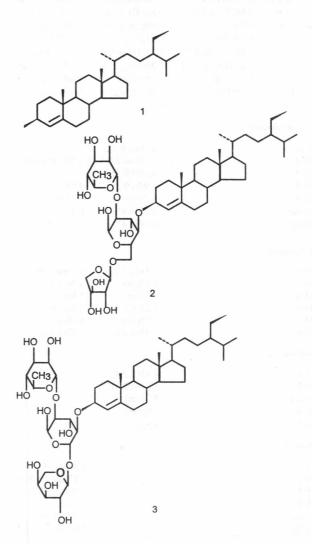
Studies on the two new stereo-saponins from *Morchella conica*

Shangzhen Zheng*, Liming Gao, Shuhe Kang & Xuwei Shen

Department of Chemistry, Northwest Normal University, Lanzhou, 730070, P R China

and

Xiaoxiong Wang Petroleum processing and Chemical Research Institute of Lppccc, Lanzhou, 730060, P R China


Received 3 September 1997; accepted (revised) 16 March 1998

Two new stereo-saponins 3-O- β -[{2-L-rharnnopyranosyl (1 \rightarrow 2)- β -D-apiofuranosyl (1 \rightarrow 6)}- β -D-glucopyranosyl]rosaterol 2 and 3-O- β -[{2-L-rharnnopyranosyl (1 \rightarrow 2)- β -D-xylopyranosyl}- β -D-glucopyranosyl]rosaterol 3 have been isolated from *Morchella coniva*. Their structures have been established on the basis of spectroscopic analyses and chemical evidence.

The genus *Morchella* comprises about 12 species in China, of them, many have been used as traditional chinese folk drug for nourishing, anti-cancer and reinforcing immunity^{1,2}. However, very little is known about its chemical constituents. We have examined the whole plant of *Morchella conica*, and now report for the first time the isolation and identification of two new rosaterol glycosides 2 and 3.

Compound 2 was obtained as a white fragmentary crystal, m.p. 250-52°. The FAB-MS of 2 exhibited the quasimolecular ion peaks at m/z 861 [M+Li] and 877 [M+Na], confirming the molecular formula to be $C_{46}H_{78}O_{14}$. The usual colour test indicated 2 to be a steroid saponin.

Acid hydrolysis of **2** resulted in the formation of an aglycone **1**, and monosaccharides identified as L-rhamnose, D-apiose and D-glucose. Purified aglycone **1** showed in its ¹H NMR spectrum signals due to six methyl groups at δ 0.65 (3H, 18-H₃), 0.84 (6H, d, *J*=7.0, 26-H₃ & 27-H₃), 0.86 (3H, d, *J*=7.0, 21-H₃), 0.96 (3H, d, *J*=6.0, 29-H₃) and 1.01 (3H, 19-H₃), and four proton signals at δ 1.24 (1H, m, *J*=8.0, 25-H), 1.26 (1H, q, *J*=7.4, 20-H), 3.60 (1H, m, 3-H) and 5.40 (1H, brs, 4H), respectively. The IR spectrum (KBr) showed absorption for hydroxyl groups (3410, 1060 cm⁻¹), double bonds (1634, 950 cm⁻¹) and cyclopentane (1456 cm⁻¹). Based

on the comparison of spectral data (Table I) and physical characteristic with those of β -rosaterol³, aglycone was deduced β -rosaterol 1.

The FAB-MS of saponins 2 showed signals at m/z 708 (M-146), 722 (M-132) and 413 (M-146-132-163), correspond to the subsequent loss of a rhamnosyl moiety and a apiosyl moiety, thereby indicating the α -L-rhamnose and β -D-apiose were terminal sugars and β -D-glucose was attached to the aglycone. From a detailed comparison of the ¹³CNMR data of 2 with aglycone (Table II), we found downfield shift of +12.3 ppm for C-3 indicating glycosidic linkage between sugar moiety and hydroxyl at C-3 of aglycone. The sugar carbon signals (Table II) were easily assigned, glycosidation

Note

Table I— ¹ HNMR data of compounds 1-3					Table II— ¹³ CNMR data of compounds 1-3						
Protons	1	2	3	Carbon	1	DEPT	2	DEPT	3	DEPT	
C18-CH3	0.61(3H)	0.65(3H)	0.68(3H)	C-1	37.6	CH ₂	37.3	CH ₂	37.2	CH ₂	
C26,27-CH3	0.81(6H,d,7.0)	0.84(6H,d,7.0)	0.82(6H,d,7.0)	2	31.6	CH ₂	29.6	CH ₂	29.0	CH ₂	
C ₂₁ -CH ₃	0.86(3H,d,7.0)	0.86(3H,d,7.0)	0.86(3H,d,7.0)	3	71.8	CH	84.1	CH	84.9	CH	
C_{29} -CH ₃	0.93(3H,d,6.2)	0.90(3H,d,6.0)	0.92(3H,d,6.4)	4	121.7	CH ₂	118.5	CH ₂	119.0	CH ₂	
		1.01(3H)	1.01(3H)	5	140.8	C	141.5	C	141.5	C	
C19-CH3	1.04(3H)		· · ·	6	42.3	CH	41.8	CH	41.8	CH	
C25-H	1.22(1H, m, 8.0)	1.24(1H,m,8.0)	1.24(1H,m,8.0)	7	31.9	CH ₂	31.9	CH ₂	31.9	CH ₂	
C20-H	1.27 (1H, q, 7.4)	1.26(1H,q,7.4)	1.25(1H,q,7.4)	8	31.9	CH	32.3	CH	30.0	CH ₂ CH	
C3-H	3.5 (H, m)	3.60(H,m)	3.64(H,m)	°	50.6	CH	50.6	CH	51.0	CH	
C₄−H	5.31(1H, brs)	5.40(1H,brs)	5.30(1H,brs)	10	36.5	C	37.5	C	37.0	C	
C3-OH	2.74(1H)			11	21.1	CH ₂	20.8	C CH₂	20.8	C CH₂	
				12	28.3	CH ₂ CH ₂	28.1	CH ₂ CH ₂	28.3	CH ₂ CH ₂	
Sugar Glucose				12	42.3	C C	41.0	C	42.0	C C	
11		4.36(d,8.0)	4.36(d,8.0)	13		CH	57.1		42.0 57.2		
H-1) 3.40(dd,8.0/9.3)		56.8			CH		CH	
H-2		5.70(t,9.3)	5.75(t,9.3)	15	24.3	CH ₂	24.3	CH ₂	24.0	CH ₂	
H-3				16	39.8	CH ₂	39.0	CH ₂	39.6	CH ₂	
H-4		4.94(t,9.3)	4.94(t,9.3)	17	56.1	CH	55.8	CH	55.9	CH	
H-5		3.79(s)	3.75(s)	18	11.9	CH ₃	12.3	CH ₃	12.0	CH ₃	
Η-6α		6.15-6.45	6.15-6.50	19	19.8	CH ₃	21.0	CH ₃	21.0	CH ₃	
Η-6β		6.19-6.47	6.25-6.47	20	36.2	CH	36.0	CH	36.2	CH	
				21	18.8	CH ₃	18.7	CH ₃	18.8	CH ₃	
Rhamnose				22	34.0	CH ₂	33.5	CH ₂	34.4	CH ₂	
			5 10(10 1)	23	26.1	CH ₂	26.8	CH ₂	26.0	CH ₂	
H-1		5.18(d,2.1)	5.19(d,2.1)	24	45.9	CH	46.0	CH	45.8	CH	
H - 2		3.90(m)	3.90(m)	25	29.2	CH	29.3	CH	29.0	CH	
H-3		3.50(m)	3.50(m)	26	19.4	CH ₃	19.4	CH ₃	19.6	CH ₃	
H-4		3.28(t,9.5)	3.28(t,9.5)	27	19.1	CH ₃	18.7	CH ₃	18.8	CH ₃	
H-5		3.55(m)	3.55(m)	28	23.1	CH ₂	24.0	CH ₂	22.8	CH	
H-6		1.07(d,6.0)	1.07(d,6.0)	29	12.0	CH ₃	12.4	CH ₃	12.8	CH ₃	
Apiose				C1							
H-1		4.91(d,2.4)		Glc							
H-2		3.84(d,2.4)		1			95.2	CH	95.0	CH	
Η-4α		3.74(m)		2			78.5	CH	77.8	CH	
		3.92(m)		3			74.8	CH	74.8	CH	
Η-4β		3.53(s)		4			76.3	CH	76.8	CH	
H-5		3.33(8)		5			74.3	CH	74.8	CH	
Xylose				6			63.2	CH ₂	63.2	CH CH ₂	
H-1			4.40(d,7.5)								
H-2			3.17(dd,7.5,9.0)								
H-3			3.30(m)	Rhamn							
H-4			3.35(m)	1			102.8	СН	102.9	CH	
Η-5α			3.2(t, 10.5)	1							
Η-5β			3.85(dd,10.5,3.5)	2			73.0	CH	72.9	CH	
<u>11-5p</u>				3			71.3	CH	71.5	CH	
				4			74.0	CH	74.3	CH	
				5			70.2	CH	70.2	CH	
shifts or	1 C-2 (+3.7 pp	m), C-6 (+1.7	ppm) and C-4	6			18.5	CH ₃	19.5	CH ₃	
			he presence of	APT							
a nodal	rhamnopyran	osyl residue g	glycosylated at	API							
			anosyl residue	1			108.9	CH			
				2			77.1	СН			
			C-4 connected	3			79.8	C			
with C-	3 of aglycone ⁴	^{1,5} . On the basi	is of analytical	4			75.8	CH ₂			
				5			65.8	CH ₂			
results c	compound 2 w	as identified a	s 3-O-β-[{2-L-	2			05.0	C/112			

Xyl

1

105.0

74.9

77.3

70.5

67.0

CH

CH

CH

CH

 CH_2

β-D-glucopyranosyl]-rosaterol 2.
Compound 3 was obtained as a white amorphous powder, m.p. 240-42°. The FAB-MS of 3 showed the quasimolecular ion peaks at m/z 861 [M+Li] and 877 [M+Na], confirming the molecular formula to be C₄₆H₇₈O₁₄. A detailed comparison of

rharnnopyranosyl $(1\rightarrow 2)$ - β -D-apiofuranosyl $(1\rightarrow 6)$ -

Experimental Section

Melting points were determined on kofler hot plate and are uncorrected. UV spectra were recorded on a Japan shimadzu UV-300 double beam spectrophotometer; IR spectra on a Perkin-Elmer 986 spectrometer (KBr disks); NMR spectra on a AM-400 BruKer spectrometer (400 MHz for ¹H and 100 MHz for ¹³C), with TMS as internal standard (chemical shifts in δ ppm); and mass spectra on MAT-44S and ZAB-HS mass spectrometer; silica gel (200-300 mesh, 100-200 mesh).

Collection of plant material. The whole plant of *M. conica*, was collected from Gansu province, P R China, in May 1993, a voucher specimen identified by Prof. Y S Lian and is preserved in the Herbarium of the Botany Department, Northwest Normal University, Lanzhou, 730070, P R China.

Isolation and extraction. Dried plant (3 kg) were pulverized and soaked in petroleum etherether-acetone (1:1:1, v/v/v) (three time). The residue obtained by concentration of extract solution under reduced pressure, was subjected to column chromatography over silica gel (100-140 mesh, 0.5 kg), and eluated with petroleum. ether-ethyl acetate and ethyl acetate-methanol in increasing polarity. Rechromatography of selected fractions and purification by preparative TLC yielded a crystalline

compound 2 (24 mg), and compound 3 as an amorphous powder (18 mg).

Compound 2: White fragment crystals, m.p. 250-52°, IR(KBr): 3410, 2850, 2960, 1640, 1452, 1382, 1370, 1040 cm⁻¹; MS (m/z): 877, 861, 854, 722, 708, 576, 413, 396, 381, 314, 273, 255, 146, 132; ¹³CNMR and DEPT data are listed in Table II and sugar proton signals are listed in Table I (Found: C, 64.61; H, 9.51. $C_{46}H_{78}O_{14}$ requires C, 64.46; H, 9.13%).

Compound 3: White amorphous powder, m.p. 240-42°, IR(KBr): 3410, 2854, 2950, 1648, 1450, 1382, 1370, 1040 cm⁻¹; MS (m/z): 877, 861, 854, 722, 708, 576, 413, 396, 381, 314, 273, 255, 146, 132; ¹HNMR, ¹³CNMR and DEPT data are listed in Tables I, II respectively (Found: C, 64.52; H, 9.20. $C_{46}H_{78}O_{14}$ requires C, 64.46; H, 9.13%).

Aglycone 1: white needle crystals, m.p. 123-24°; IR(KBr): 3410, 2822, 2915, 1634, 1456, 1376, 1368, 950 cm⁻¹; MS (m/z): 414, 399, 381, 329, 314, 273, 255, 107; ¹³CNMR and DEPT data were listed in Table II (Found: C, 84.07; H, 12.16. $C_{29}H_{49}O$ requires C, 84.05; H, 12.02%).

Acknowledgement

This work was supported by the Natural Science Foundation of Gansu Province, P R China.

References

- 1 Chen G L, Shiyongun, 3, 1994, 36.
- 2 Zhu D X, Jiangsu Shiyongiun, 14, 1993, 37.
- 3 Yu D F, Hu B H, Sha H & Zheng G H, Zhong cao yao, 22, 1991, 3.
- 4 Liu C L & Chen Y Y, Zhiwu Xuebao, 27, 1985, 68.
- 5 Liu C L & Chen Y Y, Yao xue xuebaco, 18, 1983, 597.