Note

Microwave assisted synthesis and pharmacological screening of 3-(substituted phenyl)-5-methylquinolino [3,2-e]-1,2,4-triazines

Mazaahir Kidwai^{a*}, Seema Kohli^a, A K Goel^b & M P Dubey^b

^aDepartment of Chemistry, University of Delhi, Delhi 110 007, India

^bCentral Drug Research Institute, Lucknow-226001, India

Received 21 May 1998; accepted 18 August 1998

A series of quinolinotriazines have been synthesized by condensation of 2-hydrazino-4-methylquinoline 3 with aromatic aldehydes followed by nitrosation with sodium nitrite in acetic acid leading to ring closure under microwave irradiation.

Recently reported studies on the use of domestic microwave oven for the synthesis of heterocycles¹⁻⁵ showed that it is a safe rapid and convenient methodology. Keeping in view the potential of microwave irradiation (MWI) in chemical synthesis and pharmacological importance of quinoline derivatives⁶⁻⁸ it was of interest to prepare the title compounds.

2-Hydroxy-4-methylquinoline was obtained by

cyclisation of acetoacetanilide⁹ which on treatment with POCl₃/PCl₅ gave 2-chloro-4-methylquinoline⁷
2. 2 on reaction with hydrazine hydrate (99%) afforded corresponding hydrazide⁷ 3 which on condensation with aryl aldehydes under MWI yielded the corresponding 2-hydrazones 4a-f (Scheme I). The IR spectra showed the presence of NH group in the region 3250-3350 cm⁻¹. Nitrosation of compounds 4a-f with sodium nitrite in acetic acid under MWI led to the ring closure and formation of 3-(substituted phenyl)-5-methylquinolino [3,2-e] 1,2,4 triazines 5a-f which was evidenced by the absence of NH group in IR and NMR spectra and peak at δ 8.20-8.42 due to CH=N.

Experimental Section

Melting points were taken on Thomas Hoover apparatus and are uncorrected. IR spectra were recorded on a Perkin-Elmer FTIR spectrophotometer using KBr discs and ¹HNMR were recorded on FT NMR Hitachi R-600 using Me₄Si as internal standard (chemical shifts in δ , ppm). The purity of the compounds were checked on silica gel coated Al plates (Merck).

Synthesis of 4-methylquinolinyl-2-hydrazones 4a-f. 2-Hydrazino-4-methylquinoline 3 (0.01 mole) and arylaldehyde (0.01 mole) were taken in

Scheme I

			Table I	-Characte	rization da	ata of compo	ounds 4a-f
Compd	R	m.p. °C	Yield %	Found (Calcd) %			¹ HNMR (CDCl ₃ + DMSO- d_6 , δ , ppm)
				C	Н	N	-
4a	C_6H_5	165-67	87	78.29	5.72	16.15	2.40 (s,3H, 4 CH ₃), 6.6-7.9 (m,10H, Ar-H), 8.20
4b	2 NO C II	210 12	89	(78.16	5.75	16.09)	(s,1H, CH=N), 9.50 (brs, 1H, NH).
40	$3-NO_2 C_6H_4$	210-13	89	66.50 (66.67	4.60	18.36 18.30)	2.38 (s,3H, 4CH ₃), 6.7-8.2 (m, 9H, Ar-H), 8.40 (1H, CH = N), 9.70 (brs, 1H, NH)
4c	$2-NO_2 C_6H_4$	216-19	88	66.60	4.59	18.25	2.40 (s, 3H, 4 CH ₃), 6.6-8.1 (m, 9H, Ar-H), 8.42 (s,
4d	4-Cl C ₆ H ₄	185-88	89	(66.67 69.20	4.57 4.72	18.30) 14.35	1H, CH=N), 9.60 (brs, 1H, NH) 2.37 (s, 3H, 4 CH ₃), 6.8-8.2 (m, 9H, Ar-H), 8.40 (s,
				(69.03	4.74	14.21)	1H, CH=N), 9.60 (brs, 1H, NH)
4e	$4\text{-}OCH_3 C_6H_4$	213 -15	90	74.10	5.82	14.35	2.39 (s, 3H, 4CH ₃), 3.80 (s,3H, OCH ₃), 6.7 -8.2 (m,
		Carra la		(74.23	5.84	14.43)	9H, Ar -H), 8.40 (s, 1H, CH=N) 9.70 (brs, 1H, NH)
4f	4-OH C ₆ H ₄	220	80	73.70 (73.64	5.51 5.4	15.22 15.16)	2.38 (s, 3H, 4 CH ₃), 5.00 (brs, 1H, OH), 6.6-8.2 (m, 9H, Ar-H, 8.42 (s, 1H, CH=N), 9.60 (brs, 1H, NH)

Table II—Characterization data of compounds 5a-f

Compd	R	m.p. °C	Yield %	M ⁺ Observed (expected)	Time		Found (Calcd) %			¹ HNMR (CDCl ₃ + DMSO- d_6 , δ , ppm)
				(expected)	A (min)	B (hr)	C	Н	"N	
5a	C ₆ H ₅	150	70	270	5.0	2.0	74.5	4.40	20.60	2.40 (s, 3H, 4 CH ₃), 6.8-8.2 (m,
				(272)			(75.0	4.41	20.58)	9H, Ar-H)
5b	$3-NO_2 C_6 H_4$	>260	68	316	5.2	1.0	64.30	3.52	22.10	2. 38 (s, 3H, 4 CH ₃) 6.9 -8.4 (m,
				(317)			(64.35	3.47	22.08)	8H, Ar -H)
5c	$2-NO_2 C_6H_4$	210	80	316	6.0	1.0	64.38	3.42	22.12	2.40 (s,3H, 4 CH ₃) 6.8-8.2
				(317)			(64.35	3.41	22.08)	(m,8H Ar-H)
5d	4-ClC ₆ H ₄	225	88	307	6.0	2.3	66.58	3.60	18.30	2.40 (s, 3 H, 4-CH ₃) 6.8 -8.2
	,			(306.5)			(66.55	3.58	18.27)	(m,8H Ar-H).
5e	4-OCH ₃ C ₆ H ₄	170-72	75	302	5.3	1.5	71.58	4.69	18.60	2.40 (s, 3H, 4 CH ₃). 3.80 (s, 3H
				(302)			(71.52	4.63	18.54)	OCH ₃) 6.7-8.1 (m,8H, Ar- H)
5f	2-OH C ₆ H ₄	240	72	290	5.0	2.0	70.89	4.20	19.48	2.42 (s,3H,4 CH ₃) 5.0 (s, 1H, br,
`	*			(288)			(70.83)	4.16	19.44)	OH) 6.9-8.5 (m 8H, Ar -H)
A—Using microwave irradiation.										
B—Using conventional heating.										

ethanol (15 mL) in a 100 mL beaker. The beaker was zapped inside a microwave oven for 1.5-2.0 min at 2450 Hz. The reaction mixture was cooled and the solid separated was filtered off, washed with water and recrystallized from ethanol. The characterization data of **4a-f** are given in Table I.

3-(Substituted phenyl)-5-methylquinolino-[3,2-e]-1,2,4 triazine 5a-f.

Method A

A solution of hydrazone 4a-f (0.01 mole) in acetic acid (10 mL), and sodium nitrite (0.03 mole) in water (2 mL) was taken in a conical flask capped with a glass funnel and subjected to microwave irradiation for 5-6 min. A 500 mL beaker containing 200 mL was placed in the oven next to reaction flask to serve as "heat sink". The reaction mixture was cooled and the solid separated was

filtered, washed with water and recrystallized from acetic acid to give **5a-f**. Their characterization data are given in Table II.

Method B

A solution of hydrazones **4a-f** (0.01 mole) in acetic acid (10 mL), and sodium nitrite (0.03 mole) in water (2 mL) was refluxed for an appropriate time, and worked-up as described in method-A.

Biological activity

The effect of compounds **5a-f** were observed on blood pressure, respiration and heart rate of pentobarbitone sodium (35 mg/kg, i.v) anaesthetized cats of either sex (weight 2.5 to 4.0 kg). Alterations in behaviour i.e. spontaneous motor activity, reactivity, lacrymation body temperature, etc. was studied in healthy albino mice (20-25 g). Anticon-

1065

vulsant, antidepressant and analgesic effects were also studied at 100 mg doses in mice. Effect on blood pressure, heart rate and respiration were investigated at 1.0 and 5.0 mg/kg i.v. doses. However, the compounds did not show any significant effect on cardiovascular or central nervous system Paradigms studied.

References

- 1 Caddick S, Tetrahedron, 51, 1995, 10403.
- 2 Kidwai M, & Kumar P, J Chem Res (S), 1996, 254.

- 3 Kidwai M, Goel Y, Kumar P & Kumar K, *Indian J Chem*, 36B, **1997**, 782.
- 4 Kidwai M, Kumar P, Goel Y & Kumar K, *Indian J Chem*, 36B, 1997, 175.
- 5 Kidwai M, Kohli S, & Kumar P, J Chem Res(S), 1998, 1.
- 6 Kidwai M, Negi N, & Chowdhury S R, Acta Pharm, 45, 1995, 511.
- 7 Kidwai M, Kumar K, Goel Y & Srivastava K C, Bio-Organic & Med Chem Letters, 6(7), 1996, 871.
- 8 Kidwai M, Gupta N, & Srivastava K C, *Indian drugs*, 8(30), 1993, 377.
- 9 Kidwai M, Chem Edu, 4, 1993, 55.
- 10 Kidwai M, Goel Y & Kumar R, *Indian J Chem*, 37B, 1998, 174.