Note

NMR spectral analysis of some spirostanoids[†]

Pawan K Agrawal Central Institute of Medicinal and Aromatic plants Lucknow-226 015, India Received 1 December 1997; accepted 12 February 1998

An approach based upon NOE between H₃-19 and H-5 has been proposed for the establishment of 5 β - and 5 α - stereochemistry at A/B ring junction in spirostanoids and the recently reported ¹³C NMR shielding data for several steroidal enones has been analyzed.

As a part of our continuing effort to understand the ¹³C NMR spectral behaviour of steroidal sapogenins and steroidal saponins¹⁻⁹, we have earlier suggested that the ¹³C NMR chemical shift of the C-22 resonance acts as a reporter for the identification of the parent skeletal type¹⁰⁻¹². The variation in parent skeleton generally arises from the configuration at C-5, i.e. the A/B ring junction and the configuration of the methyl group at C-25 as naturally occurring spirostanoids characterized so far, possess B/C trans, C/D trans and D/E cis ring junctions. Depending upon the trans and cis relationship between H₃-19 and H-5, the spirostanoids have been grouped into 5α (A) and 5β (**B**) types respectively (Figure 1). Recently, we proposed a correlationship between the ¹H and ¹³C NMR chemical shifts of ring F resonances and orientation of the 27-methyl group for the discrimination of 25R/25S stereochemistry¹³. Despite the fact that ¹³C NMR chemical shifts of C-5, C-7, C-9 and C-19 are quite distinctive for the identification of stereochemistry at A/B ring junction^{11,12}, we are involved in determining additional NMR approaches applicable for ascertaining 5α - and 5β -stereochemistry. In the present communication, we wish to report the

significance of ¹H-¹H NOE (NOESY) spectroscopy for the determination of stereochemistry at ring junctions as well as analysis of recently reported ¹³C NMR data for several functionalized spirostanoids¹⁴.

In view of our homo- and heteronuclear NMR studies on 25R/25S epimeric pair of 5β spirostanoids (smilagenin and sarsasapogenin)¹⁵ together with the literature reports¹⁶⁻²⁰ led us to deduce several conclusions: (i) NOE cross peaks are usually observed for equatorial-axial vicinal and 1,3- syn-diaxial proton pair, (ii) NOE is absent between vicinal trans diaxial protons, (iii) NOE connectivity between H-8/H₃-18, H₃-19; H-9/H-14, H-17; and H₃-18/H-20 are common for B/C trans. C/D trans, and D/E cis ring junctions respectively, (iv) NOE between H₃-19/H-2a, H-4a; and for H₃-19/H-5 are characteristic for A/B trans (5 α) and *cis* (5 β) respectively. Thus, once the ¹H NMR assignments are evident, presence and absence of NOESY cross peak between H₃-19 and H-5 could be utilized for identifying $5\beta(B)$ and $5\alpha(A)$ subgroups of spirostanoids.

In a recent publication¹⁴, DeNinno and McCarthy have reported ¹³C NMR chemical shift

[†] Part 47 in the series, 'NMR Spectral Investigations', for part 46 see ref. 13.

Table I— ¹³ C NMR chemical shifts for steroidal sapogenins 1-6						
	25 <i>R</i> 3, 11 (0x0) ₂	25 <i>R</i> 3-οχο Δ ¹	25 <i>R</i> 3,11 (oxo) ₂ Δ ¹	25 <i>R</i> 3β-OH- 3-Me Δ ¹	25 <i>R</i> 3β-OH 3-Me 11-oxo	25 <i>R</i> 1β, 2 β, 3 β -(OH) ₃ 3-Me
Position	1	2	3	4	5	6
C-1	37.0	158.3	159.3	136.2	136.6	75.2
C-2	37.9	127.4	127.5	132.4	132.4	73.6
C-3	211.4	200.2	199.4	70.6	70.6	74.6
C-4	44.3	39.8	38.0	44.0	43.5	41.3
C-5	46.9	44.3	44.2	39.9	41.8	36.0
C-6	28.2	27.5	27.0	28.0	27.5	27.4
C-7	32.4	31.7	36.9	32.1	32.6	36.7
C-8	35.2	39.0	40.6	35.2	36.9	39.9
C-9	60.7	50.0	59.8	51.1	60.7	67.0
C-10	36.9	35.3	59.7	29.4	37.3	57.3
C-11	209.7	21.0	209.4	21.0	209.8	211.0
C-12	57.6	40.9	57.3	42.1	57.4	57.6
C-13	44.2	40.6	44.3	40.3	44.4	44.3
C-14	55.5	56.2	55.3	56.2	55.7	55.5
C-15	31.2	31.5	32.1	31.7	31.2	32.2
C-16	80.5	80.7	80.4	80.3	80.6	80.6
C-17	63.9	62.2	60.7	62.2	61.4	60.8
C-18	17.2	16.2	17.3	16.7	17.2	17.2
C-19	11.1	13.1	13.7	15.0	15.4	12.7
C-20	41.8	41.6	41.8	41.6	41.5	41.9
C-21	14.2	14.2	14.2	14.3	14.2	14.1
C-22	109.2	109.4	109.2	109.6	109.2	109.2
C-23	31.3	31.4	31.2	31.4	31.2	31.4
C-24	28.7	28.8	28.7	28.8	28.7	28.7
C-25	30.2	30.3	30.2	30.4	30.2	30.2
C-26	66.9	66.9	66.9	66.8	66.9	66.9
C-27	17.1	17.0	17.1	17.3	17.1	17.1

data for several spirostane derivatives, $(5\alpha, 25R)$ spirostan-3,11-dione 1, $(5\alpha, 25R)$ -spirostan-1-en-3-one 2, (5α, 25R)-spirostan-1-en-3,11-dione 3, (3R, 5a, 25R)-3-hydroxy-3-methyl-spirost-1-ene 4, (3R, 5a, 25R)-3-hydroxy-3-methyl-spirost-1-en-11-one 5, and (3R, 5a, 25R) 1,2,3-trihydroxy-3methyl-spirostan-11-one 6. The analysis of the ¹³C NMR data of these compounds, was considered worthwhile in view of the reported cholesterol absorption inhibiting activity of diglycoside derived from 11-ketotigogenin²¹. Our earlier studies on steroidal sapogenins¹⁰⁻¹², facilitated the analysis and ¹³C NMR assignments are presented in Table I. The analysis on the ¹³C NMR data led to the several inferences: (i) substituents such as oxo, hydroxyl and olefinic bond, consistent with our studies on steroidal alkaloids²¹ and steroidal sapogenins¹⁰⁻¹², suggest that these modifies the

chemical shifts of carbons occupying α , β , and γ position respectively, (ii) Δ' olefinic bond causes, (a) an upfield shift (12 ppm) of C-3 (1 vs. 3), (b) downfield shift of C-19 by about 2 ppm, (c) marginal effect (0.3 ppm) on the chemical shift of C-11; (iii) appearance of ring F resonances at almost identical position ± 0.1 ppm in all the compounds (1-6) reflects absence of any kind of long-range interactions with 11-oxo group as well as existence of chair conformation of ring-F.

Acknowledgement

The author is thankful to Dr Sushil Kumar, Director, CIMAP for constant encouragement.

References

1 Agrawal P K, Singh S B & Thakur R S, Indian J Pharm Sci, 46, 1984, 158.

- 2 Schneider H J, Buchheit, U & Agrawal P K, *Tetrahedron*, 40,1984, 1017.
- 3 Mahmood U, Agrawal P K & Thakur R S, *Phytochemistry*, 24, 1985, 2446.
- 4 Agrawal P K & Thakur R S, Indian J Chem, 25B 1986 469.
- 5 Agrawal P K, Mahmood U &Thakur R S, *Heterocycles*, 29, 1989, 1895.
- 6 Uniyal G C, Agrawal P K, Thakur R S & Sati O P, *Phytochemistry*, 29 **1990**, 937.
- 7 Uniyal G C, Agrawal P K, Sati O P & Thakur R S, *Phytochemistry*, 30, **1990**, 1336.
- 8 Uniyal G C, Agrawal P K, Sati O P & Thakur R S, *Phytochemistry* 30, **1990**, 4187.
- 9 Agrawal P K, Indian J Chem, 25B, 1996, 278.
- 10 Agrawal P K, Jain D C, Gupta R K & Thakur R S, Phytochemistry 24, 1985, 2479.
- 11 Agrawal P K, Jain D C & Pathak A K, *Magn Reson Chem*, 33, **1995**, 923.
- 12 Agrawal P K, in Saponins Used in Food and Agriculture, edited by W Waller & K Yamasaki (Plenum Press, New York), 1996, p 299.
- 13 Agrawal P K, Morris G A & Bunsawansong D, *Phytochemistry*, 1997, in press.

- 14 DeNinno M P & McCarthy K E, Tetrahedron 53, 1997, 11007.
- 15 Agrawal P K, Morris G A & Bunsawansong D, Magn Reson Chem, 1997, 441.
- 16 Mimaki Y, Kuroda M, Nakamura O, Sashida Y, Satou T, Koike K & Nikaido T, Chem Pharm Bull, 45, 1997, 558.
- 17 Mimaki Y, Kuroda M, Nakamura O & Sashida Y, J Nat Prod, 60, 1997, 592.
- 18 Yoshikawa M, Murakami T, Komatsu H, Murakami N, Yamahara, J & Matsuda H, Chem Pharm Bull, 45, 1997, 81.
- 19 Mimaki Y, Kameyama A, Kuroda M, Sashida Y, Hirano T, Oka K, Koike K & Nikaido T, *Phytochemistry*, 44, 1997, 305.
- 20 McCarthy P A, DeNinno M P, Morehouse L A, Chandler C E, Bangerter F W, Wilson T C, Urban F J, Walinsky S W, Cosgrove P G, Duplantier K C, Etienne J B, Fowler M A, Lambert J F, O'Donnell J P, Pezzullo S L, Watson Jr H A, Wilkins R W, Zaccaro L M & Zawistoski M P, J Med Chem, 39, 1996, 1935.
- 21 Agrawal P K, Srivastava S K & Gaffield W, Alkaloids: Chemical and Biological Perspectives, Vol 7, edited by S W Pelletier (Springer, New York), 1991, p 49.