
16 (O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Application of the CUDA
technology to the solution of
fluid dynamics problems

EdiguER FRaNco*

olmEdo aRcila*

saNtiago laíN*

Resumen

Este trabajo explora el uso de la
tecnología CUDA en la solución de
problemas relacionados con la dinámi-
ca de fluidos. 7res proEOemas cOisicos
de diIerente niveO de compOeMidad:
convección-difusión en un canal, la
cavidad movida por pared y la cavidad
movida por diferencia de temperatura,
fueron solucionados por el método de
Oas diIerencias ¿nitas� usando Oa &38
(procesador) y la GPU (tarjeta de video)
para comparar el desempeño. Algunos
aspectos importantes vinculados con la
implementación numérica en la GPU
son discutidos. Así mismo, los resulta-
dos mostraron un importante aumento
de la velocidad cundo se usó la GPU.

P alabras clave: GPU, CUDA,
dinámica de fluidos, método de las
diIerencias ¿nitas.

Abstract

This work explores the use of the
CUDA technology in the solution of
fluid dynamics proEOems. 7Kree cOassicaO
problems with different level of comple-
xity: advection-diIIusion in a cKanneO�
lid driven cavity and thermally driven
cavity� Zere soOved using tKe ¿nite di-
fference method in both CPU and GPU
in order to compare the computational

(*))acuOtad de Ingenierta� 8niversidad Autónoma de 2ccidente. &aOOe 2� �11�-��� &aOi� &oOomEia.
5eception¶s date: 01�07�2014 • Aceptation¶s date: 04�0��2014.

17(O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

1. I ntroduction

In Computational Fluid Dynamics (CFD) ,
tKe study oI floZs reTuires intensive numericaO
calculations that, depending on the level of detail
of the desired solution, could require an exces-
sive processing time. In order to increase the
computational power, scientists have developed
computers with many processors work ing in
parallel (computing clusters) , but these compu-
ters are expensive and most scientist and small
institutions Kave no tKe ¿nanciaO resources to
afford one.

In the lasts years, some industries, particu-
larly the entertainment industry, have required
graphics with an increasing level of detail and
real-time interactivity. In order to meet the de-
mands, the graphic processor manufacturers have
increased parallelism, developing devices with
a grid of graphic processors that emulate com-
puting clusters. Current graphic processors can
feature thousands of processing cores in a single
device� eacK oI tKem improved Ior floating-point
arithmetic operations.

7Ke &ompute 8ni¿ed Device ArcKitecture
(CUDA) is a parallel computing technology de-
veloped by Nvidia for graphic processing. This
technology includes a programming environment
that mak e accessible to programmers the compu-
ting resources of the graphics devices, allowing
the development of general purpose programs.
Therefore, the graphic processing units (GPUs)
can be used by scientist and engineers to increase
their computing power with a modest investment
of money. As a consequence, the general-purpose
computing on graphic processing units (GPGPU)
has arisen as an important topic of study.

Many work s about methodologies for the
implementation of numerical calculations on
GPUs and the solution of engineering problems
using these devices have been published in the
lasts years. Some relevant works are related to
tKe eI¿cient impOementation oI Oinear aOgeEra

routines �.r�ger 	 :estermann� 200�� %eOO 	
*arOand� 200��� soOution oI Oarge Oinear systems
�%oO]�)armer� *rinspun 	 6cKr|der� 200�� &our-
tecuisse 	 AOard� 200��� ¿nite eOement anaOysis
�&ecNa� /eZ 	 Darve� 2011��))7 caOcuOations
�0oreOand 	 AngeO� 200��� computationaO fluid
dynamics (CFD) calculations (Tö lk e & K rafczyk ,
200��)re]]otti� *KiroOdi 	 *iEeOOi� 2011��
among others.

In this work , the use of graphic processor
in tKe soOution oI fluid dynamics proEOems is
evaluated.

Three classical CFD problems with well-
NnoZn soOution: advection-diIIusion in a cKanneO�
lid driven cavity and thermally driven cavity,
Zere soOved using tKe ¿nite diIIerence metKod
in both the CPU and the GPU. These problems
are modeled by the Navier-Stoke s equations and
have different level of complexity.

Relevant issues such as the numerical im-
plementation in the GPU, restrictions and per-
formance are discussed. It is important to point
out the difference between the GPU and the CPU
implementations. The parallel programing and the
restricted features in the GPU require a change in
the programing paradigm and some operations or
algorithms of easy implementation in the CPU
couOd Ee diI¿cuOt in tKe *38.)urtKermore� *38
is highly hardware dependent. The performance
results show the graphic device was more than a
thousand fold faster than the processor for the sim-
ple advection-diffusion problem, but just threefold
faster for the others, considerably more complex,
problems. However, all GPU developed codes
can be further optimized for better performance.

2. CU DA T ech nology

CUDA is a hardware and software architec-
ture developed by Nvidia to execute programs
in paraOOeO �200��. 7Kis programs can Ee EotK
graphic routines or general purpose programs that
can be executed in the CUDA enabled graphic
devices and written in diverse languages, such as
C, C+ + , Fortran, OpenCL, Python, among others.
7Kis tecKnoOogy Kas Kad a signi¿cant impact in
tKe scienti¿c computing. As an exampOe oI tKis�
0atOaE� 0atKematica� Ansys and otKer scienti¿c
and engineering software are developing interfa-
ces to tak e advantage of the computational power
available in the GPUs.

performance. Important features related to
the GPU implementation are discussed and
results show an important increase in the
computation speed with the use of the GPU.

K eyw ords: *38� &8DA� fluid dyna-
mics� ¿nite diIIerence metKod.

18 (O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

A CUDA program executes a ke rnel simul-
taneously. A ke rnel is a piece of code susceptible
of being executed in parallel (see Table 1) . For
example, the scalar–matrix multiplication can
be performed in parallel because each individual
multiplication does not depend on the other ones
and, thus, can be executed for a different proces-
sor at the same time. Other calculation routines
cannot be directly parallelized. Each individual
call to a k ernel is called a thread, and a thread has
an ID, a program counter, registers, per-thread
private memory, input, and output results. A
block is a set of threads concurrently executed. It
shares a per-block memory (shared memory) and
can be synchronized. A grid is an array of blocks
executing the same ke rnel and it can read and
write data in the global memory and synchronize
between dependent ke rnel calls. Each block has
an ID within the grid. Figure 1 shows the CUDA
hierarchy of threads, blocks and grids.

Figure 1. Hierarchy of CUDA threads, blocks and
grids

S ource: Nvidia �200��.

Figure 2 shows a scheme of the Fermi
streaming processor �60�� Ieaturing �2 cores.
Each core has an arithmetic logic unit (ALU)
and a floating point unit �)38�. 7Ke 60 Kas
four special function units (SFUs) , that executes
transcendental instructions such as sin, cosine, re-

ciprocaO� and sTuare root� sixteen Ooad�store units
�/D�67� Ior addressing� registers� /1 cacKe and
scheduler and dispatch units. Fermi architecture
implements the new and more accurate IEEE
7�4-200� floating-point standard.

Figure 2. Fermi architecture

S ource: Nvidia �200��.

EacK device Kas an array oI up to 4� strea-
ming processors �up to 1��� &8DA cores��
with a common L2 cache, six partitions of a
�4-Eit D5A0 gOoEaO memory� a 3&I Express
host interface for communication with the CPU
and a global scheduler that distributes the thread
block s in the streaming processors. All these units
work together, interconnected by a network like
a computing cluster in a single device.

Software is another important issue. NVI-
DIA has released a development toolki t for the
most important operative systems, including
an extensive collection of code samples. These
software tools have facilitated the understanding
of the technology and its features to general
purpose programmers and scientists. A CUDA
program is compiled by the NVCC (Nvidia' s
CUDA compiler) , available in the development
ki t. The executable contains the GPU code and
CPU routines required to control the operation,
i.e., data transfer between CPU and GPU and the
ke rnels scheme of execution.

19(O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

As an example, Table 1 shows the implemen-
tation of a function, that calculates the square of
each element in an array, in both ANSI C and
CUDA. The CPU code is executed in a serial
way, that is, the operations in the for loop are
performed in sequence (one after the other) . On
the other hand, the CUDA ke rnel can be execu-
ted in parallel, using different processing cores
to execute the k ernel (threads) simultaneously.
If the number of operations (N) is less than or
equal to the maximum allowable block size and
the number of cores is enough, all operations
could be performed in a single step. In general,
the threads are arranged in grids of blocks that
can Ee executed seTuentiaOOy� in an order de¿ned
automatically by the GPU scheduler.

T able 1. Simple CUDA ke rnel example

�� &38 code

void square(float *a , int N)

{

int k;

 for�N 0�N�N�N���

 a>N@ a>N@
 a>N@�

}
�� &8DA .erneO executed in tKe *38

__gl obal__ void square(double *a , int N)

{

 int idx tKreadIdx.x�

 a>idx@ a>idx@
 a>idx@�

}

S ource: by the author.

A &8DA NerneO is de¿ned Ey tKe NeyZord
“ __gl obal__” and cannot return a value, there-
fore, it must be declared “ void” . It should be
noted the lack of a “ for” statement. In this case,
the thread ID, accessible by means the built in
variable “ threadIdx” , replaces the index loop
and the ke rnel launching statement determines
the size block (number of dispatched threads) .

CUDA programming is different from the
standard programming, because parallelism

implies another programing paradigm. Some
algorithms can be implemented in GPU almost
transOating tKe &38 code and otKer ones are diI¿-
cuOt to paraOOeOi]e. 0oreover� KardZare speci¿c
issues, specially the memory management, and
the restrictions in the computing features lead to
different programming techniques. Many infor-
mation about the architecture and programming
can be found in the CUDA documentation and
the training resources available in the Nvidia site.

3. M eth odology

��� 0DtKemDticDO Gefinition oI tKe SUoEOem

The test problems are solutions of the tran-
sient incompressible Navier-Stok es equations.
These equations are composed by the following
set of partial differential equations (Versteeg &
0aOaOaseNera� 1����:

u � 0 (1)

u
t

 (u)u
 p � μ 2u
 Sj (2)

T
t

 u T
 p �
μ
Pr

2T ���

where u is tKe veOocity vector ¿eOd� p is the
pressure, T is tKe temperature� t is tKe time� ȡ is
tKe density� ȝ is tKe viscosity and 3r is tKe 3randt
number.

Equation (1) is the continuity equation. It
establishes the conservation of mass through the
domain, restricting the velocity to a divergence
Iree vector ¿eOd. ETuation �2� estaEOisKes tKe
conservation of the momentum, where the term
(u· ∇)u is tKe convective acceOeration� ȝ∇2u is
the viscous forces, ∇p is the pressure gradient
and 6 is a source term. ETuation ��� is tKe ener-
gy equation, establishing the conservation of
the internal energy in the domain, which, in the
incompressible case, depends on the temperature
only. In this equation, the term u· ∇T model the
energy transport due to tKe fluid movement �ad-
vection� and tKe term �ȝ�3r�∇2T model the heat
conduction into tKe fluid.

7Ke determination oI tKe pressure scaOar ¿eOd�
called pressure-velocity coupling is implemented
using the projection method proposed by Chorin

20 (O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

�1����. In tKis metKod� tKe veOocity ¿eOd is caOcu-
lated avoiding the pressure term, then, the pressure
is used to project the velocity onto a space of di-
vergence-Iree veOocity ¿eOd to get tKe next update
of velocity and pressure. The pressure gradient can
be interpreted as Lagrange multipliers, calculated
in such a way to ensure that the resulting velocity
¿eOd does satisIy continuity eTuation.

This advection-diffusion problem is modeled
Ey tKe energy eTuation ���� ZKere tKe veOocity
vector ¿eOd �u) is k nown in the entire domain and
tKe temperature ¿eOd is unNnoZn.)or tempera-
ture, Dirichlet boundary condition is established
for the hot region and von Neumann (adiabatic
wall) elsewhere. The lid driven cavity problem
is modeled by equations (1) and (2) , where the
veOocity vector ¿eOd �u) and the pressure scalar
¿eOd � p) are the unk nowns. For velocity, the
Dirichlet condition (no-slip condition) is esta-
blished in the entire boundary. For pressure, von
Neumann condition (zero gradient normal to the
boundary) is established. In the thermally driven
cavity case, the problem is modeled by the three
eTuations: continuity� momentum and energy. In
addition to u and p , the temperature (T) is also an
unknow n. The boundary conditions for velocity
and pressure are the same of the lid driven cavity
problem ones. For temperature, Dirichlet condi-
tion is established in the left and right boundary
and von Neumann condition (adiabatic wall) in
the top and bottom ones.

3. 2 N umerical implementation

7Ke proEOems are soOved Ey tKe ¿nite diIIe-
rence method. The L × H rectangular domain is
subdivided in M × N rectangles, equivalent to
(M + 1) × (N + 1) nodes. The boundary is composed
by two nodes, as required for the fourth order
stenciOs empOoyed >1�@.)or numericaO impOe-
mentation simplicity, only explicit schemes were
used. Explicit schemes allow the evaluation of
the derivatives avoiding the implementation of
solvers for linear systems, as required by the
more stable and precise implicit schemes. This
approach required the minimum data storage,
however, for numerical stability, the time incre-
ment can be very small, taki ng a long time to
reach steady state.

The numerical implementation consists on
tKe approximation oI tKe derivatives ¿nite di-
fference stencils to obtain difference equations.

The advection-diffusion problem is modeled by
a unique difference equation that can be solved
using a single CUDA ke rnel. In the other pro-
blems, the discretization problem lead to a set of
difference equations, and they have to be solved
simultaneously. In addition, the momentum and
energy equations are evaluated term by term
in a series of steps called “ internal iterations” .
Details of this method can be found in the work
oI 6eiEoOd �200��. 7KereIore� tKe soOution code
of these problems is more intricate and they are
required four or more CUDA ke rnels.

3. 3 P erf ormance comparison

The most important concern about the nu-
merical implementation of the solutions was the
homogeneity between CPU and GPU codes. This
means performing, as far as possible, the same
calculations to allow comparison. Initially, each
solution was programed in MatlabTM and the re-
sults compared to those obtained from literature.
This step was carried out in order to validate
the implemented solutions and to establish a set
of simulation parameters. Then, the solutions
were programed in ANSI C, avoiding the use of
matrix or any other numerical libraries. Matrix
aOgeEra and ¿Oe access routines Zere programed
to assure the CPU and GPU code make , as pos-
sible, the same operations. Finally, the solutions
are programmed in CUDA, following the same
structure of the ANSI C code, and executed in
tKe *38. 7aEOe 2 sKoZs tKe speci¿cations oI tKe
computing devices.

T able 2. Main characteristics of the hardware
G P U

Graphic device NVIDIA *7X-�70
Architecture Fermi
Streaming processors 1�
CUDA cores 4�0
Processor clock (MHz) 14�4
Memory (Gb) 1.28

CP U
Processor InteO Xeon E��20
Architecture X��B�4
Cores 4
Processor clock (MHz) 2400
RAM Memory (Gb) 8

S ource: by the author.

21(O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

The processing time in both CPU and GPU
was measured using the Linux system time li-
brary (time.h) . This library provides functions to
read the system time in resolution of miliseconds.
Then, the system time is read at the beginning
and at the end of the solution routines and the
difference is calculated.

4. R esults and discussion

)igure � sKoZs tKe temperature distriEution
and a representation oI tKe veOocity vector ¿eOd
for the advection-difussion problem. The do-
main is a rectanguOar cKanneO oI 0.�x0.1 meters
ZitK a IuOOy deveOoped floZ oI Zater at 20�&
and a hot region at the bottom of the channel at
�0�&. 7Ke veOocity in tKe center oI tKe cKanneO
�maximum veOocity� is 1 cm�s. 7Ke domain
Zas discreti]ed using �40x12� suEdivisions
and the termination criterion were steady state
(maximum difference of temperature between
tZo successive iteration Oess tKan 10-8) . In this
proEOem� tKe fluid next to tKe Kot region is Zar-
med �diIIusion�� at tKe same time� tKe Kot fluid
is transported downstream (advection) . The
temperature distribution shows the expected
behavior.

)igure 4 sKoZ tKe soOution oI tKe Oid driven
cavity proEOem in a sTuare domain oI 1.0x1.0
meters with the top boundary horizontal velocity
¿xed to 1 m�s. 7Ke pKysicaO properties oI tKe
fluid Zere seOected in order to Kave a 5eynoOds
numEer oI 400. 7Ke domain Zas discreti]ed
using �12x�12 suEdivisions and tKe program
Zas executed �000 temporaO iterations� aOmost
reaching steady state (the maximum difference
of velocity magnitude between two successive
iteration Zas Oess tKan 2x10-6) . In this problem,
the movement of top boundary induces a rota-
tion oI tKe fluid into tKe cavity� generating a
vortex ZitK center in and speci¿c Oocation tKat
depends on 5eynoOds numEer. 7Ke ¿gure sKoZs
tKe magnitude oI tKe veOocity vector ¿eOd and
the streamlines. This results are in agreement
with those reported in literature (Ghia, Ghia &
6Kin� 1��2�.

)igure � sKoZs tKe soOution oI tKe tKerma-
lly driven cavity problem in a square cavity of
0.��0.� meters. 7Ke fluid is air� and tKe domain
size and the temperature difference were cho-
sen in order to Kave a 5ayOeigK numEer oI 106.
7Ke domain Zas discreti]ed using �12x�12

subdivisions and the program was executed
�000 temporaO iterations� aOmost reacKing
steady state (the maximum difference of velo-
city magnitude between two successive itera-
tion Zas Oess tKan �x10-6) . In this problem, the
high temperature wall warms the surrounding
fluid� generating a density reduction and� con-
sequently, buoyancy. In this work , buoyancy is
modeled using the Bousinesq approximation.
7Ke ¿gure sKoZs tKe temperature distriEution
and the streamlines. These results are in agre-
ement with those reported in literature (Pérez,
1��4�.

7aEOe � sKoZs tKe comparison oI tKe pro-
cessing time Ior tKe soOutions sKoZed in ¿gures
� to �. 7Ke processing times� in seconds� Ior
CPU and GPU solutions are compared and the
speed up (CPU to GPU processing time ratio)
calculated. Additional information such as the
domain size and the termination criterion are
included.

The advection diffusion problem is relati-
vely simple and it can be solved using a single
CUDA k ernel. In this problem, the speed up
is many thousand times. It is consequence of
the complete parallelism, that is, each iteration
required to evaluate the spatial derivatives can
be executed by an individual thread. This is an
interesting result; however, the real problems
are not so simple.

For the lid driven cavity problem, the spe-
ed up is Must �.�x� a drasticaOOy OoZer vaOue. In
this problem, each temporal step is obtained by
the sequential execution of four k ernels. The
¿rst NerneO evaOuates tKe convective terms� tKe
second evaluates the diffusive terms and cal-
culate the divergence of velocity, and the third
and fourth k ernels solve the pressure-velocity
coupling and mak e the temporal update. For the
tKermaOOy driven cavity� tKe speed up is �.4x�
similar to that of the lid driven cavity problem.
The solution of this problem was implemented
using six CUDA k ernels, the same as the pre-
vious problem and two additional ones for the
evaluation of the advective and diffusive terms
of the energy equation. However, the larger
number of k ernels is not the main cause of the
performance reduction. The main of performan-
ce reduction is the pressure-velocity coupling,
Eecause tKe ¿nite diIIerence scKeme impOemen-
ted can be partially parallelized.

22 (O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

Figure 3. Advection-diIIusion proEOem EetZeen in¿nite paraOOeO pOates: temperature distriEution and veOocity
vector ¿eOd

S ource: by the author.

Figure 4 . Lid driven cavity problem at Reynolds
numEer oI 400: magnitude oI tKe veOocity vector ¿eOd
and streamlines

S ource: by the author.

Figure 5 . Thermally driven cavity problem at Ra-
yOeigK numEer oI 10�: temperature distriEution and
streamlines

S ource: by the author.

T able 3. Main characteristics of the hardware

P roblem Domain siz e T ermination
criterion CP U time (s) G P U time (s) S peed up

Advection-
diffusion �40x12� Steady state 2���1.0 0.��� a�0000x

Lid driven cavity �12x�12 �000 temporaO
iterations ���.� 1��.� �.�x

Thermally driven
cavity �12x�12 �000 temporaO

iterations 71�.7 20�.� �.4x

S ource: by the author.

5. C onclusions

In this work , the use of the CUDA technology
to the solution of CFD problems was analyzed.
Three classical CFD problems with different level
of complexity were solved using the CPU and the
GPU. The performance analysis showed an impor-
tant reduction in the computation time with the

GPU, however, this reduction is highly dependent
of the level of complexity of the problem. In the
advection-diffusion problem, where the calcula-
tion reduces to tKe evaOuation oI a singOe ¿nite
difference stencil and parallelism is complete, the
speed up is many thousand fold. However, for the
other more complex problems the speed up is less

23(O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

than fourfold. This is consequence of the greater
number of CUDA k ernel required and the partially
parallelization of the solution scheme used for the
pressure-velocity coupling.

The learning of CUDA programming is not
easy. Parallelization issues, in addition to the
restrictions in the computing features and the
memory management oI a *38� maNe diI¿cuOt tKe
development of complex numerical algorithms.
Nevertheless, with an acceptable expertise on the
syntax of the CUDA language and the understan-
ding of memory architecture and the hierarchy of
threads, block and grids, it is possible to face the
development of elaborated applications. Because
the parallelization issues generate most imple-
mentation problems, it is highly recommended
to write a serial code and then, when application
gives correct results, incorporate parallelism. This
technique proved valuable in simple implemen-
tations, and indispensable in the most complex.

Many code samples can be found in the
CUDA Tool K it and internet. These optimized co-
des are useful as examples or can be incorporated
in the application, it is important to not reinvent
the wheel. An example is the determination of the
max�min vaOue oI a matrix in an eI¿cient Zay.
This ki nd of problem is called “ reduction” , be-
cause, in order to exploit parallelism, the original
matrix must be sequentially sectioned in smaller
ones. 7Kis is a diI¿cuOt programming proEOem�
however, the Nvidia team provides different code
samples that can be adapted or directly incorpo-
rated to the program.

7Ke fluid dynamic proEOems seOected and tKe
numerical methods employed for the solutions
are reOativeOy simpOe. 5eaO proEOems sucK as fluid
dynamics in irreguOar and �D-domains or ¿nite
elements calculations are more complex and the
solutions involve sparse matrices algebra, fac-
torization or inversion of large linear systems,
submatrices, complicated indexing, etc. These
problems bring new challenges. Fortunately,
there are software libraries incorporating much
of these required functionalities.

The codes implemented in this work are
optimi]ation susceptiEOe. ActuaOOy� tKis is a ¿rst
approaching to the CUDA technology and the
performance improvement is an advanced issue
yet to be done.

Finally, the CUDA technology has great
potentiaO as a scienti¿c and engineering tooO�

because it brings high performance computing to
universities and industries ZitKout tKe ¿nanciaO
cost of a computing cluster. Nowadays, Nvidia
has released their new GPU architecture called
“ K epler” with features and performance superior
to the one used in this work and the cost is compa-
rable. An important feature is scalability, because
it is possible to incorporate several devices to
increment the computational power. On the other
hand, the software is in constant improvement,
including new capabilities in the language and
OiEraries Ior speci¿c tasNs.

Ack now ledgments

This research was supported by the Research
and Technological Development Program of
Universidad Autónoma de Occidente with the
grant IN7E511-147.

Ref erences

%eOO� N. 	 *arOand� 0. �200��. (I¿cienW
s par s e m at r i x - v e c t or m ul t i pl i c at i on on C U D A .
7ecKnicaO 5eport NV5-200�-004. NVIDIA
Corporation.

Bolz, J., Farmer, I., Grinspun, E. & Schrö -
der� 3. �200��. 6parse matrix soOvers on tKe gpu:
conjugate gradients and multigrid. In A C M
S I G G R A P H 2003 P a p e r s �pp. �17-�24�. NeZ
York, N Y, USA.

&ecNa� &.� /eZ� A. J. 	 Darve� E. �2011�.
AssemEOy oI ¿nite eOement metKods on grapKics
processors. I nt e r nat i onal J our nal f or N um e r i c al
M e t hods i n E ngi ne e r i ng � ��� ���� �40-���.

&Kapra� 6. 	 &anaOe� 5. �2010�. M é t o d o s
num é r i c os par a i nge ni e r os . � ed. 0pxico: 0c-
*raZ+iOO�Interamerica Editores.

&Korin� A. J. �1����. NumericaO soOution
of the navier-stoke s equations. M at he m at i c s o f
C om put at i on � 22� 74�-7�2.

&ourtecuisse� +. 	 AOard� J. �200��. 3ara-
llel dense gauss-seidel algorithm on many-core
processors. In P r o c e e d i n g s o f t h e 11t h I E E E
I nt e r nat i onal C onf e r e nc e on H i gh P e r f or m anc e
C om put i ng and C om uni c at i ons . Seul, K orea.

Frezzotti, G., Ghiroldi, P. & Gibelli, L.
�2011�. 6oOving modeO Ninetic eTuations on gpus.
C om put e r s & F l ui ds � �0� 1��-14�.

24 (O +RPEre \ Oa 0iTXina 1R� �� � (nerR � -XniR de ����

Ediguer)ranco • 2Omedo ArciOa • 6antiago /atn AppOication oI tKe &8DA tecKnoOogy to tKe soOution oI fluid dynamics proEOems

*Kia� 8.� *Kia .. N. 	 6Kin� &. 7. �1��2�.
+igK-5e soOutions Ior incompressiEOe floZ using
the Navier-Stok es equations and a multigrid
method. J our nal of C om put at i onal P hy s i c s � 4��
��7-411.

.r�ger� J. 	 :estermann� 5. �200��. /inear
algebra operators for gpu implementation of
numerical algorithms. In A C M S I G G R A P H 2003
P ape r s �pp. �0�-�1��. NeZ <orN� N<� 86A.

0oreOand� .. 	 AngeO� E. �200��. 7Ke IIt
on a gpu. �200��. In P r o c e e d i n g s o f t h e A C M
S I G G R A P H / E U R O G R A P H I C S c o n f e r e n c e o n
G r aphi c s har dw ar e , H W W S ’ 03 �pp. 112-11��.
Aire-la-Ville, Switzerland, Switzerland.

Nvidia &orporation. �200��. N v i d i a ’ s n e x t
g e n e r a t i o n c u d a c o m p u t e a r c h i t e c t u r e : F e r m i .
Technical Report V1.1. NVIDIA Corporation.

3pre] &aeiras� &. �1��4�. D e s ar r ol l o de m é -
WRdRV de YóOXPeneV ¿niWRV Sara Oa reVROXción de
l as e c uac i one s de N av i e r - St ok e s i nc om pr e s i bl e s
(Phd. Thesis) . Centro Politécnico Superior de la
Universidad de Z aragoza, España.

6eiEoOd� %. �200��. A c o m p a c t a n d f a s t
M at l ab c o de s ol v i ng t he i nc om pr e s s i bl e N av i e r -
S t o k e s e q u a t i o n s o n r e c t a n g u l a r d o m a i n s . Massa-
chusetts Institute of Technology. Retrieved from
Kttp:��matK.mit.edu�cse�codes�mit1�0��Bnaviers-
toke s.pdf.

7|ONe� J. 	 .raIc]yN� 0. �200��. 7eraflop
computing on a desNtop pc ZitK gpus Ior �d cId.
I n t e r n a t i o n a l J o u r n a l o f C o m p u t a t i o n a l F l u i d
D y nam i c s � 22� �7�� 44�-4��.

Versteeg� +. .. 	 0aOaOaseNera� :. �1����.
$n inWrRdXcWiRn WR cRPSXWaWiRnaO flXid d\naPicV.
EngOand: Addison :esOey Oongman /imited.

