Rapid Communication

Cyclotriveratrylenes: Synthesis of a new C₃-symmetric chiral amino alcohols[†]

R Mathew Thomas & Deevi S Iyengar*

Organic Division-II, Indian Institute of Chemical Technology, Hyderabad 500 007, India

Received 5 May 1998; accepted 3 June 1998

Synthesis of a new class of chiral amino alcohols based on cyclotriveratrylene is described.

β-Amino alcohols have been shown to be particularly suitable versatile chiral auxillaries¹ for affecting the enantioselective addition of organometallic reagents to aldehydes, especially dialkyl zinc have received special attention due to development of chiral catalysts that enable the improvement of chemoselectivity and enantioselectivity of the addition². In search of preparation of such new chiral catalyst we wish to report herein a novel type of β-amino alcohol based on optically active glycidyl cyclotriveratrylenes which can be exploited as a potential chiral auxillary in asymmetric synthesis.

Cvclotriveratrylenes are excellent rigid bowl shaped frame works which have drawn current interest in the field of host-guest chemistry³. Especially, the accessibility of possessing several functionalized C₃-symmetric congeners are particularly attractive for the design of ligands capable of transition metal coordination leading to complexes in which the metal could be accommodated in the cyclotriveratrylene cavity or placed in close proximity of this cavity⁴. Such systems are of great interest for the development of supramolecular catalysts. One of the most interesting aspect of C₃-cyclotriveratrylene is the chiroptical properties⁵ which has been the object of many studies in the area of stereochemistry.

In this communication, we wish to report the synthesis of a novel C_3 -symmetric cyclotriveratrylene bearing optically active glycidyl groups at the periphery of the aromatic rims with subsequent transformation to β -amino alcohols with potential applications as chiral auxillaries.

Our synthetic strategy is based on the C₃-racemic cyclotriphenolene⁶ 1 as a key intermediate which on treatment with 3,3 equivalents of (S)-(+)glycidyl tosylate⁷ in DMF at 50 °C in the presence of NaH gave a mixture which after usual workup and purification by chromatography furnished a mixture of diastereomeric trisglycidyl cyclotriveratrylene 2 in a overall yield of 53% (Scheme I). Several attempts were made to separate these diasteromers physically either by chromatography or crystallization. But all of them proved to be unsuccessful

On close scrutiny of ¹H NMR spectrum revealed clearly a pair of signal pertaining to two distinct diastereomers (MSSS, PSSS) in almost 1:1 ratio. Thus, refluxing the diastereomeric trisglycidyl cyclotriveratrylene 2 in methanol with pyrolidine morpholine afforded the unseparable and diastereomeric β -amino alcohols 3 and 4 in >80% yield (Scheme I). At this juncture we could not provide an evidence for the diastereomers 3 and 4 in ¹H NMR spectra due to insignificant differences in chemical shifts of the diastereomers. However, the regioselective attack of the secondary amine at the terminal position of the epoxide to give 3 and 4 was firmly confirmed from the ¹H NMR analysis by the presence of a CHOH resonance at 4.13-4.25 ppm, indicating that the epoxide opening with the amine proceeded with very high regioselectivity without the loss of diastereomeric purity^{8,9}.

Compounds 3 and 4 belonged to the general class of dialkylamino alcohols. Preliminary results

[†]IICT Communication No. 3947.

have shown that 3 and 4 possess complexing property toward Zn^{2+} cation.

In conclusion the β -amino alcohols 3 and 4 have unique structural features because of their rigid frame-work which can be used as a potential chiral auxilliary¹⁰ for enantioselective ethylation of benzaldehydes. Work towards the application of the chiral auxillary is in progress and will be reported elsewhere.

Experimental Section

General. Melting points were determined using a Kjeldahl flask containing liquid paraffin and are uncorrected. ¹H NMR spectra were recorded at 400 MHz in CDCl₃ using TMS as internal reference (chemical shifts in δ , ppm). Mass spectra were recorded on LSIMS [FAB] using MNBA as a matrix.

2, 7, 12-Triethoxy-3,8,13-tris(2, 3-epoxypropoxy) cyclotriveratrylene (MSSS, PSSS). To a stirred solution of 1 (0.5g 1.1 mmoles) in DMF (9 mL)

was added sodium hydride [0.14g of a 60% (w/w) dispersion in mineral oil, 5.8 mmoles] under nitrogen atmosphere, and the mixture heated at 80°C for 30 min., and then cooled to room temperature. To this tosylate (0.83g 3.6 mmoles) in DMF (4 mL) was added dropwise through a syringe. The reaction mixture was stirred at 50 °C for 3 hr. The solvent was stripped in vacuo and the dark brown residue partitioned between dichloromethane (40 mL) and water (23 mL). The organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent evaporated. The residue was purified by flash chromatography on silica gel [eluting with benzene-ethyl acetate, 8:2 (v/v)] furnished 2 as a white crystalline solid (0.36g 53%), mp 112 °C; $[\alpha]_D^{25}$ + 7.5° (c 1, CHCl₃); ¹H NMR: 1.40 (t, 9H, -CH₃), 2.65 (m, 3H, 3-Gly H), 2.91 (m, 3H, 3-Glv H), 3.25 (m, 3H, 3-Glv H), 3.52 (d, J=14.2 Hz, 3H, ArCH₂Ar), 3.91 (m, 6H, ArOCH₂Gly), 4.01 (q, 6H, ArOCH₂CH₃), 4.72 (d, 14.2 Hz, 3H, ArCH₂Ar), 6.80 (2s, 6H, ArH); and 1.40 (t, 9H,-CH₃), 2.73 (m, 3H, 3-Gly H), 2.94 (m, 3H, 3-Gly H), 3.33 (m, 3H, 3-Gly H), 3.52 (d, J=14.2 Hz, 3H, ArCH₂Ar), 4.01(q, 6H, ArOCH₂CH₃), 4.21 (m, 6H, ArOCH₂Gly), 4.72(d, 14.2 Hz, 3H, ArCH₂Ar), 6.95 (2s, 6H, ArH); MS (FAB): m/z 618 [M⁺ + H]. Anal. Calcd for C₃₆H₄₂O₉; C, 69.90; H, 6.79. Found: C, 69.41 H, 7.01%.

General procedure for the preparation of 3 and 4. In methanol (1 mL) were added 2 (0.08 mmole) and amine (0.25 mmole) and the mixture was refluxed under nitrogen atmosphere for 18 hr. Excess of solvent was evaporated under *vacuo*. The residue was purified over neutral Al_2O_3 column [eluting with ethyl acetate-methanol, 7:3 (v/v)] to afford the title compounds.

2, 7, 12-Triethoxy-3, 8, 13-tris(3-pyrolodinyl-2hydroxy propoxy) cyclotriveratrylene (MSSS, PSSS) 3: Yield 61 mg (91%); $[\alpha]_D^{25} + 2.3^\circ$ (c 1, EtOH); ¹H NMR: 1.41 (t, 9H,-CH₃), 1.59 (m, 12H, CH₂CH₂), 2.81 (m, 12H, *N*-CH₂), 3.53 (d, *J*=14.0Hz, 3H, ArCH₂Ar), 3.62 (m, 6H, *N*-CH₂), 4.21 (q, 12H, ArOCH₂), 4.35(m, 3H, CHOH), 4.72 (d, *J*=14.0Hz, 3H, ArCH₂Ar), 6.85 (2s, 6H, ArH); MS(FAB): m/z 832 [M⁺ + H]. Anal. Calcd for C₄₈H₆₉N₃O₉: C, 69.31; H, 8.30; N; 5.05. Found: C, 69.10; H, 8.46; N 4.01%.

2, 7, 12-Triethoxy-3, 8, 13-tris(3-morpholinyl-2hydroxypropoxy)cyclotriveratylene (MSSS, PSSS) 4: Yield 67 mg (94%); $[\alpha]_D^{25} + 3.4^\circ$ (c 1,6.9, EtOH); ¹H NMR: 1.42 (t, 9H,-CH₃), 2.60 (m, 18H, N-CH₂), 3.01 (s, br, 3H,3OH), 3.43(d, J=14.0Hz, 3H, ArCH₂Ar), 3.71 (br, m, 12H, OCH₂), 4.01 (q, 6H, ArOCH₂), 4.13(m, 3H, CHOH), 4.72(d, J=14.0Hz, 3H, ArCH₂Ar), 6.83 (2s, 6H, ArH); MS(FAB): m/z 880 [M⁺ + H], Anal. Calcd for C₄₈H₆₉N₃O₁₂: C, 65.52; H, 7.84; N, 4.77. Found: C, 65.27; H, 8.01; N, 4.35%.

Acknowledgement

One of the authors(R M T) is thankful to UGC, New Delhi for financial assistance.

References

- Noyori R, In: Asymmetric catalysis in organic synthesis, (Wiley, New York) 1994, Chapter 5, p. 255.
- 2 Soai K & Niwa S, Chem Rev, 92, 1992, 833.
- 3 Collet A, Dutasta J P, Lozach B & Canceill J, *Topics Curr Chem*, 165, 1993, 103.
- 4 Matouzenko G, Veriot G, Dutasta J P, Collet A, Jordanov J, Variet F, Perrin M & Lecocq S, New J Chem, 19, 1995, 881.
- 5 Collet A, Gabard J, Jacques J, Cesario M, Guilhem J & Pascard C, J Chem Soc Perkin Trans I, 1981, 1630.
- 6 Canceill J, Collet A, Gabard J, Gottarelli G & Spada G P, J Am Chem Soc, 107, 1985, 1299.
- 7 Baldwin J, Raab A W, Mensler K, Arison B H & McClure D E, *J Org Chem*, 43, 1978, 4876.
- 8 Gao Y, Hanson R M, Klunder J M, Ko S Y, Masamune H & Sharpless K B, J Am Chem Soc, 109, 1987, 5765.
- 9 Jurczak J, Pikul S & Bauer T, Tetrahedron, 42, 1986, 447.
- 10 Noyori R & Kitamura M, Angew Chem Int Ed Engl, 30, 1991, 49.