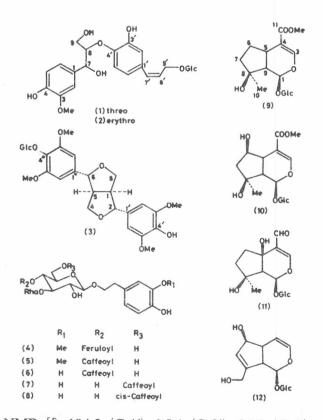
Phenylpropanoid, neolignan and iridoid glycosides from Pedicularis semitorta


Chang Zeng Wang, Zhong Jian Jia* & Xiu Min Shen Institute of Organic Chemistry and State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China

Received 24 August 1995; revised and accepted 7 May 1996

From the ethanolic extract of the whole plants of *Pedicularis semitorta*, nine known glycosides, syringaresinol-4"-O- β -D-monoglucopyranoside, cistanoside D, cistanoside C, verbascoside, isoverbascoside, mussaenoside, shanzhiside methyl ester, euphroside and aucubin along with one new phenylpropanoid, *cis*-isoverbascoside and a mixture of *erythro*- and *threo*-neolignans, named semitortoside A and semitortoside B, respectively, have been isolated. Their structures have been elucidated mainly by spectral evidence.

In continuation of our studies on the glycosidic constituents of the genus *Pedicularis*, we now report the isolation and structural elucidation of *cis*isoverbascoside **8**, and a mixture of *erythro*- and *threo*-neolignans: semitortoside A **1** and semitortoside B **2** from the whole plants of *P. semitorta*¹ along with nine known glycosides, syringaresinol-4"-O- β -D-monoglucopyranoside **3**², cistanoside D **4**, cistanoside C **5**^{3,4}, verbascoside **6**^{4,5}, isoverbascoside **7**⁶, mussaenoside **9**^{7,8}, shanzhiside methyl ester **10**⁹, euphroside **11**^{10,11} and aucubin **12**^{11,12}, which were identified by comparison of their spectral data (FABMS, ¹H and ¹³C NMR) with those reported in the literature and authentic samples.

cis-Isoverbascoside **8**, $[\alpha]_{D}^{15}$ -28.5° (MeOH; *c* 0.20), was obtained as a white amorphous powder after separation from isoverbascoside 7 by HPLC $(ODS-C_{18})$ eluting with 38% MeOH-H₂O. It gave a positive colouration with ferric chloride and Molish reagents indicating glycosidic nature of the compound containing a phenolic hydroxyl group. Its UV spectrum showed λ_{max}^{MeOH} at 330, 292 and 220 nm. The FAB mass spectrum gave ion peaks at m/z 631 $[M+Li]^2$ and 647 $[M+Na]^+$, suggesting the molecular formula to be $C_{29}H_{36}O_{15}$. Acid hydrolysis of 8 showed the presence of caffeoyl, 3, 4-dihydroxyphenylethyl, D-glucose and Lrhamnose moieties. The signals in its ¹H NMR spectrum at δ 4.32 (1H, d, J=8.0 Hz, Glc. H-1') and 5.17 (1H, s, Rha. H-1) showed that the Dglucose and L-rhamnose residues were having β and α -configurations, respectively. Comparison of the chemical shifts of inner glucose in its ¹³C

NMR [δ 104.3 (C-1'), 75.4 (C-2'), 84.0 (C-3'), 70.7 (C-4'), 75.7 (C-5') and 64.6 (C-6')] (cf. Table I) with those of methyl- β -D-glucoside showed that the L-rhamnose was linked to C-3' [+7.2 (C-3'), -0.6 (C-4')] and caffeoyl group was connected at C-6' [+2.8 (C-6') and -0.9 (C-5')]. The structure of **8** was therefore very similar to isoverbascoside 7⁶, but in their ¹H NMR spectra the signals of H- α' , β' in isoverbascoside appeared at δ 6.28,

С	7	8	С	7	8		
Aglycone			Acyl moiety				
1	131.4 (s)	131.4 (s)	1	127.7 (s)	127.7 (s)		
2	117.1 (d)	117.6 (d)	2	115.1 (d)	115.1 (d)		
3	146.0 (s)	146.1 (s)	3	146.7 (s)	146.8 (s)		
4	144.6 (s)	144.6 (s)	4	149.5 (s)	149.6 (s)		
5	116.3 (d)	116.3 (d)	5	116.5 (d)	116.7 (d)		
6	121.3 (d)	121.3 (d)	6	123.1 (d)	123.0 (d		
α	72.3 (t)	72.3 (t)	α	114.9 (d)	115.0 (d)		
β	36.6 (t)	36.6 (t)	β	147.2 (d)	146.0 (d		
			CO	169.1 (s)	167.7 (s)		
Glc.			Rha				
1′	104.3 (d)	104.4 (d)	1	102.7 (d)	102.7 (d		
2′	75.4 (d)	75.4 (d)	2	72.3 (d)	72.3 (d		
3'	84.0 (d)	84.0 (d)	3	72.3 (d)	72.3 (d		
4'	70.0 (d)	70.0 (d)	4	74.0 (d)	74.0 (d		
5'	75.6 (D)	75.7 (d)	5	70.4 (d)	70.4 (d		
6'	64.6 (t)	64.6 (t)	6	17.8 (q)	17.9 (q		

7.55 (each 1H, d, J=15.9 Hz), respectively, while in 8 both H- α',β' were upfield at δ 5.76, 6.94 (each 1H, d, J=13.0 Hz). Thus, the caffeoyl group in 8 has *cis*-configuration¹³. From the above results, compound 8 was chracterized as *cis*isoverbasecoside.

Semitortoside A (1) and B (2) were obtained as a 1:1 mixture. The IR spectrum showed v_{max}^{KBr} at 3400 (OH), 1652 (double bond), 1600, 1512 and 1481 cm⁻¹ (phenyl). The molecular formula, C₂₅H₃₂O₁₂, was deduced from the FAB mass spectrum showing peaks at m/z 531 [M+Li]⁺ and 547 $[M+Na]^+$. Most of the NMR signals of the mixture were doubled. It was evident from the ¹H NMR spectrum that both 1 and 2 exhibited six aromatic proton signals at δ 7.26 (dd, J=8.0, 1.5 Hz, H-6), 7.16 (d, J=1.5 Hz, H-2), 7.10 (d, J=1.5 Hz, H-2'), 7.07 (dd, J=8.0, 1.5 Hz, H-6') and 6.97 (d, J = 8.0 Hz, H-5,5'), the coupling constants of which pointed to the substitution pattern shown in their structural formula; one methoxy group at δ 3.82 (s), (Z)-cafesterol side chain at 6.05 (d, J = 12.5 Hz, H-7'), 5.83 (dt, J = 12.5, 5.1 Hz, H-8') and 4.45 (dd, J=5.1, 1.5 Hz, H-9'); 1-phenyl-2-phenoxylpropane-1,3-diol¹⁴ moiety at δ 5.23 (d, J=6.9 Hz, H-7 of 1), 5.18 (d, J=4.1 Hz, H-7 of 2), 4.54 (m, H-8 of 1), 4.30 (m, H-8 of 2) and the anomeric proton of sugar moiety at 4.61 (d, J=7.6 Hz). The EIMS showed strong peaks at m/z 137 and 151; this showed that the methoxyl group was connected at ring-A of 1 and

2. The NMR spectra showed that both 1 and 2 were glucopyranosides very similar to cirtusin A¹⁵. Thus, a comparison of the NMR data of 1 and 2 with those of cirtusin A, both H-7' and H-8' showed significant upfield shifts and the $J_{7'8'}$ was 12.5 Hz, a characteristic of cis-double band at C-7' and C-8'. This was supported by the downfield shifts of C-9' and C-7' signals by 8.7 and 1.7 ppm respectively (cf. Table II) and an upfield shift of C-8' signal by 3.0 ppm also proving the position of the β - glucose moiety at C-9' oxygen. The signals at δ 5.23 (d, J=6.9 Hz) and 75.3 due to H-7 and C-7 of compound 1, and 5.18 (d, J=4.1Hz) and 71.7 due to H-7 and C-7 of compound 2 were in close agreement with those of cirtusin A15 and alashanioside¹⁶. The coupling constant between H-7 and H-8 in the threo-isomer is larger (6-8 Hz) than that in the erythro- isomer (2-4 $Hz)^{17-20}$. Hence, a difference of +3.6 ppm for C-7 between the ¹³C NMR spectra of 1 and 2 and the value of the coupling constant of H-7 and H-8 showed that 1 and 2 were threo- and erythro-isomers, respectively. From the above results, the structures of semitortoside A(1) and B(2) were established as threo- and erythro-1-(4-hydroxy-3methoxyphenyl)-2-{2-hydroxy-4- [(Z)-3-glucosylprop-1-enyl]phenoxy]propane-1,3-diol, respectively.

Experimental Section

General. ¹H and ¹³CNMR spectra were recorded

		Table II— ¹³ C N	MR chemical shift	-	1, 2 and cirtus	sin A				
[100 MHz; δ, ppm)*										
С	1	2	cirtusin A	С	1	2	cirtusin A			
1	138.1	138.1	139.5 (s)	1'	135.2	135.1	133.7 (s)			
2	113.0	113.0	112.8 (d)	2'	113.1	113.1	114.1 (d)			
3	151.3	151.3	151.8 (s)	3'	145.8	145.8	151.5 (s)			
4	147.7	147.3	148.1 (s)	4′	150.0	150.0	149.8 (s)			
5	117.8	117.8	118.2 (d)	5'	118.5	118.5	119.0 (d)			
6	121.7	121.7	122.3 (d)	6'	121.4	121.4	122.4 (d)			
7	75.3	71.7	75.0 (d)	7′	135.0	135.0	133.3 (d)			
8	88.2	87.9	85.9 (d)	8′	126.7	126.7	129.7 (d)			
9	63.3	63.2	63.3 (t)	9'	73.8	73.6	65.1 (t)			
3-OMe	58.3	58.3	58.5 (q)	3'-OMe			58.6 (q)			
Glc.										
1	103.0ª	103.1 ^b	103.9 (d)	4	72.1	72.1	72.1 (d)			
2	75.8ª	75.7 ^b	75.7 (d)	5	78.3ª	78.0 ^b	78.9 (d)			
3	78.5ª	78.4 ^b	78.4 (d)	6	64.0 ^a	63.8 ^b	63.6 (t)			
		*	D_2O as solvent; DS	S as internal star	ndard.					
			a,b Assignments m	ay be interchang	ed.					

on a Bruker AM400 spectrometer at 400 MHz and 100 MHz, respectively, in FT-mode. FAB and EI mass spectra were obtained on a VG ZAB-HS instrument. IR spectra were taken on a Nicolet 170-SX spectrometer and UV spectra on a Shimadzu UV-260 visible recording spectrometer.

Collection of plant material. *Pedicularis semitorta* Maxim was collected in Zhang County, Gansu Province of China in August 1989. It was identified by Prof. Zhang Guo-Liang of Lanzhou University. A voucher specimen (933102) has been preserved at the Herbarium of our Institute.

Extraction and isolation of compounds. The dried whole plants (4.5 kg) were refluxed with 95% EtOH $(3 \times 4L)$. The ethanolic extracts were concentrated to give a residue, which was diluted with H₂O and extracted with *n*-BuOH. The combined n-BuOH extracts were concentrated to give a crude syrup, which was chromatographed over polyamide column using H₂O as eluent to obtain part I and 50% MeOH-H₂O to obtain part II. Parts I and II were chromatographed separately on silica gel column eluting with gradients of CHCl₃-MeOH (9:1, 6:1, 4:1, and 3:1), Part I yield pure compounds 9 (80 mg), 10 (60 mg), 11 (45 mg) and 12 (100 mg) and part II gave pure 3 (28 mg), mixture of 1 and 2 (30 mg), pure 4 (66 mg), 5 (20 mg), 6 (600 mg), and a mixture of 7 and 8 (60 mg) in ascending order of polarity. Pure 7 (42

mg) and 8 (15 mg) were obtained by HPLC (column: ODS-C₁₈) using 38% MeOH-H₂O as eluent (Rt: 8, 47 min; 7, 52 min). Attempts to separate the mixture of 1 and 2, however failed after using several HPLC solvent systems on an ODS-C₁₈ column.

Semitortoside A(1) and B(2). Amorphous powder; IR v_{max}^{KBr} : 3400, 2943, 1652, 1600, 1512, 1481, 1180-1000, 930 cm⁻¹; ¹H NMR (D₂O, DSS): δ 3.82 (s, 3-OMe), 4.30 (m, H-8 of 2), 4.45 (dd, J=5.1, 1.5 Hz, H-9'), 4.54 (m, H-8 of 1), 4.61 (d, J=7.6 Hz, Glc: H-1), 5.18 (d, J=4.1 Hz, H-7 of 2), 5.23 (d, J=6.9 Hz, H-7 of 1), 5.83 (dt, J=12.5, 5.1 Hz, H-8'), 6.05 (d, J=12.5 Hz, H-7'), 6.97 (d, J=8.0 Hz, H-5, 5'), 7.07 (dd, J=8.0, 1.5 Hz, H-6'), 7.10 (d, J=1.5 Hz, H-2'), 7.16 (d, J=1.5 Hz, H-2), 7.26 (dd, J=8.0, 1.5 Hz, H-6); ¹³C NMR: see Table II; FAB-MS (S-Gly) m/z: 531 [M+Li]⁺, 547 [M+Na]⁺; EI-MS m/z: 362 [M-162]⁺, 137, 151.

Isoverbascoside (7). Amorphous powder, $[\alpha]_{15}^{15} - 31.7^{\circ}$ (MeOH; *c* 1.2); λ_{max}^{MeOH} : 329, 291, 219, 208 cm⁻¹; ¹H NMR (CD₃OD, TMS): δ 1.24 (3H, d, *J*=6.3 Hz, Rha. Me), 2.77 (2H, t, *J*=7.4 Hz, H-β), 3.30-4.02 (sugar protons), 4.32 (1H, d, *J*=8.0 Hz, Glc. H-1'), 4.49 (2H, d, *J*=10.7 Hz, Glc. H-6'), 5.17 (1 H, s, Rha. H-1), 6.28 (1H, d, *J*=15.9 Hz, H-α'), 6.53-7.03 (6H, m, aromatics H), 7.55 (1H, d, *J*=15.9 Hz, H-β'); ¹³C NMR: see Table I; FAB-MS (S-Gly): m/z 631 [M+Li]⁺, 647 [M+Na]⁺. cis-Isoverbascoside (8). Amorphous powder; $[\alpha]_D^{15} - 28.5^\circ$ (MeOH; *c* 0.20); λ_{max}^{MeOH} ; 330, 292, 220, 199 nm; ¹H NMR (CD₃OD, TMS): δ 1.24 (3H, d, *J*=6.0 Hz, Rha. Me), 2.77 (2H, t, *J*=7.1 Hz, H- β), 3.30-4.02 (sugar protons), 4.32 (1H, d, *J*=8.0 Hz, Glc. H-1'), 4.48 (2H, d, *J*=12.1 Hz, Glc. H-6'), 5.17 (1 H, s, Rha. H-1), 5.77 (1H, d, *J*=13.0 Hz, H- α '), 6.51-7.05 (6 H, m, aromatic H), 6.94 (1H, d, *J*=13.0 Hz, H- β '); ¹³C NMR: see Table I; FAB-MS (S-Gly): m/z 631 [M+Li]⁺ 647 [M+Na]⁺.

Acknowledgement

This work was supported by the National Natural Science Foundation of China and the Foundation of the State Education Commission of China for Doctoral Progamme.

References

- 1 Iconographia Cormophytorum Sinicorum, Vol.4 (Science Press, Beijing, China), 1980, p.80.
- 2 Deyama T, Ikawa T & Nishibe S, Chem Pharm Bull, 33, 1985, 3651.
- 3 Kobayashi H, Karasawa H, Miyase T & Fukushima S, *Chem Pharm Bull*, 32, **1984**, 3880.
- 4 Jia Z J, Liu Z M & Wang C Z, Phytochemistry, 31, **1992**, 263.

- 5 Andary C, Wylde R, Laffite C, Privat G & Winternitz F, *Phytochemistry*, 21, **1982**, 1123.
- 6 Kobayashi H, Oguchi H, Takizawa N, Miyase T, Ueno A, Usmanghani K & Ahmad M, Chem Pharm Bull, 35, 1987, 3309.
- 7 Takedo Y, Nishimura H & Inouye H, *Phytochemistry*, 16, **1977**, 1401.
- 8 Jia Z J & Liu Z M, Phytochemistry, 31, 1992, 3125.
- 9 Achenbach H, Waibel R, Raffelsberger B & Addae-Mensah I, Phytochemistry, 20, 1981, 1591.
- 10 Sticher O & Salama O, Helv Chim Acta, 64, 1981, 78.
- 11 Jia Z J, Gao J J & Liu Z M, Indian J Chem, 33B, 1994, 460.
- 12 Bailleul F, Delaveau P, Rabaron A, Plat M & Koch M, Phytochemistry, 16,1977, 723.
- 13 Hiroaki N, Hiroshi S, Nobuyuki I, Masao C & Hiroshi M, Phytochemistry, 30, 1991, 965.
- 14 Popoff T & Theander O, Acta Chem Scand, 1977, 329.
- 15 Sawabe A, Yoshiharu S, Matsubara Y, Kumamoto H, Lizka Y & Okamoto K, Nippon Nogeikagaku Kaishi, 60, 1986, 593.
- 16 Gao J J & Jia Z J, Indian J Chem, 34B, 1995, 466.
- 17 Agrawal P K, Rostogi R P & Osterdahl B G, Org Magn Res, 21, 1983, 119.
- 18 Fang J M, Lee C K & Cheng Y S, Phytochemistry, 31, 1992, 3659.
- 19 Braga A C H, Zacchino S, Badano H, Sierra M G & Ruveda E A, *Phytochemistry*, 23, **1984**, 2025.
- 20 Miyase T, Ueno A, Takizawa N, Kobayashi H & Oguchi H, Chem Pharm Bull, 35, 1987, 3713.