Note

Sodium borohydride reduction of E-3benzylideneflavanones : Stereoselective formation of $3(S^*)$ -benzyl- $4(S^*)$ -hydroxy- $2(S^*)$ -flavans

Asok K Mallik*, Mrinal G Dhara & Falguni Chattopadhyay Department of Chemistry, Jadavpur University, Calcutta 700 032, India

Received 28 August 1997; accepted (revised) 22 June 1998

Sodium borohydride reduction of E-3benzylideneflavanones **1a-f** has been found to be highly stereoselective yielding $3(S^*)$ -benzyl- $4(S^*)$ -hydroxy- $2(S^*)$ -flavans **2a-f** in very good yield. A plausible explanation for the stereoselectivity has been offered.

Recently, we have developed an easy method for the synthesis of E-3-benzylideneflavanones^{1a} 1 and are interested in studying different reactions of this system^{1b,c} Sodium borohydride reduction of an enone system in alcoholic medium is known to produce a saturated alcohol either solely or in unsaturated $alcohol^2$. conjugation with an Considering the structures of the saturated alcohol derived from 1 it is evident that four diastereoisomeric *dl*=pairs are possible for such compounds. We, therefore, undertook the study of sodium borohydride reduction of 1 and the results are presented herein.

Six *E*-3-benzylideneflavanones **1a-f** were reduced with sodium borohydride in methanol. In each case a single product was obtained. The spectral data of the products clearly showed that the same diastereoisomer was formed in all the cases (Table I). Analysis of the coupling constants $J_{2,3}$ and $J_{3,4}$ revealed that the products possess 2,3*trans*-3,4-*trans* configuration[†]. The following plausible explanation may be offered for the stereoselectivity.

Owing to weaker hydride donating ability of alkoxyborohydrides compared to alkoxyalumino-

a : R¹ = R² = R³ = H ; b : R¹ = R² = H ; R³ = OMe ; c : R¹ = R² = H R³ = Cl; d : R¹ = R² = H , R³ = NO₂ ; e : R¹ = R² = H , R³ = NMe₂ ; f : R¹ = Me, R² = R³ = Cl

hydrides, a mechanistic path analogous to that suggested for lithium aluminium hydride reduction of E-3-benzylidenechromanones (which leads to stereoselective formation of trans-3benzylchromanols by reduction of the carbonyl group first and then of the exocyclic double bond by intramolecular hydride transfer from the resulting alkoxyaluminohydride moiety from the same side)^{5,6} would be improbable in this case. So, by analogy with borohydride reduction of other α,β -unsaturated ketones², 1 is possibly transformed first into trans-3-benzylflavanones 3 and then to $3(S^*)$ -benzyl- $4(S^*)$ -hydroxy- $2(S^*)$ -flavans 2 (Scheme I) The preferred conformation of 3 would be 4 and hence during its reduction approach of hydride takes place from the axial side' yielding only 2. This view is supported by the fact that borohydride reduction of trans-3sodium benzylflavanone (prepared by Jones oxidation of

[†]Reported^{3,4} coupling constants for 2,3-*cis*-3,4-*cis* : $J_{2,3} \approx 1.0$ and $J_{3,4} \approx 4.5$ Hz; 2,3-*cis*-3,4-*trans* : $J_{2,3} = 1-3$ and $J_{3,4} \approx 2.5$ Hz; 2,3-*trans*- 3,4-*cis* : $J_{2,3} \approx 10$ and $J_{3,4} \approx 3.5$ Hz; 2,3-*trans*-3,4-*trans* : $J_{2,3} = 8.7-9.7$ and $J_{3,4} = 7-9.7$ Hz.

Table I—Characterization data of 2				
Starting Material	Product	m.p. ^a (°C)	Yield (%)	¹ H NMR(CDCl ₃ , δ) ^b
1a	2a	158-60	88	1.40(1H,br, O-H) ^d , 2.63-2.73 (3H,m,H-3 and $-CH_2$ -), 4.73(1H,br, H-4) ^e , 4.90(1H,d, J=8.7 Hz,H-2), 6.90-7.43 (14H m Ar-H)
1b	2b	197-98	81	(1411, in, 71-11). $1.40(1H, d, J=8Hz, O-H)^d$, 2.50-2.78 (3H, m, H-3, and – CH_{2^-}), 3.76(3H, s, 4"-OCH ₃), 4.72 (1H, t, J=8.0 Hz, H-4) ^e , 4.98(1H, d, J=8.0 Hz, H-2), 6.74-7.50 (13H m Ar-H)
1c	2c	186-87	85	1.30 (1H, d, $J=9$ Hz, O-H) ^d , 2.55-2.85 (3H,m, H-3 and CH ₂ -), 4.65 (1H,br,t, $J=8.6$ Hz, H-4) ^e , 4.95 (1H,d, $J=8.6$ Hz, H-2), 6.85-7.45 (13H,m, Ar-H)
1d	2d	118-19	78	1.50 (1H, d, $J=8$ Hz, O-H) ^d , 2.59-2.65(1H,m, H-3), 2.71 (1H,dd, $J=13$ and 7Hz, H _A - α), 2.95 (1H,dd, $J=13$ and 5 Hz, H _B - ∞), 4.70 (1H,t, $J=8.65$ Hz, H-4) ^e , 4.91 (1H,d, $J=8.6$ Hz,H-2), 6.88 (1H,d, $J=8.2$ Hz,H-8), 6.99 (1H,dt, $J=7.6$ and 1.0 Hz, H-6), 7.06 (2H, d, $J=8.65$ Hz, H-2" and 6"), 7.22 (1H,ddd, $J=8.7$, 7.1 and 1.6 Hz, H-7), 7.26-7.30 (5H,m, Ar-H), 7.44 (1H,d, $J=7.5$ Hz, H-5), 7.97-8.00 (2H,m,H-3" and H-5")
1e	2e	135-36	82	1.43 (1H,d, $J=6.9$ Hz, O-H) ^{<i>d</i>} , 2.38-2.40 (1H, m,H-3), 2.56- 2.61 (2H,m, -CH ₂ -), 2.83 (6H,s, NMe ₂), 4.68 (1H,t, $J=6.8$, Hz,H-4) ^e , 4.89 (1H, d, $J=7.8$ Hz, H-2), 6.59 (2H,d, $J=8.7$ Hz, H-3" and H-5"), 6.61-6.90 (2H,m, H-6 and H-8), 6.94 (2H,d, $J=8.6$ Hz, H-2" and H-6"), 7.13 (1H, dt, $J=7.9$ and 1.4 Hz,H-7), 7.23-7.34 (6H,m, Ar-H)
1f	2f	129-30	84	1.39 (1H,d, $J=8.4$ Hz, O-H) ^d , 2.30 (3H,s, 6-CH ₃), 2.56-2.73 (3H,m, H-3 and -CH ₂ -), 4.64 (1H,t, $J=7.8$ Hz,H-4)°, 4.90 (1H,d, $J=7.2$ Hz, H-2), 6.81 (1H,d, $J=8.4$ Hz, H-8), 6.98 (2H,d, $J=8.4$ Hz, H-2" and H-6"), 7.04 (1H,dd, $J=8.4$ and 1.9Hz, H-7), 7.19-7.31 (7H,m, Ar-H)

(a)Uncorrected

(b)200 MHz machine for 2a, 2c, 100 MHz for 2b, 500 MHz for 2d, 300 MHz for 2e and 2f.

(c) Anal. 2a : C, 83.15; H, 6.20. Calcd for C₂₂H₂₀O₂ : C, 83.50; H, 6.38%; 2c: C, 74.96; H, 5.23. Calcd for C₂₂H₁₉O₂Cl : C, 75.31; H,5.47%; 2e : C,79.81; H,6.79. Calcd for C₂₄H₂₅O₂N : C,80.18; H,7.02%

(d)Exchangeable with D₂O

(e) Changed to a doublet (J≈7.5 Hz) on D₂O shaking

2a) yielded only **2a** in 75% yield. It may be mentioned here that 3-*t*-butylchromanone which exists in only one conformation is reported to give only one product on sodium borohydride reduction⁸ while 3-benzylchromanone capable of existing in two conformations in equilibrium gives two products on such reduction^{5,9}.

Experimental Section

Sodium borohydride reduction of 1: General procedure. To a solution of 1 (1 mmole) in dry methanol sodium borohydride (150 mg) was added in three portions and the mixture kept at room temperature for 48 hr. Usual work-up of the reaction mixture followed by chromatography of the resulting material gave pure 2.

Among the reduction products 2a-f, 2a and 2f were acetylated (Ac₂O/Py). Acetate of 2a, m.p. 171-72°; acetate of 2f, m.p. 136-37°; they showed their acetoxy signals at δ 1.46 and 1.51, respectively, which is noteworthy.

Jones oxidation of 1a. The compound 1a was oxidised with CrO_3 -HOAc (room temperature, 30 min.). The product, *trans*-3-benzylflavanone (colourless oil) showed the following ¹H NMR (60 MHz) signals : δ 2.90-3.35 (3H,m, H-3 and -CH₂-), 5.26 (1H,d, *J*=8.4 Hz, H-2), 6.98-7.68 (13H,m, Ar-H) and 7.92 (1H,dd, *J*=8.6 and 1.5 Hz, H-5).

Acknowledgement

The authors are thankful to Dr S K Bhattacharya, University of Pennsylvania, Philadelphia, USA and the authorities of IICB, Calcutta for NMR spectral measurements and to the UGC, New Delhi and the authorities of Jadavpur University for financial assistance.

References

- 1 (a) Dhara M G, Mallik U K & Mallik A K, Indian J Chem, 35B, 1996, 1214.
 - (b) Dhara M G, De S K & Mallik A K, *Tetrahedron Lett* 37, **1996**, 8001.
 - (c) Dey S P & Mallik A K, Unpublished results.
- 2 House H O, *Modern synthetic reactions*, (The Benzamin/Cumings Publishing Co., Menlo Park, California). **1972**, 93.

- 3 Clark-Lewis J W, Jackmann L M & Spotsweed T M, Aust J Chem, 17, 1964, 632.
- 4 Vickars M A, Tetrahedron, 20, 1964, 2873.
- 5 Chatterjee A, Dutta L N & Chatterjee S K, Indian J Chem, 19B, 1980, 955.
- 6 Koch K & Smitrovich J H, Tetahedron Lett, 35, 1994, 1137.
- 7 Nasipuri D, Stereochemistry of carbon compounds (Wiley Eastern Limited, New Delhi), **1991**, 391.
- 8 Kabuto K, Kikuchi Y, Yamaguchi S & Inoue N, Bull Soc Chem Jpn, 46, 1973, 1839.
- 9 Gomis M & Kirkiacharian B S, Tetrahedron, 46, 1990, 1849.