Synthesis of bistrimethylsilylated hydroxy alkynes

M Bolourtchian ^a, R Zadmard ^a & M R Saidi * ^b ^aChemistry & Chemical Engineering Research Center of Iran, P.O. Box 14355-186, Tehran, I R Iran. ^bChemistry Department, Sharif University of Technology, P.O. Box 11365-8693, Tehran, I R of Iran

Received 7 February 1997; accepted(revised) 21 January 1998

Synthesis of several bistrimethylsilyl and a tristrimethylsilyl hydroxyalkynes 2 is described. Addition of lithium trimethylsilylacetylene to mono- or bistrimethyl-silylated aldehyde and ketones (1) followed by work-up of the reaction mixture affords the desired compounds **2a-f** with good to moderate yields. The products are mixtures of diastereomers with diasterioselectivity of 50 to 68%.

Alkynols having the terminal alkynyl carbon protected with a trimethylsilyl (TMS) group are conveniently and widely used as organic synthons due to their reactivity and large variety of related synthetic transformation. Many of these silylated alkynols are biologically active, and the develop-ment of synthetic reaction is an area of active study¹⁻⁵.

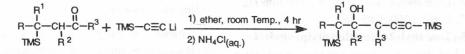
It is well known that silicon groups are readily, but discriminately cleaved from carbons. Terminal trimethyl-silyl group can be removed selectively in bistrimethylsilylated alkynols for further transformation.

The synthesis of silylated aldehydes and ketones has been reported earlier⁶⁻¹⁰. In this article we wish to report a mild and efficient conversion of silylated aldehyde and ketones to bissilylated alkynols having the terminal alkynyl carbon with a TMS-group. Silylated aldehydes and ketones were prepared by different methods as racemic mixtures.

Treatment of a variety of silylated aldehydes or ketones with lithium trimethylsilylacetylide at room temperature under an atmosphere of argon furnished the expected bistrimethylsilylated alkynols **2a-f** in good to

Note

moderate yields. Both sterically hindered and conjugated silylated aldehydes or ketones were suitable substrates (entries 3, 5 and 6), as were dialkyl and arylalkyl silylated ketones (entries 1, 2). In the case of alkynols **2a-d**, mixtures of two diastereomers were obtained with diasterioselectivity of 50 to 68%. The facial selectivity was interpreted as a result of bulky substituted groups in α - or β -positions. The results are shown in **Table I**.


Experimental Section

General. Diethyl ether was distilled from Na/benzophe-none under argon atmosphere. ¹H NMR and ¹³C NMR spectra were recorded on a Bruker Ac 80 spectrometer in CDCl₃. **IR** spectra were recorded on a Perkin-Elmer model 883. The diasterioselectivity was determined by ¹H NMR analysis.

General procedure for the preparation of bistrimethyl-silyl alkynols 4. Ketone or aldehyde (2 mmoles) was dissolved in 5 mL anhydrous diethyl ether, and the mixture placed in a three-necked flask, equipped with a magnetic stirrer and a condenser. Thereafter, 0.23 g (2.2 mmoles) of 56% solution of lithium trimethylsilylacetylide in THF was added during 30 min at room temperature under an atmosphere of argon. After stirring for an additional 2 hr at room temperature, 0.15 g (3 mmoles) of powdered ammonium chloride was added, and the whole mixture stirred overnight. Water (20 mL) was added and the organic material extracted with ether $(2 \times 20 \text{ mL})$. The organic layer was dried over CaCl₂, and the solvent evaporated. The pure material was obtained by bulb-to-bulb (kugelrohr) distillation. All the new products showed satisfactory C and H analyses. ¹H NMR and ¹³C NMR of the major disteriomer are given in Table II.

3,5-Diphenyl-1,5-bistrimethylsilyl-pent-1-yn-3-ol 4a: A yellow viscous liquid after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3485, 2164, 1250, 845 cm⁻¹.

3-Methyl- 5 -phenyl- 1 , 5-bistrimethylsilylpent-1yne-3-ol 4b: A colourless viscous liquid, after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3421,

Entry		Star	ting mater	rial	Product Yield Ratio of	
an La	R	\mathbb{R}^1	R ²	R ³	(%) diastereomers	
1.	ph	н	н	ph	OH I Ph—CH-CH ₂ -C—C≡C—TMS 75 59:41 I TMS Ph (2a)	
2.	ph	Н	Н	CH ₃	Ph-CH-CH ₂ -C-C=C-TMS 70 $68:32$ I MS CH ₃ (2b)	
3.	ph	Н	CH ₃	CH ₃	$\begin{array}{c} CH_{3} OH \\ I & I \\ Ph - CH - CH - C = C - TMS \\ I & I \\ TMS & CH_{3} (2c) \end{array} $ $\begin{array}{c} 65 \\ 53:47 \\ 53:47 \\ TMS \\ CH_{3} (2c) \end{array}$	
4.	ph	н	CH ₃	CH ₃	$\begin{array}{c} OH \\ I \\ Ph - CH - CH_2 - C - C \equiv C - TMS \\ I \\ TMS \\ (2d) \end{array} 55 59:41$	
5.	CH ₃	CH3	Н	ci=<_ci®	$\begin{array}{cccc} CH_3 & OH & CH_3 & CH_3 \\ & & & CH_3 - C - CH_2 - C - CH = C \\ & & CH_3 & 66 \\ & & CH_3 & 66 \\ & & CH_3 & 66 \\ & & CH_3 & CH_3 & CH_3 \\ & & & CH_3 & CH_3 & CH_3 \\ & & & CH_3 &$	
6.	CH3	CH ₃	Н	CH3 CH2-C	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

Table I — Products from the reaction of lithium trimethylsilylacetylide with silylated aldehydes and ketones .

2165, 1249, 840 cm⁻¹.

2,4-Dimethyl-5-phenyl-1,5-bistrimethylsilyl-pent-1-yne-3-ol 4c: A pale yellow viscous liquid, after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3441, 2165, 1252, 847 cm⁻¹.

5-Phenyl-1,5-bistrimethylsilyl-pent-1-yne-3-ol 4d: A brown liquid, after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3397, 2169, 1250, 840 cm⁻¹.

6-Methyl-3-(2-methyl-2-trimethylsilylpropyl)-4hexene-1-yne-3-ol 4e: An orange viscous liquid, after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3429, 2163, 1250, 840 cm⁻¹.

5 -Methyl- **5** -trimethylsilyl- **3** -(**2-methyl- 2** -trimethylsilylpropyl)hex-1-yne-3-ol **4f:** A dark yellow viscous liquid, after distillation using kugelrohr distillation unit (oven temperature 100 °C, 150 mm Hg); IR (film): 3440, 2060, 1250, 839 cm⁻¹.

Acknowledgement

Funds for the purchase of a gas chromatograph [Volkswagen-Stiftung, Federal Republic of Germany] is

rimethylsilylated alkynols 2 trime						
Compd	¹ H NMR (CDCl ₃), δ, ppm	¹³ C NMR (CDCl ₃), δ, ppm	Compd			
2a	0.00 (s, 9H), 0.24 (s, 9H), 2.16 (s, 1H), 2.84 (d of d, <i>J</i> =8.9, 3.8 Hz, 1H), 3.38- 3.55 (m, 2H), 6.70- 7.88 (m, 10H).	-2.84 (CH ₃), 0.15 (CH ₃), 32.50 (CH),45.39 (CH ₂), 74.62 (C), 90.66 (C), 125.91 (CH), 127.95 (CH), 128.17 (CH), 128.60 (CH), 129.63 (CH), 131.71 (CH), 143.97 (C), 144.56 (C).	2f			
2Ь	0.04 (s, 9H), 0.14 (s, 9H), 1.22 (s, 3H), 2.18 (s, 1H), 2.25- 2.75 (m, 3H), 6.90- 7.40 (m, 5H).	3.11 (CH ₃), -0.10(CH ₃), 29.86 (CH ₃), 33.39 (CH), 43.28 (CH ₂), 70.25 (C), 109.62 (C), 113.17 (C), 124.36 (CH), 127.69 (CH), 128.52 (CH), 143.51 (C).	Funds [Volkswa gratefully for the pr			
2c	0.08 (s, 9H), 0.22 (s, 9H), 0.99 (d, <i>J</i> =4.1, Hz, 1H), 1.31 (d, <i>J</i> =7.1Hz, 3H), 1.58 (s, 3H), 2.13-2.39 (m, 1H), 2.05 (s, 1H), 7.22 (s, 5H).	-1.17 (CH ₃), -0.01(CH ₃), 14.06 (CH ₃), 27.61(CH ₃), 38.70 (CH), 44.69 (CH), 72.99 (C), 103.11 (C), 107.70 (C), 124.95 (CH), 127.69(CH), 130.73(CH), 141.44 (C).	Reference 1 Bridg 1983, 2 2 Kuroo 28, 19 3			
2d	0.00 (s, 9H), 0.22 (s, 9H), 1.82-2.01 (m, 1H), 2.13 (s, 1H), 3.72 (t, <i>J</i> =4.5 Hz, 1H), 4.02-4.38 (dd, <i>J</i> =8.51, 1H), 7.15 (s, 5H).	-2.97 (CH ₃), -0.01(CH ₃), 33.57 (CH), 60.67 (CH ₂), 78.62 (C), 106.98 (C), 124.47(CH), 127.58(CH), 128.29 (CH), 142.53 (C).	 Tetra 4 Laute 3105 5 Lutje Asym 6 Calas 			
2e	0.00 (s, 9H), 0.18 (s, 9H), 0.94 (s, 6H), 1.52 (s, 1H), 1.74 (d, <i>J</i> =1.4 Hz, 3H), 1.86 (s, 2H), 1.92 (d, <i>J</i> =1.19 Hz, 3H), 5.39 (m, 1H).	-4.46 (CH ₃), -0.45(CH ₃), 18.72 (CH ₃), 22.88(CH ₃), 26.78 (CH ₃), 49.14(CH ₂), 69.79 (C), 103.50 (C), 110.33 (C), 131.14 (CH), 134.49 (C).	 Orga 7 Doun Duffa 8 Dour Picar 9 Boul 277. 			
		Table II Contd	10 Boulo			

Table II — ¹H and ¹³C NMR spectral data of bis- and tris-tri

Table II - ¹H and ¹³C NMR spectral data of bis- and tristrimethylsilylated alkynols 2-Contd

Compd	¹ H NMR (CDCl ₃) δ, ppm	¹ H NMR (CDCl ₃) δ, ppm
2f	0.00 (s, 18H), 0.17 (s, 9H), 1.02 (s, 12H), 2.17 (s, 4H), 2.28 (s, 1H)	-4.17(CH ₃), -0.49 (CH ₃), 23.47 (CH ₃), 30.67(C), 49.99 (CH ₂), 73.06(C), 103.52 (C),, 110.34(C).

ledgement

for the purchase of a gas chromatograph agen-Stiftung, Federal Republic of Germany] is y acknowledged. We thank Mr M M Mojtahedi reparation of starting materials.

ces

- ges A J, Fedij V & Turowski E C, Chem Commum, , 1093.
- oda S, Katsuki T & Yamaguchi M, Tetrahedron Lett, 987, 803.
- et J, Damour D, Randrianoelina B & Miginia, L, ahedron, 42, 1986, 2501.
- ens M & Huboux A H, Tetrahedron Lett, 42, 1990, ; Soai K, Chem Abstr, 113, 1990, 171485t.
- ens H, Nowotny S & Knochel P, Tetrahedron nmetry, 6, 1995, 2675.
- as R, Dounogues J & Bolourtchian M, J anometallic Chem, 26, 1971, 195.
- nogues J, Calas R, Bolourtchian M, Biran C & faut N, J Organometallic Chem, 57, 1973, 55.
- nogues J, Bolourtchian M, Calas R, Duffaut N & rd J, J Organometallic Chem, 43, 1972, 157.
- lourtchian M & Saednya A, J Sci I R Iran, 1, 1990,
- ourtchian M & Saednya A, Bull Soc Chem Fr, 11, 1978, 170

Table II - Contd