, Y.; Zhang, Y.; Li, Z.; Wang, X.; Luo, L.; Han, F.; Zhang, J.; et al. Cell-free
therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt
signaling pathway. Exp. Cell Res. 2018, 370, 333–342. [CrossRef] [PubMed]

62. Schmidt, B.A.; Horsley, V. Intradermal adipocytes mediate fibroblast recruitment during skin wound healing.
Development 2013, 140, 1517–1527. [CrossRef] [PubMed]

63. El-Hattab, M.Y.; Nagumo, Y.; Gourronc, F.A.; Klingelhutz, A.J.; Ankrum, J.A.; Sander, E.A. Human Adipocyte
Conditioned Medium Promotes In Vitro Fibroblast Conversion to Myofibroblasts. Sci. Rep. 2020, 10, 10.
[CrossRef]

64. Zhou, P.; Deng, C.-R.; Ping, J.-L. Identification of Y (4008), Y (4140), Y (4260), and Y (4360) as Tetraquark
States. Chin. Phys. Lett. 2015, 32, 101201. [CrossRef]

65. Haydont, V.; Neiveyans, V.; Perez, P.; Busson, É.; Lataillade, J.-J.; Asselineau, D.; Fortunel, N.O. Fibroblasts
from the Human Skin Dermo-Hypodermal Junction are Distinct from Dermal Papillary and Reticular
Fibroblasts and from Mesenchymal Stem Cells and Exhibit a Specific Molecular Profile Related to Extracellular
Matrix Organization and Modeling. Cells 2020, 9, 368. [CrossRef]

66. Pierpont, Y.N.; Dinh, T.P.; Salas, R.E.; Johnson, E.L.; Wright, T.G.; Robson, M.C.; Payne, W.G. Obesity and
Surgical Wound Healing: A Current Review. Int. Sch. Res. Not. 2014, 2014, 1–13. [CrossRef] [PubMed]

67. Shibata, S.; Tada, Y.; Asano, Y.; Hau, C.S.; Kato, T.; Saeki, H.; Yamauchi, T.; Kubota, N.; Kadowaki, T.; Sato, S.
Adiponectin Regulates Cutaneous Wound Healing by Promoting Keratinocyte Proliferation and Migration
via the ERK Signaling Pathway. J. Immunol. 2012, 189, 3231–3241. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1186/s13287-019-1152-x
http://www.ncbi.nlm.nih.gov/pubmed/30704535
http://dx.doi.org/10.1161/ATVBAHA.108.178962
http://www.ncbi.nlm.nih.gov/pubmed/19201690
http://dx.doi.org/10.1634/stemcells.2008-0178
http://dx.doi.org/10.1016/j.ymthe.2017.09.023
http://dx.doi.org/10.1016/j.yexcr.2018.06.035
http://www.ncbi.nlm.nih.gov/pubmed/29964051
http://dx.doi.org/10.1242/dev.087593
http://www.ncbi.nlm.nih.gov/pubmed/23482487
http://dx.doi.org/10.1038/s41598-020-67175-3
http://dx.doi.org/10.1088/0256-307X/32/10/101201
http://dx.doi.org/10.3390/cells9020368
http://dx.doi.org/10.1155/2014/638936
http://www.ncbi.nlm.nih.gov/pubmed/24701367
http://dx.doi.org/10.4049/jimmunol.1101739
http://www.ncbi.nlm.nih.gov/pubmed/22904306
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Adipose Tissue: Origins, Types, Distribution, and Genetics 
	Wound Healing 
	Adipose Tissue as a Source of Stem Cells 
	Tissue Engineering Techniques for Wound Healing 
	Further Adipose-Derived Targets with Implications for Wound Healing 
	Future Outlook 
	References

