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Abstract: Human influenza is transmitted directly from an ill person to a healthy one,
by air, during the symptomatic period of the disease. The virulence and antigenicity of the
virus, host immunity and environment, interact with each other affecting the transmission
of the virus person-person. Since the alert in 2009 of the influenza due to the H1N1 virus,
the number of new cases increased despite the control measures implement, such as wearing
masks, and other recommendations made by the World Health Organization. In Colombia
it was found that the first case of AH1N1 coincided with a person from Mexico. Therefore,
and considering that all travelers from this country are a suspected case of the disease, it
makes the transit from one country to another a possible route of transmission. Hence, the
approach to the question: What has been the impact in Colombia of the outbreak caused by
the migration of people from Mexico infected with the H1N1 influenza virus?

The porpuse of this paper is, in a certain way, to respond this question using a math-

ematical model that studies the transmission of this disease in both immigrant and local

populations. Population N is divided in NE immigrant populations and NL local popula-

tion, where N = NE + NL, according to the natural history of H1N1. Each subpopulation

is divided into three classes, susceptible S, infectious I and recovered R, resulting in the six

compartments SE , IE, RE and SL, IL, RL. The equilibriums and their qualitative analysis

were calculated. Besides, the basic reproductive number representing the classical measure

of transmission of infectious diseases is estimated and, from a biological point of view, it is

defined as the number of secondary cases produced by a typical infected individual when in-

troduced in a fully susceptible host population, during its effective period of infectivity. If
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R0 < 1 the disease goes out and if R0 > 1 an outbreak occurs.
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1. Introduction

There are three types of influenza virus: A, B and C. Types A and B are more
common in humans [1]. The epidemiology of type A differs significantly from
that of type B or C. Type A induces higher levels of disease in humans and
circulates in animal populations such as birds, pigs and horses. Types B and
C viruses propagate only among humans. The influenza A and B have the
capacity to improve their ability to invade the host population through minor
mutations (antigenic drift). Major mutations (antigenic shift) are possible and
are assumed to be responsible for major type A pandemics [[1], [2]]. Types
B and C viruses propagate only among humans. Type A are classified into
three subtypes according to the characterization of their highly variable sur-
face antigens hemagglutinin (HA) and neuraminidase (NA). These subtypes
are known as H1N1, H2N2 and H3N2 where H and N describe specific hemag-
glutinin and neuraminidase molecules, respectively. Major mutations in HA
and/or NA molecules (antigenic shift) involve the replacement of one or both
of the H and N antigens. For instance, the displacement at the population level
of the H1N1 subtype by H2N2 in 1968, provides one example. Several theories
have been given to explain the origin of these mutations; however, the most
common argues that re-assortment of the virus genetic material in human and
animals is highly possible given the large reservoir of flu A viruses in animal
populations. Aside from characterizing type A viruses into subtypes, minor
mutations (antigenic drift) within each of these subtypes are classified as vari-
ants or subtype specific strains. These new strains facilitate the invasion of the
host population on a yearly basis, regardless of the levels immunity or cross-
immunity acquired from prior infections [[3], [4]]. Influenza strains are classified
according to their type (A or B), town of isolation, number of isolates, year of
isolation and subtypes (HA and NA), and strain [4].

Mathematical models have been an important tool in the analyzis of in-
fectious diseases [5]. In 1760 Daniel Bernoulli formulated and solved a model
for smallpox [5]. In 1906, Hamer [6] posed and analyzed a discrete model
that attempts to understand the recurrence of epidemics of measles. In 1911,
Ross [7] was interested in the incidence and control of malaria and developed
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a host-parasite model based on differential equations. in 1926, Kermack and
McKendrick [8] published an article on epidemic models. Since then, research
in epidemiology mathematics has grown almost exponentially, and a variety of
models have been mathematically analyzed and applied to infectious diseases
[[9], [10], [11], [12]]. Today, there are thousands contributions, with magazines
almost exclusively devoted to such topics.

Different types of models have been proposed to describe the outbreaks
of influenza. Many public health policies to address with pandemic influenza
are built based on networks of contact in a population and the propagation of
the disease taking place through this network. These tests consist of multi-
ple stochastic simulations that require a lot of time on the computer. In this
research we intend to work using simple models with ordinary differential equa-
tions, and collect current data to estimate the important parameters of these
models [11].

We formulate an optimal control model for the transmission of the influenza
H1N1 in immigrants and local population, in order to derive optimal preven-
tion and treatment strategies with minimal implementation cost. We consider
(time dependent) optimal control strategies associated with two time-dependent
controls. The first control, u1(t) is applied to the transmission rate, and rep-
resents the insulation made of the cases presented. The second control, u2(t),
represents the effort put into the treatment of individuals infected with H1N1.

2. Model

In order to study the transmission of the disease in immigrants and local popu-
lation, the total population N has been divided into NE immigrant population
and NL locals, where N = NE + NL according to the natural history of the
disease. Each subpopulation is divided into three classes: susceptible S, infec-
tious I and recovered R, this resulting into the six compartments SE, IE , RE

and SL, IL, RL, whose flowchart is shown in Figure 1, and where the influence
of local active immigrant population immigrants is negligible. The model is
specified by six differential equations:
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Figure 1: diagram AH1N1

S′
E(t) = π − β1SE(t)IE(t)− µSE(t),

I ′E(t) = β1SE(t)IE(t)− (γ1 + µ+ µIE)IE(t)

R′
E(t) = γ1IE(t)− µRE(t),

NE = SE(t) + IE(t) +RE(t),

(1)

and

S′
L(t) = Λ− β2SL(t)IL(t)− β∗SL(t)IE(t)− µSL(t),

I ′L(t) = β2SL(t)IL(t) + β∗SL(t)IE(t)− (γ2 + µ+ µIL)IL(t)

R′
L(t) = γ2IL(t)− µRL(t),

NL = SL(t) + IL(t) +RL(t),

(2)

where π and Λ are constant recruitment within populations NE , NL re-
spectively, β1 and β2 are the transmission coefficients for the populations of
immigrants and local population. β∗ is the coefficient for the transmission of
the disease, from immigrants to the susceptible local population . In this model,
the term β∗SL(t)IE(t) models the impact of the immigrant population infected
with H1N1 within the local population.
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3. Global Stability of Disease-Free Equilibrium

Domains

ΩE =

{

(SE , IE , RE) ∈ R
3 : SE, IE , RE ≥ 0, SE + IE +RE ≤

Λ

µ

}

and

ΩL =

{

(SL, IL, RL) ∈ R
3 : SL, IL, RL ≥ 0, SL + IL +RL ≤

Λ

µ

}

are positive and invariant because they are constrained by the invariant planes
SE = 0, IE = 0, RE = 0, SL = 0, IL = 0, RL = 0, and the planes SE+IE+RE =
Λ
µ
, SL + IL +RL = Λ

µ
. In other planes that limit the region entering the orbits

only, as discussed below.
In the plane SE = 0 the first equation for system (1) is equal to dSE

dt
= π,

orbits cross the plane, entering the region ωE. In the plane IE = 0 the second
equation for system (1) is equal to dIE

dt
= 0, that is, the orbits of the plane do

not leave him, neither does the plane RE = 0, then dRE

dt
= 0.

3.1. Basic Reproductive Number

(1) and (2) we obtain the following trivial equilibria:

PE0 =

(

π

µ
, 0, 0

)

, PL0 =

(

π

µ
, 0, 0

)

The Jacobian matrix of the system(1) is

J =





−β1IE − µ −β1SE 0
β1IE β1SE − (γ1 + µ+ µIE) 0
0 γ1 −µ



 .

Then

J (PE0) =





−µ −β1
π
µ

0

0 β1SE − (γ1 + µ+ µIE ) 0
0 γ1 −µ



 .

Then, from the operator of the next generation in the matrix J (PE0), we obtain
the following matrices

M =





0 −β1
π
µ

0

0 β1
π
µ

0

0 γ1 −µ



 ; D =





µ 0 0
0 γ1 + µ+ µIE 0
0 0 µ




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and

A = MD−1 =







0 − β1π
µ(γ1+µ+µIE

) 0

0 β1π
µ(γ1+µ+µIE

) 0

0 0 0







and the characteristic polynomial of matrix A is

P (λ) = λ2

(

λ−
β1π

µ(γ1 + µ+ µIE)

)

= 0

and the largest eigenvalue is the basic reproductive number for the immigrant
population given by

RE0 =
β1π

µ(γ1 + µ+ µIE)
.

With a similar procedure we obtain the basic reproductive number for the local
population given by

RL0 =
β2Λ

µ(γ2 + µ+ µIL)
.

Then,
R0 = max{RE0,RL0}

the number of secondary cases produced when an infectious individual is intro-
duced into a susceptible population during its infectious period. The disease
would disappear if R0 < 1 or would become epidemic if R0 > 1. Directly from
the system (1) it can be shown that when R0 < 1 there is only one disease-free
equilibrium given by

P0 = (PE0, PL0)

as shown in the following theorem.

Theorem 1. If R0 < 1, that is, when RE0 ≤ 1 and RL0 ≤ 1 then P0

is the unique equilibrium of the system (1), (2) and is globally asymptotically
stable in Ω. Si R0 > 1, then P0 is unstable. Where Ω = ΩE +ΩL.

Proof. For the system of differential equations (1), we have

VE = IE.

Then
dVE

dt
=

β1π

µ

(

µ

π
SE −

1

R0

)

IE ≤ 0,

if RE0 < 1. Also, dVE

dt
= 0 iff IE = 0. The maximum set invariant and compact

in Ω is determined solely by {PE0}. Based on Lasalle invariance principle, PE0
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is globally asymptotically stable in Ω. Since it is assumed that IE = 0 as
t −→ 0, the system (2) is rewritten as

S′
L(t) = Λ− β2SL(t)IL(t)− µSL(t),

I ′L(t) = β2SL(t)IL(t)− (γ2 + µ+ µIL)IL(t)

R′
L(t) = γ2IL(t)− µRL(t),

NL = SL(t) + IL(t) +RL(t),

then similarly for system (1) we have the function

VL = IL.

Therefore,
dVL

dt
=

β2Λ

µ

(

µ

Λ
SL −

1

RL0

)

IL ≤ 0,

if RL0 < 1. Similar to PE0, PL0 is globally asymptotically stable. In conclusion,
P0 = (PE0, PL0) is globally asymptotically stable in Ω = ΩE +ΩL si R0 < 1.

3.2. Endemic Equilibrium

Theorem 2. If R0 > 1, then

i) If RE0 > 1, independently of RL0, system (1), (2) has a unique endemic
equilibrium P ∗ = (P ∗

E , P
∗
L) in Ω.

ii) If RE0 ≤ 1 y RL0 > 1 system (1) y (2) has a unique equilibrium P ′ =
(PE0, P

∗
L) in Ω.

Proof. Equating to zero each equation of the system (1) and (2) we get

π − β1SE(t)IE(t)− µSE(t) = 0,

β1SE(t)IE(t)− (γ1 + µ+ µIE)IE(t) = 0,

γ1IE(t)− µRE(t) = 0,
Λ− β2SL(t)IL(t)− β∗SL(t)IE(t)− µSL(t) = 0,

β2SL(t)IL(t) + β∗SL(t)IE(t)− (γ2 + µ+ µIL)IL(t) = 0

γ2IL(t)− µRL(t) = 0.

(3)
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Calculating directly from (3) we have for the system (1) that the endemic
equilibrium is given by the following expressions

S∗
E =

π

µ
RE0; I∗E = (RE0 − 1)

µ

β1
; I∗E = (RE0 − 1)

γ1

β1

and for the system (2) the endemic equilibrium is given by

S∗
L =

Λ

µRL0
; I∗L = (RL0 − 1)

µ

β2
; I∗L = (RL0 − 1)

γ2

β2
.

This implies that there is an endemic equilibrium of the form

P ∗ = (P ∗
E , P

∗
L)

where P ∗
M = (S∗

E , I
∗
E , R

∗
E) y P ∗

L = (S∗
L, I

∗
L, R

∗
L)

4. Control Model

Control theory can help determine how to produce maximum performance or
minimal cost of the measures taken to control an epidemic. In model (1)we
consider two time-dependent controls. The first control, u1(t), is applied to the
transmission rate β2, and represents the insulation made of the cases presented.
The second control, u2(t), represents the effort put into the treatment of indi-
viduals infected with H1N1 [13]. Then, adding these controls in the system (1)
yields the following system of differential equations with control:

S′
L(t) = Λ− β2(1− u1(t))SL(t)IL(t)− β∗SL(t)IE(t)− µSL(t),

I ′L(t) = β2(1− u1(t))SL(t)IL(t) + β∗SL(t)IE(t)− (γ2 + γ3u2(t)
+µ+ µIL)IL(t),

R′
L(t) = (γ2 + γ3u2(t))IL(t)− µRL(t),

(4)

where NL = SL(t) + IL(t) + RL(t). The utility in implementing these control
measures is always very beneficial; however, each measure brings about cost
control, social isolation, creates economic losses, while the treatment requires
adequate supply infrastructure [13]. Since the coefficient(1 − u1(t)) represents
the effect of preventing new infections with the isolation of infected persons,
when u1(t) is close to 1, there is a decline in new cases, but the costs of imple-
menting this control are high. We assume that these costs are nonlinear and
are square.
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The functional objective to be minimized is

J(u1, u2) =

∫ tf

0

[

IL(t) +
A1

2
u21(t) +

A2

2
u22(t)

]

dt (5)

where we want to minimize the infectious group and keep the cost of treatment
low. The coefficients A1 and A2 are balancing the cost factors of each control.
The goal is to find a pair of controls (u∗1, u

∗
2), such that

J(u∗1, u
∗
2) = min

Ω
J(u1, u2) (6)

where
Ω =

{

(u1, u2) ∈ L1(0, tf )|ai ≤ ui ≤ bi, i = 1, 2
}

,

ai, bi, i = 1, 2, are positive constants.

4.1. Analysis of Optimal Control

The conditions necessary so that a pair of controls (u∗1, u
∗
2) is optimal comes

from the Pontryagin Maximum Principle [3]. This principle turns the system
(4)-(6) into a minimization problem of a Hamiltonian, H, with respect to u1 y
u2:

H = IL + A1

2 u21(t) +
A2

2 u22(t)
+ λ1 (Λ− β2(1− u1(t))SL(t)IL(t)− β∗SL(t)IE(t)− µSL(t))
+ λ2[β2(1− u1(t))SL(t)IL(t) + β∗SL(t)IE(t)
− (γ2 + γ3u2(t) + µ+ µIL)IL(t)] + λ3 ((γ2 + γ3u2(t))IL(t)− µRL(t)) .

(7)
Based on the Pontryagin Maximum Principle [3] and the existence result

for a pair of controls (u∗1, u
∗
2) [3], we formulated the following theorem

Theorem 3. There is an optimal control pair (u∗1, u
∗
2) and their solutions

(S∗
L, I

∗
L, R

∗
L) minimizing J(u1, u2) in Ω. In addition, there are functions λ1(t),

λ2(t), λ3(t), such that

dλ1

dt
= λ1 [β2(1− u1(t))IL + β∗IE(t)− µ]− λ2 [β2(1− u1(t))IL(t) + β∗IE(t)]

dλ2

dt
= −1 + λ1β2(1− u1(t))SL(t)

−λ2 [β2(1− u1(t))SL − (γ2 + γ3u2(t) + µ+ µIL)]− λ3 [γ2 + γ3u2(t)] ,

dλ3

dt
= µ

(8)
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with transversality conditions

λi(tf ) = 0 para i=1,2,3. (9)

Also, the following inequalities are valid

u∗1 = min

(

max

(

LA1,
1

A1
[(λ2 − λ1)β2SLIL]

)

, UA1

)

(10)

u∗2 = min

(

max

(

LA2,
1

A2
[(λ2 − λ3)γ3IL]

)

, UA2

)

where LAi is the lower bound for ui, and UAi, is the upper bound for ui,
i = 1, 2.

Proof. In the corollary, 4.1 of [14] Fleming et al. shows that there is a pair
of optimal control due to the convexity of the integrand of J in (5) with respect
to (u1, u2), a priori bound of solutions and system (4) is Lipshitz with respect
to state variables. The following relationships are obtained directly from the
Pontryagin Maximum Principle [3]:

dλ1

dt
= −

∂H

∂SL
,

dλ2

dt
= −

∂H

∂IL
,

dλ3

dt
= −

∂H

∂RL
,

with λi(tf ) = 0 for i = 1, 2, 3 and evaluated the optimal control pair and their
corresponding states. Here, the systems (8) and (9) have been deduced. The
Hamiltonian H must be minimized with respect to the pair of controls (u1, u2)
on the set Ω. From these calculations we obtain

∂H

∂u1
= A1u1 + (λ1 − λ2)β2SLIL = 0,

∂H

∂u2
= A2u2 + (λ3 − λ2)γ3IL = 0,

is replaced u1 = u∗1 y u2 = u∗2 clearing u∗1 y u∗2 we obtain

u∗1 =
1

A1
[(λ2 − λ1)β2SLIL]

u∗2 =
1

A2
[(λ2 − λ3)γ3IL] q
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5. Computational Results

In this section we have studied numerically the two models - without control
and with control for influenza H1N1- from a numerical perspective. An itera-
tive method was used to solve both models with an algorithm in Matlab. The
optimal treatment strategy is obtained by solving the optimality system, con-
sisting of ordinary differential equations from the state and adjoint equations.
An iterative method is used to solve the optimization problem. We begin to
solve the state equations with an estimation for the controls using a forward
fourth order Runge-Kutta scheme [15]. By the transversality conditions (9), the
adjoint equations are solved by a backward fourth order Runge-Kutta scheme
using the current iteration solution of the state equations [15]. Thus, the con-
trols are replaced by using a convex combination of the previous controls and
the value given in (10). This process is repeated and is stopped when the values
of unknowns at the previous iteration are very close to the values at the present
iteration [15].

For the simulations, it is assumed that the weight factor A2 associated with
control of u2 is greater than or equal to A1, which is associated with u1 control.
Here, we assume the following facts: The cost associated with u1 includes the
cost of screening programs and treatment, and the cost associated with u2
includes the cost of keeping patients in the hospital. An infectious person in
isolation lasts longer to treat (several weeks) than a person with AH1N1 flu
symptoms. The values of the parameters are as follows: β∗ = 0.001, β1 =
0.002, β2 = 0.0013, γ1 = 0.01,γ2 = 0.015, γ3 = 0.01, µ1 = 0.001, µ2 = .043,
µ3 = 0.001, π = 2.5, Λ = 0.2.

Figure 5 shows that when applying the treatment effects are on 20, and it
takes 8 days to ensure that the condition is stable at low levels. When applied
to the isolation of disease it is 10 days and takes 5 days to reach low levels. So
if you put more effort into controlling “isolation” case u1, the epidemic tends
to be controlled quickly and at a lower cost.
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Figure 2: Here we see the variation in the immigrant population infected
initially presented in Colombia.

Figure 3: Comparing the populations infected with control and without
control.



THE INFLUENZA AH1N1: A MATHEMATICAL MODEL... 905

Figure 4: The introduction of control has a positive effect on the infected
population.

Figure 5: The isolation control is less expensive and more effective than
treatment given to patients.
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6. Discussion and Conclusion

In this research presents a model to analyze how foreign individuals infected
with H1N1 influenza virus caused the outbreak in Colombia. In order to analyze
the development of the disease in Colombia, the population has been divided
the into two groups: foreign population and local population. This model in-
troduced two time-dependent controls. The first control, u1(t), is applied to
the transmission rate β2 and represents the insulation made of the cases pre-
sented. The second control, u2(t), represents the effort put into the treatment
of individuals infected with H1N1.

A first important result is summarized in theorem 1, which states that if the
basic reproductive number RE0 for the foreign population in Colombia is less
than one and the basic reproductive number for local population RL0 is also
less than one, then P0 is the only system equilibrium (1), (2) and is globally
asymptotically stable, implying that it is impossible that a large outbreak takes
place. Theorem 2 shows that if the basic reproductive number for the local RL0

is less than one, but the basic reproductive number RE0 for foreign population
is larger than one, then this may be an outbreak.

Control theory helps to determine the maximum benefit or minimum cost
of a management plan in an outbreak. Optimal control is used in public health
policies to minimize the costs of an epidemic, including patients, deaths, treat-
ments, and others. In our model we have introduced two control strategies to
minimize the magnitude of the H1N1 influenza outbreak.
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