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Abstract

Image analysis is a useful technique to evaluate the efficacy of a treatment for weed control.

In this study, we address two practical challenges in the image analysis. First, it is challeng-

ing to accurately quantify the efficacy of a treatment when an entire experimental unit is not

affected by the treatment. Second, RGB codes, which can be used to identify weed growth

in the image analysis, may not be stable due to various surrounding factors, human errors,

and unknown reasons. To address the former challenge, the technique of image segmenta-

tion is considered. To address the latter challenge, the proportion of weed area is adjusted

under a beta regression model. The beta regression is a useful statistical method when the

outcome variable (proportion) ranges between zero and one. In this study, we attempt to

accurately evaluate the efficacy of a 35% hydrogen peroxide (HP). The image segmentation

was applied to separate two zones, where the HP was directly applied (gray zone) and its

surroundings (nongray zone). The weed growth was monitored for five days after the treat-

ment, and the beta regression was implemented to compare the weed growth between the

gray zone and the control group and between the nongray zone and the control group. The

estimated treatment effect was substantially different after the implementation of image seg-

mentation and the adjustment of green area.

Introduction

Ryegrass (Lolium multiflorum) is one of the most predominant weeds in United States [1] and

pesticides are used to control ryegrass. Pesticide efficacy assessments are important to measure

the efficacy of a treatment for ryegrass control. Pesticide efficacy have been usually determined

by manual weed counting at a given time since the application of a treatment. Manual count-

ing, however, is labor intensive and time-consuming, and an alternative method of data collec-

tion is images (i.e., taking a picture). Image analysis has been applied for the discrimination

between crops and weeds [2], weed detection [3–6], weed mapping [7, 8], and identification of

weed species and patches [9] in agricultural fields. Technologies of image analysis make data
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collection faster and easier than the manual counting, and the image analysis can provide

more information about the efficacy of a treatment particularly when the number of experi-

mental units is limited.

If the pesticide does not affect an entire experimental unit, and if the researcher assesses the

efficacy on the entire experimental unit, the measure of efficacy can be inaccurate and/or

unstable. In this regard, the image analysis will be more useful than manual counting. For

example, a pesticide application through drip irrigation in commercial agricultural systems

can show spotty efficacy. The pesticide would not be much different than the control if the

weed density was assessed by manual counting. Two distinctive zones may appear within an

experimental unit, where the weed is controlled near the hole of the drip tapes and where the

weed is abundant away from the hole. In order to accurately estimate the efficacy of the pesti-

cide, the two zones need to be separated in the image analysis. Otherwise, the efficacy of the

pesticide can be severely underestimated. The two zones can be separated by image segmenta-

tion techniques which organize pixels of an image to several categories according to color,

brightness, and texture [10]. Onyango and Marchant [11] demonstrated that green vegetation

and soil can be distinguished by image segmentation. Several approaches using deep neural

networks have proven to be effective for segmentation task [12–14]. Moreover, detection of

ryegrasses in crops using machine learning technology [15] and detection of other weeds in

ryegrasses using deep learning technology [16] have been reported. However, upon our best

knowledge, the image segmentation technique has not been used with a statistical method

which adjusts a biased estimate of green cover at early days of application for the pesticide effi-

cacy assessment. pesticide efficacy assessment. If the image segmentation is applied for the

examples, an error that the pesticide is not effective for weed control will not be given. Further-

more, multiple parameters can be considered to optimally utilize a fixed amount of resources

(e.g., frequency, concentration, irrigation methods (surface, buried, or spray), and the number

of drip tapes).

In addition to the challenge due to the spotty efficacy, RGB codes, which can be used to

identify weed growth in the image analysis, may not be stable due to various surrounding fac-

tors, human errors, and unknown reasons. The colors of objects can vary depending on energy

sources such as sun light and artificial lamps, light intensity, color balance, direction, and

more [17]. In other words, there is an unexpected measurement error in the quantification of

weed growth in addition to the natural variability in the weed growth.

There has been an arbitrary decision on the time of pesticide efficacy assessment on sup-

pression of weed seed germination. If the assessment is done too early, it would be difficult to

compare the treatment and the control because the weed has not grown yet. The treatment

would not last forever, and the effect size relative to the control may be a function of time.

Therefore, it would be critical to monitor the treatment effect with respect to time (i.e., longi-

tudinal study) instead of choosing an arbitrary time point for pesticide efficacy assessment

(i.e., cross-sectional study). In this regard, the image analysis becomes useful because taking a

picture multiple times is relatively simple for longitudinal study (less laborious than the man-

ual counting). A longitudinal study allows researchers to estimate the rate of weed growth

which cannot be achieved by a cross-sectional study.

If the image analysis is applied to pesticide efficacy assessment, one parameter of interest

can be the proportion of area occupied by weeds per experimental unit. Typically, soil color

(brown) and weed color (green) are clearly distinguishable, so the RGB codes can be used to

estimate the proportion of green area [18]. The outcome variable is a proportion (e.g., a frac-

tion of green color pixels out of the total pixels in an image) which is bounded between zero

and one. Beta regression is a special kind of regression which can model data especially when

their values are between zero and one [19]. When the traditional linear regression is used in
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this case, it can lead to biased estimation for the expected outcome. The beta regression can

model the expected proportion of green area (possible values are between zero and one) with

respect to days after treatment. However, due to potential background noise in the measure-

ment of RGB codes or other factors which make a portion of image appears green, it is possible

to observe a nonzero proportion of green area on day zero of an experiment. In this regard, we

attempt to re-parameterize the model to adjust the expected proportion of green area in order

to accurately compare the treatment and the control.

The purpose of this article is to demonstrate the image analysis (monitoring pictures of

weeds over time, implementing image segmentation, and extracting RGB codes) and statistical

modeling (beta regression and adjusting the expected proportion of green area) in the pesti-

cide efficacy assessment. For the purpose of demonstration, we evaluated the efficacy of hydro-

gen peroxide (HP) on suppressing the weed growth. Despite small sample sizes, four replicates

for the treatment and four replicates for the control, we could conclude that the effect of HP is

statistically significant based on the image analysis and statistical modeling.

Materials and methods

Treatment description and data collection

Ryegrass (Lolium multiflorum) seeds were sowed on pots (7.5 × 7.5 cm). 12 mL of 35% hydro-

gen peroxide (HP) was applied by 50 mL syringe at the center of each pot on September 3,

2020. The experimental design was a randomized complete block with four replications (pots)

for the control and four replications for the HP treatment. Each of the four pots was photo-

graphed by a digital camera (EOS 70D DSLR, Cannon, Inc., Tokyo, Japan) one, two, four, and

five days after treatment (DAT) (Figs 1 and 2) under the lights of four incandescent bulbs of 20

watts. Each GIF file, converted from a JPEG file, was uploaded to the image analysis program

available at http://mkwak.org/imgarea/. The program outputs RGB codes (which represent

various colors quantitatively as a combination of red, green and blue) and the number of pixels

associated with each RGB code.

Image segmentation

In the flowerpots where the HP treatment was applied, there were two clearly distinguishable

soil colors, gray and nongray (mostly brown), due to the decolorization induced by hydroxyl

radicals [20]. The two zones (gray zone and nongray zone) were separated as shown in Figs 1

and 2, and this image segmentation could be implemented easily by the ‘Remove Background’

tool in Microsoft PowerPoint. The process is automatic and has been tried several times to

obtain the best segmentation.

Statistical analysis

In each flowerpot treated by the HP, the gray zone (referred to as P1) well absorbed the HP

treatment, and the nongray zone (referred to as P0) did not well absorb the treatment. The two

zones were clearly distinguishable by soil color. The objective of data analysis was to compare

the weed growth among P1, P0, and control (referred to as C).

The outcome variable of interest is the observed proportion of green area per image. A

“green” color was identified by the six most common RGB codes such that G> R and G> B.

The observed proportion of green area was calculated by dividing the total “green” pixels by

the total pixels per image, and this outcome variable ranges between zero and one.

To respect the range of the outcome variable, between zero and one, it may not be appropri-

ate to use linear regression because an estimated proportion can be below zero or above one
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under the linearity assumption (see Fig 3). Instead, beta regression can be more appropriate

for the outcome variable which ranges between zero and one [16]. When the beta regression is

applied to the observed data, the outcome variable (to be predicted) is the observed proportion

of green area per image, and the predictor variables are days after treatment and treatment

group (C, P0, or P1). The expected proportion of green area is denoted by μ, and h(μ) = ln[μ /

(1 –μ)] is modeled by the linear predictor α0 + α1 P0 + α2 P1 + β0 D + β1 (D × P0) + β2 (D × P1)

in the beta regression. The regression parameters (α0, α1, α2, β0, β1, β2) are to be estimated

given data, D is a continuous numeric variable which represents days after treatment, P0 is a

dummy variable such that P0 = 1 for the nongray zone of the HP treatment (P0 = 0 otherwise),

and P1 is another dummy variable such that P1 = 1 for the gray zone of the HP treatment (P1 =

0 otherwise). The linear predictor represents the three beta regression models: h(μ) = α0 + β0

D for the control group (P0 = 0; P1 = 0), h(μ) = (α0 + α1) + (β0 + β1) D for the nongray zone of

HP (P0 = 1; P1 = 0), and h(μ) = (α0 + α2) + (β0 + β2) D for the gray zone of HP (P0 = 0; P1 = 1).

The regression parameters (α0, α1, α2, β0, β1, β2) can be estimated by using the betareg package

in R [21, 22]. To account for the day-specific variability in the outcome variable, the precision

parameter was regressed by D with the log link.

Let μ(d) denote the true proportion of green area on D = d days. The proportion of green

area purely due to weed growth must be equal to zero on day d = 0, but the observed propor-

tion of green area may be greater than zero due to background noise such as surrounding fac-

tors (e.g., light), human errors, and unknown reasons. To control the background noise, we

define the adjusted proportion of green area on day d as θ(d) = [μ(d) − μ(0)] / [1 − μ(0)].

The rstanarm package was used to approximate the joint posterior distribution of regres-

sion parameters [23]. It was hypothesized that the weed growth cannot decrease with respect

Fig 1. The pictures of 1 DAT. a: Control; b: HP treatment (before segmentation); c: Area directly affected by HP (P1;

after segmentation); d: Area not directly affected by HP (P0; after segmentation).

https://doi.org/10.1371/journal.pone.0248592.g001
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to time, so the parameter space was restricted as β0 > 0, β0 + β1 > 0, and β0 + β2 > 0. The

adjusted proportion on day d at C, P0, and P1 is given by

yC dð Þ ¼
mCðdÞ � mCð0Þ

1 � mCð0Þ
¼

ea0þb0d � ea0

1þ ea0þb0d
; ð1Þ

y0 dð Þ ¼
ea0þa1þðb0þb1Þd � ea0þa1

1þ ea0þa1þðb0þb1Þd
; ð2Þ

and

y1 dð Þ ¼
ea0þa2þðb0þb2Þd � ea0þa2

1þ ea0þa2þðb0þb2Þd
; ð3Þ

respectively. The derivations of Eqs 1 to 3 are provided in S1 Appendix and the parameters of

interest were θ1 (5) / θC (5) to compare P1 to C on day 5 and θ0 (5) / θC (5) to compare P0 to C

on day 5. These parameters were estimated by approximate 95% credible intervals (CIs).

Fig 2. The pictures of 2, 4, and 5 DAT. a, b, c, and d: 2 DAT; e, f, g, and h: 4 DAT; i, j, k, and l: 5 DAT. a, e, and i: Control; b, f, and j:

HP treatment (before segmentation); c, g, and k: Area directly affected by HP (P1; after segmentation); d, h, and l: Area not directly

affected by HP (P0; after segmentation).

https://doi.org/10.1371/journal.pone.0248592.g002
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Results

When HP was applied at a depth of 15 cm, bubbles were formed and covered the surface with

heat. Subsequently the bubbled area turned gray (P1), but the other area (P0) did not show the

same color (Figs 1 and 2). Noises can occur depending on imaging equipment and environ-

ment factors (e.g., light) during image acquisition. For the reason, we judged that the six most

abundant green RGB codes (0-43-0, 51-85-51, 102-128-102, 153-170-102, 102-128-51, and 51-

85-0), which appear in both control and treatment, fairly represent the actual weeds observed

in the image. The other green RGB codes (i.e., G is the maximum among R, G, and B) are

either noise or occupy very small pixels in the entire image (Fig 4).

The estimated regression parameters are graphically presented in Fig 5. The left panel

shows the unadjusted proportion of green area (denoted by μ in the section of statistical analy-

sis) estimated by the beta regression model before the image segmentation. The gray zone (P1)

and the nongray zone (P0) were not separated in this analysis, so the HP treatment represents

the combination of P0 and P1 which may not be an accurate representation of the treatment

effect. In addition, due to the background noise, the estimated proportion of green area already

exceeded 0.05 on day zero for the HP treatment and 0.1 in the control on day zero.

The right panel of Fig 5 shows the adjusted proportion of green area (denoted by θC, θ0,

and θ1 in Eqs 1, 2 and 3, respectively, in the section of statistical analysis) using the regression

Fig 3. Hypothetical data and estimated regressions to demonstrate a case when beta regression is more

appropriate than linear regression.

https://doi.org/10.1371/journal.pone.0248592.g003
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parameters that are estimated under the beta regression after the image segmentation. In this

analysis, P1 and P0 can be compared to C. For comparing P1 to C on day 5, the posterior

mean of θ1 (5) / θC (5) was 0.12 with 95% CI of (0.0048, 0.37) which is entirely below one (i.e.,

P1 certainly has a low green proportion than C). In other words, we are 95% certain that the

adjusted proportion of green area is between 0.0048 and 0.37 when we compare the gray zone

of HP treatment to the control. For comparing P0 to C, the posterior mean of θ0 (5) / θC (5)

was 1.12 with 95% CI of (0.50, 2.25) which includes one (i.e., high uncertainty to claim the dif-

ference between P0 and C). Based on the CIs, we conclude that the treatment effect is evident

in P1, but not in P0. The approximate posterior distributions of θ1 (5) / θC (5) and θ0 (5) / θC

(5) are shown in Fig 6.

Discussion

Image segmentation is defined as follows: the search for homogeneous zones in an image and

the classification of these zones [24]. Recently, image segmentation has been used widely

including video analysis [25], medical image analysis [26], crack detection [27, 28], and plant

disease recognition [29]. The application is extended to the pesticide efficacy assessment in

this study. The image segmentation was applied for the two homogenous zones, gray and non-

gray, and the gray zone was produced because the hydroxyl radicals from HP induced decolor-

ization [20]. The key idea of segmentation study is the distinguishability between the color of

ground (e.g., soil) and the color of treated area. Therefore, this idea can be applied at the field-

level experiments with other commercial pesticides. In addition, when pesticides have no color

or their colors are not clearly distinguishable from the ground, pesticides can be mixed with

dyes to indicate the effective areas of the pesticides. The coloration can be used for image

Fig 4. The top 20 colors resulted by image analysis in pictures of 5 DAT. C: Control; T: HP treatment (before segmentation); P1: Gray area directly

affected by HP (after segmentation); P0: Nongray area not directly affected by HP (after segmentation).

https://doi.org/10.1371/journal.pone.0248592.g004
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segmentation immediately after using pesticides. In addition to the image segmentation, the

adjusted proportion of green area was needed to accurately estimate the efficacy of HP relative

to the control. Without the image segmentation and the adjustment, the relative unadjusted

proportion of green area was 0.56 when HP was compared to the control on day 5. We believe

that this is a substantially biased estimate. After the image segmentation and the adjustment,

the relative proportion of green area was 0.12 on day 5. In fact, there was nearly no difference

between the nongray zone of HP and the control, so the former analysis could have been a

mixed result.

Image analysis has been used in other scientific areas such as medical informatics and tech-

nology, and the noise reduction in RGB data is an important step [30]. Despite the advance in

quantitative image analysis software, observed RGB codes can vary among different softwares.

In the context of agricultural data, noise in RGB data can occur by plant debris or minerals in

agricultural fields, and this study demonstrates that the adjustment is meaningful and neces-

sary to accurately quantify the treatment effect. Specifically, it is implausible to believe that

about 10% of an experimental unit is occupied by green area as soon as the experiment began

(the left panel of Fig 5). It would be more plausible to assume that the proportion of green

area, which represents weeds, is close to zero at that time point (the right panel of Fig 5). In

this study, the noise in RGB data is adjusted by statistical model rather than additional image

processing. As such, the statistical adjustment method can be useful when a response variable

(e.g., weed abundance) is identified by certain contrasting colors (e.g., green on brown/black

background) with potential noise during image acquisition from the agricultural field.

HP reacts to produce hydroxyl radicals (Haber-Weiss reaction). The reaction can be cata-

lyzed by transition metals such as iron and copper (Fenton reaction) [31]. HP efficiently initi-

ates lipid peroxidation in polyunsaturated fatty acids of membrane [32]. HP, therefore, can

destroy substances and cells by forming hydroxyl radicals. HP has been tested for control

Fig 5. The unadjusted proportion of green area before the image segmentation (left panel) and the adjusted proportion of green area by using the

regression parameters estimated under the beta regression.

https://doi.org/10.1371/journal.pone.0248592.g005
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pathogens [33–35] and aquatic weeds [36, 37]. For this reason, we assumed that HP cannot

only induce decolorization for the image segmentation but will also be effective in weed con-

trol for soil disinfestation although, as far as our literature review, there have not been any

reports on the efficacy of HP for the terrestrial weed control. Additionally, the decomposition

of HP liberates heat due to the degradation. The heat may reduce weed seed viability which is

not affected by oxidative stress along with membrane damage due to the peroxidation of phos-

pholipids by HP because of seed coat.

The cost-benefit should be considered for the pesticide efficacy assessment. Even though

the efficacy of HP seemed clear at least for five days (or probably longer based on the estimated

regression curves in Fig 5), the areas affected were limited (7.5 × 7.5 cm in this study). These

results motivate us to reconsider the method of HP application that can maximize the benefit

for a fixed cost. For instance, instead of injecting 12 mL of HP at the center, we could inject a

higher concentration than 12 mL and/or spread the HP treatment to the edges of the flower-

pots for a better weed control.

In most experiments, weeds grow eventually whether an experimental unit is treated or not,

so the time of assessment can matter. To this end, we monitored experimental units over time

and modeled the rate of weed growth. The rate of weed growth can be an important parameter

for cost-benefit analysis. In this regard, the longitudinal analysis can bring more statistical

information about the treatment effect than the cross-sectional analysis.

The combination of the image segmentation and longitudinal observation may be an eco-

nomically and statistically efficient technique to accurately and precisely estimate the treat-

ment effect. Therefore, it is possible to connect with various technologies for efficient weed

removal. For instance, the combination can be used for real-time precision pesticide spraying

systems [38, 39].

Fig 6. The approximate posterior distributions of θ1 (5) / θC (5) and θ0 (5) / θC (5) (left panel and right panel, respectively).

https://doi.org/10.1371/journal.pone.0248592.g006
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Conclusion

We demonstrated the benefit of image segmentation and the necessity of adjustment in the

proportion of green area. The image analysis can reduce the labor of data collection, and the

image segmentation is helpful to accurately quantify the effect of HP relative to the control.

However, the RGB analysis can be inaccurate due to the unexpected background noise in the

RGB codes. To account for the nonzero background effect, the expected proportion can be

adjusted after estimating the beta regression parameters. In addition, we suggest the longitudi-

nal image segmentation instead of a cross-sectional assessment at an arbitrary time point.

Finally, regarding the effect of HP, even though it seems to drastically reduce the germination

of the ryegrass seeds, it can be applied in a different way or combined with other treatments

such as solarization, steaming, and anaerobic soil disinfestation in the future studies.
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