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Resumen

Este trabajo explora el uso de la 
tecnología CUDA en la solución de 
problemas relacionados con la dinámi-
ca de fluidos. 7res proEOemas cOisicos 
de diIerente niveO de compOeMidad: 
convección-difusión en un canal, la 
cavidad movida por pared y la cavidad 
movida por diferencia de temperatura, 
fueron solucionados por el método de 
Oas diIerencias ¿nitas� usando Oa &38 
( procesador)  y la GPU ( tarjeta de video)  
para comparar el desempeño. Algunos 
aspectos importantes vinculados con la 
implementación numérica en la GPU 
son discutidos. Así mismo, los resulta-
dos mostraron un importante aumento 
de la velocidad cundo se usó la GPU.

P alabras clave: GPU, CUDA, 
dinámica de fluidos, método de las 
diIerencias ¿nitas.

Abstract

This work  explores the use of the 
CUDA technology in the solution of 
fluid dynamics proEOems. 7Kree cOassicaO 
problems with different level of comple-
xity: advection-diIIusion in a cKanneO� 
lid driven cavity and thermally driven 
cavity� Zere soOved using tKe ¿nite di-
fference method in both CPU and GPU 
in order to compare the computational 
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1. I ntroduction

In Computational Fluid Dynamics ( CFD) , 
tKe study oI floZs reTuires intensive numericaO 
calculations that, depending on the level of detail 
of the desired solution, could require an exces-
sive processing time. In order to increase the 
computational power, scientists have developed 
computers with many processors work ing in 
parallel ( computing clusters) , but these compu-
ters are expensive and most scientist and small 
institutions Kave no tKe ¿nanciaO resources to 
afford one.

In the lasts years, some industries, particu-
larly the entertainment industry, have required 
graphics with an increasing level of detail and 
real-time interactivity. In order to meet the de-
mands, the graphic processor manufacturers have 
increased parallelism, developing devices with 
a grid of graphic processors that emulate com-
puting clusters. Current graphic processors can 
feature thousands of processing cores in a single 
device� eacK oI tKem improved Ior floating-point 
arithmetic operations.

7Ke &ompute 8ni¿ed Device ArcKitecture 
( CUDA)  is a parallel computing technology de-
veloped by Nvidia for graphic processing. This 
technology includes a programming environment 
that mak e accessible to programmers the compu-
ting resources of the graphics devices, allowing 
the development of general purpose programs. 
Therefore, the graphic processing units ( GPUs)  
can be used by scientist and engineers to increase 
their computing power with a modest investment 
of money. As a consequence, the general-purpose 
computing on graphic processing units ( GPGPU)  
has arisen as an important topic of study.

Many work s about methodologies for the 
implementation of numerical calculations on 
GPUs and the solution of engineering problems 
using these devices have been published in the 
lasts years. Some relevant works  are related to 
tKe eI¿cient impOementation oI Oinear aOgeEra 

routines �.r�ger 	 :estermann� 200�� %eOO 	 
*arOand� 200��� soOution oI Oarge Oinear systems 
�%oO]� )armer� *rinspun 	 6cKr|der� 200�� &our-
tecuisse 	 AOard� 200��� ¿nite eOement anaOysis 
�&ecNa� /eZ 	 Darve� 2011�� ))7 caOcuOations 
�0oreOand 	 AngeO� 200��� computationaO fluid 
dynamics ( CFD)  calculations ( Tö lk e &  K rafczyk , 
200�� )re]]otti� *KiroOdi 	 *iEeOOi� 2011�� 
among others.

In this work , the use of graphic processor 
in tKe soOution oI fluid dynamics proEOems is 
evaluated. 

Three classical CFD problems with well-
NnoZn soOution: advection-diIIusion in a cKanneO� 
lid driven cavity and thermally driven cavity, 
Zere soOved using tKe ¿nite diIIerence metKod 
in both the CPU and the GPU. These problems 
are modeled by the Navier-Stoke s equations and 
have different level of complexity.

Relevant issues such as the numerical im-
plementation in the GPU, restrictions and per-
formance are discussed. It is important to point 
out the difference between the GPU and the CPU 
implementations. The parallel programing and the 
restricted features in the GPU require a change in 
the programing paradigm and some operations or 
algorithms of easy implementation in the CPU 
couOd Ee diI¿cuOt in tKe *38. )urtKermore� *38 
is highly hardware dependent. The performance 
results show the graphic device was more than a 
thousand fold faster than the processor for the sim-
ple advection-diffusion problem, but just threefold 
faster for the others, considerably more complex, 
problems. However, all GPU developed codes 
can be further optimized for better performance.

2. CU DA T ech nology

CUDA is a hardware and software architec-
ture developed by Nvidia to execute programs 
in paraOOeO �200��. 7Kis programs can Ee EotK 
graphic routines or general purpose programs that 
can be executed in the CUDA enabled graphic 
devices and written in diverse languages, such as 
C, C+ + , Fortran, OpenCL, Python, among others. 
7Kis tecKnoOogy Kas Kad a signi¿cant impact in 
tKe scienti¿c computing. As an exampOe oI tKis� 
0atOaE� 0atKematica� Ansys and otKer scienti¿c 
and engineering software are developing interfa-
ces to tak e advantage of the computational power 
available in the GPUs.

performance. Important features related to 
the GPU implementation are discussed and 
results show an important increase in the 
computation speed with the use of the GPU.

K eyw ords: *38� &8DA� fluid dyna-
mics� ¿nite diIIerence metKod.
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A CUDA program executes a ke rnel simul-
taneously. A ke rnel is a piece of code susceptible 
of being executed in parallel ( see Table 1) . For 
example, the scalar–matrix multiplication can 
be performed in parallel because each individual 
multiplication does not depend on the other ones 
and, thus, can be executed for a different proces-
sor at the same time. Other calculation routines 
cannot be directly parallelized. Each individual 
call to a k ernel is called a thread, and a thread has 
an ID, a program counter, registers, per-thread 
private memory, input, and output results. A 
block  is a set of threads concurrently executed. It 
shares a per-block  memory ( shared memory)  and 
can be synchronized. A grid is an array of blocks  
executing the same ke rnel and it can read and 
write data in the global memory and synchronize 
between dependent ke rnel calls. Each block has 
an ID within the grid. Figure 1 shows the CUDA 
hierarchy of threads, blocks  and grids.

Figure 1. Hierarchy of CUDA threads, blocks  and 
grids

S ource: Nvidia �200��.

Figure 2 shows a scheme of the Fermi 
streaming processor �60�� Ieaturing �2 cores. 
Each core has an arithmetic logic unit ( ALU)  
and a floating point unit �)38�. 7Ke 60 Kas 
four special function units ( SFUs) , that executes 
transcendental instructions such as sin, cosine, re-

ciprocaO� and sTuare root� sixteen Ooad�store units 
�/D�67� Ior addressing� registers� /1 cacKe and 
scheduler and dispatch units. Fermi architecture 
implements the new and more accurate IEEE 
7�4-200� floating-point standard.

Figure 2. Fermi architecture 

S ource: Nvidia �200��.

EacK device Kas an array oI up to 4� strea-
ming processors �up to 1��� &8DA cores�� 
with a common L2 cache, six partitions of a 
�4-Eit D5A0 gOoEaO memory� a 3&I Express 
host interface for communication with the CPU 
and a global scheduler that distributes the thread 
block s in the streaming processors. All these units 
work together, interconnected by a network like  
a computing cluster in a single device.

Software is another important issue. NVI-
DIA has released a development toolki t for the 
most important operative systems, including 
an extensive collection of code samples. These 
software tools have facilitated the understanding 
of the technology and its features to general 
purpose programmers and scientists. A CUDA 
program is compiled by the NVCC ( Nvidia' s 
CUDA compiler) , available in the development 
ki t. The executable contains the GPU code and 
CPU routines required to control the operation, 
i.e., data transfer between CPU and GPU and the 
ke rnels scheme of execution.
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As an example, Table 1 shows the implemen-
tation of a function, that calculates the square of 
each element in an array, in both ANSI C and 
CUDA. The CPU code is executed in a serial 
way, that is, the operations in the for loop are 
performed in sequence ( one after the other) . On 
the other hand, the CUDA ke rnel can be execu-
ted in parallel, using different processing cores 
to execute the k ernel ( threads)  simultaneously. 
If the number of operations ( N)  is less than or 
equal to the maximum allowable block size and 
the number of cores is enough, all operations 
could be performed in a single step. In general, 
the threads are arranged in grids of blocks  that 
can Ee executed seTuentiaOOy� in an order de¿ned 
automatically by the GPU scheduler.

T able 1. Simple CUDA ke rnel example

�� &38 code

void square( float *a , int N)

{

int k;  

  for�N 0�N�N�N���

   a>N@   a>N@ 
 a>N@�

}
�� &8DA .erneO executed in tKe *38

__gl obal__ void square( double *a , int N)

{

  int idx   tKreadIdx.x�

      a>idx@   a>idx@ 
 a>idx@�

}

S ource: by the author.

A &8DA NerneO is de¿ned Ey tKe NeyZord 
“ __gl obal__”  and cannot return a value, there-
fore, it must be declared “ void” . It should be 
noted the lack of a “ for”  statement. In this case, 
the thread ID, accessible by means the built in 
variable “ threadIdx” , replaces the index loop 
and the ke rnel launching statement determines 
the size block ( number of dispatched  threads) .

CUDA programming is different from the 
standard programming, because parallelism 

implies another programing paradigm. Some 
algorithms can be implemented in GPU almost 
transOating tKe &38 code and otKer ones are diI¿-
cuOt to paraOOeOi]e. 0oreover� KardZare speci¿c 
issues, specially the memory management, and 
the restrictions in the computing features lead to 
different programming techniques. Many infor-
mation about the architecture and programming 
can be found in the CUDA documentation and 
the training resources available in the Nvidia site.

3. M eth odology

��� 0DtKemDticDO Gefinition oI tKe SUoEOem

The test problems are solutions of the tran-
sient incompressible Navier-Stok es equations. 
These equations are composed by the following 
set of partial differential equations ( Versteeg &  
0aOaOaseNera� 1����:

u � 0    ( 1)

u
t


 (u )u 
 p � μ 2u 
 Sj  ( 2)

T
t


 u T 
 p �
μ
Pr

2T     ���

where u is tKe veOocity vector ¿eOd� p  is the 
pressure, T  is tKe temperature� t is tKe time� ȡ is 
tKe density� ȝ is tKe viscosity and 3r is tKe 3randt 
number.

Equation ( 1)  is the continuity equation. It 
establishes the conservation of mass through the 
domain, restricting the velocity to a divergence 
Iree vector ¿eOd. ETuation �2� estaEOisKes tKe 
conservation of the momentum, where the term  
( u· ∇)u is tKe convective acceOeration� ȝ∇2u is 
the viscous forces, ∇p  is the pressure gradient 
and 6 is a source term. ETuation ��� is tKe ener-
gy equation, establishing the conservation of 
the internal energy in the domain, which, in the 
incompressible case, depends on the temperature 
only. In this equation, the term u· ∇T  model the 
energy transport due to tKe fluid movement �ad-
vection� and tKe term �ȝ�3r�∇2T  model the heat 
conduction into tKe fluid.

7Ke determination oI tKe pressure scaOar ¿eOd� 
called pressure-velocity coupling is implemented 
using the projection method proposed by Chorin 
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�1����. In tKis metKod� tKe veOocity ¿eOd is caOcu-
lated avoiding the pressure term, then, the pressure 
is used to project the velocity onto a space of di-
vergence-Iree veOocity ¿eOd to get tKe next update 
of velocity and pressure. The pressure gradient can 
be interpreted as Lagrange multipliers, calculated 
in such a way to ensure that the resulting velocity 
¿eOd does satisIy continuity eTuation.

This advection-diffusion problem is modeled 
Ey tKe energy eTuation ���� ZKere tKe veOocity 
vector ¿eOd �u)  is k nown in the entire domain and 
tKe temperature ¿eOd is unNnoZn. )or tempera-
ture, Dirichlet boundary condition is established 
for the hot region and von Neumann ( adiabatic 
wall)  elsewhere. The lid driven cavity problem 
is modeled by equations ( 1)  and ( 2) , where the 
veOocity vector ¿eOd �u)  and the pressure scalar 
¿eOd � p )  are the unk nowns. For velocity, the 
Dirichlet condition ( no-slip condition)  is esta-
blished in the entire boundary. For pressure, von 
Neumann condition ( zero gradient normal to the 
boundary)  is established. In the thermally driven 
cavity case, the problem is modeled by the three 
eTuations: continuity� momentum and energy. In 
addition to u and p , the temperature ( T )  is also an 
unknow n. The boundary conditions for velocity 
and pressure are the same of the lid driven cavity 
problem ones. For temperature, Dirichlet condi-
tion is established in the left and right boundary 
and von Neumann condition ( adiabatic wall)  in 
the top and bottom ones.

3. 2 N umerical implementation

7Ke proEOems are soOved Ey tKe ¿nite diIIe-
rence method. The L × H  rectangular domain is 
subdivided in M × N  rectangles, equivalent to 
( M + 1) × ( N + 1)  nodes. The boundary is composed 
by two nodes, as required for the fourth order 
stenciOs empOoyed >1�@. )or numericaO impOe-
mentation simplicity, only explicit schemes were 
used. Explicit schemes allow the evaluation of 
the derivatives avoiding the implementation of 
solvers for linear systems, as required by the 
more stable and precise implicit schemes. This 
approach required the minimum data storage, 
however, for numerical stability, the time incre-
ment can be very small, taki ng a long time to 
reach steady state.

The numerical implementation consists on 
tKe approximation oI tKe derivatives ¿nite di-
fference stencils to obtain difference equations. 

The advection-diffusion problem is modeled by 
a unique difference equation that can be solved 
using a single CUDA ke rnel. In the other pro-
blems, the discretization problem lead to a set of 
difference equations, and they have to be solved 
simultaneously. In addition, the momentum and 
energy equations are evaluated term by term 
in a series of steps called “ internal iterations” . 
Details of this method can be found in the work 
oI 6eiEoOd �200��. 7KereIore� tKe soOution code 
of these problems is more intricate and they are 
required four or more CUDA ke rnels.

3. 3 P erf ormance comparison

The most important concern about the nu-
merical implementation of the solutions was the 
homogeneity between CPU and GPU codes. This 
means performing, as far as possible, the same 
calculations to allow comparison. Initially, each 
solution was programed in MatlabTM and the re-
sults compared to those obtained from literature. 
This step was carried out in order to validate 
the implemented solutions and to establish a set 
of simulation parameters. Then, the solutions 
were programed in ANSI C, avoiding the use of 
matrix or any other numerical libraries. Matrix 
aOgeEra and ¿Oe access routines Zere programed 
to assure the CPU and GPU code make , as pos-
sible, the same operations. Finally, the solutions 
are programmed in CUDA, following the same 
structure of the ANSI C code, and executed in 
tKe *38. 7aEOe 2 sKoZs tKe speci¿cations oI tKe 
computing devices.

T able 2. Main characteristics of the hardware
G P U

Graphic device NVIDIA *7X-�70
Architecture Fermi
Streaming processors 1�
CUDA cores 4�0
Processor clock ( MHz) 14�4
Memory ( Gb) 1.28

CP U
Processor InteO Xeon E��20
Architecture X��B�4
Cores 4
Processor clock ( MHz) 2400
RAM Memory ( Gb) 8

S ource: by the author.
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The processing time in both CPU and GPU 
was measured using the Linux system time li-
brary ( time.h) . This library provides functions to 
read the system time in resolution of miliseconds. 
Then, the system time is read at the beginning 
and at the end of the solution routines and the 
difference is calculated.

4. R esults and discussion

)igure � sKoZs tKe temperature distriEution 
and a representation oI tKe veOocity vector ¿eOd 
for the advection-difussion problem. The do-
main is a rectanguOar cKanneO oI 0.�x0.1 meters 
ZitK a IuOOy deveOoped floZ oI Zater at 20�& 
and a hot region at the bottom of the channel at 
�0�&. 7Ke veOocity in tKe center oI tKe cKanneO 
�maximum veOocity� is 1 cm�s. 7Ke domain 
Zas discreti]ed using �40x12� suEdivisions 
and the termination criterion were steady state 
( maximum difference of temperature between 
tZo successive iteration Oess tKan 10-8 ) . In this 
proEOem� tKe fluid next to tKe Kot region is Zar-
med �diIIusion�� at tKe same time� tKe Kot fluid 
is transported downstream ( advection) . The 
temperature distribution shows the expected 
behavior.

)igure 4 sKoZ tKe soOution oI tKe Oid driven 
cavity proEOem in a sTuare domain oI 1.0x1.0 
meters with the top boundary horizontal velocity 
¿xed to 1 m�s. 7Ke pKysicaO properties oI tKe 
fluid Zere seOected in order to Kave a 5eynoOds 
numEer oI 400. 7Ke domain Zas discreti]ed 
using �12x�12 suEdivisions and tKe program 
Zas executed �000 temporaO iterations� aOmost 
reaching steady state ( the maximum difference 
of velocity magnitude between two successive 
iteration Zas Oess tKan 2x10-6 ) . In this problem, 
the movement of top boundary induces a rota-
tion oI tKe fluid into tKe cavity� generating a 
vortex ZitK center in and speci¿c Oocation tKat 
depends on 5eynoOds numEer. 7Ke ¿gure sKoZs 
tKe magnitude oI tKe veOocity vector ¿eOd and 
the streamlines. This results are in agreement 
with those reported in literature ( Ghia, Ghia &  
6Kin� 1��2�. 

)igure � sKoZs tKe soOution oI tKe tKerma-
lly driven cavity problem in a square cavity of 
0.��0.� meters. 7Ke  fluid is air� and tKe domain 
size and the temperature difference were cho-
sen in order to Kave a 5ayOeigK numEer oI 106. 
7Ke domain Zas discreti]ed using �12x�12 

subdivisions and the program was executed 
�000 temporaO iterations� aOmost reacKing 
steady state ( the maximum difference of velo-
city magnitude between two successive itera-
tion Zas Oess tKan �x10-6 ) . In this problem, the 
high temperature wall warms the surrounding 
fluid� generating a density reduction and� con-
sequently, buoyancy. In this work , buoyancy is 
modeled using the Bousinesq approximation. 
7Ke ¿gure sKoZs tKe temperature distriEution 
and the streamlines. These results are in agre-
ement with those reported in literature ( Pérez, 
1��4�.

7aEOe � sKoZs tKe comparison oI tKe pro-
cessing time Ior tKe soOutions sKoZed in ¿gures 
� to �. 7Ke processing times� in seconds� Ior 
CPU and GPU solutions are compared and the 
speed up ( CPU to GPU processing time ratio)  
calculated. Additional information such as the 
domain size and the termination criterion are 
included.

The advection diffusion problem is relati-
vely simple and it can be solved using a single 
CUDA k ernel. In this problem, the speed up 
is many thousand times. It is consequence of 
the complete parallelism, that is, each iteration 
required to evaluate the spatial derivatives can 
be executed by an individual thread. This is an 
interesting result;  however, the real problems 
are not so simple.

For the lid driven cavity problem, the spe-
ed up is Must �.�x� a drasticaOOy OoZer vaOue. In 
this problem, each temporal step is obtained by 
the sequential execution of four k ernels. The 
¿rst NerneO evaOuates tKe convective terms� tKe 
second evaluates the diffusive terms and cal-
culate the divergence of velocity, and the third 
and fourth k ernels solve the pressure-velocity 
coupling and mak e the temporal update. For the 
tKermaOOy driven cavity� tKe speed up is �.4x� 
similar to that of the lid driven cavity problem. 
The solution of this problem was implemented 
using six CUDA k ernels, the same as the pre-
vious problem and two additional ones for the 
evaluation of the advective and diffusive terms 
of the energy equation. However, the larger 
number of k ernels is not the main cause of the 
performance reduction. The main of performan-
ce reduction is the pressure-velocity coupling, 
Eecause tKe ¿nite diIIerence scKeme impOemen-
ted can be partially parallelized.
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Figure 3. Advection-diIIusion proEOem EetZeen in¿nite paraOOeO pOates: temperature distriEution and veOocity 
vector ¿eOd

S ource: by the author.

Figure 4 . Lid driven cavity problem at Reynolds 
numEer oI 400: magnitude oI tKe veOocity vector ¿eOd 
and streamlines

S ource: by the author.

Figure 5 . Thermally driven cavity problem at Ra-
yOeigK numEer oI 10�: temperature distriEution and 
streamlines

S ource: by the author.

T able 3. Main characteristics of the hardware

P roblem Domain siz e T ermination 
criterion CP U  time ( s) G P U  time ( s) S peed up

Advection-
diffusion �40x12� Steady state 2���1.0 0.��� a�0000x

Lid driven cavity �12x�12 �000 temporaO 
iterations ���.� 1��.� �.�x

Thermally driven 
cavity �12x�12 �000 temporaO 

iterations 71�.7 20�.� �.4x

S ource: by the author.

5. C onclusions

In this work , the use of the CUDA technology 
to the solution of CFD problems was analyzed. 
Three classical CFD problems with different level 
of complexity were solved using the CPU and the 
GPU. The performance analysis showed an impor-
tant reduction in the computation time with the 

GPU, however, this reduction is highly dependent 
of the level of complexity of the problem. In the 
advection-diffusion problem, where the calcula-
tion reduces to tKe evaOuation oI a singOe ¿nite 
difference stencil and parallelism is complete, the 
speed up is many thousand fold. However, for the 
other more complex problems the speed up is less 
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than fourfold. This is consequence of the greater 
number of CUDA k ernel required and the partially 
parallelization of the solution scheme used for the 
pressure-velocity coupling.

The learning of CUDA programming is not 
easy. Parallelization issues, in addition to the 
restrictions in the computing features and the 
memory management oI a *38� maNe diI¿cuOt tKe 
development of complex numerical algorithms. 
Nevertheless, with an acceptable expertise on the 
syntax of the CUDA language and the understan-
ding of memory architecture and the hierarchy of 
threads, block  and grids, it is possible to face the 
development of elaborated applications. Because 
the parallelization issues generate most imple-
mentation problems, it is highly recommended 
to write a serial code and then, when application 
gives correct results, incorporate parallelism. This 
technique proved valuable in simple implemen-
tations, and indispensable in the most complex.

Many code samples can be found in the 
CUDA Tool K it and internet. These optimized co-
des are useful as examples or can be incorporated 
in the application, it is important to not reinvent 
the wheel. An example is the determination of the 
max�min vaOue oI a matrix in an eI¿cient Zay. 
This ki nd of problem is called “ reduction” , be-
cause, in order to exploit parallelism, the original 
matrix must be sequentially sectioned in smaller 
ones. 7Kis is a diI¿cuOt programming proEOem� 
however, the Nvidia team provides different code 
samples that can be adapted or directly incorpo-
rated to the program.

7Ke fluid dynamic proEOems seOected and tKe 
numerical methods employed for the solutions 
are reOativeOy simpOe. 5eaO proEOems sucK as fluid 
dynamics in irreguOar and �D-domains or ¿nite 
elements calculations are more complex and the 
solutions involve sparse matrices algebra, fac-
torization or inversion of large linear systems, 
submatrices, complicated indexing, etc. These 
problems bring new challenges. Fortunately, 
there are software libraries incorporating much 
of these required functionalities.

The codes implemented in this work  are 
optimi]ation susceptiEOe. ActuaOOy� tKis is a ¿rst 
approaching to the CUDA technology and the 
performance improvement is an advanced issue 
yet to be done.

Finally, the CUDA technology has great 
potentiaO as a scienti¿c and engineering tooO� 

because it brings high performance computing to 
universities and industries ZitKout tKe ¿nanciaO 
cost of a computing cluster. Nowadays, Nvidia 
has released their new GPU architecture called 
“ K epler”  with features and performance superior 
to the one used in this work  and the cost is compa-
rable. An important feature is scalability, because 
it is possible to incorporate several devices to 
increment the computational power. On the other 
hand, the software is in constant improvement, 
including new capabilities in the language and 
OiEraries Ior speci¿c tasNs.
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