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Resumen

Este trabajo explora el uso de la
tecnologia CUDA en la solucién de
problemas relacionados con la dindmi-
ca de fluidos. Tres problemas clasicos
de diferente nivel de complejidad:

Lid driven cavity - Re=400 conveccion-difusion en un canal, la
cavidad movida por pared y la cavidad
movida por diferencia de temperatura,
fueron solucionados por el método de
las diferencias finitas, usando la CPU
(procesador) y la GPU (tarjeta de video)
para comparar el desempefio. Algunos
aspectos importantes vinculados con la
implementacion numérica en la GPU
son discutidos. Asi mismo, los resulta-
dos mostraron un importante aumento
de la velocidad cundo se usé la GPU.

Palabras clave: GPU, CUDA,
dindmica de fluidos, método de las
diferencias finitas.

Abstract

This work explores the use of the
CUDA technology in the solution of
x fluid dynamics problems. Three classical
problems with different level of comple-
xity: advection-diffusion in a channel,
lid driven cavity and thermally driven
cavity, were solved using the finite di-
fference method in both CPU and GPU
in order to compare the computational
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performance. Important features related to
the GPU implementation are discussed and
results show an important increase in the
computation speed with the use of the GPU.

Keywords: GPU, CUDA, fluid dyna-
mics, finite difference method.

11 ntroduction

In Computational Fluid Dynamics (CFD),
the study of flows requires intensive numerical
calculations that, depending on the level of detail
of the desired solution, could require an exces-
sive processing time. In order to increase the
computational power, scientists have developed
computers with many processors working in
parallel (computing clusters), but these compu-
ters are expensive and most scientist and small
institutions have no the financial resources to
afford one.

In the lasts years, some industries, particu-
larly the entertainment industry, have required
graphics with an increasing level of detail and
real-time interactivity. In order to meet the de-
mands, the graphic processor manufacturers have
increased parallelism, developing devices with
a grid of graphic processors that emulate com-
puting clusters. Current graphic processors can
feature thousands of processing cores in a single
device, each of them improved for floating-point
arithmetic operations.

The Compute Unified Device Architecture
(CUDA) is a parallel computing technology de-
veloped by Nvidia for graphic processing. This
technology includes a programming environment
that make accessible to programmers the compu-
ting resources of the graphics devices, allowing
the development of general purpose programs.
Therefore, the graphic processing units (GPUS)
can be used by scientist and engineers to increase
their computing power with a modest investment
of money. As a consequence, the general-purpose
computing on graphic processing units (GPGPU)
has arisen as an important topic of study.

Many works about methodologies for the
implementation of numerical calculations on
GPUs and the solution of engineering problems
using these devices have been published in the
lasts years. Some relevant work are related to
the efficient implementation of linear algebra

routines (Kriiger & Westermann, 2003; Bell &
Garland, 2008), solution of large linear systems
(Bolz, Farmer, Grinspun & Schroder, 2003; Cour-
tecuisse & Alard, 2009), finite element analysis
(Cecka, Lew & Darve, 2011), FFT calculations
(Moreland & Angel, 2003), computational fluid
dynamics (CFD) calculations (T6lke & Krafczyk,
2008; Frezzotti, Ghiroldi & Gibelli, 2011),
among others.

In this work, the use of graphic processor
in the solution of fluid dynamics problems is
evaluated.

Three classical CFD problems with well-
known solution: advection-diffusion in a channel,
lid driven cavity and thermally driven cavity,
were solved using the finite difference method
in both the CPU and the GPU. These problems
are modeled by the Navier-Stok s equations and
have different level of complexity.

Relevant issues such as the numerical im-
plementation in the GPU, restrictions and per-
formance are discussed. It is important to point
out the difference between the GPU and the CPU
implementations. The parallel programing and the
restricted features in the GPU require a change in
the programing paradigm and some operations or
algorithms of easy implementation in the CPU
could be difficult in the GPU. Furthermore, GPU
is highly hardware dependent. The performance
results show the graphic device was more than a
thousand fold faster than the processor for the sim-
ple advection-diffusion problem, but just threefold
faster for the others, considerably more complex,
problems. However, all GPU developed codes
can be further optimized for better performance.

2. CUDA Technology

CUDA is a hardware and software architec-
ture developed by Nvidia to execute programs
in parallel (2009). This programs can be both
graphic routines or general purpose programs that
can be executed in the CUDA enabled graphic
devices and written in diverse languages, such as
C, C++, Fortran, OpenCL, Python, among others.
This technology has had a significant impact in
the scientific computing. As an example of this,
Matlab, Mathematica, Ansys and other scientific
and engineering software are developing interfa-
ces to take advantage of the computational power
available in the GPUs.
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A CUDA program executes a & rnel simul-
taneously. Ak rnel is a piece of code susceptible
of being executed in parallel (see Table 1). For
example, the scalar-matrix multiplication can
be performed in parallel because each individual
multiplication does not depend on the other ones
and, thus, can be executed for a different proces-
sor at the same time. Other calculation routines
cannot be directly parallelized. Each individual
call to a kernel is called a thread, and a thread has
an ID, a program counter, registers, per-thread
private memory, input, and output results. A
block is a set of threads concurrently executed. It
shares a per-block memory (shared memory) and
can be synchronized. Agrid is an array of block
executing the same & rnel and it can read and
write data in the global memory and synchronize
between dependent & rnel calls. Each block has
an ID within the grid. Figure 1 shows the CUDA
hierarchy of threads, block and grids.

Figure 1 Hierarchy of CUDA threads, block and
grids
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Figure 2 shows a scheme of the Fermi
streaming processor (SM), featuring 32 cores.
Each core has an arithmetic logic unit (ALU)
and a floating point unit (FPU). The SM has
four special function units (SFUs), that executes
transcendental instructions such as sin, cosine, re-

ciprocal, and square root, sixteen load/store units
(LD/ST) for addressing, registers, L1 cache and
scheduler and dispatch units. Fermi architecture
implements the new and more accurate IEEE
754-2008 floating-point standard.

Figure 2. Fermi architecture
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Each device has an array of up to 48 strea-
ming processors (up to 1536 CUDA cores),
with a common L2 cache, six partitions of a
64-bit DRAM global memory, a PCI Express
host interface for communication with the CPU
and a global scheduler that distributes the thread
blocks in the streaming processors. All these units
work together, interconnected by a network lik
a computing cluster in a single device.

Software is another important issue. NVI-
DIA has released a development toolk t for the
most important operative systems, including
an extensive collection of code samples. These
software tools have facilitated the understanding
of the technology and its features to general
purpose programmers and scientists. A CUDA
program is compiled by the NVCC (Nvidia's
CUDA compiler), available in the development
k t. The executable contains the GPU code and
CPU routines required to control the operation,
i.e., data transfer between CPU and GPU and the
& rnels scheme of execution.

El Hombre y la Maquina No. 44 « Enero - Junio de 2014



Ediguer Franco * Olmedo Arcila « Santiago Lain

Application of the CUDA technology to the solution of fluid dynamics problems

As an example, Table 1 shows the implemen-
tation of a function, that calculates the square of
each element in an array, in both ANSI C and
CUDA. The CPU code is executed in a serial
way, that is, the operations in the for loop are
performed in sequence (one after the other). On
the other hand, the CUDA & rnel can be execu-
ted in parallel, using different processing cores
to execute the kernel (threads) simultaneously.
If the number of operations (N) is less than or
equal to the maximum allowable block size and
the number of cores is enough, all operations
could be performed in a single step. In general,
the threads are arranged in grids of block that
can be executed sequentially, in an order defined
automatically by the GPU scheduler.

Table 1 Simple CUDA & rnel example
// CPU code

void square(float & , int N)

{

int k
for(k=0;k<N;k++)
a[k] = a[k] * a[k];

}
// CUDA Kernel executed in the GPU

gl obal_ void square(double & , int N)
{

int idx = threadldx.x;

a[idx] = a[idx] * a[idx];

}

Source: by the author.

A CUDA kernel is defined by the keyword
“gl obal” and cannot return a value, there-
fore, it must be declared “void”. It should be
noted the lack of a “for” statement. In this case,
the thread ID, accessible by means the built in
variable “threadldx”, replaces the index loop
and the & rnel launching statement determines
the size bloc number of dispatched threads).

CUDA programming is different from the
standard programming, because parallelism

implies another programing paradigm. Some
algorithms can be implemented in GPU almost
translating the CPU code and other ones are diffi-
cult to parallelize. Moreover, hardware specific
issues, specially the memory management, and
the restrictions in the computing features lead to
different programming techniques. Many infor-
mation about the architecture and programming
can be found in the CUDA documentation and
the training resources available in the Nvidia site.

3M ethodology
3.1 Mathematical definition of the problem

The test problems are solutions of the tran-
sient incompressible Navier-Stokes equations.
These equations are composed by the following
set of partial differential equations (Versteeg &
Malalasekera, 1995):

V-u=0 1)

0 Z—?+(u-V)u]+Vp=uV2u+S’ 2)

o %+u-VT]+Vp=%VZT 3)

where u is the velocity vector field, p is the
pressure, T is the temperature, t is the time, p is
the density, p is the viscosity and Pr is the Prandt
number.

Equation (1) is the continuity equation. It
establishes the conservation of mass through the
domain, restricting the velocity to a divergence
free vector field. Equation (2) establishes the
conservation of the momentum, where the term
(u-V)u is the convective acceleration, pVZu is
the viscous forces, Vp is the pressure gradient
and S is a source term. Equation (3) is the ener-
gy equation, establishing the conservation of
the internal energy in the domain, which, in the
incompressible case, depends on the temperature
only. In this equation, the term u-VT model the
energy transport due to the fluid movement (ad-
vection) and the term (p/Pr)VZT model the heat
conduction into the fluid.

The determination of the pressure scalar field,
called pressure-velocity coupling is implemented
using the projection method proposed by Chorin
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(1968). In this method, the velocity field is calcu-
lated avoiding the pressure term, then, the pressure
is used to project the velocity onto a space of di-
vergence-free velocity field to get the next update
of velocity and pressure. The pressure gradient can
be interpreted as Lagrange multipliers, calculated
in such a way to ensure that the resulting velocity
field does satisfy continuity equation.

This advection-diffusion problem is modeled
by the energy equation (3), where the velocity
vector field (u) is known in the entire domain and
the temperature field is unknown. For tempera-
ture, Dirichlet boundary condition is established
for the hot region and von Neumann (adiabatic
wall) elsewhere. The lid driven cavity problem
is modeled by equations (1) and (2), where the
velocity vector field (u) and the pressure scalar
field (p) are the unknowns. For velocity, the
Dirichlet condition (no-slip condition) is esta-
blished in the entire boundary. For pressure, von
Neumann condition (zero gradient normal to the
boundary) is established. In the thermally driven
cavity case, the problem is modeled by the three
equations: continuity, momentum and energy. In
addition to u and p, the temperature (T) isalso an
unkow n. The boundary conditions for velocity
and pressure are the same of the lid driven cavity
problem ones. For temperature, Dirichlet condi-
tion is established in the left and right boundary
and von Neumann condition (adiabatic wall) in
the top and bottom ones.

32 N umerical implementation

The problems are solved by the finite diffe-
rence method. The LxH rectangular domain is
subdivided in MxN rectangles, equivalent to
(M+1)x(N+1) nodes. The boundary is composed
by two nodes, as required for the fourth order
stencils employed [13]. For numerical imple-
mentation simplicity, only explicit schemes were
used. Explicit schemes allow the evaluation of
the derivatives avoiding the implementation of
solvers for linear systems, as required by the
more stable and precise implicit schemes. This
approach required the minimum data storage,
however, for numerical stability, the time incre-
ment can be very small, tak ng a long time to
reach steady state.

The numerical implementation consists on
the approximation of the derivatives finite di-
fference stencils to obtain difference equations.

The advection-diffusion problem is modeled by
a unique difference equation that can be solved
using a single CUDA & rnel. In the other pro-
blems, the discretization problem lead to a set of
difference equations, and they have to be solved
simultaneously. In addition, the momentum and
energy equations are evaluated term by term
in a series of steps called “internal iterations”.
Details of this method can be found in the work
of Seibold (2008). Therefore, the solution code
of these problems is more intricate and they are
required four or more CUDA k rnels.

3% erformance comparison

The most important concern about the nu-
merical implementation of the solutions was the
homogeneity between CPU and GPU codes. This
means performing, as far as possible, the same
calculations to allow comparison. Initially, each
solution was programed in Matlab™ and the re-
sults compared to those obtained from literature.
This step was carried out in order to validate
the implemented solutions and to establish a set
of simulation parameters. Then, the solutions
were programed in ANSI C, avoiding the use of
matrix or any other numerical libraries. Matrix
algebra and file access routines were programed
to assure the CPU and GPU code mak , as pos-
sible, the same operations. Finally, the solutions
are programmed in CUDA, following the same
structure of the ANSI C code, and executed in
the GPU. Table 2 shows the specifications of the
computing devices.

Table 2. Main characteristics of the hardware

GPU
Graphic device NVIDIA GTX-570
Avrchitecture Fermi
Streaming processors 15
CUDA cores 480
Processor clock MHz) 1464
Memory (Gh) 1.28
CPU
Processor Intel Xeon E5620
Avrchitecture X86 64
Cores 4
Processor clock MHz) 2400
RAM Memory (Gb) 8

Source: by the author.
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The processing time in both CPU and GPU
was measured using the Linux system time li-
brary (time.h). This library provides functions to
read the system time in resolution of miliseconds.
Then, the system time is read at the beginning
and at the end of the solution routines and the
difference is calculated.

4R esults and discussion

Figure 3 shows the temperature distribution
and a representation of the velocity vector field
for the advection-difussion problem. The do-
main is a rectangular channel of 0.5x0.1 meters
with a fully developed flow of water at 20°C
and a hot region at the bottom of the channel at
80°C. The velocity in the center of the channel
(maximum velocity) is 1 cm/s. The domain
was discretized using 640x128 subdivisions
and the termination criterion were steady state
(maximum difference of temperature between
two successive iteration less than 10°8). In this
problem, the fluid next to the hot region is war-
med (diffusion), at the same time; the hot fluid
is transported downstream (advection). The
temperature distribution shows the expected
behavior.

Figure 4 show the solution of the lid driven
cavity problem in a square domain of 1.0x1.0
meters with the top boundary horizontal velocity
fixed to 1 m/s. The physical properties of the
fluid were selected in order to have a Reynolds
number of 400. The domain was discretized
using 512x512 subdivisions and the program
was executed 8000 temporal iterations, almost
reaching steady state (the maximum difference
of velocity magnitude between two successive
iteration was less than 2x10°°). In this problem,
the movement of top boundary induces a rota-
tion of the fluid into the cavity, generating a
vortex with center in and specific location that
depends on Reynolds number. The figure shows
the magnitude of the velocity vector field and
the streamlines. This results are in agreement
with those reported in literature (Ghia, Ghia &
Shin, 1982).

Figure 5 shows the solution of the therma-
Ily driven cavity problem in a square cavity of
0.570.5 meters. The fluid is air, and the domain
size and the temperature difference were cho-
sen in order to have a Rayleigh number of 10°.
The domain was discretized using 512x512

subdivisions and the program was executed
8000 temporal iterations, almost reaching
steady state (the maximum difference of velo-
city magnitude between two successive itera-
tion was less than 5x107). In this problem, the
high temperature wall warms the surrounding
fluid, generating a density reduction and, con-
sequently, buoyancy. In this work, buoyancy is
modeled using the Bousinesq approximation.
The figure shows the temperature distribution
and the streamlines. These results are in agre-
ement with those reported in literature (Pérez,
1994).

Table 3 shows the comparison of the pro-
cessing time for the solutions showed in figures
3 to 5. The processing times, in seconds, for
CPU and GPU solutions are compared and the
speed up (CPU to GPU processing time ratio)
calculated. Additional information such as the
domain size and the termination criterion are
included.

The advection diffusion problem is relati-
vely simple and it can be solved using a single
CUDA kernel. In this problem, the speed up
is many thousand times. It is consequence of
the complete parallelism, that is, each iteration
required to evaluate the spatial derivatives can
be executed by an individual thread. This is an
interesting result; however, the real problems
are not so simple.

For the lid driven cavity problem, the spe-
ed up is just 3.6x, a drastically lower value. In
this problem, each temporal step is obtained by
the sequential execution of four kernels. The
first kernel evaluates the convective terms, the
second evaluates the diffusive terms and cal-
culate the divergence of velocity, and the third
and fourth kernels solve the pressure-velocity
coupling and make the temporal update. For the
thermally driven cavity, the speed up is 3.4x,
similar to that of the lid driven cavity problem.
The solution of this problem was implemented
using six CUDA kernels, the same as the pre-
vious problem and two additional ones for the
evaluation of the advective and diffusive terms
of the energy equation. However, the larger
number of kernels is not the main cause of the
performance reduction. The main of performan-
ce reduction is the pressure-velocity coupling,
because the finite difference scheme implemen-
ted can be partially parallelized.
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Figure 3 Advection-diffusion problem between infinite parallel plates: temperature distribution and velocity
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Source: by the author.

Figure 4. Lid driven cavity problem at Reynolds
number of 400: magnitude of the velocity vector field
and streamlines
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Table 3 Main characteristics of the hardware
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Figure 5. Thermally driven cavity problem at Ra-
yleigh number of 106: temperature distribution and
streamlines
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Source: by the author.

Problem Domain size Tecrrril:‘iar;?;:]on CPU time (s) GPU time (s) Speed up

'AEj‘i‘f’ficstl'g: 640x128 Steady state 28991.0 0.539 ~50000x
Lid driven cavity | si2xsi2 | 5090 temporal 636.5 188.9 3.6x
Themég'\%f”"e“ s12xs12 | 00D temporal 713.7 205.5 3.4x

Source: by the author.

5C onclusions

In this work, the use of the CUDA technology
to the solution of CFD problems was analyzed.
Three classical CFD problems with different level
of complexity were solved using the CPU and the
GPU. The performance analysis showed an impor-
tant reduction in the computation time with the

GPU, however, this reduction is highly dependent
of the level of complexity of the problem. In the
advection-diffusion problem, where the calcula-
tion reduces to the evaluation of a single finite
difference stencil and parallelism is complete, the
speed up is many thousand fold. However, for the
other more complex problems the speed up is less
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than fourfold. This is consequence of the greater
number of CUDA kernel required and the partially
parallelization of the solution scheme used for the
pressure-velocity coupling.

The learning of CUDA programming is not
easy. Parallelization issues, in addition to the
restrictions in the computing features and the
memory management of a GPU, make difficult the
development of complex numerical algorithms.
Nevertheless, with an acceptable expertise on the
syntax of the CUDA language and the understan-
ding of memory architecture and the hierarchy of
threads, block and grids, it is possible to face the
development of elaborated applications. Because
the parallelization issues generate most imple-
mentation problems, it is highly recommended
to write a serial code and then, when application
gives correct results, incorporate parallelism. This
technique proved valuable in simple implemen-
tations, and indispensable in the most complex.

Many code samples can be found in the
CUDATool Kitand internet. These optimized co-
des are useful as examples or can be incorporated
in the application, it is important to not reinvent
the wheel. An example is the determination of the
max/min value of a matrix in an efficient way.
This k nd of problem is called “reduction”, be-
cause, in order to exploit parallelism, the original
matrix must be sequentially sectioned in smaller
ones. This is a difficult programming problem,
however, the Nvidia team provides different code
samples that can be adapted or directly incorpo-
rated to the program.

The fluid dynamic problems selected and the
numerical methods employed for the solutions
are relatively simple. Real problems such as fluid
dynamics in irregular and 3D-domains or finite
elements calculations are more complex and the
solutions involve sparse matrices algebra, fac-
torization or inversion of large linear systems,
submatrices, complicated indexing, etc. These
problems bring new challenges. Fortunately,
there are software libraries incorporating much
of these required functionalities.

The codes implemented in this work are
optimization susceptible. Actually, this is a first
approaching to the CUDA technology and the
performance improvement is an advanced issue
yet to be done.

Finally, the CUDA technology has great
potential as a scientific and engineering tool,

because it brings high performance computing to
universities and industries without the financial
cost of a computing cluster. Nowadays, Nvidia
has released their new GPU architecture called
“Kepler” with features and performance superior
to the one used in this work and the cost is compa-
rable. An important feature is scalability, because
it is possible to incorporate several devices to
increment the computational power. On the other
hand, the software is in constant improvement,
including new capabilities in the language and
libraries for specific tasks.
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