Reaction of malononitrile with enones

P Murugan ${ }^{\text {a }}$, P Shanmugasundaram ${ }^{\text {a }}$, V T Ramakrishnan ${ }^{\text {a }}$, N Srividya ${ }^{\text {b }}$ \& P Ramamurthy ${ }^{\text {b }}$
${ }^{9}$ Department of Organic Chemistry, ${ }^{\text {b }}$ Department of Inorganic Chemistry School of Chemistry, University of Madras Guindy Campus, Chennai 600025 , India

Received 24 February 1998; accepted 22 June 1998

Abstract

Reaction of Malononitrile with xanthenes $\mathbf{1 a , b}$ and α, β-unsaturated carbonyl compounds $3 \mathrm{a}-\mathrm{e}$ furnishes the acridines $\mathbf{2 a}, \mathbf{b}$ and biphenyl derivatives $\mathbf{4 a - d}, 5$. The biphenyl $\mathbf{4 a}$ shows lasing and non-linear optical (NLO) properties.

In continuation of our work on laser dyes ${ }^{1 \text { laee }}$, we were interested in synthesising systems containing dicyano methylene groups. 4-Dicyanomethylene-2-methyl-6-(4'-dimethylaminostyryl)-4 H -pyran (DCM) is a widely used laser dye ${ }^{2}$ because of its broad tunability and high conversion efficiency. This is considered to constitute a family of very effective dyes in the red. Hence, xanthene 1a was treated with malononitrile and ammonium acetate in acetic acid and benzene which furnished 1,8 -(dicyanomethylene)-1,2,3,4,5,6,7,8,9,10dechaydroacridine 2 a . Likewise, the reaction of 1 b gave 2b. The products were characterised by IR, NMR and MS data and elemental analyses. Both 2a and 2b were deep red in methanol but did not show any fluorescence.

In the above context, we were interested in the reaction of α, β-unsaturated ketones with malononitrile ${ }^{3 \alpha^{3-e}}$. Hence, 4-dimethylaminobenzalacetone ${ }^{4} 3$ a was treated with malononitrile. The product, a yellow solid, was identified as 3 -amino-2,4-dicyano-4'-dimethylamaino5 -methylbiphenyl 4 a. The IR spectrum of the dye showed absorption bands at 3520 and 3430 due to NH_{2} and at $2224 \mathrm{~cm}^{-1}$ due to CN . The ${ }^{1} \mathrm{H}$ NMR showed signals at $\delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.0\left[\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.1(\mathrm{~s}$, $2 \mathrm{H}, \mathrm{NH}_{2}$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.6(\mathrm{~s}, 1 \mathrm{H})$ and 6.7 , $7.4\left(A B_{q}, 4 \mathrm{H}, J=9 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}\right)$.

The structure of the biphenyl 4 c was confirmed by Xray crystallographic studies. The formation of 4 a from 3a may be rationalized involving Michael addition, condensation, and Thorpe-Ziegler cyclization followed by elimination of HCN and tautomerisation in line with the reported ${ }^{3 e}$ reaction. Likewise, benzylideneacetone ${ }^{4}$ 3b, cinnamaldehyde 3c and furfurylideneacetone ${ }^{4} 3 d$, furnished $\mathbf{4 b} \mathbf{b}$ d respectively on reaction with malononitrile.

The reaction of 2 -chlorobenzalacetone 3 e with malononitrile furnished 3 -amino-2,4-dicyanao-1-methyl-5-(2-chlorophenyl)cyclohexa-1,5-diene 5 . The formation of 5 can be rationalized as given in Scheme I. The structure of 5 was established on the basis of IR, NMR, MS data and elemental analyses. An $A M X$ pattern was seen between δ 2.5-3.0 and 4.3 in the ${ }^{1} \mathrm{H}$ NMR. The mass spectral fragmentations of 5 are depicted in Chart 1.

The biphenyl 4 a, having N, N-dimethylamino group as a donor and a cyano group as an acceptor, shows shift in the absorption and emission maxima, with increasing solvent polarity. The absorption maximum appeared at 374 nm and emission maximum at 496 nm in methanol. The absorption and emission data in other solvents are given in Table I. The larger Stokes shift shows the presence of charge transfer nature in the emitting state. The fluorescence quantum yield is unity in non-polar solvents and decreases to 0.7 in polar solvents (Table I).

The biphenyl 4 a shows a lasing yield of 70% at 470 nm in dichloromethane, compared with coumarin-102 ${ }^{1 \text { a-d }}$. The ground state dipole moment (1.5 D) was obtained using the Guggenheim's method ${ }^{5 \mathrm{a}, \mathrm{b}}$. The excited state dipole moment was obtained using Lippert and Mataga continuum dielectric model ${ }^{60, \mathrm{~b}}$ and the value was 12.5 D . the difference (11.0 D) in the dipole moment value between the ground and excited states indicates an increased charge separation in the excited state and hence an ideal situation to have non-linear optical (NLO) properties. Based on the solvent shift behaviour of 4 a , the β_{ct} valaue was determined as 20×10^{-30} esu using two-level model hyperpolarizability? The β value was obtained by Hyper Rayleigh scattering (HRS) ${ }^{8, \mathrm{a}, \mathrm{b}}$ technique. The second harmonic generation efficiency was found using powder reflection technique developed by Kurtz and

Scheme I

Perry ${ }^{9}$. The SHG efficiency was comparable to that of urea.

Experimental Section

General. All melting points are uncorrected. IR spectra were recorded on a Perkin-Elmer 598 instrument. ${ }^{1} \mathrm{H}$ NMR were taken on a Varian-Gemini-200 (200 MHz) instrument. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL GS X $400(100 \mathrm{MHz})$ instrument. Mass spectra were taken on a JEOL Mass (JMS-Dx 303 HF) spectrometer. Absorption spectra (UV) were recorded on a Hitachi 320 and Hewlett-Packard 8452A diode array spectrophotometers and emission spectra on a

Perkin-Elmer LS 5B luminescence spectrophotometer. Laser studies were performed by Quanta Ray DCR 2 Nd-YAG laser using the third harmonics (355 nm). Second order non-linear optical (NLO) studies were performed by Quanta Ray DCR 2 Nd-YAG laser using the fundamental harmonics (1064 nm).

Preparation of acridines 2a and 2b. 2, $\mathbf{2}^{\prime}$-Methylene-bis(cyclohexane-1,3-dione) ${ }^{10}(0.5 \mathrm{~g} .2 .1 \mathrm{mmoles})$ was refluxed in acetic anhydride (10 mL) for 8 hr . The solvent was removed under vacuum and the solid which crystallized out was filtered and dried to isolate 1,8 -diovo-1,2,3,4.5.6.7.8-octahydroxanthene 1a. mp 163
${ }^{\circ} \mathrm{C}\left(\mathrm{mp} 163{ }^{\circ} \mathrm{C}\right)^{11}$. A mixture of xanthene $1 \mathrm{a}(1.0 \mathrm{~g}, 5$ mmoles), malononitrile ($0.8 \mathrm{~g}, 12 \mathrm{mmoles}$), acetic acid $(2 \mathrm{~mL})$ and ammonium acetate $(0.92 \mathrm{~g}, 12 \mathrm{mmoles})$ in benzene (30 mL) was refluxed using a Dean-Strak apparatus for 2 hr . The volvent was removed to get an oily reside which solidified on cooling and was washed with water and crystalalized from chloroform-methanol to get 2a, yield $0.97 \mathrm{~g}(60 \%), \mathrm{mp} 268-270{ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{15} \mathrm{~N}_{5}: \mathrm{C}, 72.87, \mathrm{H}, 4.82 ; \mathrm{N}, 22.36$. Found: C, 72.59; H, 4.62; N 22.16\%; IR (KBr): 3456 $(\mathrm{NH}), 2200(\mathrm{CN}), 1610,1520 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): § 1.77-1.79 (m, 4H, CH $\mathrm{C}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$), 2.38-2.67 (m, 8H, $\left.\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}\right), 3.32\left(\mathrm{~s}, 2 \mathrm{H}_{4}=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}=\right), 10.27(\mathrm{~s}$, NH); MS: m/z 313 (M ${ }^{+}, 14$), 312 (18), 265 (44), 264
(40), 235 (23), 200 (100).

2, 2^{\prime}-Methylenebis(5.5-dimethylcyclohexane-1,3-dione) ${ }^{10}$ on refluxing with acetic anhydride for 3 hr gave the xanthene $1 \mathbf{b}, \mathrm{mp} 171^{\circ} \mathrm{C}\left(\mathrm{mp} 171^{\circ} \mathrm{C}\right)^{11}$. Treatment of 1b ($1.37 \mathrm{~g}, 5$ mmoles) with malononitrile (12 mmoles) as above in the presence of ammonium acetate furnished 2b, yield 1.07 (58\%), mp 284-286 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{5}$: $\mathrm{C}, 74.77$; $\mathrm{H}, 6.27$; $\mathrm{N}, 18.95$. Found: C, $74.71 ; \mathrm{H}, 6.11 ; \mathrm{N}, 18.75 \%$; IR (KBr): 3424 (NH), $2224(\mathrm{CN}), 1615 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 0.98\left(\mathrm{~s}, 12 \mathrm{H}\right.$, gem-dimethyl), 2.27(s, $\left.4 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}\right)$, $2.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.32\left(\mathrm{~s}, 2 \mathrm{H},=\mathrm{C}-\mathrm{CH}_{2}-\mathrm{C}=\right), 9.66(\mathrm{~s}$, NH); MS: m/z 369 ($\mathrm{M}^{+}, 8$), 339 (4). 321 (100), 291

Chart 1

Table I - Absorption and emission spectral data and β values of 3-amino-2,4-dicyano-4'-dimethylamino-5methylbiphenyl 5 in different solvents

Solvents	Absorption		Emission		$\begin{gathered} \text { Stokes } \\ \text { Shift } \\ \left(\mathrm{cm}^{-1}\right. \\ \hline \end{gathered}$	$\begin{gathered} \beta_{0 \times} \\ 10^{10} \mathrm{esu} \end{gathered}$	$\begin{gathered} \beta_{\mathrm{cT} \times} \\ 10^{30} \mathrm{esu} \end{gathered}$
	$\begin{aligned} & \lambda_{\max } \\ & (\mathrm{nm}) \\ & \hline \end{aligned}$	$\log \varepsilon$	$\lambda_{\text {max }}$ (nm)	¢f			
CCl_{4}	372	-	417	1.00	2900	-	-
Benzene	375	4.33	439	1.00	3887	8.3	19.0
Toluene	376	4.37	437	1.00	3712	9.2	21.2
Chloroform	380	4.32	453	0.89	4240	9.3	21.6
Ethylacetate	372	4.41	463	0.86	5283	10.6	23.8
THF	374	4.33	463	0.84	5140	9.5	21.3
DCM	376	4.35	463	0.86	4997	9.8	22.5
1-pentanol	376	4.29	476	0.85	5587	8.5	19.7
2-butanol	376	4.33	484	0.89	5935	9.5	21.6
1-butanol	376	4.36	478	0.82	5675	8.6	24.4
2-propanol	376	4.36	483	0.76	5891	9.6	22.0
1-propanol	376	4.29	483	0.82	5891	8.6	19.7
Acetone	374	4.33	485	0.73	6119	9.1	20.6
Ethanol	374	4.33	487	0.70	6204	9.6	21.6
Benzonitrile	374	4.42	481	0.83	5948	9.8	23.5
Methanol	374	4.33	496	0.74	6577	9.7	22.0
DMF	376	4.34	495	0.83	6393	8.7	20.4
Acetonitrile	372	4.33	494	0.74	6638	9.7	21.7
DMSO	382	4.31	503	0.93	6297	9.7	21.8

* THF- Tetraahydrofuran, DCM-Dichloromethane, DMF-Dimethylformamide, DMSO-Dimethyl sulphoxide
(24), 274 (12), 256 (27), 238 (27), 215 (14).

3-Amino- 2,4-dicyano-4'- dimethylamino-5-methylbiphenyl 4a: General Method. A mixture of 4-dimethylaminobenzalacetone 3 a (1.0 g 5.2 mmoles), malononitrile ($0.71 \mathrm{~g}, 10.6$ mmoles) and pyrrolidine (few drops) in ethanol (25 mL) was heated under reflux for 7 hr . The reaction mixture was concentrated under reduced pressure and purified by column chromatography over alumina (neutral). Elution with a mixture of petroleum ether-benzene ($1: 4$) gave the product 4 a as a yellow solid, which was recrystallized from petroleum etherbenzene mixture, yield $0.6 \mathrm{~g}(45 \%)$, mp 226-228 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{4}$: C, 73.89; H, 5.84; N, 20.27. Found: C, 74.30; H. 5.91: N, 20.25\%: ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.3,41.2,93.2,95.6,110.8,115.8,117.0$, $120.1,126.3,129.3,147.0,150.6,151.3,152.6$; MS: $\mathrm{m} / \mathrm{z} 276(100), 275(50), 260(5), 248(3), 232(5), 205(5)$.

3-Amino-2,4-dicyano-5-dimethylbiphenyl 4b: Yield 46%, mp 163-165 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3}$: C, 77.23; H, 4.75; N, 18.02. Found: C, 77.61; H. 4.98; N, 18.38%; IR $\left(\mathrm{CHCl}_{3}\right): 3420,3310\left(\mathrm{NH}_{2}\right), 2240(\mathrm{CN})$
cm^{-1}; UV (MeOH): $\lambda_{\text {max }} 366 \mathrm{~nm}$; Flu (MeOH): $\lambda_{\text {max }}$ $415 \mathrm{~mm} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.45\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.8(\mathrm{~s}$, NH_{2}, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.4(\mathrm{~s}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.5,96.5,115.8,116.2$. 120.3. $128.7,128.9,129.3,138.3,147.7,151.8,154.51 ; \mathrm{MS}:$ $\mathrm{m} / \mathrm{z} 232(\mathrm{M}-1,100), 218(18), 217(85), 205(85)$, 191(15), 178(25), 177(25).

3-Amino-2,4-dicyanobiphenyl 4 c : Yield 49% mp 149-151 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{~N}_{3}: \mathrm{C}, 76.88 ; \mathrm{H}$, 4.14; N, 19.17. Found: C, 77.01 ; H, 4.15 ; N. 18.82%; IR (KBr): 3410, $3344\left(\mathrm{NH}_{2}\right), 2208(\mathrm{CN}) \mathrm{cm}^{-1}$; UV (MeOH): $\lambda_{\text {max }} 355 \mathrm{~nm}$: Flu (MeOH): $\lambda_{\text {max }} 421 \mathrm{~nm}$: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 6.7-6.9 (bs, $3 \mathrm{H}, \mathrm{C}_{6}-\mathrm{H}$ and NH_{2}, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right) .7 .5(\mathrm{~s}, 5 \mathrm{H}$, Ar-H), $7.8(\mathrm{~d}, 1 \mathrm{H}$, $\left.\mathrm{C}_{5}-\mathrm{H}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 94.9 .95 .3,115.9,116.4$, $117.5,128.4,128.7 .129 .4,137.6,138.0,153.1$: MS: $\mathrm{m} / \mathrm{z} 219(100), 218(55), 192(75), 191(55), 164(50)$.

2,6-Dicyano-3-(2-furyl)-5-methylaniline 4d: Yield $49 \%, \mathrm{mp}$ 196-198 ${ }^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{~N}_{3}$: C, 69.95; H, 4.06; N, 18.82. Found: C, 70.29; H, 4.48; N, 18.42%; IR (KBr): $3408.3360\left(\mathrm{NH}_{2}\right), 2224(\mathrm{CN}) \mathrm{cm}^{-1}$;

UV (MeOH): $\lambda_{\text {max }} 371 \mathrm{~nm}$; Flu (MeOH): $\lambda_{\text {max }} 422 \mathrm{~nm}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.73\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 6.83\left(\mathrm{~s}, \mathrm{C}_{4^{\prime}}-\mathrm{H}\right), 7.14\left(\mathrm{C}_{6}-\mathrm{H}\right)$, $7.42\left(\mathrm{C}_{3^{\prime}}-\mathrm{H}\right)$ and $8.04\left(\mathrm{C}_{5^{\prime}}-\mathrm{H}\right)\left(A M X\right.$ pattern); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 21.9,87.7,112.5,114.6,115.5,116.3$, $136.0,145.3,148.2,148.8,153.7$, MS: m/z 223(100), 194(30),180(18), 168(5), 167(5), 166(5), 141(8), 140 (20).

3-Amino- 5-(2-chlorophenyl)- 2-4-dicyano- 1-methyl-cyclohexa-1,3-diene 5: Yield 66%, mp $180-182^{\circ} \mathrm{C}$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{Cl}: \mathrm{C}, 66.79 ; \mathrm{H}, 4.48 ; \mathrm{N}$, 15.57. Found: C, 66.91 ; H, 4.91; N, 15.68%; IR (KBr): 3458, $3312\left(\mathrm{NH}_{2}\right), 2210(\mathrm{CN}) \mathrm{cm}^{-1}$; UV (MeOH): $\lambda_{\max }$ 350 nm ; Flu $(\mathrm{MeOH}): \lambda_{\max } 414 \mathrm{~nm} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 2.2\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.5-3.0(2 \mathrm{H})$ and $4.3(1 \mathrm{H} A M X$ pattern), 5.6 (bs, $2 \mathrm{H} \mathrm{NH}_{2}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$), 7.15-7.55 (m, 4H, Ar-H); MS: m/z 269(271) (50), 268(10),267(15), 254(256)(8), 234(18), 233(5), 232(4), 219(5), 206(5), 205(4), 158(100), 143(20).

Acknowledgement

The authors thank UGC (Special Assistance Programme) and DST, New Delhi for financial support, and Dr V Jayathirtha Rao, IICT, Hyderabad for NMR data. The authors are also thankful to Dr P K Das for HRS measurement.

References

la Prabahar K J, Ramakrishnan V T, Sastikumar D, Selladurai S \& Masilamani V, Indian J Pure Appl Phys, 29, 1991, 382.
1b Shanmugasundaram P, Prabahar K J \& Ramakrishnan V T, J Heterocycl Chem, 30, 1993, 1003.
lc Shanmugasundaram P, Murugan P \& Ramakrishnan V T, Heteroatom Chem, , 7, 1996, 17.
1d Murugan P, Shanmugasundaram P, Ramakrishnan V T, Venkatachalapathy B, Srividhya N, Ramamurthy P, Gunasekaran K \& Velmurugan D, J Chem Soc Perkin Trans-2, 1998, 999.
1e Srividhya N, Ramamurthy P, Shanmugasundaram P \& Ramakrishnan V T, J Org Chem, 61, 1996, 5083.
2 Meyar M \& Mialocq J C, Opt Commun, 64, 1987, 264.
3a Fatiadi A J, Synthesis, 1978, 165; 241
3b Freeman F, Chem Rev, 49, 1969, 591.
3c Ducker J W \& Gunter M J, Aust J Chem, 28, 1975, 581
3d Green B, Khaidem I S, Crane R I \& Newaz S S, Tetrahedron, 32, 1976, 2997.
3e Khaidem I S, Singh S L, Singh L R \& Rahman Khan M Z, Indian J Chent, 35B, 1996, 911.
4a Drake N L \& Allen P, Org Syn, 3, 1923, 17.
4b Leuck G J \& Cejka L, Org Syn, 7, 1927, 42.
4c Kohler E P \& Chadwell, Org Syn, 1, 1922, 2.
5a Guggenheim E A, Trans Faraday Soc, 45, 1949, 714.
5b Guggenheim E A, Trans Faraday Soc, 44, 1948, 1007.
6a Lippert E, Z Elektrochent, 61, 1957, 962.
6b Mataga N, Kaifu Y \& Kozumi M, Bull Chem Soc Jpn, 29, 1956, 465.
7 Oudar J L \& Chemla D S, J Chem Phys, 66, 1977, 2664.
8a Mohanalingam K, Ray P C \& Das P K, Symth Mretals, 82, 1996, 47.
8b Clays K \& Persoons A, Phys Rev Lett, 66, 1991, 2980.
9 Kurtz S K \& Perry T T, J Appl Phys, 67, 1968, 3798.
10a King F E \& Felton D G I, J Chem Soc, 1948, 1371
10bHorning E C \& Horning M G, J Org Chem, 11, 1946, 95.
10c Vogel A I, A text book of practical organic chemistry, III Edn (ELBS, London) 1948, p. 332.
11 Vorlander D \& Kallow F, Amm, 1899, 309; 356.

