Note

New steroids from Adenophora stenanthina subsp. xifengensis

Zhen-Fu Hou, Yan-Ping Shi, Xin-Fang Li[†] and Yu Li* State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730 000, P R China

Received 28 June 1996; revised and accepted 14 October 1996

Two new steroids, 3β -vanilloyloxy-stigmast-5-ene- 7β -ol (1) and 3β -vanilloyloxy-stigmast-5-ene- 7β ,15 ξ -diol (2) have been isolated from the roots of Adenophora stenanthina subsp. xifengensis along with other eleven known compounds, ergost-6,22-dien- 3β , 5α , 8α -triol (3), β -sitosterol (4), β -daucosterol (5), taraxerone (6), lupenone (7), glutinone (8), oleanolic acid (9), ursolic acid (10), dotriacontanoic acid (11), triacontanoic acid (12), and dodecylpalmitate (13). Their structures have been determined on the basis of spectroscopic methods (EIMS, IR, ¹H NMR, ¹³C NMR, and DEPT) and by comparing with literature or authentic samples.

Adenophora stenanthina subsp. xifengensis (Campanulaceae), mainly distributed in Gansu province of China, has been used as a traditional chinese medicine since ancient time for the treatment of cough, phlegm, breathe heavily, especially, to cure lung disease¹. Its chemical constituents have not been reported so far. We now report herein the isolation, characterization, and structural elucidation of two new steroid compounds, 3β -vanilloyloxy-stigmast-5-ene- 7β -ol (1) and 3β vanilloyloxy-stigmast-5-ene-7 β ,15 ξ -diol (2) in addition to eleven known compounds, β -sitosterol², β -daucosterol², ergost-6,22-dien-3 β ,5 α ,8 α -triol³, taraxerone^{4,5}, lupenone⁶, glutinone⁷, oleanolic acid8, ursolic acid8, dotriacontanoic acid2, triacontanoic acid², and dodecylpalmitate.

 3β -Vanilloyloxy-stigmast-5-ene- 7β -ol (1) $[\alpha]_D^{20}$ -340° (c 1, CHCl₃), was obtained as white crystals crystallized from pet. ether-acetone and the molecular formula $C_{37}H_{56}O_5$ was deduced from elemental analyses and EIMS (M⁺ at m/z 580). Compound 1 was recognized as a steroids linking a side chain of phenol from its positive Liebermann-Burchardt and FeCl₃ color reaction, as well as the appearance of IR absorption bands at 36-48, 3426 (hydroxyl), 1708 (carbonyl), 1579, 1514,

1462 (aromatic ring) cm⁻¹. The ¹H NMR spectrum of 1 showed signals at δ 7.64 (1H, dd, J=8.3, 1.6 Hz), 7.54 (1H, d, J=1.6 Hz), 6.93 (1H, d, J=8.3 Hz) due to 1,2,4-trisubstitutive benzene and at δ 3.95 due to a aromatic methoxy group. A comparison of ¹H- and ¹³C NMR spectral data of 1 with those of a known compound methyl vanilloylate9,10 revealed there was a vanilloyloxyl group as a side chain in the molecule of 1, which was further supported by the identical ¹³C NMR spectral data (Table I) of 1 with acetyl vanilloylate¹¹, and by the fragment peaks at m/z412 (Basic peak, M⁺-vaniloyloic acid), 168 (vanilloyloic acid), and 151 (vanilloyloxyl). In addition to the signals due to vanilloyloxyl moiety, the ¹H NMR spectrum displayed signals for six methyl groups at δ 0.71-1.11, a trisubstituted olefinic proton at δ 5.36 (1H, br s), and two oxymethine protons at δ 4.85 (1H, m), 3.89 (1H, br d, J = 8.1 Hz). A combination of ¹³C NMR and DEPT spectra (Table I) indicated the remaining moiety consisted of 29 carbons: Me (X6), CH₂ (X10), CH (X10, two CH-O) and three quaternary carbons. Furthermore, comparison of ¹H NMR and ¹³C NMR (Table I) spectral data of 1 with those of β acetate¹², stigmast-5-ene-3 β ,7 β -diol sitosterol $(14)^{13}$ and stigmast-5-ene-3 β , 7 α -diol¹⁴ suggested that 1 was a stigmastane type compound, 3β vanilloyloxy-stigmast-5-ene-7 β -ol. The location of the ester function (vanilloylate at C-3) could establish by the acylation effects, such as comparison of the ¹H NMR spectra of 1 with 14 revealed that

¹Present address: The Department of Pharmacy, Lanzhou Medical College, Lanzhou 730000, P R China

Table I-13C NMR	lata of compo	ounds 1-3	recorded in	CHCl ₃ at	100 MHz (cl	hemical shifts	s in δ, ppm	downfield from TMS)
	Carbon No.	1	DEPT	2	DEPT	3	DEPT	
	1	36.70	CH_2	6.72	CH_2	36.90	CH_2	
	2	27.84	CH_2	27.79	CH_2	30.07	CH_2	
	3	73.84	CH	73.84	CH	66.41	CH	
	4	37.74	CH ₂	37.63	CH ₂	34.88	CH ₂	
	5	142.46	С	142.12	С	79.40	CH	
	6	126.30	CH	126.03	CH	130.72	CH	
	7	73.27	CH	73.71	CH	135.41	CH	
	8	40.79	CH	40.18	CH	82.14	С	
	9	48.17	CH	46.90	CH	51.08	CH	
	10	36.57	С	37.39	С	37.08	С	
	11	21.03	CH ₂	20.44	CH_2	20.61	CH_2	
	12	39.50	CH_2	39.45	CH_2	39.33	CH ₂	
	13	42.91	С	43.56	С	44.54	С	
	14	55.88	CH	61.60	CH	51.66	CH	
	15	26.36	CH ₂	72.54	CH	28.62	CH ₂	
	16	28.53	CH ₂	38.85	CH_2	23.38	CH_2	
	17	55.33	CH	53.28	CH	56.18	CH	
	18	11.82	CH ₃	13.16	CH ₃	12.85	CH ₃	
	19	19.14	CH ₃	19.12	CH ₃	18.15	CH ₃	
	20	36.08	CH	35.89	CH	39.70	CH	
	21	18.82	CH ₃	18.67	CH ₃	19.62	CH ₃	
	22	33.95	CH ₂	33.83	CH_2	132.29	CH	
	23	26.07	CH ₂	26.07	CH_2	135.19	CH	
	24	45.82	CH	45.73	CH	42.76	CH	
	25	29.12	CH	29.08	CH	33.04	CH	
	26	19.00	CH ₃	18.96	CH ₃	19.92	CH ₃	
	27	19.79	CH ₃	19.78	CH ₃	20.86	CH ₃	
	28	23.04	CH_2	23.03	CH ₂	17.54	CH ₃	
	29	11.96	CH ₃	11.95	CH ₃		^c	
	Vanilloyloxyl groups							
	1′	165.75	CO	165.77	CO			
	2'	122.74	С	122.60	С			
	3'	111.71	CH	111.76	CH			
	4.'	149.93	С	150.02	С			
	5'	146.13	С	146.21	С			
	6'	113.96	CH	114.04	CH			
	7'	124.10	CH	124.07	CH			
	OMe	56.09	CH ₃	56.05	CH ₃			
			5		5			

The ¹³C NMR data of compounds 1 and 2 were assigned by comparison to those of 14 and methyl vanilloyloate; The ¹³C NMR data of compound 3 was assigned by comparison to those of 5α , 8α -peroxide ergosterol¹⁷.

the shift of the signal at δ 3.57 (1H, m, H-3) in 14 shifted downfield to δ 4.85 (1H, m) in 1, while the comparison of the ¹³C NMR spectra of 14 and 1 indicated that the C-3 resonance of 14 shift downfield from δ 71.43 to δ 73.84, and the C-2, C-4 resonances shifted upfield from δ 31.58, 41.74 to δ 27.62, 37.74, respectively. Therefore 1 was 3β -vanilloyloxy-stigmast-5-ene- 7β -ol.

 3β -Vanilloyloxy-stigmast-5-ene- 7β , 15ξ -diol (2), white crystals from pet. ether-acetone, showed al-

most identical IR spectral data of those of 1. The EIMS gave molecular ion peak at m/z 596 corresponding to molecular formula $C_{37}H_{56}O_6$. The ¹H, ¹³C NMR (DEPT) spectra (Table I) were similar to those of 1 except different chemical shifts H-15, C-14, C-15, C-16 (Table I). Further comparison of ¹H HMR and ¹³C NMR spectral data of 1 with those of 2, the substituted effects¹⁵ (α , β effects) of the extra hydroxyl group at C-15 of compound 2 made the H-15, C-14, C-15, C-16 in 1 shift down-

field from 1.3, 55.88, 26.36, 28.53 to 4.08, 61.60, 72.54, 38.85, respectively. Thus, the structure of **2** was also confirmed.

Experimental Section

Melting points were recorded on a Kofler Melting point apparatus and uncorrected. All optical rotation were determined with a JASCO-20C automatic recording spectropolarimeter. Mass spectra were obtained on a VG ZAB-HS mass spectrometer using a 70 eV electron impact ionization, IR spectra were run on a Nicolet 170 SX FT-IR instrument and ¹H NMR (400.13 MHz) and ¹³C NMR (100.16 MHz) spectra on a Bruker AM 400 FT-NMR spectrometer in CDCl₃ with TMS as internal standard. Silica gel (200-300, 300-400 mesh) was used for column chromatography and silica gel GF₂₅₄, G and H for TLC. Spots were detected on the TLC under UV light or by heating after spraying with 5% H₂SO₄.

Collection of plant material. The plant material was collected in August 1994 in Qingyang county, Gansu Province of China and identified by Y.S. Zhou of Lanzhou University. A voucher specimen has been preserved at the Herbarium of our institute.

Extraction and isolation of compounds. The airdried roots of A. stenanthina subsp. xifengensis (6.9 kg) were powdered and extracted three times (each 3 day) with 95% and 70% EtOH at room temperature, respectively. The portion that dissolved in EtOAc (30.5 g) out of all extract (501 g)was subjected to column chromatography over silica gel (700 g, 200-300 mesh) with pet. ether (60-90°)-Me₂CO gradient, when seven crude fractions were obtained (fractions 1-7). Fraction 1 (pet. ether-Me₂CO; 40:1) was further separated by repeated column chromatography over silica gel using pet. ether-Et₂O (30:1) and pet. ether-EtOAc (50:1) as eluants, and purified by recrystallization with Me₂CO, CHCl₃, EtOAc giving 30 mg of 8, 50 mg of 6 and 40 mg of 7 respectively. Fraction 2 (pet. ether-Me₂CO; 30:1) on recrystallization gave compound 11 (150 mg); 12 (200 mg) and 13 (80 mg). Compound 4 was obtained from fraction 3 (pet. ether-Me₂CO; 20:1) by recrystallization with MeOH. Fraction 4 (pet. ether-Me₂CO; 15:1) on repeated chromatographic purification over a silica gel column and eluting with pet. ether- $CHCl_3-Me_2CO$ (5:5:1), and by crystallization several times with heating MeOH gave pure compound 9 (30 mg) and 10 (152 mg). Fraction 5 (pet. ether-Me₂CO; 8:1) was further separated by repeated column chromatography, over silica gel using pet. ether-Me₂CO (5:1) and C₆H₆-Et₂O (4:1) as eluants giving 20 mg of 1, which was purified by TLC (development C_6H_6 -Et₂O, 3:1), and 30 mg of 3. Fraction 6 (pet. ether-Me₂CO; 5:1) was purified by a silica gel column (eluting C_6H_6 -Et₂O; 2:1) and TLC (running: CHCl₃-EtOAc; 7:1) to give pure 2 (20 mg). Fraction 7 (pet. ether-Me₂CO; 2:1) was subjected to column chromatography over silica gel and eluted with CHCl₃-MeOH (10:1) to yield 5 (1.2 g).

The known compounds were identified either by comparing their corresponding properties (mps, Mass, IR, ¹H- and ¹³C NMR) with literature values or comparing with authentic samples.

3β-Vanilloyloxy-stigmast-5-ene-7β-ol (1). White crystals, m.p. 187-90°C; $[\alpha]_{D}^{20}$ -340°C (c 1, CHCl₃), (Found: C, 76.45; H, 9.70. Calcd for C₃₇H₅₆O₅: C, 76.51; H, 9.72%); IR (KBr): 3648, 3426, 2952, 2870, 1708, 1597, 1514, 1462, 1428, 1376, 1284, 1220, 1108, 1033, 949, 910, 878, 763 cm⁻¹; EIMS (70 eV): m/z 580 [M]⁺ (4%), 562 (2), 412 (100), 394 (26), 269 (9), 253 (11), 168 (54), 151 (38); ¹H NMR (CDCl₃, TMS): 7.64 (1H, dd, J=8.3, 1.6 Hz), 7.54 (1H, d, J=1.6 Hz), 6.93 (1H, d, J=8.3 Hz), 5.36 (1H, br s), 4.85 (1H, m), 3.95 (3H, s), 3.89 (1H, br d, J=8.1 Hz).

3β-Vanilloyloxy-stigmast-5-ene-7β,15ξ-diol (2). White crystals, m.p. 194-96°C; $[\alpha]_D^{20}$ -332°C (c 0.98, CHCl₃); IR (KBr): 3645, 3421, 2950, 2872, 1708, 1599, 1515, 1462, 1428, 1377, 1283, 1220, 1108, 1031, 950, 911, 878, 765 cm⁻¹; EIMS (70 eV): m/z 596 [M]⁺ (4%), 578 (2), 428 (70), 410 (100), 392 (23), 269 (38), 267 (37), 251 (19), 168 (81), 151 (63); ¹H NMR (CDCl₃, TMS): 7.64 (1H, dd, *J*=8.3, 1.6 Hz), 7.54 (1H, d, *J*=1.6 Hz), 6.93 (1H, d, *J*=8.3 Hz), 5.39 (1H, br s), 4.85 (1H, m), 4.08 (1H, m), 3.98 (1H, br d, *J*=8.1 Hz), 3.93 (3H, s).

Ergost-6,22-dien-3β,5α,8α-triol (3). White crystals from pet. ether-acetone, m.p. 178-180°C; $[\alpha]_{D}^{20}-2.1^{\circ}$ (*c* 1, CHCl₃); (Found: C, 77.98; H, 10.58%, Calcd: C, 78.09; H, 10.76%); IR (KBr): 3501, 3292, 2957, 2926, 2857, 1460, 1376, 1301, 1224, 1159, 1104, 1075, 1043, 970, 860, 777, 721, 695 cm⁻¹; EIMS (70 eV): m/z 430 [M⁺] (17%), 412 (100), 398 (61); ¹H NMR (CDCl₃, TMS): 6.51 (1H, d, *J*=8.5 Hz, H-7), 6.25 (1H, d, *J*=8.5 Hz, H-6), 5.21 (1H, dd, *J*=15.3, 7.4 Hz, H-22), 5.16 (1H, dd, *J*=15.3, 8.2 Hz, H-23), 3.97 (1H, m, H-3). The ¹H NMR and ¹³C NMR data have been reported herein for the first time.

Taraxerone (6). White plates from CHCl₃, m.p. 247-48°C; IR, EIMS and ¹H NMR data identical with those reported in the literature^{4,5}; ¹³C NMR (CDCl₃, TMS):38.34 (C-1, CH₂), 34.14 (C-2, CH₂), 217.61 (C-3, CO), 47.58 (C-4, C), 55.77 (C-

5, CH), 17.44 (C-6, CH₂), 36.57 (C-7, CH₂), 38.67 (C-8, C), 48.69 (C-9, CH), 35.77 (C-10, C), 19.95 (C-11, CH₂), 33.35 (C-12, CH₂), 37.53 (C-13, C), 157.61 (C-14, C), 117.20 (C-15, CH), 33.06 (C-16, CH₂), 48.77 (C-17, C), 48.69 (C-18, CH), 40.62 (C-19, CH₂), 28.77 (C-20, C), 35.09 (C-21, CH₂), 37.68 (C-22, CH₂), 26.09 (C-23, CH₃), 21.03 (C-24, CH₃), 14.80 (C-25, CH₃), 29.84 (C-26, CH₃), 25.56 (C-27, CH₃), 29.84 (C-28, CH₃), 21.48 (C-29, CH₃), 33.34 (C-30, CH₃). The ¹³C NMR spectral data have not been reported in the literature so far.

Lupenone (7). White crystals from EtOAc, m.p. 170-71°C; EIMS and ¹H NMR data were identical with those reported in the literature⁶.

Glutinone (8). White tetrahedrons from acetone, m.p. 223-25°C; ¹H NMR (CDCl₃, TMS): 0.83 (3H, s), 0.97 (3H, s), 1.00 (3H, s), 1.04 (3H, s), 1.10 (3H, s), 1.18 (3H, s), 1.25 (6H, s), 2.45 (2H, m), 5.70 (1H, m); m.p. and EIMS was identical with those reported in the literature^{7,16}.

Dodecylpalmitate (13). White wax, m.p. 46-47°C; EIMS (70 eV); 424 $[M^+]$ (1%), 409 (0.3), 395 (0.3), 381 (0.3), 367 (0.3), 353 (0.3), 339 (0.3), 325 (0.3), 311 (0.3), 297 (0.3), 283 (0.3), 269 (0.3), 256 (13), 213 (10), 185 (7), 171 (6), 157 (6), 129 (22), 115 (9), 111 (5), 97 (17), 85 (17), 83 (19) 73 (81), 71 (28), 69 (31), 60 (82), 57 (64), 55 (58), 43 (100).

References

- 1 Jiangsu New Medical College, A Dictonary of Traditional Chinese Drugs (Shanghai Science and Technology Publishing House, Shanghai, China) **1977**, p 1561.
- 2 Li Y, Shi Y P & Hu Y H, Indian J Chem, 33B, 1994, 302.
- 3 Gonzalez A G, Bermejo J, Mediavilla M J & Toledo F J, Rev Latinoam Quim, 15, 1984, 107.
- 4 Corbett R E, J Chem Soc (Perkin Trans-I), 1972, 2837.
- 5 EPA/NIH, Mass spectral data Bass, 4, 1978, 3257.
- 6 Konno C, Saito T, Oshima Y, Hikino H & Kabuto C, Planta Med, 42, 1981, 268.
- 7 Arthur H R & Hui W H, Tetrahedron Lett, 1965, 937.
- 8 Li Y, Shi Y P & Edwards, Chem J Chinese Univ, 14, 1993, 1391.
- 9 Sadtler Research Laboratories INC, Nuclear Magnetic Resonance Spectra, 8661M.
- 10 Sadtler Research Laboratories INC, Sadtler Standard Carbon-13 NMR Spectra, 6459C.
- 11 Sadtler Research Laboratories INC, Sadtler Standard Carbon-13 NMR spectra, 6457C.
- 12 Sadtler Research Laboratories INC, Sadtler Standard Carbon-13 NMR spectra, 19565C.
- 13 Chaurasia N & Wichtl M, J Nat Prod, 50, 1987, 881.
- 14 Yoshiyasu F, Yoshinori N, Geng P W, Wang R Junko S, Bao J & Kazuyuki N, Planta Med, 1988, 34.
- 15 Craig L, VanAntwerp, Hanne Eggert, Denis Meakins G, John O M & Cari D, J Org Chem, 42, 1977, 789.
- 16 Sengupta P & Ghosh S, J Indian Chem Soc, 42, 1965, 553.
- 17 Kahlos K, Kangus L & Hitunen R, *Planta Mea*, 55, **1989**, 389.