Indian Journal of Chemistry Vol. 37B,August 1998, pp.822-824

Note

Synthesis and antitubercular activity of novel thiazolidinone derivatives

Haresh Oza, Dharti Joshi & Hansa Parekh* Department of Chemistry, Saurashtra University, Raikot 360 005, India.

Received 16 October 1997; accepted (revised) 10 March 1998

4-Thiazolidinones 4a-o, 5a-o have been synthesised by the cyclocondensation of different schift's bases 3a-o with thioglycolic acid and thiolactic acid respectively. All the compounds were screened for their antitubercular activity against *Mycobacterium tuberculosis H37 Rv*.

4-Thiazolidinones are endowed a variety of biological activities¹⁻⁵. Further, paracetamol derivatives have been found to exhibit the therapeutic activity⁶⁻⁸. In order to explore the activities associated with this nucleus, we report herein the synthesis and antitubercular activity of the derivatives of thiazolidinone.

The reaction of p-hydroxy acetanilide with ethyl chloro acetate in the presence of dry acetone and anhyd. K₂CO₃ gave the desired ethyl p-acetamidophenoxy- acetate⁹ 1 which was converted to pacetamidophenoxy acetyl hydrazide⁹ 2 by treatment with a slight excess of hydrazine hydrate in absolute ethanol under reflux. The hydrazide 2 was condensed with different araldehydes to obtain corresponding N^{l} -substituted benzal, N^{2} -p-acetamidophenoxy acyl hydrazines 3a-o (schiff's bases). These different schiff's bases were cyclocondensed with thioglycolic acid and thiolactic acid to afford respective 2-aryl-3-p-acetamidophenoxy acetamido-5-H-4-thiazolidinones 4a-o and 2-aryl-3-p-acetamidophenoxy acetamido-5-methyl-4-thiazolidinones 5a-o (Scheme I).

The structure of the compounds synthesised were assigned on the basis of elemental analyses, IR, 1H NMR and mass spectral data. The compounds were evaluated for antitubercular activity towards a strain of *Mycobacterium tuberculosis H37 Rv*.

Scheme I

Antitubercular activity

The antitubercular evaluation of the compounds was carried out at Tuberculosis Antimicrobial Acquisition Co-ordinating Facility (TAACF) USA. Primary screening of the compounds for antitubercular activity have been conducted at 12.5 μ g/ml against *Mycobacterium tuberculosis H37 Rv* in BACTEC 12B medium using the BACTEC 460 radiometric system.

All the compounds are reported in Table I for their antitubercular activity data. It can be concluded from Table-I that compounds **3a-o** and **5ao** exhibited various degree of activity (0 to 35%) whereas compounds **4a-o** were inactive.

	Table I— Physical constants and antitubercular activity data of compounds 3a-o, 4a-o and 5a-o N (%)					and 5a-o . %)	% of
Compd	R	Mol. formula	m.p.(°C)	Yield(%)	Found	Calcd.	inhibition*
3a	-C6H5-	C17H17N3O3	212	52	13.58	13.50	17
3b	2-Cl-C ₆ H ₄ -	C17H16N3O3Cl	205	54	12.24	12.15	35
3c	4-C1-C ₆ H ₄ -	C ₁₇ H ₁₆ N ₃ O ₃ Cl	200	58	12.21	12.15	29
3d	2,4-Cl ₂ -C ₆ H ₃ -	C17H15N3O3Cl2	230	60	11.10	11.05	-
3e	3,4-(OCH ₃) ₂ -C ₆ H ₃ -	C ₁₉ H ₂₁ N ₃ O ₅	205	57	11.25	11.32	-
3f	4-N,N-(CH ₃) ₂ -C ₆ H ₄ -	C19H22N4O3	220	62	18.75	18.81	20
3g	C4H3O-	C15H15N3O4	195	63	13.90	13.95	15
3h	2-OH-C ₆ H ₄ -	C17H17N3O4	228	65	12.80	12.84	
3i	4-OH-C ₆ H ₄ -	C ₁₇ H ₁₇ N ₃ O ₄	155	61	12.78	12.84	2016 <u>-</u> 1917
3i	4-OCH ₃ -C ₆ H ₄ -	C ₁₈ H ₁₉ N ₃ O ₄	208	58	12.25	12.31	25
3k	3-(OCH ₃)-4-(OH)-C ₆ H ₃ -	C18H19N3O5	225	62	11.70	11.76	an b <u>a</u> tao
31	2-NO ₂ -C ₆ H ₄ -	$C_{17}H_{16}N_4O_5$	255	58	15.79	15.73	09
3m	3-NO ₂ -C ₆ H ₄ -	C17H16N4O5	232	60	15.79	15.73	2012
3n	-CH=CH-C ₆ H ₅	C19H19N3O3	234	55	12.40	12.46	04
30	3,4,5-(OCH ₃) ₃ -C ₆ H ₂ -	C ₂₀ H ₂₃ N ₃ O ₆	200	57	10.41	10.47	01
4a	C ₆ H ₅ -	C10H10N3O4S	218	50	10.80	10.90	00
4b	2-Cl-C6H4-	C19H18N3O4SCI	210	48	10.10	10.01	00
4c	4-C1-C6H4-	C19H18N3O4SCI	250	45	10.11	10.01	00
4d	2.4-Cl2-C6H3-	C10H17N3O4SCl2	205	47	9.20	9.25	00
4e	3.4-(OCH ₃) ₂ -C ₆ H ₃ -	$C_{21}H_{23}N_3O_6S$	290	41	9.38	9.43	00
4f	4-N.N(CH ₃) ₂ -C ₆ H ₄ -	C21H24N4O4S	320	44	13.12	13.08	00
4g	C4H3O-	C17H17N3O5S	265	47	11.28	11.20	00
4h	2-OH-C ₆ H ₄ -	C10H10N3O5S	241	46	9.68	9.74	00
4i	4-OH-C ₆ H₄-	C10H10N3O5S	245	49	10.41	10.47	00
4i	4-OCH3-C6H4-	C20H21N3O5S	175	49	10.19	10.12	00
4k	3-(OCH ₃)-4-(OH)-C ₆ H ₃ -	C20H21N3O6S	212	49	9.70	9.74	00
41	2-NO ₂ -C ₆ H ₄ -	C19H18N4O6S	205	40	13.10	13.02	00
4m	3-NO2-CoH4-	C10H18N4OpS	207	41	13.12	13.02	00
4n	-CH=CH-C ₆ H ₅	$C_{21}H_{21}N_3O_4S$	270	40	10.15	10.21	00
40	3.4.5-(OCH3)3-C6H2-	C22H25N3O7S	210	42	8.80	8.84	00
5a	C ₆ H ₅ -	C20H21N3O4S	215	45	10.45	10.52	00
5b	2-Cl-CoHa-	C20H20N3O4SCI	105	42	9.61	9.68	00
5c	4-Cl-C6H4-	C20H20N3O4SCI	207	44	9.59	9.68	00
5d	2.4-Cl2-C6H3-	C20H10N3O4SCl2	198	47	8.91	8.97	00
5e	3.4-(OCH ₃) ₂ -C ₆ H ₃ -	C22H25N3O6S	102	49	9.19	9.15	00
5f	4-N.N(CH ₃) ₂ -C ₆ H ₄ -	C22H26N4O4S	225	45	12.70	12.66	00
5g	C ₄ H ₃ O-	C18H19N3O5S	265	46	10.83	10.79	00
5h	2-OH-C ₀ H ₄ -	C20H21N3O5S	201	43	10.06	10.12	00
5i	4-OH-C6H4-	C20H21N3O5S	207	42	10.08	10.12	00
51	4-OCH3-C6H4-	C21H23N3O5S	300	48	9.72	9.79	28
5k	3-(OCH ₃)-4-(OH)-C ₆ H ₂ -	C21H23N3O6S	168	45	9.47	9.43	24
51	2-NO ₂ -C ₆ H ₄ -	C20H20N4O6S	178	47	12.54	12.61	27
5m	3-NO2-C6H4-	C20H20N4O6S	108	45	12.56	12.61	27
5n	-CH=CH-C6H5	C22H23N3O4S	218	42	9.80	9.88	18
50	3,4,5-(OCH3)3-C6H2-	C23H27N3O7S	162	43	8.52	8.57	27
* Mycobo	acterium Tuberculosis H37 Rv	,					

823

Experimental Section

All the melting points are uncorrected. Infrared spectra were recorded on Shimadzu 435-IR spectrophotometer, ¹H NMR spectra on Brucker-300F MHz spectrophotometer using TMS as an internal standard and mass spectra on Jeol Jms D-300 spectrophotometer.

 N^{1} -4-Methoxy benzal, N^{2} - ρ -acetamidophenoxyacyl hydrazine 3j. A mixture of 2 (0.01 mole) and 4-methoxy benzaldehyde (0.015 mole) was refluxed in absolute ethanol for 5-6 h. The contents were cooled and poured onto crushed ice and triturated with sodium bisulphite solution. The product was isolated and crystallised from dioxane to give 3j, yield 58%, m.p. 208° (Found : C, 63.39; H, 5.50, N, 12.25. C₁₈H₁₉N₃O₄ requires C, 63.34; H, 5.57, N, 12.31%); IR (KBr); 3300 (N-H), 1680 (C=O), 1660 (C=O of -NHCOCH₃), 1585 (C=N), 1245 (C-O-C sym.) 1030 cm⁻¹(C-O-C asym.); ¹H NMR $(TFA + DMSO-d_6); \delta 2.52 (s, 3H, -COCH_3), 4.07$ (s, 3H, -OCH₃), 4.94 (s, 2H, -OCH₂), 7.12-7.29 (m, 8H, Ar-H), 7.7 (s,1H, CH=N), 8.1 (s, 1H, -NH-N); MS : m/z 342 (M⁺), 279, 237, 233, 223, 208, 203, 197, 191, 175, 165, 119, 108, 91 and 77.

Compounds **3a-o** were prepared similarly and the physical data are given in Table I.

2-(4'-Methoxy phenyl)-3-ρ-acetamidophenoxy acetamido-5-H/methyl-4-thiazolidinones 4j, 5j. A mixture of **3j** (0.01 mole) and thioglycolic acid/ thiolactic acid (0.01 mole) was heated on an oil-bath at 120-25°C for 12 h. The reaction mixture was cooled and treated with 10% sodium bicar-bonate solution. The product was isolated and crystallised from ethanol.

4j : Yield 49%, m.p. 175° (Found : C, 57.60; H, 5.01, N, 10.19. $C_{20}H_{21}N_3O_5S$ requires C, 57.83; H, 5.06, N, 10.12%); IR (KBr) : For **4a**, 3300 (N-H), 1700 (C=O thiazolidinone moiety),1670 (C=O), 1660 (C=O of -NHCOCH₃), 1275 (C-O-C sym.) 605 cm⁻¹(C-S-C); ¹H NMR (CDCl₃ + DMSO-*d*₆); δ 2.56 (s, 3H, -COCH₃), 3.82 (s, 2H, -CH₂-CO), 4.95 (s, 2H, -OCH₂), 5.96 (m, 1H, -S-CH-Ar), 6.9-7.6 (m, 9H, Ar-H), 8.1 (s,1H, -NHCO), 8.31 (s, 1H, -

NH-N) MS : For 4e : m/z 446 (M⁺), 308, 247, 233, 191, 174, 165, 159, 134, 121 and 77.

5 i : Yield 48%, m.p. 300° (Found : C, 58.62; H, 5.39, N, 9.74. $C_{21}H_{23}N_3O_5S$ requires C, 58.74; H, 5.36, N, 9.79%); IR (KBr) : 3300 (N-H), 1715 (C=O thiazolidinone moiety),1680 (C=O), 1660 (C=O of -NHCOCH₃), 1225 (C-O-C sym.) 1055 (C-O-C asym.) 700 cm⁻¹(C-S-C); ¹H NMR (CDCl₃ +TFA); δ 1.70-1.72 (d, 3H, -CH-CH₃), 2.35 (s, 3H, -COCH₃), 3.88 (s, 3H, -OCH₃), 4.20 (q, 1H, -CH-CH₃), 4.81 (S, 2H, -OCH₂); 5.96 (s, 1H, -S-CH-Ar) 6.93-7.68 (m, 8H, Ar-H), 8.32 (s, 1H, -NH-N).

Compounds 4a-o and 5a-o were prepared similarly and the physical data are given in Table I.

Acknowledgement

The authors are thankful to Dr. A R Parikh, Prof. and Head. Dept of Chemistry, Saurashtra University for providing facilities and valuable guidance and Dr Cecil D Kwong, Research Chemist, Tuberculosis Antimicrobial Acquisition Co-ordinating Facility (TAACF) for antitubercular facility.

References

- 1 Ladva K, Dave V & Parekh H, J Indian Chem Soc, 68, 1991, 379.
- 2 Vashi B S, Mehta D S & Shah V H, Indian J Chem, 34B, 1995, 802.
- 3 Hogale M B, Uthale A C & Nikam B P, *Indian J Chem*, 30B, **1991**, 717.
- Viltaria D M, Orazio M, Eugenio P, Anlonia C, Federico G & Adde B, J Med Chem, 35, 1992, 2910; Chem Abstr, 117, 1992, 62288t.
- 5 Pandya D & Nair K B, *Pharemazie*, 48, **1993**, 414; *Chem Abstr*, **120**, **1994**, 106843p.
- 6 Bjune K, Stubhaug A, Dodgson M S & Breirik H, Acta Anaestheriol Scnad, 40(4), 1996, 399; Chem Abstr, 125, 1996, 491.
- 7 Claris D A, S. African Z A 92, 01, 1991, 849; Chem Abstr, 119, 1993, 34322x.
- Bianchi M & Paneri A E, Br J Pharmacol, 117(1), 1996, 130; Chem Abstr, 124, 1996, 135088j.
- 9 Nargund L V G, Reddy G R N & Hariprasad V, Indian J Chem, 35B, 1996, 499.