
16 re a ina ner ni de

Application of the CUDA
technology to the solution of
fluid dynamics problems

EdiguER FRaNco*

olmEdo aRcila*

saNtiago laíN*

Resumen

Este trabajo explora el uso de la
tecnología CUDA en la solución de
problemas relacionados con la dinámi-
ca de fluidos. res pro emas c sicos
de di erente nive de comp e idad:
convección-difusión en un canal, la
cavidad movida por pared y la cavidad
movida por diferencia de temperatura,
fueron solucionados por el método de
as di erencias nitas usando a

(procesador) y la GPU (tarjeta de video)
para comparar el desempeño. Algunos
aspectos importantes vinculados con la
implementación numérica en la GPU
son discutidos. Así mismo, los resulta-
dos mostraron un importante aumento
de la velocidad cundo se usó la GPU.

P alabras clave: GPU, CUDA,
dinámica de fluidos, método de las
di erencias nitas.

Abstract

This work explores the use of the
CUDA technology in the solution of
fluid dynamics pro ems. ree c assica
problems with different level of comple-
xity: advection-di usion in a c anne
lid driven cavity and thermally driven
cavity ere so ved using t e nite di-
fference method in both CPU and GPU
in order to compare the computational

(*) acu tad de Ingenier a niversidad Autónoma de ccidente. a e 2 11 - a i o om ia.
eception s date: 01 07 2014 • Aceptation s date: 04 0 2014.

17 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

1. I ntroduction

In Computational Fluid Dynamics (CFD) ,
t e study o flo s re uires intensive numerica
calculations that, depending on the level of detail
of the desired solution, could require an exces-
sive processing time. In order to increase the
computational power, scientists have developed
computers with many processors work ing in
parallel (computing clusters) , but these compu-
ters are expensive and most scientist and small
institutions ave no t e nancia resources to
afford one.

In the lasts years, some industries, particu-
larly the entertainment industry, have required
graphics with an increasing level of detail and
real-time interactivity. In order to meet the de-
mands, the graphic processor manufacturers have
increased parallelism, developing devices with
a grid of graphic processors that emulate com-
puting clusters. Current graphic processors can
feature thousands of processing cores in a single
device eac o t em improved or floating-point
arithmetic operations.

e ompute ni ed Device Arc itecture
(CUDA) is a parallel computing technology de-
veloped by Nvidia for graphic processing. This
technology includes a programming environment
that mak e accessible to programmers the compu-
ting resources of the graphics devices, allowing
the development of general purpose programs.
Therefore, the graphic processing units (GPUs)
can be used by scientist and engineers to increase
their computing power with a modest investment
of money. As a consequence, the general-purpose
computing on graphic processing units (GPGPU)
has arisen as an important topic of study.

Many work s about methodologies for the
implementation of numerical calculations on
GPUs and the solution of engineering problems
using these devices have been published in the
lasts years. Some relevant works are related to
t e e cient imp ementation o inear a ge ra

routines r ger estermann 200 e
ar and 200 so ution o arge inear systems
o armer rinspun c r der 200 our-

tecuisse A ard 200 nite e ement ana ysis
ec a e Darve 2011 ca cu ations
ore and Ange 200 computationa fluid

dynamics (CFD) calculations (Tö lk e & K rafczyk ,
200 re otti iro di i e i 2011
among others.

In this work , the use of graphic processor
in t e so ution o fluid dynamics pro ems is
evaluated.

Three classical CFD problems with well-
no n so ution: advection-di usion in a c anne

lid driven cavity and thermally driven cavity,
ere so ved using t e nite di erence met od

in both the CPU and the GPU. These problems
are modeled by the Navier-Stoke s equations and
have different level of complexity.

Relevant issues such as the numerical im-
plementation in the GPU, restrictions and per-
formance are discussed. It is important to point
out the difference between the GPU and the CPU
implementations. The parallel programing and the
restricted features in the GPU require a change in
the programing paradigm and some operations or
algorithms of easy implementation in the CPU
cou d e di cu t in t e . urt ermore
is highly hardware dependent. The performance
results show the graphic device was more than a
thousand fold faster than the processor for the sim-
ple advection-diffusion problem, but just threefold
faster for the others, considerably more complex,
problems. However, all GPU developed codes
can be further optimized for better performance.

2. CU DA T ech nology

CUDA is a hardware and software architec-
ture developed by Nvidia to execute programs
in para e 200 . is programs can e ot
graphic routines or general purpose programs that
can be executed in the CUDA enabled graphic
devices and written in diverse languages, such as
C, C+ + , Fortran, OpenCL, Python, among others.

is tec no ogy as ad a signi cant impact in
t e scienti c computing. As an examp e o t is

at a at ematica Ansys and ot er scienti c
and engineering software are developing interfa-
ces to tak e advantage of the computational power
available in the GPUs.

performance. Important features related to
the GPU implementation are discussed and
results show an important increase in the
computation speed with the use of the GPU.

K eyw ords: DA fluid dyna-
mics nite di erence met od.

18 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

A CUDA program executes a ke rnel simul-
taneously. A ke rnel is a piece of code susceptible
of being executed in parallel (see Table 1) . For
example, the scalar–matrix multiplication can
be performed in parallel because each individual
multiplication does not depend on the other ones
and, thus, can be executed for a different proces-
sor at the same time. Other calculation routines
cannot be directly parallelized. Each individual
call to a k ernel is called a thread, and a thread has
an ID, a program counter, registers, per-thread
private memory, input, and output results. A
block is a set of threads concurrently executed. It
shares a per-block memory (shared memory) and
can be synchronized. A grid is an array of blocks
executing the same ke rnel and it can read and
write data in the global memory and synchronize
between dependent ke rnel calls. Each block has
an ID within the grid. Figure 1 shows the CUDA
hierarchy of threads, blocks and grids.

Figure 1. Hierarchy of CUDA threads, blocks and
grids

S ource: Nvidia 200 .

Figure 2 shows a scheme of the Fermi
streaming processor eaturing 2 cores.
Each core has an arithmetic logic unit (ALU)
and a floating point unit . e as
four special function units (SFUs) , that executes
transcendental instructions such as sin, cosine, re-

ciproca and s uare root sixteen oad store units
D or addressing registers 1 cac e and

scheduler and dispatch units. Fermi architecture
implements the new and more accurate IEEE
7 4-200 floating-point standard.

Figure 2. Fermi architecture

S ource: Nvidia 200 .

Eac device as an array o up to 4 strea-
ming processors up to 1 DA cores
with a common L2 cache, six partitions of a

4- it D A g o a memory a I Express
host interface for communication with the CPU
and a global scheduler that distributes the thread
block s in the streaming processors. All these units
work together, interconnected by a network like
a computing cluster in a single device.

Software is another important issue. NVI-
DIA has released a development toolki t for the
most important operative systems, including
an extensive collection of code samples. These
software tools have facilitated the understanding
of the technology and its features to general
purpose programmers and scientists. A CUDA
program is compiled by the NVCC (Nvidia' s
CUDA compiler) , available in the development
ki t. The executable contains the GPU code and
CPU routines required to control the operation,
i.e., data transfer between CPU and GPU and the
ke rnels scheme of execution.

19 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

As an example, Table 1 shows the implemen-
tation of a function, that calculates the square of
each element in an array, in both ANSI C and
CUDA. The CPU code is executed in a serial
way, that is, the operations in the for loop are
performed in sequence (one after the other) . On
the other hand, the CUDA ke rnel can be execu-
ted in parallel, using different processing cores
to execute the k ernel (threads) simultaneously.
If the number of operations (N) is less than or
equal to the maximum allowable block size and
the number of cores is enough, all operations
could be performed in a single step. In general,
the threads are arranged in grids of blocks that
can e executed se uentia y in an order de ned
automatically by the GPU scheduler.

T able 1. Simple CUDA ke rnel example

 code

void square(float *a , int N)

{

int k;

 for 0 N

 a a a

}
 DA erne executed in t e

__gl obal__ void square(double *a , int N)

{

 int idx t readIdx.x

 a idx a idx a idx

}

S ource: by the author.

A DA erne is de ned y t e ey ord
“ __gl obal__” and cannot return a value, there-
fore, it must be declared “ void” . It should be
noted the lack of a “ for” statement. In this case,
the thread ID, accessible by means the built in
variable “ threadIdx” , replaces the index loop
and the ke rnel launching statement determines
the size block (number of dispatched threads) .

CUDA programming is different from the
standard programming, because parallelism

implies another programing paradigm. Some
algorithms can be implemented in GPU almost
trans ating t e code and ot er ones are di -
cu t to para e i e. oreover ard are speci c
issues, specially the memory management, and
the restrictions in the computing features lead to
different programming techniques. Many infor-
mation about the architecture and programming
can be found in the CUDA documentation and
the training resources available in the Nvidia site.

3. M eth odology

 t em tic efinition o t e o em

The test problems are solutions of the tran-
sient incompressible Navier-Stok es equations.
These equations are composed by the following
set of partial differential equations (Versteeg &

a a ase era 1 :

u 0 (1)

u
t

(u)u p μ 2u Sj (2)

T
t

u T p μ
Pr

2T

where u is t e ve ocity vector e d p is the
pressure, T is t e temperature t is t e time is
t e density is t e viscosity and r is t e randt
number.

Equation (1) is the continuity equation. It
establishes the conservation of mass through the
domain, restricting the velocity to a divergence
ree vector e d. E uation 2 esta is es t e

conservation of the momentum, where the term
(u· ∇)u is t e convective acce eration ∇2u is
the viscous forces, ∇p is the pressure gradient
and is a source term. E uation is t e ener-
gy equation, establishing the conservation of
the internal energy in the domain, which, in the
incompressible case, depends on the temperature
only. In this equation, the term u· ∇T model the
energy transport due to t e fluid movement ad-
vection and t e term r ∇2T model the heat
conduction into t e fluid.

e determination o t e pressure sca ar e d
called pressure-velocity coupling is implemented
using the projection method proposed by Chorin

20 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

1 . In t is met od t e ve ocity e d is ca cu-
lated avoiding the pressure term, then, the pressure
is used to project the velocity onto a space of di-
vergence- ree ve ocity e d to get t e next update
of velocity and pressure. The pressure gradient can
be interpreted as Lagrange multipliers, calculated
in such a way to ensure that the resulting velocity

e d does satis y continuity e uation.

This advection-diffusion problem is modeled
y t e energy e uation ere t e ve ocity

vector e d u) is k nown in the entire domain and
t e temperature e d is un no n. or tempera-
ture, Dirichlet boundary condition is established
for the hot region and von Neumann (adiabatic
wall) elsewhere. The lid driven cavity problem
is modeled by equations (1) and (2) , where the
ve ocity vector e d u) and the pressure scalar

e d p) are the unk nowns. For velocity, the
Dirichlet condition (no-slip condition) is esta-
blished in the entire boundary. For pressure, von
Neumann condition (zero gradient normal to the
boundary) is established. In the thermally driven
cavity case, the problem is modeled by the three
e uations: continuity momentum and energy. In
addition to u and p , the temperature (T) is also an
unknow n. The boundary conditions for velocity
and pressure are the same of the lid driven cavity
problem ones. For temperature, Dirichlet condi-
tion is established in the left and right boundary
and von Neumann condition (adiabatic wall) in
the top and bottom ones.

3. 2 N umerical implementation

e pro ems are so ved y t e nite di e-
rence method. The L × H rectangular domain is
subdivided in M × N rectangles, equivalent to
(M + 1) × (N + 1) nodes. The boundary is composed
by two nodes, as required for the fourth order
stenci s emp oyed 1 . or numerica imp e-
mentation simplicity, only explicit schemes were
used. Explicit schemes allow the evaluation of
the derivatives avoiding the implementation of
solvers for linear systems, as required by the
more stable and precise implicit schemes. This
approach required the minimum data storage,
however, for numerical stability, the time incre-
ment can be very small, taki ng a long time to
reach steady state.

The numerical implementation consists on
t e approximation o t e derivatives nite di-
fference stencils to obtain difference equations.

The advection-diffusion problem is modeled by
a unique difference equation that can be solved
using a single CUDA ke rnel. In the other pro-
blems, the discretization problem lead to a set of
difference equations, and they have to be solved
simultaneously. In addition, the momentum and
energy equations are evaluated term by term
in a series of steps called “ internal iterations” .
Details of this method can be found in the work
o ei o d 200 . ere ore t e so ution code
of these problems is more intricate and they are
required four or more CUDA ke rnels.

3. 3 P erf ormance comparison

The most important concern about the nu-
merical implementation of the solutions was the
homogeneity between CPU and GPU codes. This
means performing, as far as possible, the same
calculations to allow comparison. Initially, each
solution was programed in MatlabTM and the re-
sults compared to those obtained from literature.
This step was carried out in order to validate
the implemented solutions and to establish a set
of simulation parameters. Then, the solutions
were programed in ANSI C, avoiding the use of
matrix or any other numerical libraries. Matrix
a ge ra and e access routines ere programed
to assure the CPU and GPU code make , as pos-
sible, the same operations. Finally, the solutions
are programmed in CUDA, following the same
structure of the ANSI C code, and executed in
t e . a e 2 s o s t e speci cations o t e
computing devices.

T able 2. Main characteristics of the hardware
G P U

Graphic device NVIDIA X- 70
Architecture Fermi
Streaming processors 1
CUDA cores 4 0
Processor clock (MHz) 14 4
Memory (Gb) 1.28

CP U
Processor Inte Xeon E 20
Architecture X 4
Cores 4
Processor clock (MHz) 2400
RAM Memory (Gb) 8

S ource: by the author.

21 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

The processing time in both CPU and GPU
was measured using the Linux system time li-
brary (time.h) . This library provides functions to
read the system time in resolution of miliseconds.
Then, the system time is read at the beginning
and at the end of the solution routines and the
difference is calculated.

4. R esults and discussion

igure s o s t e temperature distri ution
and a representation o t e ve ocity vector e d
for the advection-difussion problem. The do-
main is a rectangu ar c anne o 0. x0.1 meters

it a u y deve oped flo o ater at 20
and a hot region at the bottom of the channel at

0 . e ve ocity in t e center o t e c anne
maximum ve ocity is 1 cm s. e domain
as discreti ed using 40x12 su divisions

and the termination criterion were steady state
(maximum difference of temperature between
t o successive iteration ess t an 10-8) . In this
pro em t e fluid next to t e ot region is ar-
med di usion at t e same time t e ot fluid
is transported downstream (advection) . The
temperature distribution shows the expected
behavior.

igure 4 s o t e so ution o t e id driven
cavity pro em in a s uare domain o 1.0x1.0
meters with the top boundary horizontal velocity

xed to 1 m s. e p ysica properties o t e
fluid ere se ected in order to ave a eyno ds
num er o 400. e domain as discreti ed
using 12x 12 su divisions and t e program

as executed 000 tempora iterations a most
reaching steady state (the maximum difference
of velocity magnitude between two successive
iteration as ess t an 2x10-6) . In this problem,
the movement of top boundary induces a rota-
tion o t e fluid into t e cavity generating a
vortex it center in and speci c ocation t at
depends on eyno ds num er. e gure s o s
t e magnitude o t e ve ocity vector e d and
the streamlines. This results are in agreement
with those reported in literature (Ghia, Ghia &

in 1 2 .

igure s o s t e so ution o t e t erma-
lly driven cavity problem in a square cavity of
0. 0. meters. e fluid is air and t e domain
size and the temperature difference were cho-
sen in order to ave a ay eig num er o 106.

e domain as discreti ed using 12x 12

subdivisions and the program was executed
000 tempora iterations a most reac ing

steady state (the maximum difference of velo-
city magnitude between two successive itera-
tion as ess t an x10-6) . In this problem, the
high temperature wall warms the surrounding
fluid generating a density reduction and con-
sequently, buoyancy. In this work , buoyancy is
modeled using the Bousinesq approximation.

e gure s o s t e temperature distri ution
and the streamlines. These results are in agre-
ement with those reported in literature (Pérez,
1 4 .

a e s o s t e comparison o t e pro-
cessing time or t e so utions s o ed in gures

 to . e processing times in seconds or
CPU and GPU solutions are compared and the
speed up (CPU to GPU processing time ratio)
calculated. Additional information such as the
domain size and the termination criterion are
included.

The advection diffusion problem is relati-
vely simple and it can be solved using a single
CUDA k ernel. In this problem, the speed up
is many thousand times. It is consequence of
the complete parallelism, that is, each iteration
required to evaluate the spatial derivatives can
be executed by an individual thread. This is an
interesting result; however, the real problems
are not so simple.

For the lid driven cavity problem, the spe-
ed up is ust . x a drastica y o er va ue. In
this problem, each temporal step is obtained by
the sequential execution of four k ernels. The

rst erne eva uates t e convective terms t e
second evaluates the diffusive terms and cal-
culate the divergence of velocity, and the third
and fourth k ernels solve the pressure-velocity
coupling and mak e the temporal update. For the
t erma y driven cavity t e speed up is .4x
similar to that of the lid driven cavity problem.
The solution of this problem was implemented
using six CUDA k ernels, the same as the pre-
vious problem and two additional ones for the
evaluation of the advective and diffusive terms
of the energy equation. However, the larger
number of k ernels is not the main cause of the
performance reduction. The main of performan-
ce reduction is the pressure-velocity coupling,

ecause t e nite di erence sc eme imp emen-
ted can be partially parallelized.

22 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

Figure 3. Advection-di usion pro em et een in nite para e p ates: temperature distri ution and ve ocity
vector e d

S ource: by the author.

Figure 4 . Lid driven cavity problem at Reynolds
num er o 400: magnitude o t e ve ocity vector e d
and streamlines

S ource: by the author.

Figure 5 . Thermally driven cavity problem at Ra-
y eig num er o 10 : temperature distri ution and
streamlines

S ource: by the author.

T able 3. Main characteristics of the hardware

P roblem Domain siz e T ermination
criterion CP U time (s) G P U time (s) S peed up

Advection-
diffusion 40x12 Steady state 2 1.0 0. 0000x

Lid driven cavity 12x 12 000 tempora
iterations . 1 . . x

Thermally driven
cavity 12x 12 000 tempora

iterations 71 .7 20 . .4x

S ource: by the author.

5. C onclusions

In this work , the use of the CUDA technology
to the solution of CFD problems was analyzed.
Three classical CFD problems with different level
of complexity were solved using the CPU and the
GPU. The performance analysis showed an impor-
tant reduction in the computation time with the

GPU, however, this reduction is highly dependent
of the level of complexity of the problem. In the
advection-diffusion problem, where the calcula-
tion reduces to t e eva uation o a sing e nite
difference stencil and parallelism is complete, the
speed up is many thousand fold. However, for the
other more complex problems the speed up is less

23 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

than fourfold. This is consequence of the greater
number of CUDA k ernel required and the partially
parallelization of the solution scheme used for the
pressure-velocity coupling.

The learning of CUDA programming is not
easy. Parallelization issues, in addition to the
restrictions in the computing features and the
memory management o a ma e di cu t t e
development of complex numerical algorithms.
Nevertheless, with an acceptable expertise on the
syntax of the CUDA language and the understan-
ding of memory architecture and the hierarchy of
threads, block and grids, it is possible to face the
development of elaborated applications. Because
the parallelization issues generate most imple-
mentation problems, it is highly recommended
to write a serial code and then, when application
gives correct results, incorporate parallelism. This
technique proved valuable in simple implemen-
tations, and indispensable in the most complex.

Many code samples can be found in the
CUDA Tool K it and internet. These optimized co-
des are useful as examples or can be incorporated
in the application, it is important to not reinvent
the wheel. An example is the determination of the
max min va ue o a matrix in an e cient ay.
This ki nd of problem is called “ reduction” , be-
cause, in order to exploit parallelism, the original
matrix must be sequentially sectioned in smaller
ones. is is a di cu t programming pro em
however, the Nvidia team provides different code
samples that can be adapted or directly incorpo-
rated to the program.

e fluid dynamic pro ems se ected and t e
numerical methods employed for the solutions
are re ative y simp e. ea pro ems suc as fluid
dynamics in irregu ar and D-domains or nite
elements calculations are more complex and the
solutions involve sparse matrices algebra, fac-
torization or inversion of large linear systems,
submatrices, complicated indexing, etc. These
problems bring new challenges. Fortunately,
there are software libraries incorporating much
of these required functionalities.

The codes implemented in this work are
optimi ation suscepti e. Actua y t is is a rst
approaching to the CUDA technology and the
performance improvement is an advanced issue
yet to be done.

Finally, the CUDA technology has great
potentia as a scienti c and engineering too

because it brings high performance computing to
universities and industries it out t e nancia
cost of a computing cluster. Nowadays, Nvidia
has released their new GPU architecture called
“ K epler” with features and performance superior
to the one used in this work and the cost is compa-
rable. An important feature is scalability, because
it is possible to incorporate several devices to
increment the computational power. On the other
hand, the software is in constant improvement,
including new capabilities in the language and
i raries or speci c tas s.

Ack now ledgments

This research was supported by the Research
and Technological Development Program of
Universidad Autónoma de Occidente with the
grant IN E 11-147.

Ref erences

e N. ar and . 200 . cien
s par s e m at r i x - v e c t or m ul t i pl i c at i on on C U D A .

ec nica eport NV -200 -004. NVIDIA
Corporation.

Bolz, J., Farmer, I., Grinspun, E. & Schrö -
der . 200 . parse matrix so vers on t e gpu:
conjugate gradients and multigrid. In A C M
S I G G R A P H 2003 P a p e r s pp. 17- 24 . Ne
York, N Y, USA.

ec a . e A. J. Darve E. 2011 .
Assem y o nite e ement met ods on grap ics
processors. I nt e r nat i onal J our nal f or N um e r i c al
M e t hods i n E ngi ne e r i ng 40- .

apra . ana e . 2010 . M é t o d o s
num é r i c os par a i nge ni e r os . ed. xico: c-

ra i Interamerica Editores.

orin A. J. 1 . Numerica so ution
of the navier-stoke s equations. M at he m at i c s o f
C om put at i on 22 74 -7 2.

ourtecuisse . A ard J. 200 . ara-
llel dense gauss-seidel algorithm on many-core
processors. In P r o c e e d i n g s o f t h e 11t h I E E E
I nt e r nat i onal C onf e r e nc e on H i gh P e r f or m anc e
C om put i ng and C om uni c at i ons . Seul, K orea.

Frezzotti, G., Ghiroldi, P. & Gibelli, L.
2011 . o ving mode inetic e uations on gpus.

C om put e r s & F l ui ds 0 1 -14 .

24 re a ina ner ni de

Ediguer ranco • medo Arci a • antiago a n App ication o t e DA tec no ogy to t e so ution o fluid dynamics pro ems

ia . ia . N. in . . 1 2 .
ig - e so utions or incompressi e flo using

the Navier-Stok es equations and a multigrid
method. J our nal of C om put at i onal P hy s i c s 4

7-411.

r ger J. estermann . 200 . inear
algebra operators for gpu implementation of
numerical algorithms. In A C M S I G G R A P H 2003
P ape r s pp. 0 - 1 . Ne or N A.

ore and . Ange E. 200 . e t
on a gpu. 200 . In P r o c e e d i n g s o f t h e A C M
S I G G R A P H / E U R O G R A P H I C S c o n f e r e n c e o n
G r aphi c s har dw ar e , H W W S ’ 03 pp. 112-11 .
Aire-la-Ville, Switzerland, Switzerland.

Nvidia orporation. 200 . N v i d i a ’ s n e x t
g e n e r a t i o n c u d a c o m p u t e a r c h i t e c t u r e : F e r m i .
Technical Report V1.1. NVIDIA Corporation.

re aeiras . 1 4 . D e s ar r ol l o de m é -
d de ó ene ni ara a re ción de

l as e c uac i one s de N av i e r - St ok e s i nc om pr e s i bl e s
(Phd. Thesis) . Centro Politécnico Superior de la
Universidad de Z aragoza, España.

ei o d . 200 . A c o m p a c t a n d f a s t
M at l ab c o de s ol v i ng t he i nc om pr e s s i bl e N av i e r -
S t o k e s e q u a t i o n s o n r e c t a n g u l a r d o m a i n s . Massa-
chusetts Institute of Technology. Retrieved from
ttp: mat .mit.edu cse codes mit1 0 naviers-

toke s.pdf.

e J. ra c y . 200 . eraflop
computing on a des top pc it gpus or d c d.
I n t e r n a t i o n a l J o u r n a l o f C o m p u t a t i o n a l F l u i d
D y nam i c s 22 7 44 -4 .

Versteeg . . a a ase era . 1 .
n in r d c i n c a i na fl id d na ic .

Eng and: Addison es ey ongman imited.

