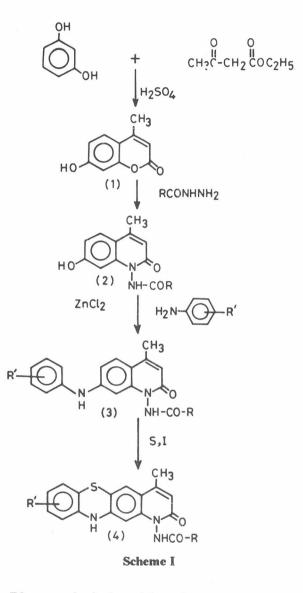
Note

Synthesis of 1-arylamido-2-oxo-4methylpyrido[b]phenothiazines


V K Pandey* & (Miss) Manjusha Gupta Department of Chemistry, University of Lucknow, Lucknow 226 007, India

Received 27 July 1995; revised and accepted 12 April 1996

Resorcinol on treatment with ethyl acetoacetate (EAA) in the presence of conc. H_2SO_4 gives 7-hydroxy-4-methylcoumarin 1 which reacts with aromatic acid hydrazides affording 1-arylamido-7-hydroxy-2oxo-4-methylquinolines (carbostyrils) 2. Interaction of 2 with aromatic amines in the presence of anhydrous ZnCl₂ results in the formation of 1-arylamido-7-arylamino-2-oxo-4-methylquinolines 3. Compounds 3 undergo cyclisation with sulphur and iodine giving 1-arylamido-2-oxo-4-methylpyrido[b]phenothiazines 4. The CNS activity of 4 has been reported.

Phenothiazine derivatives constitute an important class of compounds possessing diverse types of biological properties including antiparkinsonian, anticonvulsant and antihistaminic activities¹⁻⁷. Further, several pyrido[**b**]phenothiazines have been reported to possess antiviral and antiparasitic properties⁸⁻⁹. In continuation of our on-going research programme on newer phenothiazine derivatives of biological significance, it was considered of interest to synthesize some 1-arylamido-2oxo-4-methylpyrido[*b*]phenothiazines and evaluate their CNS activity.

1-Arylamido-2-oxo-4-methylpyrido[b]phenothiazines 4 were prepared by heating a mixture of 1-arylamido-7-arylamino-2-oxo-4-methylquinolines 3 (cf. Table I) powdered sulphur and iodine (cf. Scheme I) at 215-220°C in an oil-bath. THe synthesized compounds wre characterized with the help of elemental analysis, IR and ¹H NMR spectral data. IR spectra of the above compounds showed absorption bands at 3400 ± 10 cm⁻¹ due to secondary amino group and 1680 cm⁻¹ due to carbonyl of amide. The ¹H NMR spectra of compounds 4a-c (Table I) showed signals at $\delta 6.5$ -8.0 for aromatic protons, two singlets at 2.50 and 2.54 due to C-CH₃ protons at position-4 and Ar--CH₃ protons, respectively. The singlet at $\delta 3.14$ was due to Ar-OCH₃ protons. The broad singlet at $\delta 8.7-11.2$ was due to NH protons. Methine protons at position-3 in all the three compounds appeared at $\delta 6.25$.

Pharmacological activity. Compounds 4 were screened to ascertain various pharmacological effects in relation to CNS in albino mice of either sex weighing 15-25 g each. The method of Weil¹⁰ was followed for the determination of approximate lethal dose (ALD_{50}). The compounds were found to be both CNS stimulants as well as depressants in nature. Compounds **4b** and **4c** exhibited stimulant activity while compounds **4a** and **4b** showed tremorigenic effect (cf.Table II). In addition, compounds **4a** and **4d** were found to be depressants in nature. Except compound **4a**, all other compounds were found without any writhing effect (Table II).

		m	ethylpyri	do[b]phe	enothiazines 4			
Compd	R	R′	m.p. °C	Yield (%)	Mol. formula	N(%)		
				(<i>)</i>		Found	Calcd.	
3a	C_6H_5	7-CH ₃	170-72	52	$C_{24}H_{21}N_{3}O_{2}$	10.94	10.96	
3b	C_6H_5	9-CH ₃	146	54	$C_{24}H_{21}N_{3}O_{2}$	10.95	10.96	
3c	C_6H_5	7-0/CH3	162	51	$C_{24}H_{21}N_{3}O_{3}$	10.50	10.52	
3d	$C_6H_5CH = CH$	7-CH ₃	179-80	53	$C_{26}H_{23}N_{3}O_{2}$	10.24	10.26	
3e	$C_6H_5CH = CH$	9-CH ₃	166	52	$C_{26}H_{23}N_{3}O_{2}$	10.23	10.26	
3f	$C_6H_5CH = CH$	7-OCH ₃	181	53	$C_{26}H_{23}N_{3}O_{3}$	9.86	9.88	
4a*	C_6H_5	7-CH ₃	230	47	$C_{24}H_{19}N_3O_2S$	10.14	10.16	
4b*	C_6H_5	9-CH ₃	240	45	$C_{24}H_{19}N_3O_2S$	10.13	10.16	
4c*	C_6H_5	7-OCH ₃	80-81	44	C ₂₄ H ₁₉ N ₃ O ₃ S	9.77	9.79	
4d	$C_6H_5CH = CH$	7-CH ₃	195-98	43	$C_{26}H_{21}N_{3}O_{2}S$	9.53	9.56	
4e	$C_6H_5CH = CH$	9-CH ₃	208-9	42	$C_{26}H_{21}N_3O_2S$	9.54	9.56	
4f	$C_6H_5CH = CH$	7-OCH ₃	174-75	46	$C_{26}H_{21}N_3O_3S$	9.20	9.23	

Table I-Characterization data of 1-arylamido-7-arylamino-2-oxo-4-methylquinolines 3 and 1-arylamido-2-oxo-4-	-
methylpyrido[b]phenothiazines 4	

Compounds 4 showed IR (KBr) absorption bands at 3400 ± 10 (NH), 1680 (C=O), 3300 (Aromatic C-H) and 1620 ± 10

 cm^{-1} (N – H bending). *¹H NMR (CDCl₃ + DMSO- d_6) : $\delta 6.5$ -8.0 (m, 10H, Ar-H), 2.50(s, 3H, CH₃ at position-4), 2.54 (s, 3-H, Ar-CH₃), 3.14 (s, 3H, Ar-OCH₃), 8.7 (br s, 1H, NH) and 11.2 (br, s, 1H, NHCOR, D₂O exchangeable).

				Arylamido-2-oz	ko-4-methylpyrid			
Compd	R	R'	Dose		Gross Central			
			(mg/kg) i.p.	Mortality	Body temp. (°C)	SMA	Other gross effects	ALD ₅₀ (mg/kg)
4a	C_6H_5	7-CH ₃	464	0/4	—	ţ	Writhing(+) Ataxia(+) Tremor(+)	316
			215	0/4	_	Ļ	React ↓	
			63.2	0/5	<u> </u>		_	
4b	C_6H_5	9-CH ₃	464	0/4	_	î	React [↑] React [↑]	681
			1000	4/4		Ť	Tremor(+)	
			136.2	0/5	↓1.2	Ť	î,	
4c	C_2H_5	7-OCH ₃	464	0/4	_	t	Resp. †	681
		5	1000	4/4	_	î1	React.↑ Resp.↑ Anoxia (+) React↑	
			136	0/5	10.1	† †	React † Resp. †	
4d	$C_6H_5 - CH = CH$	7-CH ₃	464	4/4		↓	Resp.↓ React.↓	100
			215	4/4	-	Ļ	Resp.↓ React.↓	
			100	2/4	_	Ļ	React. ↓	
			46.4	0/4	_	ţ	React. ↓	
			20	0/5	_	_	No effect	
4e	$C_6H_5CH = CH$	9-CH ₃	464	4/4	_	_	Resp.↑ React.↑	316
			215	0/4	-		Resp. ↑ React. ↑	
			63.2	0/5	_	_	Resp. ↑ React. ↑	
4f	$C_6H_5CH = CH$	7-OCH ₃	464	0/4	—		Resp. † React. †	> 1000
			1000	0/4			Resp. † React. †	
			200	0/5			Resp. † React. †	

Experimental Section

Melting points were determined in open capillaries using a Toshniwal melting point apparatus and are uncorrected. IR spectra in KBr were recorded on a Perkin-Elmer 157 spectrophotometer (v_{max} in cm⁻¹) and ¹H NMR spectra in a mixture of DMSO- d_6 and CDCl₃ on a Varian A₆₀D instrument using TMS as internal standard (chemical shift in δ , ppm).

4-Methyl-7-hydroxycoumarin 1. The method of Pechmann and Duisberg¹¹ was followed for the preparation of 4-methyl-7-hydroxycoumarin.

Aromatic acid hydrazides. Aromatic acid hydrazides required in the present synthesis were prepared following the method of Vogel¹².

1-Arylamido-7-hydroxy-2- oxo-4-methylquinolines 2¹³. A mixture of 4-methyl-7-hydroxycoumarin 1 (0.1 mole) and an appropriate aromatic acid hydrazide (0.1 mole) in anhydrous pyridine (100 mL) was refluxed for 6 hr on a sand-bath under anhydrous conditions. The reaction mixture was allowed to stand at room temperature for 1 hr and poured into ice-cold water containing conc. HCL (10 mL). The solid which separated out, was allowed to settle. It was filtered and washed repeatedly with water, dried in a vacuum desiccator and crystallized from ethanol. Following compounds were prepared:

1-Benzamido-7- hydroxy-2-oxo-4-methylquinoline (2; $R = C_6H_5$): m.p. 160-162°, yield 60% (Found: N, 9.49. $C_{17}H_{14}N_2O_3$ requires N 9.52%).

1-Styrylamido-7-hydroxy-2-oxo-4-methylquinoline (2: $R = C_6H_5 - CH = CH -$): m.p. 170-72°, yield 60% (Found: N, 8.71. $C_{19}H_{16}N_2O_3$ requires N 8.75%).

1-Arylamido-7-arylamino-2-oxo-4-methylquinolines 3^{14} . A mixture of 1-arylamido-7-hydroxy-2oxo-4-methylquinoline (2; 0.05 mole) and an aromatic primary amine (0.05 mole) in absolute ethanol (50 mL) was heated under reflux in the presence of anhydrous ZnCl₂ (0.5 gm) for 5 hr on a steam-bath. The contents were cooled when a crude solid mass separated out which was washed repeatedly with acidified water to remove inorganic materials. It was filtered, dried and crystallised from ethanol. The compounds thus, synthesised, are recorded in Table I.

1-Arylamido-2-oxo-4-methylpyrido[*b*]phenothiazines 4^{14} . A mixture of 3 (0.01 mole), sulphur (0.1 mole) and iodine (0.5 g) was rapidly heated at 215-220°C in an oil-bath and maintained at this temperature for 1 hr. The hot melt was rapidly poured into a mortor and crushed to a fine powder. It was washed with water, dried and crystallised from ethanol containing animal charcoal. The compounds thus prepared are given in Table I.

Acknowledgement

The authors express their sincere thanks to the Head, Department of Chemistry, University of Lucknow, Lucknow for providing laboratory facilities. They are also thankful to the Director, CDRI, Lucknow for elemental analyses and spectral data.

References

- 1 Harwood P D, Jestad A C & Swanson L E, *J Parasitol*, 24, **1938**, 16.
- 2 Halpern B N, J Am med Assoc, 129, 1945, 1219.
- 3 Kalinowsky L B & Hoch P H, Somatic treatment in Psychiatry Grune and Stratton, New York, London), **1961**, .
- 4 Ayd F J (Jr), Diseases of nervous system, 23, **1968**, 29.
- 5 Genzer J D, Lewis M N, McMillan F H & King J A, J Am Chem Soc, 75, **1953**, 2206.
- 6 White R P & Westerberg M R, Biochem Pharmacol, 8, 1961, 921.
- 7 Dushay L J, Rev Can Biol, 20, 1961, 321.
- 8 Dahlbom R & Ekstramd T, Arch Intern Pharmacodynamie, 40, 1952, 241.
- 9 Julou L, Ducrol R, Bardone M C, Detalle J Y, Feo C, Guyonnet J C, Luiseau G & Pasquet J, Arch Intern Pharmacodynamie, 159, 1966, 70.
- 10 Weil C S, Biometrics, 8, 1952, 249-63.
- 11 Pechmann H V & Duisberg C, Ber 16, 1983, 2119.
- 12 Vogel A I, Practical organic chemistry 3rd Edn (London), 1971, 841.
- 13 Pandey V K, Mishra D, Joshi M N & Chandra K, Pharmacological Research Communications, 20, 1988, 153.
- 14 Pandey V K, Garg P, Ram S & Bhar S C, Indian J Chem, 26B, 1987, 1208-1210.