Note

Claisen rearrangment of 3-(prop-2-ynylsulfanyl)-1,2,4-triazinone: A convenient route to 2-methyl-thiazolo[3,2-b][$1,2,4]$ triazinone

M M Heravi*, M M Mojtahedi \& S M Bolourtchian Chemistry and Chemical Enginnering Research Center of Iran, P.O.Box: 14335-186, Tehran-Iran, Fax (21)8037185

Received 4 August 1997; accepted (revised) 24 March 1998
6-Methyl-3- (prop-2-ynylsulfanyl)-1,2,4-triazin-5(2H)one 1 on refluxing with hexamethyl phophoric triamide (HMPT), in the presence of catalytic amount of $\mathrm{PdCl}_{2}(\mathrm{PhCN})_{2}$ affords 2,6-dimethylthiazolo [3,2$b][1,2,4]$ triazin- 7 -one $\mathbf{1 0}$ via an interesting Claisen rearrangment. This structure has been confirmed by unambiguous synthesis of $\mathbf{1 0}$.

Palladium catalyzed $\mathrm{S} \rightarrow \mathrm{N}$ allylic rearrangment of allylsulfanyl pyrimidinone and allylsulfanyl-1,2,4triazinone have been studied extensively owing to their synthetic utility ${ }^{1,2}$. However examples of $\mathrm{S} \rightarrow \mathrm{N}$ propynylic rearrangments are very scarce. The $\mathrm{S} \rightarrow \mathrm{N}$ propynylic rearrangment of 2-(prop-2 ynylsulfanyl) benzimidazole is typical example ${ }^{3,4}$.

Recently we have demonstrated that base ${ }^{5}$ and Pd-salt ${ }^{6,7}$ very effectively catalyze the cyclization of prop-2-ynylsulfanyl-1,2,4-triazinone to corresponding 3 -substituted thiazolo [1,2,4] triazinone. In this pattern of cyclization and aromatization and other methods ${ }^{8,9}$ to synthesize thiazolotriazine, only 3 -substituted thiazolo [$1,2,4$] triazinone can be obtained. Here we wish to report two independent routes to synthesis 2,6-dimethylthiazolo [3,2$b][1,2,4]$ triazin- 7 -one $\mathbf{1 0}$.

6-Methyl-3(prop-2-ynylsulfanyl)-1,2,4-triazin-5one 1 was refluxed in HMPT with catalytic amount of $\mathrm{Pd} \mathrm{Cl}_{2}(\mathrm{PhCN})_{2}$ for 32 hrs . After evaporation of solvent under reduced pressure, the crude material was subjected directly to column chromatorgraphy to obtain a crystalline compound as a major product.

Taking into consideration the problem of regiochemistry, first we thought of alkylation at the N-2 vs. N-4, by direct nucleophilic addition of amide to

3

5

9
Me

acetylenic moiety and subsequent isomerization of either intermediate $\mathbf{2}$ or $\mathbf{3}$ to either $\mathbf{4}$ or $\mathbf{5}$ respectively. This pattern of cyclization and isomerizaiton by base has been noticed previously ${ }^{6}$. Comparison of spectroscopic data of obtained compound with those known 4^{5} and 5^{7} showed considerable differences. Therefore we considered thermal and catalyzed [3,3] sigmatropic rearrangment of 1 to either 6 or 7 with the subsequent cyclization to either $\mathbf{8}$ or $\mathbf{9}$ followed by isomerization to either $\mathbf{1 0}$ or 11 respectively. (Scheme I).

Scheme I

To prove this pattern of one pot [3,3] sigmatropic shift, cyclization and isomerization we decided to synthesize 2 -substituted thiazolotriazinone $\mathbf{1 0}$ or 11 unambiguously.

6-Methyl-3-thioxo-1,2,4-triazin-5-one 12 was refluxed with excess of hexamethyl disilazane (HMDS) and a catalytic amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}{ }^{10}$ and thereafter propynylbromide was added. After usual work-up a single (TLC) compound was isolated in fairly good yield which could be either 6 or 7.

The corresponding N-propynyl compound $\mathbf{6}$ or 7 was cyclized and isomerized by acid catalysis ${ }^{11}$. to afford the identical compound which was obtained by refluxing 1 with HMPT ($\mathbf{1 0}$ or 11) (Scheme II). The structure 10 or 11 was carefully discriminated by the comparison of its UV spectrum with those of well established $4(\lambda \max 280 \mathrm{~nm})^{5}$ and 5 ((max $298 \mathrm{~nm})^{7}$. 3,4-Disubstituted-1,2,4-triazin-5 ones are known to show the absorption maxima at the longer wavelenghts compared to 2,3-disubstituted compounds ${ }^{9} 5$ also showed the absorption maxima at the longer wavelength compared to 4 . The UV spectrum of compounds 10 or 11 , was quite similar to that of 4. Therefore we concluded that in $\mathrm{S} \rightarrow \mathrm{N}$ propynylic rearragment in HMPT, the propynylic group migrates to N -2 of 1,2,4-triazine regioselectively to afford 6 which subsequently cyclizes and isomerizes to $\mathbf{1 0}$. N-Alkylation of 1,2,4-triazine $\mathbf{1 2}$ in the presence of HMDS also occures on N-2 selectively, leading to 2-propynyl derivative 6. Acid catalyzed cyclization and isomerization of the latter led to 10.

Scheme II

Experimental Section

Melting points were obtained on a Buchi 530 and are uncorrected. ${ }^{1} \mathrm{HNMR}$ spectra were recorded in $\delta \mathrm{ppm}$ a Brucker Ac 80 spectrometer in dimethyl sulfoxide as solvent using TMS as internal standard. IR spectra were recorded on a PerkinElmer model 883 using KBr disk and mass spectra on a Varian CH-7.

2,6-Dimethyl thiazolo [3,2-b][1,2,4] triazin-7one 10 -Compound 1 ($1 \mathrm{~g}, 55 \mathrm{mmoles}$) and $\mathrm{PdCl}_{2}\left(\mathrm{PhCN}_{2}(0.1 \mathrm{~g})\right.$ were refluxed in HMPT (20 mL) for 32 hr . The solvent was evaporated off in vacuo. The crude mixture was washed with water and extracted with chlorofom. This solution was dried over anhyd. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated off. The
residue obtained was subjected to column chromatography using CHCl_{3} : $\mathrm{MeOH}, 90: 10$ to afford the title compound. Yield 0.38 g , (38\%), m.p.168$69^{\circ} ;{ }^{1} \mathrm{HNMR} \quad\left(\mathrm{CDCl}_{3}\right): \quad \delta 2.38(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{Me})$, $6.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}$ of thiazole ring). IR: (KBr): 3420 , 2928, 1640 (amide carbonyl), 1489 and $1372 \mathrm{~cm}^{-1}$; UV (CHCl_{3}): $\left(\lambda \max 282 \mathrm{~nm} . \mathrm{M} . \mathrm{S}: \mathrm{m} / \mathrm{z}, \mathrm{M}^{+}\right.$, 181(25), 180(55), 156(18), 139(100), 72, 40(95).

6-Methyl-2N-Propynyl-3-thioxo-1,2,4-triazin-5-one 6. 6-Methyl-3-thioxo-1,2,4-triazin-5-one $12-(0.36 \mathrm{~g}, 2.5$ mmoles $)$, was refluxed with hexamethyldisilazane (HMDS) (0.7 mL , excess) and a catalytic amount of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}(12.5 \mathrm{mg})$ until a clear solution was obtained. Excess HMDS was removed by disitlation in vacuo. The catalytic amount of I_{2} and propynyl bromide ($0.18 \mathrm{~g}, 1$ mmole) in $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$ was added and the reaction mixture was refluxed for further 4 hr . After evaporation of solvent in vacuo, the residue was treated with water to afford the spectroscopic pure product. Yield ($0.4 \mathrm{~g}, 93 \%$), m.p. $98-99^{\circ}$; ${ }^{1} \mathrm{HNMR}$ (DMSO-d d_{6}): $\quad \delta 2.1(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), \quad 3.1(\mathrm{t}, 1 \mathrm{H},-\mathrm{C}-\mathrm{CH}$, $J=2.1 \mathrm{~Hz}), 3.95\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2}, J=2.1 \mathrm{~Hz}\right)$; IR: (KBr): $3417,3258,2928,1640,1590,1459,1033 \mathrm{~cm}^{-1}$; M.S: m/z, M ${ }^{+}$181(22), 143(18), 140(85), 72(100), $71(75), 80(90), 55(65)$.

Acid catalyzed cyclization of 6 to 10 - Compound $6(0.25 \mathrm{~g}, 1.38 \mathrm{mmole})$ was dissolved in conc $\mathrm{H}_{2} \mathrm{SO}_{4}$. The reaction mixture was kept at 50 C for 5 hrs. It then poured onto crushed ice and the solution was neutralized by adding NaOH . The precipitated solid was crystallized from EtOH to afford spectroscopic pure 10. Yield $0.175 \mathrm{~g},(70 \%), \mathrm{mp} 168-69$.

References

1 Mizutani M, Sanemitsu Y, Tamaru Y \& Yoshida Z, J.Org.Chem, 48, 1983, 4585.

2 Mizutani M, Sanemitsu Y, Tamaru \& Yoshida Z, Tetrahedron, 1984, 5289.
3 Balasubramanian K K \& Venligopalan B. Tetrahedron lett, 1974, 2643.
4 Balasubramanian K K \& Venligopalan B. Tetrahedron lett, 1974, 2645.
5 Heravi M M, Iran.J.Chem \& Chem Eng, 11(2),1992, 8. Chemical Abstract, 120-323500d.

6 Heravi M M \& Bakavoli M., J.Chem.Res, 11,1995, 480.
7 Heravi M M, Bakavoli M, Shafaie M, Sadeghi M M \& Khoshdast A, Indian. J.Chem.. 35,1996, 1260.
8 Nyitrai J, Bekassy S \& Lempert K. Acta Chem Acad Sci.Hurg, 53,1967, 309.
9 Dawnis J, Guindio Y, Jacquier R \& Viallefont P, Bull.Soc.Chim.Fr, 1972, 1511.
10 Muller C E, Tetrahedron Lett, 32(45), 1991, 6539.
11 Heravi M M, Aghapoor K \& Nooshabadi M H to synth commun, 28(2), 1998 in Press.

