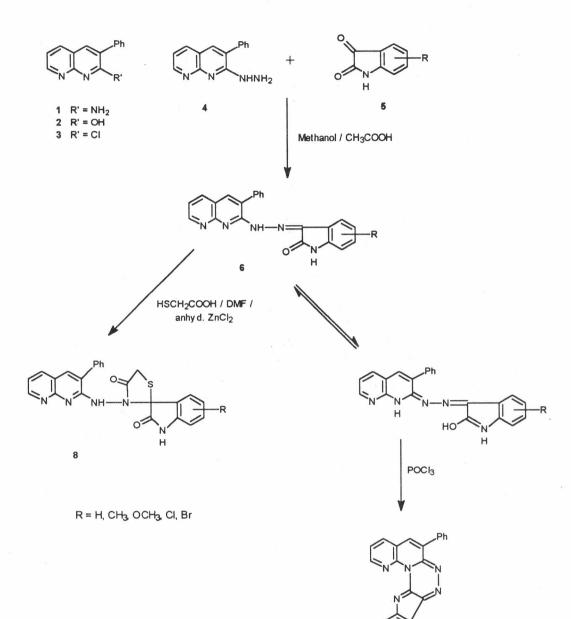
Synthesis of indolo[2',3':5,6][1,2,4]triazino[4,3-*a*][1,8]- naphthyridines and 3'-(3-phenyl-1,8-naphthyridin-2-ylamino)spiro- [3*H*-3, 2'-thiazolidine]- 2,4'(1*H*)-diones as potential antibacterial agents


K Mogilaiah* & R Babu Rao

Department of Chemistry, University Arts & Science College, Kakatiya University, Subedari, Warangal 506001, India Received 1 August 1997; accepted (revised) 18 January 1998

Condensation of 2-hydrazino-3-phenyl-1,8-naphthyridine 4 with different isatins 5 gives 2-(3-phenyl-1,8-naphthyridin-2-ylhydrazono)-2-indolinones 6, which on cyclization with POCl₃ under reflux result in the formation of 7-phenylindolo[2', 3': 5, 6][1,2,4]triazino[4,3-*a*][1,8]naphthyridines 7. The hydrazones 6 on treatment with mercaptoacetic acid in DMF in the presence of anhyd. ZnCl₂ afford 3'- (3-phenyl-1, 8-naphthyridin-2-ylamino)spiro [3*H*-indole-3, 2' -thiazolidine]-2, 4' (1*H*)-diones 8. The structures of the compounds 6-8 have been established on the basis of their elemental analyses and spectral (IR, ¹H NMR and mass) data and evaluated for their antibacterial activity.

The chemistry of 1,8-naphthyridine derivatives continues to draw the attention of synthetic organic chemists due to their varied biological activities¹. Several of these derivatives are potent diuretic², potential antibacterial^{3,4}, antimalarial⁵ and useful anti-inflammatory⁶ agents. Various indole derivatives show a wide range of biological properties ⁷⁻ ¹⁰. If the indole ring is joined to other heterocyclic systems through a spiro-carbon atom, the resulting compounds show an increased spectrum of biological activities. The 1,2,4-triazine¹¹ and 4-thiazolidinone^{12,13} class of heterocycles are of current interest due to their potential pharmaceutical importance. Encouraged by these reports and in continuation of our work on the synthesis of 1,8naphthyridines¹⁴⁻²⁰, we report herein, the synthesis of novel and hitherto unknown bridgehead nitrogen heterocyclic system namely indolo[2',3':5,6] [1,2,4]triazino[4,3-a] [1,8]naphthy- ridines and a new spiro heterocyclic system, spiro[3H-indole-3,2'-thiazolidine]-2,4' (1H)-diones linked to the 1.8-naphthyridine nucleus through an NH linkage. Only a limited number of molecules where an NH group is linked to two heterocyclic moieties has been described in literature²¹. The synthetic route is outlined in Scheme I.

2-Amino-3-phenyl-1,8-naphthyridine 1, obtained by the condensation of 2-aminonicotinaldehyde with phenylacetonitrile in boiling methanol containing a few drops of piperidine²², on treatment with HNO2 gave 2-hydroxy-3phenyl-1,8-naphthyri-dine 2^{22} . Interaction of 2 with POCl₃ followed by the hydrazinolysis with refluxing hydrazine hydrate of the resultant 2chloro-3-phenyl-1,8-naphthyridine 3 furnished the desired synthon, 2-hydrazino-3-phenyl-1.8naphthyridine 4¹⁹. Condensation of 4 with different isatins 5 in methanol containing a catalytic amount of gl. acetic acid afforded 2-(3-phenyl-1, 8-naphthyridin-2-ylhydrazono)-2-indolin-ones 6. The structural assignments of these compounds were based on their elemental analyses and spectral data. The IR spectra of 6 exhibited absorption bands around 3185 (NH), 1720 (C=O) and 1615 cm^{-1} (C=N). The ¹H NMR spectrum of **6a** in DMSO- d_6 displayed two slightly broad singlets at δ 11.0 and 13.2 due to indole NH and NH protons, respectively. The protons at C-4, C-5, C-6 and C-7 on naphthyridine framework resonated separately as multiplets centred at δ 8.3, 8.6, 8.0 and 9.1, respectively. Aromatic protons appeared as a multiplet at δ 6.8-7.8. The mass spectrum of **6a** showed the molecular ion peak at m/z 365 (6%) together with a base peak at m/z 206 (100%); other prominent peaks appeared at m/z 337 (13.5%), 220 (43), 219 (62.7), 205 (55), 178

Scheme I

(10.4), 147 (52), 119 (88), 92 (59.7), 91 (17.9) and 64 (25).92

The hydrazones **6** on cyclization with POCl₃ furnished 7-phenylindolo[2',3': 5,6][1,2,4]triazino [4,3-*a*][1,8] naphthyridines 7 in moderate yields. The absence of bands due to NH and C=O stretchings in the IR spectra of 7 suggested the cyclization of **6** to 7. The ¹H NMR spectrum of **7a** in DMSO- d_6 showed multiplets centred at δ 8.2, 8.5, 7.9 and 8.9 assignable to C-8, C-9, C-10 and C-11 protons, respectively. The aromatic cluster accounting for

nine protons appeared at δ 6.8-7.7. The structures of 7 were further substantiated by their mass spectra. Compound **7a** in its mass spectrum exhibited the molecular ion peak at m/z 347 (7.5%). The base peak appeared at m/z 205 (100%) and the other characteristic peaks appeared at m/z 320 (17.9%), 179 (5), 171 (37), 144 (68.7), 142 (25), 128 (88), 102 (15) and 77 (43).

7

The cyclocondensation of 6 with mercapto-acetic acid in refluxing DMF in the presence of a pinch of anhyd. ZnCl₂ afforded the desired 3'-(3-phenyl-1,

8-naphthyridin-2-vlamino)- spiro[3H-indole-3.2'thiazolidinel-2.4'(1H)-diones 8 in good vields. The structures of these compounds were in conformity with their elemental analyses and spectral characteristics. The IR spectra of 8 showed absorption bands around 1735 (thiazolidinone C=O), 1690 (indole C=O), 2800 (CH₂) and 3350 cm⁻¹ (NH) indicating the transformation of 6 into a spiro system 8. The ¹H NMR spectrum of 8a in DMSO-d₆ showed the presence of methylene protons by exhibiting a singlet at δ 3.6. The proton of bridged NH was found to resonate at δ 12.5 and the proton of indole NH at δ 10.5. The protons at C-4, C-5, C-6 and C-7 on naphthyridine framework were observed separately as multiplets centered at δ 8.1, 8.8, 7.8 and 9.0, respectively. The remaining nine aromatic protons appeared as a multiplet at δ 6.8-7.6. The mass spectrum of 8a displayed the molecular ion peak at m/z 439 (15%) along with a base peak at m/z 220 (100%). Other important peaks were observed at m/z 397 (18.4%), 307 (12), 205 (45), 179 (32.7), 163 (25), 132 (35.6), 119 (14), 105 (28), 91 (65) and 77 (22).

Antibacterial activity

All the componds reported in Table I were tested

for their antibacterial activity against the bacteria Escherichia coli, pseudomonas aeruginosa, Bacillus subtilis and Bacillus mycoides following the filter paper disc technique²³ at 400 and 600 μ g/disc concentrations. Streptomycin was used as a standard drug for comparison. The results are given in Table II. All the compounds were active against both the gram-negative and gram-positive bacteria at the concentration of 400 µg/disc. However, the degree of inhibition varied both with the test compound as well as with the bacterium. Compounds 6e, 7a, 7f, 8b and 8c exhibited high inhibition. whereas 6c, 7b, 7c, 8a and 8f were moderately active. Rest of the compounds displayed weak antibacterial activity. From the screening results it was observed that compounds 7 and 8 are more active than their parent hydrazones 6.

Experimental Section

General. All melting points are uncorrected. Purity of the compounds was checked by TLC. IR spectra (KBr) were recorded on a Perkin-Elmer 337 spectrophotometer (v_{max} in cm⁻¹), ¹H NMR spectra on a Varian Gemini 200 MHz spectrometer using TMS as internal standard (chemical shifts in δ , ppm) and

Table I — Physical data of compounds 6, 7 and 8								
Compd	R	m.p. °C	Yield (%)	Mol. formula (M ⁺)	Found (%) (Calcd)			
					С	Н	N	
6a	Н	220	75	$C_{22}H_{15}N_{5}O$	72.52	4.15	19.26	
				(365)	(72.33	4.11	19.18)	
6b	5-CH ₃	242	84	C23H17N5O	72.68	4.56	18.58	
					(72.82	4.49	18.47)	
6c	7-CH3	260	78	C ₂₃ H ₁₇ N ₅ O	72.65	4.57	18.56	
					(72.82	4.49	18.47)	
6d	5-OCH ₃	254	83	C23H17N5O2	69.72	4.35	17.85	
					(69.87	4.30	17.72)	
6e	5-C1	248	86	C22H14N5OCl	66.26	3.66	17.65	
					(66.17	3.51	17.54)	
6f	7-C1	235	82	C22H14N5OCI	66.27	3.64	17.67	
					(66.17	3.51	17.54)	
6g	5-Br	258	80	C ₂₂ H ₁₄ N ₅ OBr	59.60	3.18	15.85	
0					(59.46	3.15	15.77)	
7a	Н	265	55	$C_{22}H_{13}N_5$	76.16	3.84	20.26	
				(347)	(76.08	3.75	20.17)	
7b	1-CH3	256	60	C23H15N5	76.68	4.25	19.34	
					(76.45	4.16	19.39)	
7c	3-CH ₃	272	64	C23H15N5	76.65	4.23	19.33	
					(76.45	4.16	19.39)	
7d	3-OCH ₃	268	56	C23H15N5O	73.36	3.91	18.65	
					(73.21	3.98	18.57)	
7e	1-Cl	280 (d)	62	C22H12N5 Cl	69.36	3.26	18.46	
					(69.29	3.15	18.37)	
						·	-contd.	

		Т	able I — Ph	nysical data of compound	Is 6, 7 and 8 (con	td.)	
Compd	R	m.p. °C	Yield (%)	Mol. formula (M ⁺)	Found (%) (Calcd)		
					С	Н	N
7f	3-C1	290	65	C22H12N5 Cl	69.38	3.25	18.48
					(69.29	3.15	18.37)
7g	3-Br	285	58	C22H12N5 Br	61.82	2.90	16.55
					(61.97	2.82	16.43)
8a	Н	296	72	C24H17N5O2S	65.76	3.95	15.82
				(439)	(65.60	3.87	15.95)
8b	5-CH3	264	76	C25H19N5O2S	66.37	4.12	15.54
					(66.23	4.19	15.45)
8c	7-CH3	283 (d)	70	C25H19N5O2S	66.35	4.14	15.57
					(66.23	4.19	15.45)
8d	5-OCH ₃	273	75	C25H19N5O3S	63.83	4.15	14.81
					(63.97	4.05	14.93)
8e	5-C1	285 (d)	78	C24H16N5O2SC1	60.74	3.30	14.74
					(60.89	3.38	14.80)
8f	7-Cl	258 (d)	74	$C_{24}H_{16}N_5O_2SCl$	60.73	3.32	14.72
					(60.89	3.38	14.80)
8g	5-Br	278	73	C24H16N5O2SBr	55.75	3.02	13.65
					(55.60	3.09	13.51)
(d) = deco	ompose						

Table II — Antibacterial screening results of the compounds 6, 7 and 8									
Compd Inhibition zone (in mm) against									
	E.co	oli at	P.aeruginosa at		B.subtilis at		B.mycoides at		
	400µg/d isc	600 μg/ disc	400µg/ disc	600 μg/ disc	400 μg/ disc	600 μg/ disc	400 μg/ disc	600 μg/ disc	
6a	2.0	3.0	1.5	2.5	1.5	2.0	1.0	1.5	
6b	1.5	2.5	1.0	2.0	1.0	1.5	2.0	3.0	
6c	2.5	3.5	3.0	4.0	3.5	5.5	2.0	3.5	
6d	2.0	3.5	1.5	2.0	2.0	2.5	1.5	2.0	
6e	5.0	6.5	4.5	5.5	5.0	6.0	4.5	5.5	
6f	2.0	3.5	2.5	3.0	2.5	3.0	2.5	3.5	
6g	1.5	2.0	2.0	2.5	1.5	2.5	2.0	2.5	
7a	6.0	7.0	7.0	7.5	7.5	8.5	5.0	6.5	
7b	3.0	4.0	3.5	5.0	3.0	4.5	2.0	2.5	
7c	3.5	4.5	3.0	4.0	2.5	3.0	2.5	3.5	
7d	2.5	3.5	1.5	2.0	2.0	3.0	1.5	2.0	
7e	2.0	2.5	2.5	3.5	2.5	3.0	2.0	3.0	
7 f	6.5	8.0	6.0	7.5	7.5	8.5	6.5	7.5	
7g	2.5	3.5	2.5	3.0	2.0	3.5	2.5	3.5	
8a '	4.5	6.0	5.0	6.5	4.0	5.5	4.5	5.5	
8b	6.5	7.5	5.5	6.5	6.0	7.5	8.0	8.5	
8c	7.5	8.5	8.5	9.0	8.0	9.5	7.5	8.5	
8d	3.0	4.0	3.5	4.0	2.5	3.5	2.0	3.5	
8e	3.5	4.5	3.0	4.0	3.5	4.0	2.5	3.5	
8f	4.0	5.5	4.5	5.5	3.5	4.5	4.0	5.0	
8g	2.0	2.5	2.5	3.5	2.0	3.0	2.5	3.5	
Strepto-	13.0	15.0	15.0	17.0	10.0	12.0	9.0	11.0	
mycin								14 : 	

mass spectra on a VG micromass 7070 H instrument at 70 eV. Compounds 5 were prepared by the procedure described by Marvel and Heirs ²⁴.

3-(3-phenyl-1,8-naphthyridin-2-ylhydrazono) -2-indolinones 6: General procedure. A mixture of 4 (0.01 mole) and 5 (0.01 mole) was refluxed in methanol (30 mL) in the presence of a catalytic amount of gl. acetic acid for 3 hr and cooled. The solid that separated was filtered and recrystallized

from methanol to give 6 (Table I).

7-Phenyl-indolo[2'3' : 5,6] [1,2,4]triazino [4,3-*a*] [1,8]naphthyridines 7 : General procedure. A mixture of 6 (0.01 mole) and POCl₃ (10 mL) was refluxed in an oil-bath at 130° for 5 hr. The reaction mixture was cooled to room temperature, poured onto crushed ice and neutralized with Na₂CO₃. The solid thus obtained, was filtered,

washed well with water and recrystallized from methanol to affored 7 (Table I).

3'-(3-Phenyl-1, 8-naphthyridin-2-ylamino)spiro-[3H-indole-3,2'-thiazolidine]-2,4'(1H)-diones 8: General procedure. An equimolar mixture of 6 (0.01 mole) and mercaptoacetic acid (0.01 mole) in DMF (25 mL) containing a pinch of anhyd. ZnCl₂ was refluxed for 5 hr, cooled and poured onto crushed ice. The precipitate thus obtained was filtered, washed with water and recrystallized from DMF to furnish 8 (Table I).

Acknowledgement

The authors wish to thank Prof N Satyanarayana, Principal, University Arts & Science College, Kakatiya University, Warangal for providing necessary facilities and the Director, IICT, Hyderabad for ¹H NMR and mass spectra. One of them (R B R) thanks CSIR, New Delhi, for the award of a senior research fellowship.

References

- 1 Paudler W W & Kress T J, *Advances in Heterocyclic Chemistry*, Vol. 11, edited by A R Katritzky and A J Boulton (Academic Press, New York), 1970, p. 124.
- 2 Gorecki D K J & Hawes E M, J Med Chem, 20, 1977, 124.
- 3 Egàwa H, Miyamota T, Minamida A, Nishimura Y, Okada H Uno H & Motosumota T, *J Med Chem*, 27, **1984**, 1543.
- 4 Cooper C S, Klock P L, Chu D T W, Hardy D J, Swanson R N & Plattner J J, *J Med Chem*, 35, **1992**, 1392.
- 5 Balin G B & Tan W L, Aust J Chem, 37, 1984, 1065.
- 6 Kuroda T, Suzuki F, Tamura T, Ohmori K & Hosie H, J Med Chem, 35, 1992, 1130.

- 7 Kumar P, Nath C, Bhargava K P & Shanker K, *Indian J Chem*, 21B, **1982**, 1128.
- 8 Kawashima Y, Amanuma F, Sata M, Nakashima S, Kaorusou Y & Noriguchi I, J Med Chem, 29, 1986, 2284.
- 9 Hiremath S P, Ullagaddi A & Purohit M G, Indian J Chem, 27B, 1988, 1102.
- 10 Joshi K C, Dandia A & Bhagat S, Indian J Chem, 29B, 1990, 766.
- 11 Abdel-Rahman R M & Ghareib M, Indian J Chem, 26B, 1987, 496.
- 12 Husain M I & Shukla S, Indian J Chem, 25B, 1986, 545
- 13 Joshi N, Patel R & Parekh H, Indian J Chem, 35B, 1996, 867.
- 14 Mogilaiah K, Raju K R & Sreenivasulu B, Indian J Chem, 20B, 1981, 821.
- 15 Mogilaiah K, Reddy K R, Rao G R & Sreenivasulu B, Colln Czech Chem Commun, 53, 1988, 1539.
- 16 Reddy K R, Mogilaiah K, Swamy B & Sreenivasulu B, Acta Chim Hung, 127, 1990, 45.
- 17 Rao J S, Sreenivasulu B & Mogilaiah K, Indian J Chem, 34B, 1995, 734.
- 18 Rani H S, Mogilaiah K, Rao J S & Sreenivasulu B, Indian J Chem, 34B, 1995, 1035.
- 19 Rani H S, Mogilaiah K & Sreenivasulu B, Indian J Chem, 35B, 1996, 106.
- 20 Rao G R, Mogilaiah K & Sreenivasulu B, *Indian J Chem*, 35B, 1996, 339.
- 21 Bauer V J & Safir S R, J Heterocycl Chem, 1, 1964, 288.
- 22 Neidlein R & Reuter H, Synthesis, 1971, 540.
- 23 Merchan F, Garin J, Melendoz E & Tejero T, Synthesis, 1982, 1066.
- 24 Khan R H & Rastogi R, Indian J Chem, 28B, 1989, 529.
- 25 Hawes E M & Wibberley D G, J Chem Soc (C), 1966, 315.
- 26 Vincent J C & Vincent H W, Proc Soc Exptl Biol Med, 55, 1944,162.
- 27 Marvel C S & Heirs G S, *Organic Syntheses*, Coll, Vol. 1 (John Wiley and Sons, Inc., New York) **1941**, p. 327.