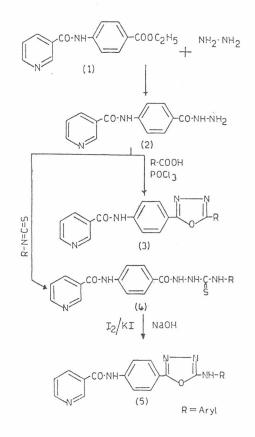
Note

Synthesis of 1, 3, 4-oxadiazoles having nicotinamide moiety as potential antimicrobial agents

Viral R Shah, Milan Vadodaria & A R Parikh* Department of Chemistry, Saurashtra University, Rajkot 360 005, India

Received 11 April 1996; accepted 24 June 1996

2-Arylamino-5-p-(nicotinamidophenyl)-1,3, 4-oxadiazoles (5a-q) have been synthesised starting from ethyl p-nicotinamidobenzoate (1) which in turn is obtained by treatment of nicotinic acid with thionyl chloride followed by reaction with ethyl p-aminobenzoate in pyridine.


Some new oxadiazoles have been synthesised having nicotinamide moiety to get better therapeutically active compounds. Nicotinamide and oxadiazole derivatives have been reported to have therapeutic activity¹⁻⁹.

The starting compound nicotinic acid on reaction with thionyl chloride gave nicotinoyl which on reaction chloride, with ethyl vielded *p*-aminobenzoate in pyridine ethyl *p*-nicotinamidobenzoate (1). Compound 1 on hydrazine reaction with hydrate furnished N-p-(nicotinamidobenzoyl)hydrazine (2) which on treatment with different aromatic acids in presence of POCl₂ underwent cyclisation to give corresponding oxadiazoles (3a-o). When 2 was with different substituted reacted arvl isothiocyanate, the corresponding N¹-*p*-(nicotinamidobenzoyl)-N³-substituted arvl thiosemicarbazides (4a-q) were obtained which on with iodine afforded respective cyclisation 2-arylamino-5-p-(nicotinamidophenyl)-1, 3, 4-oxadiazoles (5a-q) (Table I; Scheme I).

The structure of the compounds synthesized were assigned on the basis of elemental analyses, IR, PMR and mass spectral data. The compounds were evaluated for antimicrobial screening.

Antimicrobial activity

The antimicrobial activity was determined using cup-plate agar diffusion method¹⁰ by measuring the inhibition zones in mm. All the compounds were screened *in vitro* for their antimicrobial activity against a variety of bacterial strains such as *Escherichia coli, Salmonella typhosa,*

Staphylococcus citrus, Bacillus megaterium and fungi such as Aspergillus niger. Compounds 3a-b, 3g, 3o, 4c, 4e, 4g-h, 4o, 5a, 5f, 5m and 5p showed highest activity (26-30 mm) against the above microbes (Cf. Table II).

Experimental

All the recorded melting points were determined in open capillary tubes and are uncorrected. IR spectra (v_{max} in cm⁻¹) were recorded in KBr on Shimadzu-435-IR spectrophotometer, PMR spectra on Hitachi NMR-R-1200 (60 MHz) using TMS as internal standard (chemical shifts in δ , ppm) and mass spectra on Jeol d 300 e.V.

N-p-(Nicotinamidobenzoyl)hydrazine (2). A mixture of ethyl *p*-nicotinamidobenzoate (1) (0.01 mole, 2.7 g) and excess of hydrazine hydrate (0.04 mole, 2.0 mL) in absolute ethanol was refluxed for 5 hr. The solution was then poured into ice-water, filtered and washed with water. The resulting solid was recrystallised from ethanol to give 2, yield 68%, m.p. $221^{\circ}C$ (Found: C,

	Table I—	Physical dat	a of 3a-o , 4a-q	and Sa-q			
Compd R		Yield m.p.		Mol.	N (%)		
		(%)	°C	formula	Found	Calc.	
		78	129	$C_{20}H_{14}O_2N_4$	16.25	16.37	
3a	C ₆ H ₅	78	194	$C_{22}H_{16}O_4N_4$	14.21	14.00	
3b	$2-OCOCH_3 - C_6H_4$	73	178	$C_{20}H_{13}O_2N_4Cl$	14.81	14.87	
3c	$2 - Cl - C_6H_4$ $3 - Cl - C_6H_4$	70	> 320	$C_{20}H_{13}O_2N_4Cl$	14.91	14.87	
3d	$4 - Cl - C_6H_4$	77	> 320	C ₂₀ H ₁₃ O ₂ N ₄ Cl	14.76	14.87	
3e 3f	$4 - C_1 - C_6 H_4$ 3, $4 - (OCH_3)_2 - C_6 H_3$	72	305	$C_{22}H_{18}O_4N_4$	13.82	13.93	
	$2 - OH - C_6H_4$	68	> 320	$C_{20}H_{14}O_{3}N_{4}$	15.77	15.64	
3g 3h	$3 - OH - C_6 H_4$	74	114	$C_{20}H_{14}O_3N_4$	15.56	15.64	
3i	$4 - OH - C_6H_4$	76	132	$C_{20}H_{14}O_3N_4$	15.81	15.64	
3j	$2 - OCH_3 - C_6H_4$	71	239	$C_{21}H_{16}O_3N_4$	15.12	15.05	
3k	$4 - OCH_3 - C_6H_4$	69	165	$C_{21}H_{16}O_3N_4$	15.01	15.05	
31	$2 - CH_3 - C_6H_4$	74	> 320	$C_{21}H_{16}O_2N_4$	15.67	15.73	
3m	$3 - CH_3 - C_6H_4$	70	156	$C_{21}H_{16}O_2N_4$	15.74	15.73	
3n	$4 - CH_3 - C_6H_4$	69	169	$C_{21}H_{16}O_2N_4$	15.81	15.73	
30	$-CH = CH - C_6H_4$	73	156	$C_{22}H_{14}O_2N_4$	15.52	15.57	
4a	C_6H_4	65	183	C ₂₀ H ₁₇ O ₂ N ₅ S	17.85	17.90 16.45	
4b	$3 - Cl - C_6H_4$	65	177	$C_{20}H_{16}O_2N_5SCl$	16.40	16.45	
4c	$4 - Cl - C_6H_4$	60	192	C ₂₀ H ₁₆ O ₂ N ₅ SCl	16.32 15.25	15.18	
4d	$2, 4 - Cl_2 - C_6H_3$	62	222	$C_{20}H_{15}O_2N_5SCl_2$	15.25	15.18	
4e	$2, 5 - Cl_2 - C_6H_3$	61	208	$C_{20}H_{15}O_2N_5SCl_2$	16.79	16.71	
4f	$2,3 - (CH_3)_2 - C_6H_3$	68	176	$C_{22}H_{21}O_2N_5S$	16.68	16.71	
4g	$2, 4 - (CH_3)_2 - C_6H_3$	66	178	$C_{22}H_{21}O_2N_5S$	16.85	16.71	
4h	$3, 4 - (CH_3)_2 - C_6H_3$	64	154 186	$C_{22}H_{21}O_2N_5S$ $C_{22}H_{21}O_2N_5S$	16.81	16.71	
4 i	$3, 5 - (CH_3)_2 - C_6H_3$	60	180	$C_{22}H_{21}O_2N_5S$ $C_{21}H_{19}O_2N_5S$	17.19	17.28	
4j	$2 - CH_3 - C_6H_4$	62 60	174	$C_{21}H_{19}O_2N_5S$	17.21	17.28	
4k	$3 - CH_3 - C_6H_4$	60	174	$C_{21}H_{19}O_2N_5$	17.31	17.28	
41	$4 - CH_3 - C_6H_4$ $2 - OCH_3 - C_6H_4$	62	183	$C_{21}H_{19}O_{3}N_{5}S$	16.71	16.63	
4m 4n	$2 - OCH_3 - C_6H_4$ $3 - OCH_3 - C_6H_4$	66	169	C21H19O3N5S	16.59	16.63	
40	$4 - OCH_3 - C_6H_4$	64	169	C ₂₁ H ₁₉ O ₃ N ₅ S	16.57	16.63	
40 4p	$2 - C_2 H_5 - C_6 H_4$	68	206	$C_{22}H_{21}O_2N_5S$	16.79	16.71	
4q	$4 - C_2 H_5 - C_6 H_4$	61	164	$C_{22}H_{21}O_2N_5S$	16.82	16.71	
5a	$C_{6}H_{4}$	67	277	C ₂₀ H ₁₅ O ₂ N ₅	19.49	19.61	
5b	$3 - Cl - C_6 H_4$	66	194	$C_{20}H_{14}O_2N_5Cl$	17.79	17.88	
5c	$4 - Cl - C_6H_4$	72	> 320	$C_{20}H_{14}O_2N_5Cl$	17.92	17.88	
5d	$2, 4 - Cl_2 - C_6H_3$	71	> 320	$C_{20}H_{13}O_2N_5Cl_2$	16.48	16.39	
5e	$2, 5 - Cl_2 - C_6H_3$	70	> 320	C20H13O2N2Cl2	16.28	16.39	
5f	$2,3 - (CH_3)_2 - C_6H_3$	70	193	$C_{22}H_{19}O_2N_5$	18.30	18.18	
5g	2, $4 - (CH_3)_2 - C_6H_3$	66	236	$C_{22}H_{19}O_2N_5$	18.31	18.18	
5h	$3, 4 - (CH_3)_2 - C_6H_3$	70	254	$C_{22}H_{19}O_2N_5$	18.21	18.18	
5i	$3, 5 - (CH_3)_2 - C_6H_3$	72	259	$C_{22}H_{19}O_2N_5$	18.78	18.18	
5j	$2 - CH_3 - C_6H_4$	72	172	$C_{21}H_{17}O_2N_5$	18.76	18.87	
5k	$3 - CH_3 - C_6H_4$	70	260	$C_{21}H_{17}O_2N_5$	18.79	18.87	
51	$4 - CH_3 - C_6H_4$	67	> 320	$C_{21}H_{17}O_2N_5$	18.94	18.87	
5m	$2 - OCH_3 - C_6H_4$	72	283	$C_{21}H_{17}O_3N_5$	18.16	18.09	
5n	$3 - OCH_3 - C_6H_4$	70	222	$C_{21}H_{17}O_3N_5$	18.21	18.09	
50	$4 - OCH_3 - C_6H_4$	70	203	$C_{21}H_{17}O_3N_5$	18.17	18.09	
5p	$2 - C_2 H_5 - C_6 H_4$	65	278	$C_{22}H_{19}O_2N_5$	18.26	18.18	
5q	$4 - C_2 H_5 - C_6 H_4$	72	> 320	$C_{22}H_{19}O_2N_5$	18.02	18.18	
							_

60.85; H, 4.64; N, 21.93. $C_{13}H_{12}O_2N_4$ requires C, 60.94; H, 4.69; N, 21.88%).

2-(*p*-Methoxyphenyl)-5-*p*-(nicotinamido phenyl)-1, 3, 4-oxadiazole (3a-o). A mixture of N-*p*-(Nicotinamidobenzoyl)hydrazine (2) (0.01 mole, 2.56 g) and *p*-methoxybenzoic acid (0.01 mole, 1.52 g) in phosphorus oxychloride (5 mL) were refluxed for 5-6 hr. The content was cooled

and poured onto crushed ice, made basic by sodium bicarbonate solution and the resulting solid was filtered, dried and recrystallised from chloroform to give **3k**, yield 67%, m.p. 165°C (Found : C, 67.75; H, 4.28; N, 15.01. $C_{21}H_{16}O_3N_4$ requires C, 67.74; H, 4.30; N, 15.05%); IR : 2975, 2875 (C-H str.), 1630 (C=N str. pyridine), 1115 (C-O-C str. oxadiazole), 1040

Table II—Antimicrobial screening results of those compo	unds which exhibited	d highest activity	(inhibition zone = 19-30 mm)
1	ug concentration		
E. coli S. typhosa	S. citrus	B. mega.	A. niger
3b, 3e, 3o, 4g, 4h, 5b	3a, 3b, 3c, 3e, 3f,	3h, 4p, 5b, 5c	3, 3m, 4k, 5e,
4p, 5f, 5m, 5p	3g, 3h, 3i, 3o, 4c,		5q
	4c, 4o, 5a, 5m		
Standard antibiotics: Ampicillin 17-24 mm; Chloramphen	icol 24-26 mm; Norl	floxacin 23-33 n	nm; Griseofulvin 20-23 mm

Table IIat 50

(N-N str. oxadiazole), 1680 (C=O str.) and3280 (N-H str.); PMR (TFA) : 4.05 (s, 3H, -OCH₂), 7.04-7.98 (m. 8H, Ar-H), 8.02 (s. 1H, NH), 8.1-8.52(m, 4H, Ar-H pyridine).

Similarly other members of 3 were prepared and their physical data are recorded in Table I.

 N^1 -p-(Nicotinamidobenzoyl)- N^3 -(p-methoxyphenyl)thiosemicarbazide (4a-q). An ethanolic solution of N-p-(Nicotinamidobenzoyl) hydrazine (2) (0.01 mole, 2.56g) and *p*-methoxyphenylisothiocyanate (0.01 mole, 1.65 g) was refluxed was The resulting solution for 4 hr. then cooled and the solid was crystallised from DMF to give 40, yield 63%, m.p. 169°C (Found : C, 59.81; H, 4.55; N, 16.57. C12H19O3N5S requires C, 59.86; H, 4.51; N, 16.63%); IR : 2970, 2875 (C-H str.), 3070 (C - H str.), 1595 (C = N str. pyridine), 750 (C = S str.) and 1675 (C = O str.); PMR (TFA) : 3.99 (s, $3H_{3} - OCH_{3}$, 7.1-8.2 (m, 8H, Ar-H), 8.4 (s, 3H, NH-NH-C-NH, 8.5 (s, 1H, -CO-NH), 9.0-9.3 (m, 4H, Ar-H pyridine); Mass: 421 (M⁺), 356, 342, 313, 311, 298, 255, 240, 224, 120, 105, 78 (Base Peak).

Similarly other members of 4 were prepared and their physical data are recorded in Table I.

2-(p-Methoxyphenyl)amino-5-p-(nicotinamidophenyl)-1, 3, 4-oxadiazole (5a-q). To the N¹-p+(Nicotinamidobenzoyl)-N³-(p-methoxypheny-1)thiosemicarbazide (40) (0.01 mole, 4.21g) dissolved in minimum quantity of ethanol, 6NNaOH (15 mL) was added. A 10% solution of iodine in KI was then added dropwise and the reaction mixture was kept at 10°C. The addition of iodine was continued till the colour of iodine persisted and the reaction mixture was refluxed for 4 hr at 70-80°C. On cooling, the separated solid was washed thoroughly with water and recrystallised from DMSO to give 50, yield 70%, m.p. 203°C (Found : C, 65.19; H, 4.4; N, 18.17. $C_{21}H_{17}O_3N_5$ requires C, 65.12; H, 4.4; N, 18.09%); IR: 2975, 2875 (C-H str. $-OCH_3$), 3070 (C-H str. Ar), 1565 (C=C str.), 1630 (C = N pyridine), 1140 (C - O - C str. oxadiazole),1665 (C=O str.) and 3375 (N-H str.); PMR $(TFA): 4.0(s, 3H, -OCH_3), 7.1-7.65$ (m, 8H, Ar-H), 7.7 (s, 1H, -NH), 7.82 (s, 1H, -CONH), 8.16-8.25 (m, 4H, Ar-H pyridine); Mass : 387 (M^+) , 309, 281, 280, 264, 252, 223, 132, 112 (Base Peak).

Similarly other members of 5 were prepared and their physical data are recorded in Table I.

Acknowledgement

The authors are thankful to the authorities of Saurashtra University for providing research facilities.

References

- 1 Warburg O & Christian W, Biochem Z, 214, 1934, 112; 275, 1935, 464.
- Sakai K, J Cardiovasc Pharmacol, 3, 1981, 139. 2
- 3 Pongraz Zirm, Zorn Schmidt Pharmazie, 12, 1957, 396.
- 4 Mazouz F, Lebrton L, Milcent R, Burstein C, Eur J Med Chem, 25(81), 1990, 659; Chem Abstr, 114, 1991, 185388w.
- 5 Daulatabad O D, Mirajkar A M & Hosamani K M, Chem Abstr. 114, 1991, 42667a.
- 6 Hutt M P, Elslager E F & Werbel L M, J Heterocycl Chem, 7, 1970, 511; Chem Abstr, 73, 1971, 35285f.
- 7 Myfeler R, Eckhardt W, Bengar Ernst & Kristiansen Odd, Chem Abstr, 110, 1989, 114837y.
- 8 Cecillia S, Maria T, Diparisa & Victor E M, J Heterocycl Chem, 15, 1978, 1093.
- Ramalingam T & Deshmukh A A, J Indian Chem Soc, 58, 1981, 269.
- 10 Barry A L, The antimicrobic susceptibility test : Principle and practices, edited by Illus lea & Febiger, p 180; Biol Abstr, 64, 1977, 25183.