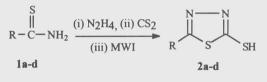
A rapid one-pot synthesis of 5-substituted-2-mercapto-1,3,4thiadiazoles using microwaves


Mazaahir Kidwai* & Kumar Ranjan Bhushan

Department of Chemistry, University of Delhi, Delhi 110 007, India

Received 12 February 1998; accepted 7 April 1998

A rapid one-pot synthesis is described for 5-substituted-2mercapto-1,3,4-thiadiozoles **2a-d** under microwave irradiation starting from thioamides **1a-d**.

In recent times there has been much interest in the development of microwave assisted technique in the synthesis of heterocycles.¹ In view of the utility of microwave irradiation² and the biological importance³ of 5-substituted-2-mercapto-1,3,4-thiadiazoles, it was thought worthwhile to develop a convenient method for the synthesis of the title compounds. One of the title compounds 5-methyl-2-mercapto-1,3,4-thiadiazole is a side-chain at C-3 position of the antibiotic Cefazolin sodium.⁴ 5-Substituted-2-mercapto-1,3,4-thiadia-zoles have been synthesised earlier from esters,^{1f-g} orthoesters, and thioacid esters,⁵⁻⁸ in low yields via multistep and lengthy procedures which involve difficult work-ups. We report herein one-pot, rapid synthesis of the title compounds 2 from thioamides 1 in high yields using microwave irradiation (cf. Scheme I).

Scheme I

Thioamides 1 were treated with hydrazine hydrate followed by CS_2 solution in the cold. The reaction mixture was then irradiated in a microwave oven to yield the title compounds 2. This was evidenced by the disappearance of the IR absorption band in the region 3250-3400 due to. NH_2 and the appearance of a band at 2550-2650 cm⁻¹ due to SH group. The ¹H NMR showed signal for SH proton appeared at δ 12.7-13.1 and the peak for the NH_2 protons was absent. This is the first report on one-pot rapid synthesis of the title compounds 2 where microwave technique has been utilized. The analytical and spectral data of the products **2a-d** are given in Table I.

Table I — Analytical and spectral data of compounds 2a-d						
Compd	R	mp(°C) (lit)	Reaction period (min)	Yield (%)	M ^{+.} observed (expected)	¹ H NMR (DMSO- d_6 + CDCl ₃) δ , ppm
2a	CH ₃	185-87 (186-87) ⁹	1.0	88	132 (132)	2.7 (s, 3H, CH3), 12.7 (s, 1H, SH)
2b	C ₆ H ₅	216-17 (215-17) ¹⁰	1.5	86	194 (194)	7.4-7.7 (m, 5H, Ar-H), 12.9 (s, 1H, SH)
2c	4-C ₅ H ₄ N ^a	218-20	-1.5	79	194 (195)	7.7 (d, 2H, 3'-CH & 5'-CH), 8.75(d, 2H, 2'-CH and 6'-CH), 13.0 (s, 1H, SH)
2d	3-C₅H₄N ^b	80-82	2.0	81	195 (195)	7.55 (t, 1H, 5'-CH), 8.20 (d, 1H, 4'- CH) , 8.75 (d, 1H, 6'-CH), 9.10 (s, 1H, 2'-CH), 13.1 (s, 1H, SH)

^a Anal. Calcd for C₇H₅N₃S₂ : C, 43.07; H, 2.56; N, 21.53. Found : C, 43.20; H, 2.48; N, 21.55%.
 ^b Anal. Calcd for C₇H₅N₃S₇ : C, 43.07; H, 2.56; N, 21.53. Found : C, 42..95; H, 2.51; N, 21.45%.

Experimental Section

General procedure for preparation of 5-substituted-2-mercapto-1,3,4-thiadiazoles 2a-d : The substituted thioamide 1 (0.02 mole) was dissolved in 10 mL DMF in an Erlenmeyer flask (100 mL) and hydrazine hydrate (0.02 mole) added to it slowly with stirring followed by the dropwise addition of CS_2 (0.021 mole) maintaining the temperature of the reaction mixture at 0-5 °C. 2 Thereafter, the reaction mixture was subjected to 3 microwave irradiation (MWI) at 450 watts. TLC was run after every half a min. to check the progress of the reaction. On completion of the reaction, the reaction mixture was poured over crushed ice and treated with 5 HCl to bring down the *p*H to 5. The solid obtained was collected and washed with water. It was dried and 6 recrystallised from acetone.

Acknowledgement

One of the authors (KRB) is thankful to CSIR, New Delhi for the award of a junior research fellowship.

References

- 1 (a) Kidwai M & Kumar P, J Chem Res (S), 1996, 254.
 (b) Kidwai M & Goel Y, Polyhedron, 15, 1996, 2819.
 - (c) Kidwai M, Kumar R & Kumar P, *Indian J Chem*, 35B, 1996, 1004.

- (d) Kidwai M, Kumar P & Kohli S, *J Chem Res (S)*, **1997**, **24**.
 - (e) Kidwai M & Kumar P, J Chem Res (S), 1997, 178.
 - (f) Kidwai M, Kumar R & Goel Y, Main Gp Met Chem, 20, 1997, 367.

(g) Kidwai M, Bhushan K R, Kumar P & Kumar R, Monatsh Chemie, 128, 1997, 1291.

- 2 Caddick S, *Tetrahedron*, 51, **1995**, 10403.
- 3 Mullican M D, Wilson M W, Conner D T, Kostlan C R, Schrier D J & Dyer R D, *J Med Chem*, 36, **1993**, 1090.
- 4 Kariyone K, Harada H, Kurita M & Takano T, J Antibiot, 23, 1970, 131.
 - Kariyone K, Harada K & Kurita Y, Jap Pat, 7207, 371 (1972); Chem Abstr, 76, 1972, 153749v.
- 6 Kariyone K, Harada K & Kurita Y, *Japan Pat*, 7207, 370 (1972); *Chem Abstr*, 76, 1972, 153750p.
- Kariyone K, Harada H, Kurita M, Ueda Y, Furuhashi T, Nakamura H & Watanabe H, Ger Offen, 2, 162, 324 (1972); Chem Abstr, 77, 1972, 140085w.
- Kariyone K, Harada H, Kurita M, Ueda Y & Furuhashi T, Brit Pat, 1, 383, 292 (1975); Chem Abstr, 83, 1975, 43340s.
- 9 Sandstrom J & Wennerbeck I, Acta Chem Scand, 20, 1966, 57.
- 10 Young R W & Wood K H, J Am Chem Soc, 77, 1955, 400.