Rapid Communication

A synthetic approach towards Pinakene, a C28H14 fragment of [70]- fullerene

Goverdhan Mehta*, Gautam Panda, R Dayal Yadav

School of Chemistry, University of Hyderabad, Hyderabad 500 046, India and

K Ravikumar

Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 11 March 1997; accepted 26 March 1997

During a projected synthesis of 4,7,11,14- tetramethyldibenzo [*fg,op*] naphthacene 3 en route to Pinakene 2, a [70]-fullerene fragment, an unprecedented photochemical reaction leads to dimethylnaphthacene derivative 7. Flash vacuum pyrolysis on 7 leads to 8 via a transannular bridging.

While the 'gold-rush' towards the exploration of the chemistry of fullerenes continues unabated $¹$, there</sup> are spinoffs in the form of emerging synthetic interest² in accessing curved, non-planar aromatic fragments and siblings of these new carbon allotropes, which might possess novel physico-chemistry characteristics. Noteworthy progress towards the synthesis of several C₆₀ fragments has already been achieved during the past few years. $²$ However, syn-</sup> thetic efforts towards the fragments of $[C₇₀]$ - fullerene 1have yet to mark much headway? Recently, we have recognized 'Pinakene' 2, a C₂₈H₁₄ bowlshaped hydrocarbon as a dominant sub-unit of 1, and delineated its molecular structure based on MNDO

and MM2 calculations⁴. In this effort, a possible synthetic approach to 2 was also considered and 4,7,11,14- tetramethyldibenzo[fg,op]naphthacene 3 was identified as a key precursor, in which thermally induced four-fold transannular bridging could be induced under flash vacuum pyrolysis conditions. A Iiterature search revealed that synthetic routes to the dibenzonaphthacene system were relatively few and neither the strained 3 *(Es* 83.1 kcal/mol) nor any derivative bearing an alkyl substituent in *peri-posi*tion were known. Thus, devising a synthesis of 3 and evaluating the feasibility of the contemplated bridging process $(3\rightarrow 2)$ became our initial concern and some interesting observations in this quest form the subject matter of this communication.

Hart reaction⁵ of 2,5-dimethylphenylmagnesium bromide with 2,6- dichloroiodobenzene 4 and quenching the reaction with iodine furnished a mixture of configurationally stable iodoterphenyl derivatives, *syn-Sa* and *anti-So,* from which the latter readily- crystallized and was identified through Xray crystal structure determination (Figure 1)6.

Palladium catalyzed Suzuki cross-coupling reaction between Sa,h and cyclicphenylboronate ester furnished a highly crowded *m-* terphenyl derivative 6 (Scheme I) as a mixture of rotamers.1rradiation of 6 under conditions of oxidative photoelectrocyclization, to our surprise, furnished 4,7- dimethyl-

Reagents & yields: (i) 2.5-Dimethylphenylmagnesiumbromide. THF, Δ, I₂, 80%; (ii) Phenyl boronate ester, Et₃N, PPh₃, Pd(OAc)₂, DMF, 140°C, 40% (iii) 450W Hg Lamp, Vycor, C₆H₆: Acetone, (80:20), Cat. I₂,, ~20%; (iv) FVP, 950°C, 0.1 torr (quant. based on recovery of **7**)

Scheme I

dibenzol fg, op lnaphthacene 7, instead of the expected 3. The structure of 77 was secured through its spectral characteristics, particularly through 2D NMR (¹H-¹H COSY) experiments. Formation of 7 could involve an unprecedented photodearylationrearylation process in which the p-xylene moiety in 6 is exchanged with a phenyl moiety from the solvent benzene prior to photocyclization. The driving force for the photodearylation of 6 is the mitigation of steric strain and is probably manifested through the 7 cleavage of one of the $ArC-CAr$ (CH₃)₂ bonds and rearylation through solvent capture. We are not aware of any example of such photodearylation procss in the literature. Alternately, it is possible that 3 is indeed formed during the photo-irradiation, but suffers unprecedented loss of methyl groups to fur-

nish 7. However, we have been unable to detect 3 in photolystate from 6.

The feasibility of the proposed trans annular bridging was explored by subjecting 4,7-dimethyldibenzonaphthacene 7 to flash vacuum pyrolysis. The only product isolated in this reaction was the monobridged compound 8^7 ($\approx 15\%$ conversion), whose structure was revealed through the spectral data. Further efforts towards incorporating additional bridges on to dibenzonaphthacene framework, via the appropriately placed halogen substituents are in progress.

Acknowledgement

We thank CSIR and INSA, New Delhi for fellowship support to GP and RDY, respectively.

References

5

- 1 Hirsch A, TIle *chemistry of the fullerenes* (Thieme, Stuttgart) 1994.
- 2 Faust *R,Angew Chem Int Ed Engl,* 34, 1995,1429.
- 3 de Souza W F, Karnbe N & Sonoda N, *Chem Leu, 1996,* 155.
- 4 Jemmis E D, Sastry G N & Mehta G,} *Chern Soc Perkin Trans.* 2,1994,437.
	- Jen C, Du F, Hart H & Ng K K D,} *Org Chem,* 51,1986, 3162.
- 6 Data was collected on a Siemens *R3mN* diffractometer and refined using Shelxtl Plus. Crystal data for the compound C₂₂H₂₁I: Transparent plate crystals, Triclinic, Space group P-1, $a = 6.979(1)$, $b = 10.175(1)$ and $c =$ $13.711(1)$ Å, α =92.0(1), β =97.2(1), γ =98.2(1)°, V = 954.69 \mathring{A}^3 , Z = 2, T = 293K, D_c = 1.434 mg-m⁻³, crystal dimensions $0.15 \times 0.17 \times 0.13$ mm³, 2762 reflection measured, $2\theta_{\text{max}} = 45^{\circ}$, $0 \le h \le 7$, $-10 \le k \le 10$, $-14 \le l \le 5$ 14, 2516 unique reflections ($R_{int} = 0.021$ averaging double measured) and 2304 observed with $I \geq 3\sigma(I)$, μ = in easured) and 2504 observed with $1 \ge 50(1)$, μ
1.68mm⁻¹. Final R =0.032 and R_w0.046 {208 parameter and w = $1/\sigma^2$ {(Fo) +0.000878Fo²)} maximum shift/error $= 0.001, \Delta \rho_{\text{max}} = 0.56e \text{\AA}^3, \Delta \rho_{\text{min}} = -0.92e \text{\AA}^3$
	- Selected spectral data -7 : ¹H NMR (200 MHz, CDCl₃): δ 8.92 (d, 2H, $J = 10$ Hz), 8.87 (d, 2H, $J = 10$ Hz), 8.72 (d, $2H, J \Rightarrow Hz$), 8.63 (s, 2H), 8.01-8.09 (m, 2H), 7.57 (d, 2H, $J=8$ Hz), 2.68 (s, 6H); MS: 330 [M⁺]. 8: ¹H NMR (400 MHz, CDCl₃): δ 0.84 (d, 1H, $J = 8Hz$), 8.82 (d, 1H, $J =$ 8Hz), 8.80 (d, 1H, $J = 8$ Hz), 8.70 (d, 1H, $J = 8$ Hz), 8.66 $(d, 1H, J = 8Hz), 8.42$ (d, 1H, $J = 8Hz$), 8.10 (d, 1H, $J =$ 8Hz), 8.04 (d, 1H, $J = 8$ Hz), 7.70 (m, 2H), 7.51 (d, 1H, J $=8$ Hz), 4.53 (s, 2H), 2.68 (s, 3H); MS: 328 [M⁺].