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A B S T R A C T   

Using 15N stable isotope as a tracer to quantify N transformation rates in isotope-enrichment experiments im
proves understanding of the N cycle in various ecosystems. However, measuring 15N-nitrate (15NO3

− ) in small 
volumes of water for these experiments is a major challenge due to the inconvenience of preparing samples by 
traditional techniques. We developed a “REOX/MIMS” method by applying membrane inlet mass spectrometry 
(MIMS) to determining 15NO3

− concentrations in a small volumes of water from isotope-enrichment experiments 
after converting the dissolved inorganic N to N2. The nitrates (NO3

− + NO2
− ) were reduced to NH4

+ with zinc 
powder, and the ammonium (NH4

+) was then oxidized to N2 by hypobromite iodine solution. The resulting 29N2 
and 30N2 were measured via MIMS. This optimized protocol provides a sensitive (~0.1 μM) and precise (relative 
standard deviation = 0.1–4.37%) approach to quantify 15NO3

− concentrations (0.1–500 µM) in water samples 
over a wide range of salinities (0–35‰) and in 2 M KCl solution with excellent calibration curves (R2 ≥ 0.9996, p 
< 0.0001). The method was combined with 15NO3

− isotope-enrichment incubation experiments to measure gross 
nitrification and gross NO3

− immobilization rates in various ecosystems. It was rapid, accurate, and cost-effective. 
Future applications of this efficient approach will inform scientists, modelers and decision makers about 
mechanisms, sources, fates, and effects of NO3

− delivered to or produced in numerous aquatic and terrestrial 
ecosystems.   

1. Introduction 

Human activities have altered the global N cycle, with anthropogenic 
N inputs exceeding natural N fixation during the past several decades 
(Davidson, 2009; Galloway et al., 2008). Excessive reactive N in 
terrestrial and marine ecosystems from large applications of fertilizer 
has impacted the balance of the global N cycle and contributed to 
numerous eco-environmental problems, such as widespread eutrophi
cation, hypoxia expansion, and increased harmful algal blooms (Cai 
et al., 2011; Deegan et al., 2012; Diaz and Rosenberg, 2008). A 
comprehensive evaluation of N transformation rates in both temporal 
and spatial scales is needed to assess N fate and to develop effective 

means to control N pollution in affected ecosystems. Tracing the fate of 
added 15N-labeled compounds provides a useful tool to separate the 
production and consumption of the target N compound, and thereby 
calculate its gross production or consumption rates in environmental 
and laboratory samples (Blackburn, 1979; Caperon et al., 1979). Using 
15N to quantify these rates increases understanding of N cycling in 
diverse ecosystems including both source-sink and process information. 

Sediment slurry incubation methods have been applied widely in 15N 
studies, and can provide high resolution data of N transformation rates 
in spatial and temporal scales (Lin et al., 2017a, 2017b; Shan et al., 
2016; Plummer et al., 2015; Wang et al., 2012; Trimmer and Nicholls, 
2009). With sediment slurry incubation technique, numerous samples 
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can be acquired efficiently, providing detailed information on how 
different environmental parameters affect N transformation rates. Under 
this scenario, a high-throughput 15N method is needed to keep up with 
the efficiency of incubations. Traditional methods for quantifying stable 
N isotopes in different forms apply elemental analyzer-isotope ratio 
mass spectrometry (EA-IRMS) (Altabet et al., 2019) or GC/MS (Houben 
et al., 2010; Isobe et al., 2011; Stark and Hart, 1996) after converting the 
target N compound(s) to a gaseous N-species (usually N2 or N2O). These 
techniques are robust and reliable, but are labor-intensive, and thus not 
ideal for measuring high resolution N transformation rates. 

As noted above, sample pretreatment is an essential step in 15NO3
−

analysis. These pretreatments often involve chemical and microbial 
transformation of 15NO3

− to other N-species, and subsequent diffusion 
techniques (Stark and Hart, 1996). The chemical conversions during 
pre-treatments are sometimes more convenient and precise than bacte
rial denitrifier reduction (Stevens and Laughlin, 1994), but involve toxic 
chemicals, such as cadmium, vanadium chloride (VCl3), hydrazine, and 
sodium hypobromide (Eschenbach et al., 2017, 2018; Houben et al., 
2010; Stevens and Laughlin, 1994). A recent new one-step chemical 
method to convert NO3

− to N2O gas using Titanium chloride is simple, 
cost effective, and dose not require toxic chemicals (Altabet et al., 2019), 
but requires ca. 24 h for titanium (Ti) the pretreatment process. Effective 
and high-throughput methods are needed to meet the demand of 
analyzing a large number of samples. 

The more assessable membrane inlet mass spectrometry (MIMS) 
(Kana et al., 1994) and OXidation/MIMS (OX/MIMS) (Yin et al., 2014) 
technologies are used in increasing numbers of laboratories (Eschenbach 
et al., 2017, 2018). They provide sensitive, accurate, and cost-effective 
measurements of the 15N isotopic composition of N2 and ammonium 
(NH4

+), respectively, in water samples from isotope enrichment experi
ments. Here, we present an upgrade of the OX/MIMS method. The 
15NO3

− concentrations for isotope-enrichment experiments are deter
mined in small volumes of samples (~15 mL) over a wide range of 
15NO3

− concentration (0.1–500 μM). This new REduction-OXidation/ 
MIMS (“REOX/MIMS”) approach extends the existing OX/MIMS 
method for measuring 15NH4

+ (Yin et al., 2014), to quantify 15NO3
−

concentration in 15NO3
− isotope-enrichment experiments, and takes 

advantage of the unique features of MIMS analysis (high accuracy and 
precision, easy-to-operation, and support of high-through output) 
(Eschenbach et al., 2017; Groffman et al., 2006; Ketola et al., 2002; 
Richardson, 2001). The reduction of NO3

− to NH4
+ was optimized by 

considering the effects of acidic condition, shaking frequency, quantity 
of zinc powder, reaction time, salinity, and temperature. The resulting 
15NH4

+ was oxidized to N2 by hypobromite iodine solution (Ohyama and 
Kumazawa, 1981) and measured using OX/MIMS (Yin et al., 2014). We 
present preliminary results using this method to assess gross nitrification 
and NO3

− immobilization in six ecosystems (grassland, forest, paddy, 
wetland, lacustrine, and estuarine environments) at Chongming Island 
in East China. The successful field trials demonstrate that this method 
provides a convenient tool to understand and predict N transformation 
rates in diverse natural environments. 

2. Materials and methods 

2.1. Reagents and experiment setup 

The hypobromite iodine solution was prepared and stored at − 20 ◦C 
before conducting isotope-dilution experiments (Ohyama and Kuma
zawa, 1981; Yin et al., 2014). For analyses, 15 mL water samples forti
fied with 15NO3

− were acidified with 75 μL of 2 M sulfuric acid (H2SO4). 
Nitrates (including the added 15NO3

− ) were reduced to NH4
+ with zinc 

powder (Mallinckrodt, USA) in 50 mL centrifuge tubes. The reaction 
equation (Brown, 1921) is: 

NO -
3 + 4Zn + 10H + →3H2O + 4Zn2+ +NH+

4 (1) 

Water samples, H2SO4 and zinc powder were mixed thoroughly for 
30 min at room temperature in tubes using a platform shaker at 250 rpm. 
After mixing, the solutions were transferred into 12 mL gastight boro
silicate vials (Labco Exetainer, High Wycombe, Buckinghamshire, UK). 
The vials were filled completely and sealed with silicon septa and screw 
caps to prevent leakage of solution and gas. To analyze the NH4

+, 
excessive hypobromite iodine solution (0.2 mL) was injected into each 
sample vial to oxidize the 15NH4

+ to 29N2 and/or 30N2 (Yin et al., 2014). 
After oxidation, produced N2 gases were analyzed with MIMS (Hiden 
HPR-40, Hiden Analytical Ltd., Warrington, UK). The general procedure 
of the “REOX/MIMS” method to determine of 15NO3

− in aqueous samples 
is shown in Fig. 1a. 

For measurement, the aqueous sample was pumped at a rate of ~2.5 
mL min− 1 by a peristaltic pump (Minipuls 2, Gilson, Villiers le Bel, 
France; Fig. 1b P). It entered a stainless-steel capillary (i.d. 0.5 mm, 
length 1 m; Fig. 1b SC), held at 25 ◦C in a water bath (Fig. 1b T) to 
stabilize the sample temperature to within 0.01 ◦C (Ferrón et al., 2016). 
Before reaching the quadrupole mass analyzer (around 1.33 × 10− 5 Pa; 
Fig. 1b Q), the dissolved gases were separated from the liquids by a 
membrane injector (Fig. 1b M) and the H2O and CO2 were removed by a 
cryotrap (− 110 ◦C, liquid N2, Fig. 1b C). Inside the quadrupole mass 
analyzer, dissolved gases were ionized using an oxide coated iridium 
filament to allow the selection of ionization energies (between 4 and 
150 eV) and emission intensities (between 20 and 5000 µA). Once 
ionized, dissolved gases were separated by the quadrupole according to 
their mass to charge ratios (m/z ratios). Finally, the detection of dis
solved gases is performed either by a secondary electron multiplier 
(Fig. 1b SEM). 

2.2. 15N standard evaluation 

Three standard Na15NO3
− (99.4 atom%) solutions (5, 50, and 500 µM) 

were used to optimize several parameters of the proposed method 
(Method S1, Supporting Information). Three standard 15NH4Cl (99.09 
atom%) solutions (5, 50, and 500 µM) were prepared to calculate the 
15NO3

− reduction efficiency. The reduction efficiencies (R, %) were 
calculated with the following equation: 

R =
Cn

Ca
× 100% (2)  

where Cn is the measured concentrations of 15NH4
+ after 15NO3

− reduc
tion, calculated from a standard OX/MIMS calibration curve (Yin et al., 
2014); Ca is the respective concentrations of 15NO3

− standards (5, 50, and 
500 µM). 

The detection limit and the applicability of REOX/MIMS for 15NO3
−

measurement in different matrices (in solutions with different salinity 
and in KCl solution) were evaluated. With optimized reaction condi
tions, the standards of Na15NO3 were prepared with a concentration 
gradient of 0, 0.5, 1, 2, 5, 10, 15, 20, 50, 100, 200, 300, and 500 μM at 
salinities of 5, 15, 35‰, and also in a 2 M KCl solution. Triplicate 
calibration-curve standards were prepared for each concentration. 
Standard solution (15 mL) was acidified with 75 μL 2 M H2SO4 and NO3

−

was reduced to NH4
+ with 250 mg zinc powder in 50 mL centrifuge tubes. 

The tubes were mixed at 250 rpm for 30 min at room temperature. After 
incubation, 15NH4

+ was analyzed following the protocol shown in 
Fig. 1a. 

2.3. Application of REOX/MIMS to field samples 

The proposed REOX/MIMS method combined with the isotope 
dilution technique (Method S2, Supporting Information) was applied to 
measuring gross nitrification and NO3

− immobilization rates in soil/ 
sediment samples collected from different ecosystems in Chongming 
Island, Shanghai. Both the concentrations of total NO3

− (14N + 15N) and 
the atom% of 15N are required for isotope dilution experiments 
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(Blackburn, 1979; Caperon et al., 1979; Chen et al., 2016). The total 
NO3

− concentration was analyzed by a continuous-flow nutrient auto
analyzer (SAN Plus, Skalar Analytical B.V., the Netherland), and the 
15NO3

− concentration was determined by REOX/MIMS under the opti
mized conditions. The 15N atom% was then determined based on the 
actual measurements. The gross nitrification rates and NO3

− consump
tion rates were calculated following the isotope dilution equation 
(Barraclough et al., 1985; Bjarnason, 1988): 

GNR =
Mi − Mf

t
×

log(HiMf/HfMi)
log(Mi/Mf )

(3)  

GNC =
Mi − Mf

t
×

log(Hi/Hf )
log(Mi/Mf )

(4)  

where GNR and GNC (μg N g− 1 d− 1) are the respective rates of gross 
nitrification and NO3

− consumption; Mi and Mf (μg N g− 1) are the 
respective concentrations of total NO3

− in initial and final sediment/soil; 
Hi and Hf (μg N g− 1) are the respective concentrations of 15NO3

− in initial 
and final sediment/soil; t (d) is the incubation time. Since plants were 
excluded in our experiments, NO3

− uptake by plants was assumed to be 
zero. Also, NO3

− consumption through denitrification, anammox, and 
DNRA were considered to be negligible under aerobic conditions 
(Thamdrup and Dalsgaard, 2002; Zhao et al., 2015). Therefore, the gross 
NO3

− immobilization rate was assumed equivalent to the gross NO3
−

consumption rate in aerobic environments. 

3. Results and discussion 

3.1. Optimization conditions, accuracy and precision of REOX/MIMS 

Based on a previous study (Carini et al., 2010) and our experiments, 
the effects of acidity, shaking frequency, zinc powder, reduction time, 
salinity, and temperature on the 15NO3

− reduction were examined to 
optimize reaction conditions (Fig. 2). Results showed that the optimized 
conditions for 15 mL sample are 75 μL 2 M H2SO4 and 250 mg zinc 
powder in 50 mL centrifuge tubes, and then mixed at 250 rpm for 30 min 
at room temperature (Fig. 2). 

Under the optimized reaction conditions identified above, the REOX/ 
MIMS calibration curves were prepared for aqueous samples containing 
different atom fractions of 15NO3

− (0, 0.5, 1, 2, 5, 10, 15, 20, 50, 100, 
200, 300, and 500 μM) at salinities of 0, 15, and 35‰, as well as in 2 M 
KCl solution. Regressions between the signal intensities of total 15N 
(10− 9 Amps), and the concentrations of 15NO3

− were linear below 20 μM 
(Fig. 3a), and correlated significantly with salinity (R2 = 0.9996, 
0.9995, and 0.9992 for 0, 15, and 35‰, respectively, p < 0.0001) and 2 
M KCl solutions (R2 = 0.999, p < 0.0001). When the concentration range 
was expanded to 500 μM, the linearity remained strong, as indicated by 
high correlation coefficients at different salinities (R2 = 0.9998, 0.9999, 
and 0.9997 for 0, 15, and 35‰, respectively, p < 0.0001 for all) and 2 M 
KCl solutions (R2 = 0.9996, p < 0.0001; Fig. 3b). Overall, the accuracy of 
REOX/MIMS ranged from 89.8% to 94.6%, with an average of 92.4 ±
1.2%. A low relative standard deviation (RSD) was found at different 
15NO3

− concentrations (0.5–500 μM), varying from 0.1% to 4.37% with 
an average of 1.49 ± 0.87%. Compared with existing methods 
(Eschenbach et al., 2017, 2018), our experimental data showed that 
REOX/MIMS had a wide detection range, with the lower limit as low as 
0.1 μM (calculated as twice the standard deviation of replicate blank 
samples (Tortell, 2005)), and the upper limit as high as 500 μM, which 
accommodates most samples collected from isotope dilution experi
ments conducted in natural environments. Several methods (using 
GC–MS, IRMS and HPLC) can quantify the 15NO3

− contents accurately in 
sea water and soil and sediment KCl extracts (Carini et al., 2010; Isobe 
et al., 2011; Preston et al., 1998). In a recent study, the SPIN-MIMS 
method determined 15NH4

+ and 15NO3
− concentrations accurately in 

freshwater and soil extracts (Pennock et al., 1999). To compare with 
existing methods, REOX/MIMS were also tested for soil extracts. The 
high correlation coefficients at different salinities as well as in 2 M KCl 
solutions (Fig. 3) suggests that the method is affected minimally by 
salinity or KCl concentration (R2 ≥ 0.9996, p < 0.0001 for all). These 
results indicate that the REOX/MIMS method provides an accurate and 
precise approach to quantify 15NO3

− concentrations over a concentration 
range of 0.1 to 500 μM for water samples. However, the slightly different 
slopes for different salinities (Fig. 3) suggest that calibrations should be 
done with standard solutions having a similar salinity as the samples. 

Fig. 1. The general procedure of the “REOX/MIMS” 
method for determination of 15NO3

− in aqueous 
samples (a) and the schematic diagram of self- 
assembled membrane injection mass spectrometry 
system (b); The main components of this system are: 
sample vial (S), injection peristaltic pump (P), con
stant temperature water bath (T), stainless steel 
capillary (SC), membrane injector (M, including a 
gas-permeable silicone elastomer tube and a thick 
glass tubing), waste recovery bottle (W), cold trap 
(C), copper reduction furnace (F, containing a quartz 
tube with reduced copper wire), vacuum system (V), 
Ion source (I), quadrupole mass analyzer (Q), sec
ondary electron multiplier (SEM), data processing 
system (D).   
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In addition to accurately measuring of 15N concentration, the cor
relation coefficient between the measured and expected 15N fraction was 
also high (R2 = 0.9998, p < 0.0001) (Fig. 4a). The RSD of measured 15N 
fraction from the REOX/MIMS method was within an acceptable range 
(0.37–3.43%) at different 15N abundances and N concentrations, except 
for the 1 atom% standard at 10 μM (RSD = 15.25%) (Fig. 4). 

3.2. Field examination of gross nitrification and NO3
− immobilization 

rates 

The gross nitrification rates ranged from 0.05 to 3.37 μg N g− 1 d− 1 

dry weight (grassland), 0.05 to 6.14 μg N g− 1 d− 1 (forest), 0.07 to 3.07 
μg N g− 1 d− 1 (paddy), 0.02 to 3.95 μg N g− 1 d− 1 (wetland), 0.03 to 1.20 
μg N g− 1 d− 1 (lacustrine), and 0.02 to 1.12 μg N g− 1 d− 1 (estuarine soils/ 
sediments), respectively (Fig. S1). The measured gross NO3

− immobili
zation rates in grassland and forest soils varied from 0.01 to 5.94 μg N 
g− 1 d− 1 and 0 to 10.07 μg N g− 1 d− 1, respectively (Fig. S1). Although 
deep soils/sediments contain ~33% of total N (Batjes, 1996) and 
35–58% of total microbial biomass (Fierer et al., 2003; Schütz et al., 
2010), the determined gross nitrification and NO3

− immobilization rates 

Fig. 2. Effects of the amount of H2SO4 solution added (a), vibration frequency (b), zinc powder mass (c), reaction time (d), salinity (e), and incubation temperature 
(f) on 15NO3

− reduction efficiency. Standard solutions with 5, 50, and 500 μM of 15NO3
− were used for all reactions. The grey areas indicate that the reduction rates 

have reached relatively stable and higher levels at corresponding conditions. Error bars represent standard deviations (n = 3). 

Fig. 3. Relationships of the known 15NO3
− concentrations with measured signal 

intensities of total 15N (29N2 + 2×30N2) under optimal condition at salinity of 0, 
15, and 35‰, as well as at solution of 2 M KCl. Vertical bars denote the standard 
errors (n = 3). S and P represent salinity and 2 M KCl, respectively. 
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in our study generally peaked in the top layer samples (0–5 cm) and 
declined greatly with depth (Fig. S1), a vertical pattern in coincidence 
with the depth gradients of oxygen and available substrate in soils/ 
sediments (Altmann et al., 2003; Davidson et al., 1991; Wang et al., 
2014). The rates for field samples of different ecosystems are compa
rable to existing records for other habitats across the world (Table S1, 
Supporting Information), indicating the proposed REOX-MIMS method 
is reliable. 

Surface soils/sediments (0–5 cm) were selected and re-analyzed 
using two conventional methods to assess the comparative perfor
mance of REOX/MIMS. The results of gross nitrification and NO3

−

immobilization rates obtained using REOX/MIMS agree well with those 
obtained using IRMS (Finnigan MAT delta plus advantage) (Hojberg 
et al., 1994; Laughlin et al., 1994) or with a gas chromatograph equip
ped with a quadrupole-type mass spectrometer (GC–MS) (Isobe et al., 
2011). The paired t test showed no statistical differences between these 
methods (Table 1). The precision of our method (RSD generally less than 
5%) was also on a par with two conventional methods. These results 
demonstrated that REOX/MIMS is a practical technique to measure 
gross nitrification and NO3

− immobilization rates accurately by isotope 
dilution in various ecosystems. 

3.3. Evaluation of REOX/MIMS: advantages, disadvantages, and possible 
future applications 

Over the last few decades, MIMS has been used increasingly to 
quantify the microbial N-transformation rates in isotope-enrichment 
experiments due to its high precision, rapid sample throughput, 

relatively wide dynamic ranges and cost-effectiveness (Crowe et al., 
2012; Eyre et al., 2002; Hardison et al., 2015; Lin et al., 2017a; 
McCarthy and Gardner, 2003; McTigue et al., 2016; Yin et al., 2014). For 
instance, MIMS was applied to determining denitrification and anam
mox rates in sediments and water columns of aquatic ecosystems (Crowe 
et al., 2012; Eyre et al., 2002; Hardison et al., 2015; Lin et al., 2017b; 
McCarthy and Gardner, 2003; McTigue et al., 2016; Xie et al., 2020). 
The REOX/MIMS method present in this work provides a further 
development of the OX/MIMS method described by Yin et al. (2014). 
The OX/MIMS method to measure 15NH4

+ for isotope-enrichment ex
periments provides a convenient way to measure DNRA rates in sedi
ments (Yin et al., 2014), and to determine N fixation, mineralization and 
immobilization with isotope tracer or dilution techniques in sediments 
of aquatic environments (Lin et al., 2016a, 2016b, 2017a; Richards and 
Friess, 2016). With this extension of the OX/MIMS method, all main N- 
transformation processes in the soils/sediments from various ecosystems 
(Fig. S1) can be quantified with MIMS methodology. This approach is 
convenient for investigating inland processes which affect the fate and 
effects of anthropogenic N from fertilizer use, and other industrial and 
municipal inputs into aquatic and terrestrial ecosystems (Galloway 
et al., 2008). Furthermore, REOX/MIMS can be modified further to 
determine DO15N concentration using UV oxidation (Armstrong, 1968; 
Lu et al., 2020) and/or persulfate oxidation (Bronk et al., 2000). 
Determination of DO15N concentration is important for controlled in
cubation experiments, which employ 15N-labeled substrate to track the 
fate and dynamics of DON in various ecosystems. 

Our results show that REOX/MIMS accurately measures 15N abun
dances in 15N-enriched samples for 15NO3

− at concentrations as low as 
0.5 μM and atom% as low as 1% regardless of the matrices (accuracy 
>89.81%, RSD < 5%, Fig. 4), resembling those of FT-IR (Kieber et al., 
1998), IRMS (Laughlin et al., 1994) and R-CFMS methods (Russow, 
1999) (Table S2, Supporting Information). Additionally, the comparison 
between REOX/MIMS and two traditional methods (IRMS and GCMS) 
for field samples shows good agreement for the measurement of gross 
nitrification and NO3

− immobilization rates (Table 1). These traditional 
methods are more time-consuming and labor-intensive than our 
described mehod. 

Another advantage of REOX/MIMS is its efficiency, which is critical 
for high-throughput analysis. Up to 50 samples can be processed 
simultaneously within one hour in a pre-treatment process (Fig. 1a). On 
a routine basis, approximately 5 min are required to analyze one sample 
by REOX/MIMS, compared with ca. 10–15 min for IRMS (Hojberg et al., 
1994; Laughlin et al., 1994), GCMS (Isobe et al., 2011), and SPIN-MIMS 
(Eschenbach et al., 2017, 2018), and more than 40 min FT-IR/HPLC 
(Carini et al., 2010; Kieber et al., 1998) (Table S2, Supporting Infor
mation). The ability to handle a large quantity of samples make a high- 

Fig. 4. (a) Relationships of the measured 15N fraction (0.5, 1, 5, 10, 25, 50, and 75%) with expected 15N fraction for standards at 500 μM, (b) 15N abundances 
measured by at different NO3

− concentrations (n = 3, mean and standard deviation). 

Table 1 
Comparison of GNR and GNI (μg N g− 1 d− 1) determined by three different 
methods in surface soils/sediments of our study area.  

Sample (0–5 cm) REOX/MIMS GC–MS IRMS  

Mean RSD 
% 

Mean RSD 
% 

Mean RSD 
% 

Forest soils (GNR)  3.15  2.54  3.41  1.11  3.05  2.08 
Forest soils (GNI)  6.74  0.82  6.84  0.72  6.45  1.03 
Grassland soils (GNR)  2.15  4.13  2.38  1.35  2.11  2.24 
Grassland soils (GNI)  4.25  1.29  4.54  1.66  4.11  1.99 
Wetland sediments (GNR)  3.54  2.99  3.82  1.44  3.37  2.67 
Paddy soils (GNR)  3.05  1.33  3.11  2.04  3.05  2.18 
Lacustrine sediments 

(GNR)  
1.24  3.80  1.33  2.71  1.08  4.55 

Estuarine sediments 
(GNR)  

0.55  4.60  0.61  3.28  0.49  6.27 

Note: GNR and GNI mean gross nitrification and NO3
− immobilization rates, 

respectively. 
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resolution measurement of N transformation rates possible. 
15NO3

− measurements by REOX/MIMS are routinely made with a 
sample volume of 15 mL. This volume is comparable to that required for 
the R-CFMS (Russow, 1999), GC–MS (Isobe et al., 2011), and AIRTS- 
HPLC (Carini et al., 2010) methods, but much smaller than the 
amount necessary for the IRMS (Hojberg et al., 1994; Laughlin et al., 
1994) and FT-IR (Kieber et al., 1998) methods (Table S2, Supporting 
Information), but larger than the sample amount requirement (1.5 mL) 
for SPIN-MIMS (Eschenbach et al., 2018; Pennock et al., 1999). Note 
that measuring N2 as an analyte for the REOX/MIMS method remains a 
problem for 15NO3

− abundance measurements in low concentration (i.e., 
less than 0.1 μM in concentration and less than 1% in atom%) aqueous 
samples (Fig. 4). This result might explain the better sensitivity and 
accuracy of NO or N2O as analytes at low NO3

− concentrations and low 
15N enrichments in previous studies (Eschenbach et al., 2018; Pennock 
et al., 1999). Thus, the REOX/MIMS is not the preferred method for 
trace-level enrichment or natural abundance 15N analysis. The methods 
reported by Liu et al. (2014), McIlvin and Altabet (2005), Sigman et al. 
(2001) and Stark and Hart (1996), provide more precise results at nat
ural abundance levels. However, as noted above it can accurately 
determine 15NO3

− concentrations and atom% from soil/sediment sam
ples of N labeling studies despite a high atmospheric N2 background, and 
will be useful in 15N tracer studies to monitor time-course patterns in the 
future. 

Overall, this work demonstrates that the REOX/MIMS method, 
involving the reduction of NO3

− to NH4
+ by zinc powder and the subse

quent transformation of the NH4
+ to N2 gas, provides a simple but robust 

approach to analyze samples from enrichment studies even at low 
concentrations and atom%. 

4. Conclusions 

A new stream-lined method (REOX/MIMS) of determining 15NO3
−

concentrations for isotope-enrichment experiments via MIMS is pre
sented. The REOX/MIMS method provides a low-cost, convenient, and 
accurate approach to quantify 15NO3

− concentrations in water samples 
with a wide range of salinities (R2 ≥ 0.9997, p < 0.0001) and in a 2 M 
KCl solution (R2 = 0.9996, p < 0.0001). Immediate advantages of this 
method include: (1) High accuracy (RSD = 1.49 ± 0.87%), (2) small 
sample volume requirement (15 mL), (3) simple and convenient 
handling, and (4) high-throughput (up to 12 samples can be measured 
per hour). This method is applicable in various ecosystems from lakes to 
forests. Importantly, like MIMS for 15N2 and OX/MIMS for 15NH4

+, 
REOX/MIMS for 15NO3

− offers the important advantage of direct mea
surements in the water, without evaporating or purifying the water from 
the samples. For example, by controlling the form of 15N added to the 
sample water for isotope-addition incubation experiments, one can 
determine changes in the 15N substrate or reaction product expected 
from adding the labeled compound to the water. Application of REOX/ 
MIMS method should encourage kinetic experiments needed to provide 
comprehensive understanding of NO3

− dynamics (e.g. sources and sinks) 
and thus contribute quantitatively to our understanding and modeling of 
N transformations, fate, and effects in numerous ecosystems affected by 
N dynamics on local, regional, and global scales. 
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