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The rates of hydrolysis of some

para-substituted

N-phenylbenzohydroxamic  acids

(X.C4H,.(C=0).N(OH)C4Hs; X =H, CH;, OCHj;, F, NO,) under acidic conditions with cationic, an-
ionic and nonionic surfactants have been measured. Substituent effects upon first order rate con-
stants in water and at the micellar surface fitted Hammett equation, based on o, 0 *. 6 ". pgrameters.
Values of ‘p’ increase with increasing surfactant concentration. The substituent effects indicate spe-
cific micellar influences on the rates and a difference in mechanism between the bulk aqueous phase
and the micellar phase. The lipophilicity and polar effects of the substituents have also been evaluat-

ed.

Micelle catalysed reactions become an area of ra-
pidly increasing interest in the last decade. There
are a number of extremely important thermody-
namics and kinetics studies of organic reactions in
micellar solutions'®. Nevertheless, we are still far
off from a quantitative understanding of micellar
kinetic effects &f the hydrolysis of hydroxamic ac-
ids”!. The growing interest in hydroxamic acids
results from their tremendous medicinal and bio-
logical research applications. This paper describes
the application of the Hammett equation of the
acid catalysed hydrolysis of some para-substituted
N-phenylbenzohydroxamic (PBHA) acids
(X.C¢H,.C(=O)N(OH)CHs) in cationic, anionic
and nonionic surfactants.

A systematic study of the effect of cationic mi-
celles of cetyltrimethylammonium chloride and
bromide |(C¢Hy3N* (CHy); X; X=Br, CI
CTACI and CTAB respectively), dodecyltrimethy-
lammonium  bromide (C,,H,;N+ (CH,),Br,
DTAB), tetradecyltrimethylammonium bromide
(CisH,oN*  (CH;); Br, TTAB), cetylpyridinium
chloride and bromide (C,H;;N* CHIX™,
X=Cl", Br~, CPC and CPB), cetyldimethylethyl
ammonium bromide (C,¢H;;N*(CH;),C,Hs Br~;
CDEAB), benzalkonium chloride (C,,H,sN*
(CH,;),C,H,Cl; BC), anionic micelles of lithium
dodecy! sulphate (C,,H,;OSO; Li*, LDS) and
nonionic micelles of  Brij-35 (CioHs
(OCH,CH,);sOH) on this reaction have been
measured in 10% (v/v) dioxane medium at 55°C.

Since many reports'’'? of Hammett correlations
in micellar environments are not available we
have made an attempt to contribute to this field.

Recently Bunton er al'® studied Hammett equa-
tion and micellar effects upon deacylation reac-
tion. The results presented herein provide the
pathways for the micellar hydrolysis of hydroxam-
ic acid and also allow the study of substituent ef-
fects.

Materials and Methods
Hydroxamic acids were prepared by benzoylat-
ing freshly prepared and purified M-

phenylhydroxylamine which in turn, was prepared’
by adding a 2:1 molar ratio of Zn dust to the ap-
propriate nitrobenzene as shown in Eqn (1).

2 Zn+ C,HNO, HOURHIG: |

C,H,NHOH + 2 ZnO (1)

The substituted benzoyl chlorides were reacted with M-
phenylhydroxylamine according to Eqn (2) in as close to a
1:1 ratio as possible.

C,H,),0/NaHCO,

—_—

C,H,NHOH + X.C,H,C(0)C1'

X — C4H,(CO).N(OH)C,H, + HCI . (2)
X =(H, OCH,, CH,, NO,, F)

Elemental analysis and melting points were used as
criteria of purity.

CTAB, CPC, (LOBA CHEMIE), CTACI (FLU-
KA), DTAB, TTAB, CDEAB, CPB, BC, LDS, Brij-
35 (SIGMA ) were used as such. HCl was of analytical
reagent grade. Dioxane (BDH, GR) was used without
further purification.

Kinetics were followed spectrophotometrically by
measuring the concentration of the hydroxamic acids
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by the colour reaction with Fe** ions. An aliquot (2
mL)of the reaction mixture was periodically removed
and added to ferric chloride (2 mL) and the resulting
solution was diluted to 10 mL and its absorbance de-
termined with Systronics 108 UV-VIS spectropho-
tometer. Beer’s law was obeyed by the system.

All solutions were made in twice-distilled water.
The CMC’s of anionic and cationic surfactants were
determined by conductivity method from the interac-
tion of two lines on the plots of specific conductance
Vs concentration.

Results and Discussion
The observed first order rate constants for the
acidic hydrolysis of aseries of para-substituted PBHA
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at55°C over arange of surfactants concentrations are
given in Table I. For each compound, as the concen-
tration of surfactant is increased, the observed rate
constant decreased. Catalysis by micelles involves at
least three main steps: (i) binding of the substrate(s) to
the micelle, (ii) the actual chemical transformation in
the micelle (usually at the micellar surface)and (iii) re-
lease of products. The actual micellar rate effect is
caused by a composite of noncovalent interactions
between the micelle on one hand and the reaction and
activated complex on the other hand. This is an ex-
tremely complicated problem because a number of
different interactions are involved including those as-
sociated with the headgroup of the surfactant, differnt
segments of the alkyl chain and the counter ions.

Table I—Pseudo first under rate constant for p-substituted N- phenylbenzo-hydroxamic acids in micelles at 55°C and in 10%
(v/v) dioxane

ky105(s71)
[Surfactant] 10°M
p-XCH,C(O)
N(OH)C,H; 0823 117 411 644 183
DTAB
-H 1.72 1.63 1.56 1.51 1.47
—NO, 1.60 1.59 1.48 1.32 111
—OCH; 1.69 1.52 141 1.36 1.25
< CH; 2.21 1.80 1.71 1.53 1.45
-F 1.90 1.62 1.52 1.31 115
TTAB
-H 1.73 1.52 1.44 1.27 1.19
-NO, 1.53 1.32 1.29 1.00 0.73
—OCH, 1.35 1.21 1.01 0.99 0.92
—CH, 2.20 1.83 1.73 1.53 1.23
-F 1.82 1.40 1.35 1.10 0.82
CTAB
—H 1.90 1.66 1.53 143 1.20
—-NO, 1.65 1.39 1.01 0.775 0.695
—CH, 2.16 1.38 1.23 1.14 1.03
—OCH, 1.50 148 1.23 1.02 0.925
—-F 1.75 1.49 1.41 1.36 1.29
CTACI .
-H 1.89 1.78 1.61 1.42 1.27
—-NO, 1.65 143 1.31 1.12 1.02
—CH, 2.00 1.91 1.82 1.56 1.32
—OCH, 1.62 1.51 143 1.21 1.02
-F 1.73 1.61 1:52 1.23 1.14
CDEAB
—-H 1.92 1.88 1.56 1.75. 1.11
-NO, 1.61 1.53 1.41 1.11 0.92
—CH, 1.93 1.74 1.43 1.23 1.14
—OCH, 1.68 1.41 1.29 1.12 0.96
~F 175 1.42 1.35 1.21 1.02

Rate constant in the absence of surfactant ie.

F=1.95.

k. 10%(s™")
[Surfactant] 10°M
p-XC¢H,C(O)-
N(OH)C,H;, 0823 117 411 644 183
CPC
-H 1.96 1.81 1.71 1.63 1.31
-NO, 1.53 1.49 1.31 1,11 1.05
—CH; 2.20 2.19 1.91 1.73 142
—OCH, 1.69 1.61 1.42 1.31 1.06
—~F 1.80 172 1.63 1.39 1.19
CPB
-H 1.79 1.72 1.69 1.52 1.44
-NO, 1.59 1.50 1.43 1.29 1.23
—CHj 1.63 1.52 143 1.30 1.09
—OCH; 2.03 1.98 1.88 1.78 1.57
=il 2 191 1.81 1.75 143 1.22
BC
—-H 1.53 1.14 0.99 0.82 0.74
-NO, 1.49 1.21 1.18 0.95 0.63
—CH; 1.25 1.03 0.99 0.72 0.70
—OCH, 1:73 1.50 1.46 1.31 1.00
—F 1.24 1.09 1.03 091 0.78
LDS
-H 1.88 1.76 1.60 1.59 1.44
-NO, 1.66 1.54 1.25 1.19 1.01
—CH; 1.59 1.51 1.41 1.38 1.19
—OCH, 1.50 1.42 1.51 1.43 1.20
-F 1.67 1.60 1.51 143 1.20
Brij-36
-H 1.94 1.82 1.75 1.70 1.67
-NO, 1.55 1.24 1.23 1.15 1.10
—CH, 1.77 1.47 1.40 1.39 1.37
=OCH,; 1.67 1.49 1.51 1.38 1.34
—-F 1.64 1.52 1.47 1.42 1.31
kw 10%(s '")=H=2.00; NO,=1.71; CH;=2.25; OCH,=1.76;
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Table I - Correlations of the rate data by Eqn (3) in Cp, range 0.00082M-0.0183M

p-X.C.H,. -

CON(CH)C,H;  kw K.  ky kuky r

10%(s™ ") 10%(s™ 1)

DTAB

-H 200 5640.0 147 0.73 0.993
-NO, 1.71 688.2 1.26 0.73 0.994
—OCH;4 1.76 28544 142 0.80 0.912
—CH, 225 2312.3 1.10 0.49 0.999
-F 1.95 1251.9 1.12 0.57 0.998
TTAB

—H 2.00 605.60 1.08 0.540 0.988
-NO, 171 1531 0912 0.53 0.983
—OCH; 1.76  2625.7 0.993 0.560 0.940
—CHz 2.25 262.3  0.233  0.100 0.990
-F 1.95 282.6 0.549 0.29 0.997
CTAB

-H 2.00 378.0 1.14  0.57 0.943
-NO, 1.71 534.0 0.753 0.44 0.954
—OCH, 1.76 138.3 0.982 0.55 0.999
—CH, 225  401.0 0.533 0.236 0.964
-F 1.95 1219.0 1.26 0.64 0.997
CTACI

-H 2.00 2495 1.04 0.52 0.992
-NO, 1.71 307.7 0.639 0.37 0.967
=0CH, 1.76 105.4 0.906 0.51 0.978
=CHj 2.25 1689 0.836 0.371 0.962
-F 1.95 220.7 0.817 041 0.940
CDEAB

-H 2.00 71.0 0.898 0.449 0.982
-NO, 1.71 86.0 0.794 0.46 0.952
=I0CH4 1.76 3350 1.14 0.64 0.992
—CH; 2:25 732.0 1.41 0.62 0.978
~F 1.95 4469 0.886 0.45 0.998

r = correlation coefficient.

PX.CH,.-
CON(CH)CH;  ky K,  ky ku'kyw
10%(s71) 10%(s™1)
CPC
-H 2.00 157.4 1.12  0.56 0.884
-NO, 171 781.0 0987 0.57 0.985
—QOCH; 1.76 1948 0.881 0.50 0.999
—CH, 2.25 126.8  1.00 0.44 0.998
-F 1.95 125.7  0.893 045 0.982
CPB
-H 2.00 2340 1.22  0.610 0.991
-NO, 1.71 328.0 0913 0.533 0.972
—OCH;, 1.76 227.6 1.41 0.801 0.999
—CHy 225 3053 1.11 0.493 0.996
-F 1.95 192.5 1.53  0.784 0.950
BC
—-H 2.00 2128.0 0.695 0.347 0.997
-NO, 1.71 4921 0.592 0.346 0.998
— OCH, 1.76  1260.8 0.989 0.561 0.956
—iCHjy 2.25 981.1 0.968 0.430 0.968
-F 195 20534 0.760 0.389 0.991
LDS
-H 200 57699 0.374 0.1857 0.998
-NO, 1.71  531.00 0.808 0472 0.939
—OCH; 1.76 1236.02 0.518 0.294 0.942
—=iCHjy 225 41239 1.21 0.537 0.998
=K 1.95 89727 110 0.564 0.999
Brij-35
—-H 2.00 47.10 193 0.965 0.99
-NO, 1.71 34263 148 0865 0919
—OCH, 1.76  1004.21 1.59 0.903 0.999
—CH; 2.25 9293 1.72 0.764 0.999
—-F 1.95 346.16 1.72 0.882 0.999

The rate surfactant profiles can be treated in terms
of the pseudophase model'? in which water and mi-
celle are regarded as distinct reaction media. This
model yields Eqn (3).

1 1 1 1
= +
kw_‘kw k\N_kM (kw_—kM)(Ks(CD_CMC))
.(3)

k., kwand ky are the observed pseudofirstorder, aq.
phase and micellar phase rate constants, respectively
and K is the binding constant for binding of the sub-
strate to the micelle.

The data for all compounds yield a good fit to Eqn
(3) values for K, and ky were obtained by least
squares analysis of the linear relationship between 1/
(kw—k,) and (1/C,— CMC) from Eqn (3). The re-
sults are given in Table II. The results show that sub-

strate binds strongly to micelles. Under these condi-
tions ky, is very small relative to k.

The effects of substitution has been assessed by the
use of Hammett equation for uncatalysed and micel-
lar catalysed hydrolysis. Rate constants were corre-
lated with firstly o and then with o * and 0 . The va-
lues of the reaction constant ‘p’ are shownin Table II1.
The Hammett plots (Figure not shown) were less sa-
tisfactory and showed a scattering of points, which
could be resolved into straight lines by omitting p-
NO, substituent. For all the cases, the slopes of the
Hammett plots (using o values'#) (p) for the catalysed
hydrolysis (in micellar pseudophase) were greater
than for the uncatalysed hydrolysis (aq. pseudo-
phase). This is typical for micellar catalysed reactions
and has previously been observed for the acidic hy-
drolysis of p-substituted orthobenzoates'> and p-
substituted benzaldehyde diethyl acetals'®. The in-
troduction of an electron withdrawing or donating
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Table III — Hammett reaction constant (p) for the acidic hydrolysis of p-substituted PBHA in micelle

10°M 0.823 1.17 4.11 6.4 18.3
Surfactants p s T P s r o s T o s T 0 s r
DTAB 0.178 0.023 0987 - - ~  0.184 0017 0936 0936 - - - - -
TTAB 0.587 0.013 0.991 0.341 0.041 0813 0.829 0.013 0996 0.829 0.013 0.995 - - =
CTAB 0256 0.036 0869 0212 0038 0719 - - - 0600 0009 099% - - -
CTACI 0446 0.054 0952 0215 0061 0562 0331 0.032 0862 0402 0.027 0926 0.325 0.034 0.775
CDEAB 0.0142 0.034 0.952 = - = 0.281 0.030 0.990 0.538 0.006 0.998 = = =
CPC 0.243 0.007 0.983 0.129 0.861 0.996 0217 0024 0991 0303 0.027 0918 0.163 0.140 0.983
CPB 0.199 0.032 0.780 0.230 0.009 0990 - = = = - = 2.14  0.112 0.980
BC - —. = 0044 0015 0868 0.085 0010 0.986 0.115 0.026 0.949 0.0816 0.001 0.999
LLS 0.256 0.036 0.890 0.312 0.0211 0.991 = = = = = = = = =
Brii-35  0.239 0.001 0.999 0325 0028 0910 - - - - E - - E -
s =standard deviation, r = correlation coefficient.
substituent in para-position causes a decrease in rate Table IV— Correlation of log ky by Eqn (4)
of hydrolysis. Differences in ‘p’ for reactions in water ~ Surfactants P o  loghky logki R
and at the micellar surfaces are more informative than DTAB —0.048 0.046 —4.908 —4.832 0.891
raw data in analysing medium effects of micelles on gQBB - %-31?3 gggg - ggég - jggg 8-228
reackuity. 116 ineat plot for the micellecatalysed o0y ~0.047 0120 -5089 —4982 0.964
reaction suggests a single mechanism is operational  -pEap 0258 —0713 —4.655 —4.046 0.890
throughout the series. The kinetics of micellar solu- cpc 0.293 0.004 —5.010 —4.950 0.910
tionsis governed by electrostaticand hydrophobicin-  CPB 0.004 0238 —4.953 -4913 0.881
teractions between micelles and reactants. In all the BC —0.906 1343 —4.859 —5.1307 0.890
cases rate retards with increasing surfactant concen-  LPS 5 :?)?)::‘2 8(.;(1)(; __45'7277236 :gz; 8:32
tration. Mechanism of acidic hydrolysis of PBHA in- Bry-3 ’ ' - ' '
volves participation of water as a nucleophile in the
rate-determining step would be expected to be much Table V- Correlation of log K./N by Eqn (5)
slower in a micellar environment than in water, be-  Surfactants — p a  log(Ks"/N) log(K"N) R
cause of the relative scarcity of water in the micelle (achual)
compared with bulk solvent. It is reasonable to relate  2TAB =051 =0.379  5.408 2731 gl

: . . TTAB -0.574 —1936 2806 2.781 0.960
this effect to the lower polarity of micellar surfaces,as ~ ~tap 0242 0895 2653 2758 0810
compared to water, based on analogies with solvent  cTaC] -0224 —0.160 2372 2.396 0.760
effectupon values of p. In order to learn the effects of CDEAB ~ -0.740 -0.226  1.710 0.822  0.780
substituent ‘hydrophobicity’ (lipophilicity)on K and ~ CPC 0474 -0234 2382 2197 0.998
ky, the rate data have been empirically evaluated by ~ CPB —agsx 0258 Bah 2250 052

; + 2 BC —0.199 —0.431  3.145 3328 0.960

the substituents parameter, i, 0 *. The Stern layer is LDS 0902 0509 2537 2761 0.970
less polar than water and the interior of anaq. micelle  Brij-35 ~0.014 0216 1.965 1673 0.921

in hydrophobic. Eqn (4) assumes that lipophilicity
and polar effects as represented by the wand o+ par-
ameters are separable. a is a susceptibility constant
and Kt} is the rate constant for hydrogen as substitu-
ent's.

log ky=pi+ am+log K& . (4)

Multiple regression analysis yields p, a and log ky,
(Table IV). The lipophilicity parameters reflect var-
ious solvation factors of substituent effect in micellar
environment. The data have also been analysed by
Eqn (5).
log (K/N)=p/+ amn+log (K"/N) . (5)

Since the experimental conditions were identical
for the compounds, the value of N will be the same for

these compounds. Therefore, the micellar binding
constant K is proportional to the K/N. The result of
multiple regression analysis are given in Table V. The
correlation oflog (K, ) with the lipophilicity parame-
ter is consistent with the lower polarity of the micellar
phase compared to that of the aq. phase.
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