1,3-Dipolar reactions for the synthesis of new substituted isoxazolidines and isoxazoles

R S Kusurkar*, D K Bhosale, L A Gadre, J J Jain \& H M Wadde
Department of Chemistry, University of Pune, Pune 411 007, India

Received 9 December 1997; accepted (revised) 25 September 1998

Abstract

Unsaturated oximes are treated with dipolarophiles like acrylonitrile and methyl acrylate to furnish new 3,4disubstituted and 3,5-disubstituted isoxazolidines. Reactions of unsaturated oximes with dimethylacetylenedicarboxylate yield 3,4-disubstituted isoxazoles.

Isoxazolidines and isoxazoles are important intermediates in multistep synthesis of complex natural products ${ }^{1}$. Similarly isoxazoles are pharmacologically important and their derivatives exhibit antibacterial and antiviral activities ${ }^{2}$. The ring system in isoxazolidine and isoxazole is unique amongst the heterocyclic rings in the sense that though it is stable towards variety of reagents, it can be ring opened by $\mathrm{N}-\mathrm{O}$ bond cleavage reactions. Moreover there are numerous possibilities of recyclizations arising from nitrogen nucleophilicity and from a suitable substituent at $\mathrm{C}-4$ or $\mathrm{C}-5$ of isoxazolidine ring, forming a new heterocyclic system.

In continuation with our studies ${ }^{3}$ in cycloaddition reactions, we investigated reactions of unsaturated aldoximes as well as ketoximes with conventional olefinic and acetylenic dipolarophiles.The results obtained in these reactions are presented in this paper.

1,3-Dipolar reactions using unsaturated oximes 1-16 (Scheme I) with olefinic dipolarophiles. We have reported ${ }^{3}$ earlier the reactions of furfuraldoxime and thiophene-2-aldoxime with conventional dipolarophiles which afforded 1,3dipolar cycloadducts. To investigate the change in the reaction course by introducing a substituent, 5nitrofurfuraldoxime 1 was treated with acrylonitrile at $120^{\circ} \mathrm{C}$ in a sealed tube. The product showed presence of cyano group and absence of hydroxyl group which indicated it to be formed by cycloaddition along with Michael addition. Chromatographic separation gave a isomeric mixture which when rechromatographed furnished

Scheme I-Unsaturated oximes used for 1,3-dipolar reactions
two oily compounds. Amongst the expected four isomers, the above two were identified using ${ }^{1} \mathrm{H}$ NMR spectral data. One of the isomers showed a triplet at $\delta 4.9$ and the other showed a dd at $\delta 5.0$ for one proton. Both the isomers were shown to be 5 -cyano isomers and the above signals were assigned to $\mathrm{C}_{5}-\mathrm{H}$ which was expected to be the most downfield alicyclic signal amongst all the isomers. However due to the cis relationship of $\mathrm{C}_{3}-\mathrm{H}$ with cyano group,trans isomer 16 a showed a downfield triplet (at $\delta 4.47$) of C_{3}-H. In the cis isomer 16b $\mathrm{C}_{3}-\mathrm{H}$ was resonating as a triplet at δ 4.0. In both the spectra low intensity signals of
minor amount of 4-cyano isomers were also seen. Reaction with methyl acrylate furnished a isomeric mixture of cycloadduct 17, from which 4-cyano isomers 17c \& d were isolated (Scheme II, Table I).

By changing the heteroatom, reactions were carried out using pyrrole-2-aldoxime 2 with
acrylonitrile and methyl acrylate. These reactions furnished mixtures of isomers of 1,3-dipolar cycloadducts from which 4- substituted isomers were separated and identified as 18 d and $19 \mathrm{c} \& \mathrm{~d}$ using ${ }^{1} \mathrm{H}$ NMR spectral data.

Cycloaddition reactions using benzofuran-2aldoxime $\mathbf{3}$ with acrylonitrile furnished all four

16a	$\mathrm{R}=2$-(5-nitrofuryl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	17c	$\mathrm{R}=2$-(5-nitrofuryl) $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3}$
16b	$\mathrm{R}=2$-(5-nitrofuryl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	17d	$\mathrm{R}=2$-(5-nitrofuryl) $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3}$
20a	$\mathrm{R}=2$-benzofuryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	18c	$\mathrm{R}=2$-(pyrrolyl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\propto \mathrm{CN}$,
20b	$\mathrm{R}=2$-benzofuyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	18d	$\mathrm{R}=2$-(pyrrolyl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$
22a	$\mathrm{R}=2$ (bromobenzofuryl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	19c	$\begin{aligned} & \mathrm{R}=2 \text {-(pyrrolyl) }) \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{1}=\propto \mathrm{COOCH}_{3} \end{aligned}$
22b	$\begin{aligned} & \mathrm{R}=2 \text { - }(5 \text {-bromobenzofuryl }), \\ & \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN} \end{aligned}$	19d	$\begin{aligned} & \mathrm{R}=2 \text {-(pyrrolyl) }) \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3} \end{aligned}$
30a	$\mathrm{R}=$ styryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	20c	$\mathrm{R}=2$-benzofuryl , $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\propto \mathrm{CN}$
30b	$\mathrm{R}=$ styryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	20d	$\mathrm{R}=2$-benzofuryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$
31a	$\mathrm{R}=$ styryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3}$	21c	$\mathrm{R}=2$-benzofuryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\propto \mathrm{COOCH}_{3}$
31b	$\mathrm{R}=$ styryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\mathrm{SCOOCH}_{3}$	21d	$\mathrm{R}=2$-benzofuryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3}$
32a	$\mathrm{R}=2$-chloro-1-cyclohexyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	23c	$\mathrm{R}=2$-(5-bromobenzofuryl), $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3}$
32b	$\mathrm{R}=2$-chloro-1-cyclohexyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	23d	$\begin{aligned} & \mathrm{R}=2 \text {-(5-bromobenzofuryl), } \\ & \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3} \end{aligned}$
36a	$\mathrm{R}=$ p-nitrophenyl, $\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	30c	$\mathrm{R}=$ styryl , $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3}$
36b	$\mathrm{R}=\mathrm{p}$-nitrophenyl, $\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\beta \mathrm{CN}$	30d	$\mathrm{R}=$ styryl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3}$
37a	$\begin{aligned} & \mathrm{R}=\mathrm{p} \text {-methoxypheny!, } \mathrm{R}_{3}=\mathrm{CH}_{3}, \\ & \mathrm{R}_{1}=\alpha \mathrm{CN} \end{aligned}$	31c	$\begin{aligned} & \mathrm{R}=\text { styryl, } \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3} \end{aligned}$
37b	$\begin{aligned} & \mathrm{R}=\mathrm{p} \text {-methoxyphenyl, } \mathrm{R}_{3}=\mathrm{CH}_{3}, \\ & \mathrm{R}_{1}=\beta \mathrm{CN} \end{aligned}$	31d	$\begin{aligned} & \mathrm{R}=\text { styryl, } \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{1}=\mathrm{\beta COOCH}_{3} \end{aligned}$
38a	$\begin{aligned} & \mathrm{R}=3,4 \text {-dimethoxyphenyl, } \mathrm{R}_{3}=\mathrm{H}, \\ & \mathrm{R}_{1}=\alpha \mathrm{CN} \end{aligned}$	33c	$\mathrm{R}=2$-chloro-1-cyclohexyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{COOCH}_{3}$
38b	$\mathrm{R}=3,4$-dimethoxyphenyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	33d	$\mathrm{R}=2$-chloro-1-cyclohexyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{COOCH}_{3}$
39a	$\mathrm{R}=3,4$-Methylenedioxy, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$	36c	$\begin{aligned} & \mathrm{R}=\mathrm{p} \text {-nitrophenyl, } \mathrm{R}_{3}=\mathrm{CH}_{3}, \\ & \mathrm{R}_{1}=\alpha \mathrm{CN} \end{aligned}$
39b	$\mathrm{R}=3,4$-Methylenedioxy, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$	36d	$\begin{aligned} & \mathrm{R}=\mathrm{p} \text {-nitrophenyl }, \mathrm{R}_{3}=\mathrm{CH}_{3}, \\ & \mathrm{R}_{1}=\beta \mathrm{CN} \end{aligned}$
		37c	$\mathrm{R}=\mathrm{p}$-methoxyphenyl, $\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\alpha \mathrm{CN}$
		37d	$\mathrm{R}=\mathrm{p}$-methoxyphenyl, $\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{1}=\beta \mathrm{CN}$
		38c	$\mathrm{R}=3,4$-dimethoxyphenyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$
		38d	$\mathrm{R}=3,4$-dimethoxyphenyl, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$
		39c	$\mathrm{R}=3,4$-Methylenedioxy, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\alpha \mathrm{CN}$
		39d	$\mathrm{R}=3,4$-Methylenedioxy, $\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{1}=\beta \mathrm{CN}$

Scheme II-1,3-Dipolar reactions using olefinic dipolarophiles.

Table I- Characterisation data of individual stereo and regio isomers of isoxazolidines 16-39 and isoxazoles 40-42			
Compd	$\begin{aligned} & \text { m.p. } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Yield (\%)	${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, δ, ppm)
16a	Thick oil	45	$\begin{aligned} & 2.55-2.75\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}, \mathrm{C}_{4}-\mathrm{H}\right), 2.8-3.3\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{NCH}_{2}, \mathrm{C}_{4}-\mathrm{H}\right), 4.47(\mathrm{t}, \\ & \left.J=6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 4.9\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 6.65(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} 3-\mathrm{H} \\ & \text { of furan ring }), 7.32\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H} \text { of furan ring }\right) \text {. } \end{aligned}$
16b	Thick oil	45	2.46-3.75 ($2 \mathrm{~m}, 6 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{4} \mathrm{H}_{2}$), $4.0\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 5.0(\mathrm{dd}$, $\left.J=3.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 6.7\left(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring, 7.35 (d, $J=3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$ of furan ring).
17c/d	Thick oil	40	2.45-2.8, 2.8-3.3 ($2 \mathrm{~m}, 5 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}, \mathrm{C}_{4}-\mathrm{H}$), 3.57-3.8 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 4.0-4.8 (m, $\left.3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}, \mathrm{C}_{3}-\mathrm{H}\right), 6.6\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), $7.3(\mathrm{bs}, 1 \mathrm{H}, \mathrm{C} 4-$ H of furan ring).
18d	$\begin{gathered} 115 \\ \mathrm{M}^{+} 216 \end{gathered}$	20	2.4-2.67 (m, 2H, CH 2 CN), 2.67-3.12 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{NCH}_{2}$), 3.45-3.78 (m, $\left.1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$, 3.9-4.48 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}$), 6.2-6.4 (m, $2 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$ of furan ring), 6.9-7.0 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$ of furan ring), 8.6-9.0 (bs, $1 \mathrm{H}, \mathrm{NH}$).
$19 \mathrm{c} \& \mathrm{~d}$	Thick oil	20	2.5-2.7, 2.8-3.1 ($2 \mathrm{~m}, 4 \mathrm{H}, \mathrm{NCH}_{2} \mathrm{CH}_{2}$), 3.6-3.7 ($2 \mathrm{~S}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 3.3-3.8 (m, $\left.2 \mathrm{H} \mathrm{C}_{4}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 3.9-4.2\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{C}_{5} \mathrm{H}_{2}\right), 6.0-6.2\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right.$ of furan ring), 6.6-6.8 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}$ of furan ring), 8.0-8.3 (bs, $1 \mathrm{H}, \mathrm{NH}$).
20 a	Thick oil	30	2.54-2.77 ($\mathrm{t} . \mathrm{J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), 2.9-3.3 (m, 4H, $\mathrm{C}_{4} \mathrm{H}_{2}, \mathrm{NCH}_{2}$), 4.4 (t , $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 4.95\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.7\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), 7.7-7.8 ($\mathrm{m}, 4 \mathrm{H}$, benzofuryl protons).
20 b	78-9	40	2.5-2.77 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), 2.9-3.3 (m, 4H, $\mathrm{C}_{4} \mathrm{H}_{2}, \mathrm{NCH}_{2}$), $4.0(\mathrm{t}$, $\left.J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 4.95\left(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.7\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), 7.2-7.8 ($\mathrm{m}, 4 \mathrm{H}$, benzofuryl protons).
20 c	110-3	10	2.5-2.8 (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}\right), 2.9-3.2\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.6(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right), 4.2-4.5\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}, \mathrm{C}_{3}-\mathrm{H}\right), 6.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), 7.238.0 ($\mathrm{m}, 4 \mathrm{H}$, benzofuryl protons).
20d	108-10	10	2.5-2.7 ($\mathrm{t}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CN}$), 2.9-3.2 (t, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 3.8(\mathrm{~m}$, $\left.1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$ 4.2-4.5 ($\mathrm{m}, 3 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}, \mathrm{C}_{3}-\mathrm{H}$), $6.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), 7.23-7.4 (m, 4H, benzofuryl protons).
21/d	Thick oil $\mathrm{M}^{+} 333$	20	2.5-2.8 (t, J=7.5 Hz, 2H, CH2COOMe), 3.0-3.3 (m, 3H, C $\mathrm{C}_{4}-\mathrm{H}, \mathrm{NCH}_{2}$), 3.5, 3.6 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 4.2-4.5 (m, $3 \mathrm{H} \mathrm{C}_{5} \mathrm{H}_{2}, \mathrm{C}_{3}-\mathrm{H}$), $6.7\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 7.1-7.8$ ($\mathrm{m}, 4 \mathrm{H}$, benzofuryl protons).
22b	$\begin{gathered} 120-1 \\ \mathrm{M}^{+} 346 \end{gathered}$	80	2.5-2.7 (m, 2H, CH ${ }_{2} \mathrm{CN}$), 2.8-3.3 (m, 4H, $\left.\mathrm{NCH}_{2}, \mathrm{C}_{4} \mathrm{H}_{2}\right), 4.07(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{C}_{3}-\mathrm{H}$), $5.0\left(\mathrm{dd}, J=7.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 6.8\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of furan ring), 7.4 (s $1 \mathrm{H}, \mathrm{C} 4-\mathrm{H}$ of furan ring), 7.7 (bs, 2 H , benzofuryl protons).
$23 \mathrm{c} / \mathrm{d}$	Thick oil	20	2.5-2.7 (t, $\left.J=6.3 \mathrm{~Hz}, 2 \mathrm{H} \mathrm{CH}_{2} \mathrm{COOMe}\right), 3.0-3.4\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}, \mathrm{NCH}_{2}\right), 3.6-3.7$ ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 4.2-4.4 (m, 3H, C $3-\mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}$), $6.7\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right), 7.1-7,7$ ($\mathrm{m}, 3 \mathrm{H}$, benzofuryl protons).
24 mixture of isomers	88-92	60	2.59-2.82, 2.91-3.22, 3.27-3.66 (3m, alicyclic \& aliphatic protons), 3.74, 3.93, $4.0\left(3 \mathrm{~s}, 3 \mathrm{H}, \mathrm{NCH}_{3}\right), 4.0-4.8,4.9-5.2$ (2 m , alicyclic protons), $6.61,6.65,6.72$, $6.82\left(4 \mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{3}-\mathrm{H}\right.$ of indole ring), $7.28-7.7$ ($\mathrm{m}, 3 \mathrm{H}$, aromatic protons), 7.74 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic protons).
25 mixture of isomers	Thick oil	72	1.08-1.41 (2t, $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{COOCH}_{2} \mathrm{CH}_{3}\right), 3.86-4.2(2 q, J=7.7 \mathrm{~Hz}$, $2 \mathrm{COOCH}_{2} \mathrm{CH}_{3}$), 2.5-2.75, 2.76-3.08 (2 m , alicyclic protons), 3.61-3.86 (s, $\left.\mathrm{NCH}_{3}\right), 4.25-4.8\left(\mathrm{~m}, \mathrm{C}_{5}-\mathrm{H}\right), 6.41,6.5\left(2 \mathrm{~s}, \mathrm{C}_{3}-\mathrm{H}\right.$ of indole ring), 6.91-7.16 (m, aromatic protons), 7.5 ($\mathrm{d}, J=7.5 \mathrm{~Hz}$, aromatic protons).

Table I- Characterisation data of individual stereo and regio isomers of isoxazolidines 16-39 and isoxazoles 40-42-Contd

Compd	m.p. (${ }^{\circ} \mathrm{C}$)	Yield (\%)	${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, δ, ppm)
26 mixture of isomers	Thick oil	62	2.5-2.77, 2.88-3.25 (2m, 4H, $\left.\mathrm{NCH}_{2} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{C}_{4}-\mathrm{H}\right), 3.41-3.75,3.83-4.55,4.9$ (2 m , dd, $J=7.7,4.1 \mathrm{~Hz}$, together $4 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}, \mathrm{C}_{3}-\mathrm{H}, \mathrm{NCH}_{2}-\mathrm{CH}_{2} \mathrm{CN}$), $7.05-7.5(\mathrm{~m}$, aromatic protons, $\left.\mathrm{C}_{2}-\mathrm{H}\right), 7.55-8.0\left(\mathrm{~m}, \mathrm{C}_{4}-\mathrm{H}\right.$ of indole ring), $8.27(\mathrm{bs}, \mathrm{NH})$.
27 mixture of isomers	Thick oil	75	2.38-2.8, 2.86-3.3 (2m, alicyclic \& aliphatic protons), 3.52, 3.63, 3.77 (3s, 2 COOMe), 4.08-4.41, 4.55-4.86 (2 m alicyclic protons, $\mathrm{C}_{5}-\mathrm{H}$), 6.88-7.47 (m, $\mathrm{C}_{2} \mathrm{H}$ of indole ring, aromatic protons), 7.5-7.86 (m, $\mathrm{C}_{4}-\mathrm{H}$ of indole ring), 8. 19 (bs, $1 \mathrm{H}, \mathrm{NH}$).
28 mixture of isomers	175-8	65	2.41-2.75, 2.75-3.25 (2 m , alicyclic \&aliphatic protons), $3.88,3.92,3.94$ (3 s , 2 OMe), $4.0-4.47$ (m , alicyclic protons), 4.9 ($\mathrm{bt}, J=7.7 \mathrm{~Hz}, \mathrm{C}_{5}-\mathrm{H}$), $6.75,7.36$ (2 s , $\mathrm{C}_{7}-\mathrm{H}, \mathrm{C}_{4}-\mathrm{H}$ of indole ring), 6.97-7.27 (m, $\mathrm{C}_{2}-\mathrm{H}$ of indole ring), 8.0 (bs, NH).
	Thick oil	70	2.44-2.77, 2.77-3.19 (2m, alicyclic and aliphatic protons), 3.5-4.0 (bs, 2OMe and 2 COOMe), 4.16-4.36 (m , alicyclic protons), $4.5-4.8\left(\mathrm{~m}, \mathrm{C}_{5}-\mathrm{H}\right.$), 6.72 (s, $\mathrm{C}_{7}-\mathrm{H}$ of indole ring) $6.92-7.0\left(\mathrm{~m}, \mathrm{C}_{2}-\mathrm{H}\right.$ and $\mathrm{C}_{4}-\mathrm{H}$ of indole ring), 7.88 (bs, NH).
30a+b*	Thick oil	-	2.4-2.88, 2.88-3.12, 3.12-3.64 (3m, alicyclic \& aliphatic protons), 4.99 (dd, $J=3.8,5.14 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), 6.28 (dd, $J=7.7,15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic protons), 6.84 (d, $J=15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic protons), $7.4-7.84$ ($\mathrm{m}, 5 \mathrm{H}$, aromatic protons).
30c/d*	76	-	2.64-3.04, 3.16-3.88, 4.08-4.64 (3m, 8 H , aliphatic \& alicyclic protons), 6.4 (dd, $J=7.7,15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic proton), $6.86(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic proton), 7.4-7.82 (m, 5 H , aromatic protons).
31a/b*	Thick oil	-	2.5-2.89, 3.0-3.42 ($2 \mathrm{~m}, 7 \mathrm{H}$, aliphatic \& alicyclic protons), $3.76(\mathrm{~s}, 3 \mathrm{H}$, COOMe), 3.86 (s, 3H, COOMe), 4.78 (t, 1H, $\mathrm{C}_{5}-\mathrm{H}$), 6.24 (dd, $J=7.7,15 \mathrm{~Hz}$, 1 H , olefinic proton), $6.8(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic proton), $7.2-7.84(\mathrm{~m}, 5 \mathrm{H}$, aromatic protons).
31c/d*	Thick oil	-	2.64-3.6 ($\mathrm{m}, 6 \mathrm{H}$, aliphatic \& alicyclic protons), 3.84 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOMe}$), 3.88 (s , 3 HCOOMe), 4.04-4.40 (m, 2H, aliphatic protons), 6.36 (dd, $J=7.7,15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic proton), $7.92(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}$, olefinic proton), $7.4-8.0(\mathrm{~m}, 5 \mathrm{H}$ aromatic protons).
$32 \mathrm{a}+\mathrm{b}^{\dagger}$	Thick oil	-	1.53-1.98, 2.36-2.58, 2.58-2.84, 2.84-3.50 (4m, aliphatic \& alicyclic protons), $4.12\left(\mathrm{t}, J=9 \mathrm{~Hz} \mathrm{C}_{3}-\mathrm{H}\right), 4.52\left(\mathrm{t}, J=9 \mathrm{~Hz}, \mathrm{C}_{3}-\mathrm{H}\right), 4.68-5.10\left(\mathrm{~m}, \mathrm{C}_{5}-\mathrm{H}\right)$.
$33 \mathrm{c} / \mathrm{d}$	Thick oil	67	1.92-2.22, 2.28-3.16, 3.16-3.48, (3m, 14H, aliphatic \& alicyclic protons), 3.86 ($\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 4.04-4.82 (m, 2 H , alicyclic protons).
$\begin{gathered} 34 \\ \text { mixture of } \\ \text { isomers } \end{gathered}$	Thick oil	52	$1.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.8\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$ 2.06-2.5, 2.6-3.36, 3.54-3.8, 3.96-4.84 (m, 13 H , aliphatic and alicyclic protons), 4.84-5.26 (m, $1 \mathrm{H} \mathrm{C} 5-\mathrm{H}$), $7.2-7.86(\mathrm{~m}, 8 \mathrm{H}$, indole ring protons), $8.0-8.4\left(\mathrm{~m}, 2 \mathrm{H} \mathrm{C}_{4}-\mathrm{H}\right.$ of indole ring), 8.4-8.88 (m, $2 \mathrm{H}, \mathrm{NH}$ of indole ring).
$\begin{gathered} 35 \\ \text { mixture of } \\ \text { isomers } \end{gathered}$	Thick oil	45	2.36-2.42 ($\mathrm{m}, \mathrm{CH}_{3} \&$ aliphatic protons), 2.42-3.08, 3.08-3.40 (2 m , alicyclic protons), 3.76 ($\mathrm{s}, 4 \mathrm{COOMe}$), 4.04-4.34, 4.52-4.78 (2 m , alicyclic protons), 7.36 7.72, 8.0-8.24 (2 m , indole ring protons), $8.5-8.82(\mathrm{~m}, \mathrm{NH}$, exchangeable with $\mathrm{D}_{2} \mathrm{O}$).
$36 \mathrm{a} / \mathrm{b}^{\dagger}$	138-9	-	$1.7\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.68-3.30(\mathrm{~m}, 6 \mathrm{H}$, alicyclic \& aliphatic protons), $4.8(\mathrm{t}$, $\left.J=7.71 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 7.9(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons), 8.44 (d, $J=9 \mathrm{~Hz}$, 2 H , aromatic protons).

Table I-Characterisation data of individual stereo and regio isomers of isoxazolidines 16-39 and isoxazoles 40-42-Contd			
Compd	m.p. $\left({ }^{\circ} \mathrm{C}\right)$	Yield (\%)	${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right)$
$36 \mathrm{c} / \mathrm{d}^{\dagger}$	122-3	-	$1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64-3.16\left(\mathrm{~m}, 4 \mathrm{H}\right.$, aliphatic protons), $3.72\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{4}-\mathrm{H}\right)$, 4.18-4.64 (m, $\left.2 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 8.0(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons), $8.52(\mathrm{~d}, J=9 \mathrm{~Hz}$, 2 H aromatic protons).
37a\&b ${ }^{\ddagger}$	Thick oil	-	$1.5\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.62-3.52(\mathrm{~m}, 12 \mathrm{H}$, aliphatic \& alicyclic protons), 3.9 (s, $6 \mathrm{H}, 2 \mathrm{OCH}_{3}$), 4.08-5.08 (s, 2 H , alicyclic protons), 7.0-7.24 (m, 4 H aromatic protons), $7.44-7.8$ ($\mathrm{m}, 4 \mathrm{H}$, aromatic protons).
$37{ }^{\ddagger}$	128-9	-	$1.6\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.64-3.04 .3 \cdot 34-3.72$ ($\mathrm{m}, 4 \mathrm{H}, \& \mathrm{~m}, 1 \mathrm{H}$ aliphatic \& alicyclic protons), 3.92 (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$), $4.12-4.60$ ($\mathrm{m}, 2 \mathrm{H}$, alicyclic protons), 7.16 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons), 7.76 (d, $J=9 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons).
38a/b	Thick oil	49	2.25-2.8, 2.8-3.3 ($2 \mathrm{~m}, 7 \mathrm{H}$, aliphatic and alicyclic protons), 3.6, $3.74(2 \mathrm{~s}, 6 \mathrm{H}$, 2 COOMe), 3.81 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OMe}$), 4.36-4.83 (m, $1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), $6.47-7.1(\mathrm{~m}, 3 \mathrm{H}$, aromatic protons).
38c/d	Thick oil	44	2.3-2.78, 2.78-3.19, 3.19-3.45 ($3 \mathrm{~m}, 7 \mathrm{H}$, aliphatic and alicyclic protons), 3.51 , $3.52(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}), 3.85(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{OMe}), 4.0-4.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right), 6.61-$ 7.05 ($\mathrm{m}, 3 \mathrm{H}$, aromatic protons).
39a/b	Thick oil	56	2.22-2.75, 2.75-3.33, 3.91-4.15 ($3 \mathrm{~m}, 7 \mathrm{H}$, aliphatic and alicyclic protons), 3.53, 3.72 ($2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}$), 4.17-4.69 (m, $1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}$), $5.86\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.45-$ 6.89 ($\mathrm{m}, 3 \mathrm{H}$, aromatic protons).
39 c/d	Thick oil	18	2.25-2.67, 2.67-3.0, 3.0-3.42 ($3 \mathrm{~m}, 6 \mathrm{H}$, aliphatic and alicyclic protons), 3.50$3.58(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOMe}), 3.89-4.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{2}\right), 5.83\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.42-$ 6.94 ($\mathrm{m}, 3 \mathrm{H}$, aromatic protons).
40	100-102	62	$4.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 7.27-8.1(\mathrm{~m}, 6 \mathrm{H}$, aromatic \& olefinic), $8.5(\mathrm{~m}, 2 \mathrm{H}$, olefinic \& $\mathrm{C}_{5}-\mathrm{H}$).
41	124	66	$3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOMe}), 3.90(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 7.0(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons), 8.5 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, aromatic protons), $8.6\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right)$.
42	167-170	68	3.81(s, $3 \mathrm{H}, \mathrm{COOMe}), 6.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{O}\right), 6.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic protons), 7.81 (dd, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.6(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic proton), $8.65\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C}_{5}-\mathrm{H}\right)$.

*Total yield of $30 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ and $31 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ is 72% \& 71% respectively
${ }^{\dagger}$ Total yield of $32 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ and $36 \mathrm{a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ is $65 \& 78 \%$ respectively.
${ }^{\ddagger}$ Total yield of $\mathbf{3 7 a} / \mathrm{b} / \mathrm{c} / \mathrm{d}$ is 76%
isomers 20a-d of the cycloadduct which were isolated and characterised. The regioisomers were differentiated on the basis of the most downfield signal of $\mathrm{C}_{5}-\mathrm{H}$. In 20a and 20b it appeared at δ 4.95 and in 20 c and 20 d two protons at C-5 appeared at $\delta 4.2-4.5$. Discrimination between 20a and 20b was carried out on the basis of chemical shift of $\mathrm{C}_{3}-\mathrm{H}$. Because of the cis relationship of $\mathrm{C}_{3}{ }^{-}$ H and cyano group, $\mathrm{C}_{3}-\mathrm{H}$ was expected to resonate downfield ($\delta 4.4$)in trans isomer as compared to that in cis isomer($\delta 4.0$). Isomers $\mathbf{2 0} \mathbf{c}$ and $\mathbf{2 0 d}$ were differentiated on the basis of the chemical shift of
$\mathrm{C}_{4}-\mathrm{H}$ which being cis to benzofuran ring, was expected to be more shielded. Thus the compound having signal at $\delta 3.6$ was the trans isomer $\mathbf{2 0} \mathbf{c}$ and the other having signal at $\delta 3.8$ was the cis isomer 20d (Scheme II, Table I).

Reaction of acrylonitrile with 5-bromobenzo-furan-2-aldoxime 4 , furnished only 5 -cyano isomer 22b in high yield. In the reactions using methyl acrylate both $\mathbf{3}$ and 4 oximes furnished mixtures of isomers of cycloadducts (21 and 23) from which $21 \mathrm{c} / \mathrm{d}$ and $23 \mathrm{c} / \mathrm{d}$ were separated.

Indole 2 -aldoxime 5, indole-3-aldoxime 6 and 5,6-dimethoxyindole-3-aldoxime $\mathbf{8}$ also gave mixtures of isomers of the cycloadducts $24,25,26$, 27,28 , and 29 respectively with acrylonitrile as well as ethyl acrylate or methyl acrylate which were not separated into individual isomers (Scheme III, Table I).

Cinnamaldoxime 9 and 2-chloro-1-cyclohexenealdoxime $\mathbf{1 0}$ when used in these reactions gave initially mixtures of isomers. In the case of cinnamaldoxime with acrylonitrile as well as methyl acrylate, 4- and 5-cyano isomers were separated and identified as $\mathbf{3 0 a} / \mathbf{b}, \mathbf{3 0} \mathbf{c} / \mathbf{d}$ and $\mathbf{3 1 a} / \mathbf{b}$ $31 \mathrm{c} / \mathrm{d}$. In the case of oxime 10 with acrylonitrile, stereoisomeric mixture of 5 -isomers was isolated in 2:5 ratio of $\operatorname{cis}(\mathbf{3 2 b}): \operatorname{trans}(\mathbf{3 2 a})$ as shown by ${ }^{1} \mathrm{H}$ NMR. With methyl acrylate, mixture of isomers of 33 was obtained from which $33 \mathrm{c} / \mathrm{d}$ was separated into pure form. Veratraldoxime 12 and piperonal oxime $\mathbf{1 3}$ furnished mixtures of isomers 38 and 39 with methyl acrylate (Scheme II,Table I).

In the last part of this work, ketoximes 7,14, and 15 when treated with dienophiles gave mixtures of isomers of the adducts $\mathbf{3 4}, 35,36,37$.

1,3-Dipolar reactions using unsaturated oximes with acetylenic dipolarophile (DMAD). Recently we have reported ${ }^{3}$ a reaction of thiophene-2-aldoxime with DMAD which furnished directly 3 -substituted isoxazole-4-methyl ester. In connection with this work, \propto, β unsaturated oximes 9,11 and 13 were treated with DMAD. The products obtained were 4 -carbomethoxy isoxazoles 40-42 (Scheme IV, Table II). The probable mechanism can be shown as initial cycloaddition with Michael addition to give 4isoxazoline which can isomerise to 3 -isoxazoline.

The two carbomethoxyl groups can be differentiated on the basis of the fact that, C_{4} COOMe is vinylogous amide while $\mathrm{C}_{5}-\mathrm{COOMe}$ is a saturated ester. Hydrolysis and decarboxylation of C_{5}-COOMe might be furnishing the products as shown in Scheme V. The position of -COOMe group was confirmed from the ${ }^{1} \mathrm{H}$ NMR spectral data in which most downfield proton C_{5}-H was seen around $\delta 8-9$. In each case dehydrated products were obtained in around 20% yield.

Scheme III-1,3-Dipolar reactions using olefinic dipolarophiles

Scheme IV - 1,3 Dipolar reactions using DMAD

Conclusion
Reactions of unsaturated oximes 1-10 and 12-15 with double bonded dipolarophiles furnished new substituted isoxazolidines while those of $\mathbf{9 , 1 1}$ and 13 with DMAD furnished substituted isoxazoles.

Experimental Secion
IR spectra were recorded in nujol on Perkin Elmer-337 spectrometer and ${ }^{1} \mathrm{H}$ NMR spectra on a Jeol FX 90Q spectrometer at 90 MHz in CDCl_{3} using TMS as internal standard. Carbon/hydrogen analyses were carried out on Hosli C/H analyser .
Preparation of unsaturated oximes. $\propto, \beta-$ Unsaturated oximes 1-15 were prepared using reported procedures.

General procedure for 1,3-dipolar reactions. To the unsaturated oxime $1-15$ was added an excess of the dipolarophile (acrylonitrile, methyl acrylate, ethyl acrylate or DMAD) and a pinch of hydroquinone. After passing dry nitrogen gas, the reaction mixture was heated (for $12-120 \mathrm{hr}$) in a sealed tube at $120^{\circ} \mathrm{C}$. Excess of the dipolarophile was removed. The reaction mixture was chromatographed on silica gel using pet ether-ethyl acetate ($2-10 \%$) which furnished the product as a thick oil (few are solids).The isoxazolidines obtained as thick oils were mixtures of regio- and stereo-
isomers. In some cases the thick oil was rechromatographed on silica gel using pet etherethyl acetate to furnish single isomer. IR spectra of all isoxazolidines obtained in the reactions with acrylonitrile showed bands in the range of 2250$2260 \mathrm{~cm}^{-1}$ for -CN and with methyl, acrylate showed bands in the range of $1730-1770 \mathrm{~cm}^{-1}$ for -COOMe along with the other bands. All isoxazoles showed bands in the range of 1747$1755 \mathrm{~cm}^{-1}$ for -COOMe . All products showed satisfactory microanalysis within the range of C 0.3%, H 0.2%.

Acknowledgement

We thank Mr A P Gadgil and Mrs J.P Chaudhari for analytical and spectral data. One of us (HMW) thanks the UGC, New Delhi, for the award of teacher fellowship under FIP.

References

1 Grunanger P \& Funzi P V, The Chemistry of Heterocyclic Compounds, Isoxazoles, Vol 49, Part I, (John Wiley, New York) 1991, 391,753.
2 Devi V U, Ashok K, Rao K R K M, Indian J Chem 29B,1990, 898.
3 Kusurkar R S, Wadia M S, Bhosale D K, Tavale S S \& Puranik V G, J Chem Res (S), 1996, 478 J Chem Res(M), 1996, 2701

