Note

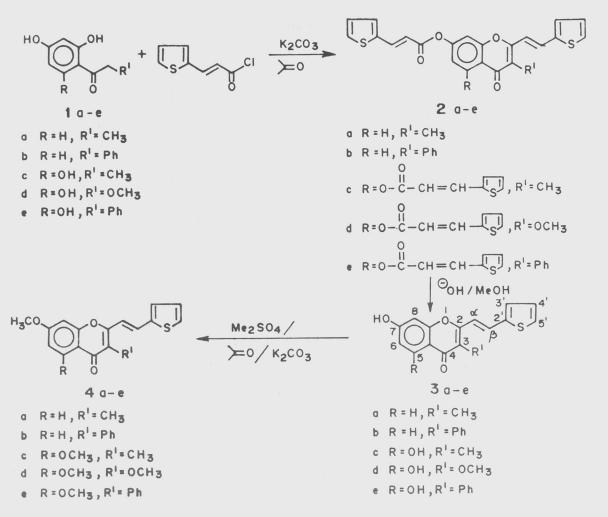
A facile synthesis of 2-(2'-vinylthiophene)chromones by the modified Baker-Venkataraman tansformation

Mohd Basheer Miya, S Ramadas & G L David Krupadanam* Department of Chemistry, Osmania Univeresity, Hyderabad 500 007, India Received 8 July 1997; accepted (revised) 26 November 1997

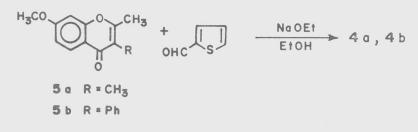
The modified Baker-Venkataraman transformation has been utilised for the synthesis of 2-(2'-vinylthiophene)chromones **3a-e** which on methylation furnishes 7methoxy- or 5,7-dimethoxy-2-(2'vinylthiophene)chromones **4a-e**

2-Styrylchromones have been synthesized earlier by (i) consensation of cinnamic anhydride and sodium cinnamate with 2,4-dihydroxyphenyl benzyl ketone¹, (ii) condensation of 2-methylchromones with benzaldehvdes in the presence of sodium ethoxide², (iii) Baker-Venkataraman transformation involving the reaction of o-hydroxyacetophenones with cinnamoyl chlorride in acetone-K₂CO₃ medium^{3,4}, and (iv) modified Witting synthesis⁵. We have earlier reported the synthesis of 2-(2'vinylfuryl)chromones, which are structurally similar to 2-strylchromones, by the Baker-Venkataraman transformation⁶. We now report a facile synthesis of 2-(2'-vinylthiophene)chromones (3a-e).

modified The Baker-Venkataraman transformation has now been applied for the synthesis of 7-hydroxy-3-methyl-(3a)-, 7-hydroxy-3-phenyl- (3b)-, 5,7-dihydroxy-3-methyl- (3c)-, 5,7dihydroxy-3-methoxy- (3d)- and 5,7-dihyddoxy-3phenyl-(3e)-2-(2'-vinylthiophene)chromones. Thus, condensation of respropiophenone $1a^7$, 2,4dihydroxyphenyl 1b⁸. benzyl ketone phloropropiophenone $1c^7$, ω -methoxyphloracetophenone 1d⁹ and 2,4,6-trihydroxyphenyl benzyl ketone 1e¹⁰ with thiophene-2-acroyl chloride in acetone-K₂CO₃ afforded directly 7-(2'-


thiopheneacroyloxy)-and 5,7-di(2'-thiopheneacroyloxy)-2-(2'-vinulthiophene) chromones (2a,b and 2c-e) respectively. Chromones 2a-e were hydrolysed with 5% methanolic potassium hydroxide to yield hydroxy-2-(2'-vinylthiophene)chromones 3a-e in 50% vield (Scheme I). The structures of the compounds were assigned by the analysis of their spectral data. In 3a the carbonyl peak appeared at 1618 cm⁻¹ and UV peaks at 239, 272 and 376 nm indicating extended conjugation. In ¹H NMR of 3a, the α - and β -protons appeared at δ 7.50 and 8.00 as doublets with J = 16.0 Hz indicating their transconfiguration. The three thiophene protons appared at δ 7.39-8.38 as a multiplet. Other chromone protons appeared at δ 7.80 (d, J = 10 Hz, H-5), 7.00 (dd, J = 10, 2.5 Hz, H-6), and 7.00 (d, J = 2.5Hz, H-8). The C-3 methyl protons appeared as a singlet at δ 2.30. The MS of 3a showed M⁺ at m/z 284.

2-(2'-Vinylthophene)chromones 3a-e on methylation with dimethyl sulphate in acetone-K₂CO₃ medium furnhised the corresponding 7-O-methyl- and 5,7-di-O-methyl ethers **4a-e**.


With a view to confirm the structures of the products obtained from Baker-Venkataraman transformation, **4a** and **4b** were synthesised by another route (Scheme II). 7-Methoxy-2,3-dimethylchromone $5a^{11}$ and 7-methoxy-3-phenyl-2-methylchromone $5b^{1}$ on condensation with thiophene-2-carboxyaldehyde in NaOEt/EtOH gave **4a** and **4b** respectively in 40% yield.

Experimental Section

General.Melting points were determined in a sulphuruc acid-bath and are uncorrected. ¹H NMR spectra were recorded on a Varian-Gemini instrument at 200 MHz in DMSO- d_6 . ¹³C NMR spectra were recorded on a Varian-Gemini 200 spectrometer at 50.3 MHz. IR spectra were recorded on FT-IR Perkin-Elmer 1710 spectrophotometer and UV spectra on a Perkin-Elmer Lambda UV-Vis spectrophotometer. MS

Scheme I

were recorded on a VG Micromass 7070 H spectrometer.

General methods for synthesis of 7-hydroxyand 5,7-dihydroxy-2-(2'-vinylthiophene)chromones 3a-e. A solution of o-hydroxyacetophenones 1a-e (10 mmoles) and thiophene-2-acroyl chloride (20 mmoles for 1a, 1b; 30 mmoles for 1c-e) was refluxed with anhydrous K₂CO₃ (10 g) in acetone (200 mL) for 15 hr on a water-bath. Acetone was removed and the residue treated with cold water to give yellow solids 2a-e which were hydrolysed with 5% methanolic potassium hydroxide (100 mL) by refluxing for 1 hr. Thereafter, MeOH was removed under reduced pressure and the residue treated with water and neutralized with dil. HCl. The product was washed with 5% aqueous NaHCO₃ and the remaining yellow solid purified by chromatography over silica gel (using eluent; chloroform-acetone,

8:2 v/v) to give 3a-e in 50% yield.

7-Hydroxy-3-methyl-2-(2'-vinylthiophene)

chromone 3a: It crystallised from methanol as yellow needles, m.p. 292°; IR (KBr): 1618 cm⁻¹ (C=O); UV(nm, log ε): 208 (4.77), 239 (4.82), 272 (4.88), 376 (5.02); ¹H NMR: δ 7.80 (d, 1H, J = 10 Hz, C₅-H), 7.00 (dd, J = 10, 2.4 Hz, C₆-H), 7.39 (s, C₇-OH), 7.00 (d, J = 2.4 Hz, C₈-H), 7.50 (d, J = 16 Hz, α-H), 8.00 (d, J = 16 Hz, β-H), 7.39-8.38 (m, C₃', C₄', C₅'-H), 2.30 (s, C₃-CH₃); MS: m/z 284 (M⁺); Anal. Calcd for C₁₆H₁₂O₃S: C, 67.59; H, 4, 25. Found : C, 67.60; H, 4.22%.

7-Hydroxy-3-phenyl-2-(2'-vinylthiophene)

chromone 3b: It crystallised from methanol as bright yellow needles, m.p. 225°; IR (KBr): 1635 cm⁻¹ (C=O); UV (nm, log ε): 208 (4.85), 232 (4.94), 266 (4.96), 366 (5.10); ¹H NMR: δ 7.90 (d, J = 9 Hz, C₅-H), 6.80 (m, C₆-H), 7.39 (C₇-OH), 6.90 (bs, C₈-H), 6.50 (d, J = 16 Hz, α-H), 7.70 (d, J = 16 Hz, β-H), 7.20-7.50 (m, 3'-H, 4'-H, 5'-H and 3-Ph); MS: m/z 194 (M⁺); Anal. Calcd for C₂₁H₁₄O₃S: C, 72.81; H, 4.07. Found: C, 72.83; H, 4.04%.

5,7-Dihydroxy-3-methyl-2-(2'-vinylthiophene) chromone 3c: It crystallised from methanol as yellow crystals, m.p. 295°; IR (KBr): 1645 cm⁻¹ (C=O); UV (nm, log ε): 205 (4.78), 235 (4.84), 262 (4.89), 380 (5.05); ¹H NMR: δ 12.50 (s, C₅-OH), 6.80 (d, J = 2 Hz, C₆-H), 7.90 (s, C₇-OH), 6.85 (d, J = 2 Hz, C₈-H), 6.90 (d, J = 16 Hz, α-H), 7.60 (d, J = 16 Hz, β-H), 7.10-7.50 (m, C₃', C₄', C₅'-H), 2.15 (s, C₃-CH₃); MS: m/z 300 (M⁺) 300; Anal. Calcd for C₁₆H₁₂O₄S: C, 69.98; H, 4.02. Found: C, 64.00; H, 4.00%.

5,7-Dihydroxy-3-methoxy-2(2'-vinylthio-

phene)chromone 3d: It crystallised from methanol as pale yellow rods, m.p. 255°; IR (KBr): 1642 cm⁻¹ (C=O); UV (nm, log ε): 298 (4.81), 245 (4.88), 304 (4.98), 386 (5.08); ¹⁺H NMR: δ 12.60 (s, C₅-OH), 6.20 (d, J = 2.5 Hz, C₆-H), 8.31 (s, C₇-OH), 6.45 (d, J = 2.5 Hz, C₈-H), 7.00 (d, J = 16 Hz, α-H), 7.80 (d, J = 16 Hz, β-H), 7.10-7.80 (m, C₃', C₄', C₅'-H), 3.95 (s, C₃-OCH₃); ¹³C NMR (50.3 MHz, DMSO-d₆ + CDCl₃): δ 160.0 (C-2), 163.0 (C-3), 176.0 (C-4), 155.8 (C-5), 153.0 (C-8a), 139.0 (C-7), 136.0 (C-8), 129.5 (C-6a), 127.0 (C-4a), 127.0 (C- α), 126.9 (C- β), 59.5 (C-9), 113.0 (C-2'), 103.5 (C-3'), 97.1 (C-4'), 92.0 (C-5'); MS: m/z 316 (M⁺); Anal. Calcd for C₁₆H₁₂O₅S: C, 60.75; H, 3.82. Found: C, 60.75; H, 3.79%.

5, **7-Dihydroxy-3-phenyl-2-(2'-vinylthioiphene)chromone 3e.** It crystallised from methanol as yellow flakes, m.p. 205°; IR (KBr): 1645 cm⁻¹ (C=O); UV (nm, log ε): 208 (4.87), 238 (4.93), 265 (4.98), 376 (5.13); ¹H NMR: δ 12.58 (s, C₅-OH), 6.18 (d, J = 2.5 Hz, C₆-H). 8.28 (s, C₇-OH), 6.85 (d, J = 2.5 Hz, C₈-H), 7.20 (d, J = 16 Hz, α-H), 7.75 (d, J = 16 Hz, β-H), 7.30-7.90 (m, C₃', C₄', C₅'-H and C₃-Ph); Anal. Calcd for C₂₁H₁₄O₄S: C, 69.59; H, 3.89. Found: C, 64.74; H, 4.32%.

7-Methoxy- and 5,7-dimethoxy-2-(2'vinylthiophene)chromones 4a-e. To a solution of 3a-e (10 mmoles) in acetone (100 mL), anhydrous K_2CO_3 (5 g) and dimethyl sulphate (25 mmoles) were added and the mixture was refluxed for 6 hr in case of 3a, b and for 20 hr in case of 3c-e. The acetone was removed and the product treated with cold water. Yellow solids in 90% yield were obtained.

7-Methoxy-3-methyl-2-(2'-vinylthiiphene)

chromone 4a. It crystallised from aqueous methanol as yellow solid, m.p. 192°; IR (KBr): 1635 cm⁻¹ (C=O); UV (nm. log ε): 208 (4.79), 238 (4.85), 270 (4.90), 376 (5 04); ¹H NMR: δ 8.10 (d, J = 10 Hz, C₅-H), 6.50 (dd, J=10 Hz, 2.5 Hz, C₆-H), 3.90 (s, C₇-OCH₃), 6.70 (d, J=2.5 Hz, C₈-H), 7.00 (d, J=16 Hz, α-H), 7.60 (d, J=16 Hz, β-H), 7.10-7.50 (m, C₃', C₄', C₅'-H), 2.15 (s, C₃-CH₃); MS: m/z 298: M⁺. Anal. Calcd for C₁₇H₁₄O₃S: C, 70.50; H, 4.87. Found: C, 68.45; H. 4.69%.

7-Methoxy-3-phenyl-2-(2'-vinylthiophene)-

chromone 4b: It crystallised from aqueous methanol as colourless needles, m.p. 203°; IR (KBr): 1640 cm⁻¹ (C=O): UV (nm, log ε): 208 (4.85), 238 (4.92), 270 (4.96), 386 (5.12); ¹H NMR: δ 8.15 (d, J = 9 Hz, C₅-H), 3.90 (s, C₇-OCH₃), 6.80 (dd, J = 10, 2.5 Hz, C₆-H), 6.90 (d, J = 2.5 Hz, C₈-H), 6.60 (d, J = 16 Hz, α-H), 7.70 (d, J = 16 Hz, β-H), 7.10-7.60 (m, C₃', C₄', C₅'-H and phenyl); MS: m/z 360 (M⁺); Anal. Calcd for C₂₂H₁₆O₃S: C, 73.31; H, 4.47. Found: C, 73.33; H, 4.44%.

5,7-Dimethoxy-3-methyl-2-(2'-vinylthiophene)chromone 4c. It crystallised from the aqueous methanol as pale yellow needles, m.p. 190°; IR (KBr): 1626 cm⁻¹ (C=O); UV (nm, log ε): 208 (4.83), 234 (4.88), 272 (4.95), 380 (5.09); ¹H NMR: δ 4.00 (s, C₅-OCH₃), 6.20 (d, J = 2.5 Hz, C₆-H). 4.05 (s, C₇-OCH₃), 6.40 (d, J = 2.5 Hz, C₈-H), 7.00 (d, J = 16 Hz, α-H), 7.60 (d, J = 16 Hz, β-H), 7.10-7.80 (m, C₃', C₄', C₅'-H), 2.25 (s, C₃-CH₃); MS: m/z 328 (M⁺); Anal. Calcd for C₁₈H₁₆O₄S: C, 65.83; H, 4.91. Found: C, 65.85; H, 4.80%.

3-5,7-Trimethoxy-2-(2'-vinylthiophene)-

chromone 4d. It crystallised from aqueous methanol as yellow needles, m.p. 183°; IR (KBr): 1638 cm⁻¹ (C=O); UV (nm, log ε): 208 (4.85), 236 (4.91), 272 (4.97), 382 (5.11); ¹H NMR: δ 3.90 (s, C₅-OCH₃), 3.98 (s, C₃-OCH₃), 3.95 (s, C₇-OCH₃), 6.32 (bs, C₆-H), 6.50 (bs, C₈-H), 7.05 (d, J = 16 Hz, α-H), 7.58 (d, J = 16 Hz, β-H), 7.10-7.30 (m, C₃', C₄', C₅'-H),; MS: m/z 344 (M⁺).

5,7-Dimethoxy-3-phenyl-2-(2'-vinylthiophene)chromone 4e. It crystallised from aqueous methanol as yellow needles, m.p. 195°; IR (KBr): 1635 cm⁻¹ (C=O); UV (nm, log ε): 208 (4.84), 234 (4.95), 270 (5.01), 382 (5.16); ¹H NMR: δ 3.95 (s, C₅-OCH₃), 3.90 (s, C₇-OCH₃), 6.80 (d, J = 2.5 Hz, C₆-H), 6.90 (d, J = 2.5 Hz, C₈-H), 6.60 (d, J = 16 Hz, α-H), 7.70 (d, J = 16 Hz, β-H), 7.10-7.60 (m, C₃', C₄', C₅'-H and C₃-Ph), MS: m/z 390 (M⁺); Anal. Calcd for C₂₃H₁₆O₄S: C, 70.75; H, 4.64. Found: C, 70.76; H, 4.61%. Synthesis of 4a and 4b by reaction of 5a and 5b with thiophene-2-carboxaldehyde. Chromone 5a or 5b (10 mmoles) was dissolved in dry ethanol (40 mL) and NaOEt (prepared by dissolving 0.5 g of Na in 25 mL of EtOH) added and the reaction mixture kept at room temperature for 25 hr. EtOH was distilled off and the product treated with water to give 4a or 4b as a yellow solid which was purified by column chromatography over silica gel using benzene as eluent, yield obtained 30%.

Acknowledgement

On of the authors (M B M) is thankufl to the UGC, New Delhi for the award of a senior research fellow.

References

- 1 Baker W, Robinson R, J Chem Soc, 1925, 1981.
- 2 Heilbron M, Barnes H & Morton R A J Chem Soc, 1923, 2565.
- 3 Ramakrishna Reddy C H, David Krupadanam G L & Srimannarayana G, Indian J Chem, 26B, 1987, 974
- 4 Parthasarathy Reddy B & David Krupadanam G L, J Heterocyclic Chem, 33, 1996, 1561.
- 5 Zammattio F, Brion J D, Ducrey P & Baut G L, Synthesis, 1992, 375.
- 6 Satyanarayana Reddy M, David Krupadanam G L & Srimannarayana G, Indian J Chem, 28B, 1989, 1057.
- 7 Canter F W, Curd F H & Robertson A, *J Chem Soc*, **1931**, 1245.
- 8 Badcock G C, Cavill C W K, Robertson R & Whalley W B, J Chem Soc, 1950, 2961.
- 9 Kershawslater W & Stephen H, J Chem Soc, 117, 1920, 309.
- 10 Chapmann E & Stephen H, J Chem Soc, 1923, 404.
- 11 Kostanecki S V & Razycki A, Ber, 34, 1901, 102.