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1. Introduction 
Classification is a data mining branch that is used by a variety of applications. Decision Tree (DT), 

Neural Network (NN), Support Vector Machine (SVM) , Rule-Based Classifier (RBC), and Bayesian 

Classifiers (BC) are used for classification and pattern recognition tasks in many enterprises and 

industries [1]–[7]. These techniques can be grouped according to two major criteria. The first is the way 

the model has been built. For example, in DT, a model is derived and expressed as a tree. On the other 

hand, in RBC, the model is represented by decision rules, and BC represents a model via a set of 

equations or graphs (in the case of Bayesian Network). The second is the  

model's complexity because some classifiers provide explanation capability for decision-making 

processes like (DT, RBC), while others produce black-box models such as(SVM, NN). This is so because 

they cannot explain how a learning result was reached [8]. 

Nowadays, we bear contemporary a real coup of data, which has wholly been pushed by way of 

superior storage technology and the Internet's increasing popularity. Finding actionable knowledge 
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 A large spectrum of classifiers has been described in the literature. One 

attractive classification technique is a Naïve Bayes (NB) which has been 

relayed on probability theory. NB has two major limitations: First, it 

requires to rescan the dataset and applying a set of equations each time to 

classify instances, which is an expensive step if a dataset is relatively large. 

Second, NB may remain challenging for non-statisticians to understand the 

deep work of a model. On the other hand, Rule-Based classifiers (RBCs) 

have used IF-THEN rules (henceforth, rule-set), which are more 

comprehensible and less complex for classification tasks. For elevating NB 

limitations, this paper presents a method for constructing a rule-set from 

the NB model, which serves as RBC. Experiments of the constructing rule-

set have been conducted on (Iris, WBC, Vote) datasets. Coverage, 

Accuracy, M-Estimate, and Laplace are crucial evaluation metrics that have 

been projected to rule-set. In some datasets, the rule-set obtains significant 

accuracy results that reach 95.33 %, 95.17% for Iris and vote datasets, 

respectively. The constructed rule-set can mimic the classification 

capability of NB, provide a visual representation of the model, express rules 

infidelity with acceptable accuracy; an easier method to interpreting and 

adjusting from the original model. Hence, the rule-set will provide a 

comprehensible and lightweight model than NB itself. 
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within that huge data is humanly no longer possible, yet it demands sophisticated statistical and data 

mining techniques. SVM, NN, and NB are currently the most attractive classification techniques. Most 

benchmarking researches reveal that these models, in general, perform well among the trends of 

classification techniques due to capturing nonlinearities and probability membership in the case of SVM, 

NN [9], and NB, respectively. However, for SVM and NN, their strength is also their weakness, since 

they are regarded as black-box models [10]. In fact, from a knowledge representation perspective, 

classification models can be grouped into two main categories: white-box and black-box models [11]. 

The first provides a comprehensible form with the explanation capability about how the decision-making 

mechanism is handled. RBC and DT fall under this category. The second, which is an incomprehensible 

model, does not explain the decision-making process; SVM and NN return to this category [12].  

NB [13] is a probabilistic model. This model makes its prediction depend on probability membership. 

It reflects the relationship between the independent and dependent variables to predict [14][15]. A major 

drawback of this model is that, although the construction of a classifier is relatively easy and can be built 

without complicated parameters, it is time-consuming if applied on a large dataset. This is because every 

time NB needs to classify a new instance, the whole dataset requires to be reviewed for applying statistical 

equations to conduct classification. Rescanning the entire dataset is a very intensive step, especially if the 

dataset is relatively big [16]. Moreover, NB may remain difficult for non-statisticians in understanding 

the details of a model's operation and classification mechanism. Thus, it could be considered as a black-

box model from the perspective of those who are not specialists in statistics.  

On the other hand, RBC relies on its prediction on a more comprehensible rule-set for humans (i.e., 

White-box model) and easy to implement and tuned by an expert is a specific domain. If we employ the 

pros of both techniques (i.e., NB, RBC), we can get the classification power of NB and elevate its 

limitation. This is accomplished by taking the classification behavior of NB in a form classification rule 

(i.e., rule-set) which can be served as RBC. So, by considering the above-mentioned perspectives and to 

overcome the NB limitations, this paper attempts to present a useful method of constructing a rule-set, 

which can serve as RBC, from the NB model. The construction process is done in two steps. The first 

includes using a training dataset to train the NB model, while the second step uses the learned model 

and constructs a rule-set from it. The constructed rule-set can mimic the classification capability of NB, 

provides a visual representation of the model, expresses in fidelity form, shows acceptable accuracy, which 

is easier to interpret and adjust from the original model. Moreover, it (i.e., rule-set) averts the rescanning 

dataset and applies a set of equations to classify instances, which is an expensive step if the dataset is 

relatively large. When a new instance is considered for classification, a rule-set is scanned to determine 

the triggered rules that are satisfied by instance. After that, a rule engine will fire the appropriate rule to 

get the instance's class. 

The experiments have conducted three different datasets (Iris, WBC, Vote). The first two of which 

have numerical attributes, while the last one is restricted with nominal attributes. Four vital rule 

evaluation metrics have been projected to the constructed rule-set, named (Coverage, Accuracy, M-

Estimate, and Laplace). The experimental results show that the generated rule-set has simple and pure 

formalism, which could be used as classification rules (i.e., RBC) with relatively high accuracy.  In some 

datasets with specific experimental settings, the rule-set gets surprised accuracy results for Iris and vote 

datasets, respectively. 

This paper is organized as follows: Section Two discusses related works and gives an overview of rule 

construction methods in the literature. Section Three demonstrates short preliminaries of NB and RBC. 

The proposed rule construction method will be described in Section Four. Experiments, datasets, results, 

and other configurations have been demonstrated in section five. Finally, the paper ends with conclusions 

and suggestions for future works. 
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2. Method 
This section provides a simple overview of two attractive classifiers that are relevant to the proposed 

work. This first one is the probabilistic Naïve Bayes Classifier, and the second is Rule-Based Classier. A 

brief account of the work's mechanism, Pros, and cons for each model will be provided. 

2.1. Related works 
To the best of our knowledge, Andrews, Diederich, and Tickle [17] is the first work that divides rule 

extraction method from ANN, that can be also applied to other models into two main modes: 

decompositional and pedagogical (also called learning-based). The principle of discriminate these modes 

relies on how to extract rules from the learned model. In decompositional mode, the focus is on 

extracting rules by browsing the deeply of model components. While in pedagogical mode, the 

concentration will be to cooperate with another machine learning algorithm that has facilitation of 

explanation ability which means that the original model (i.e. black-box model) has been used to produce 

elements to be used in the second model that generating the rules as for output. The difference between 

decompositional and pedagogical is schematically illustrated in Fig. 1. 

 

Fig. 1.  SVM rule extraction technique, Pedagogical (a) and Decompositional (b) [18] 

Rule extraction from classification models has been covered in different publications. Table 1 shows 

a summarized overview rule of extraction techniques proposed by the authors. The first set of works 

shows the decompositional (D) approached to rule construction. Then, the pedagogical (P) rule 

construction approaches are listed. 

Table 1.  Overview of Rule Extraction Algorithms 

Ref Algorithm/Approach Summary 
[19] NOFM/D NOFM is a method that extracts an accurate and comprehensible 

rule set from learned KNNs 

[20] KL/D KL is able to deal with single and multi-layer NN. 

[21] -/D transform decision trees into a set of production rules 

[22] SVM+Prototypes/D 

 

Clustering algorithm has been used to determine prototype vectors 

[23] -/D Extract rule-set from NB model 

[16] RNBC/D Rules are generated based on Naïve Bayesian classifier 

 

[24] -/P Extracting rule set from Support Vector Machine (SVM) 

[25] Re-RX/P 

 

Extract rule from NN, working with discrete and continuous 

attributes without a need for discretization 

[26] TREPAN/P 

 

Extracting comprehensible, symbolic representations from trained 

neural networks. 

[27] GEX/P 

 

Extracting rule from trained NN. 

 

[28] -/P Extracting rule from SVM 
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Towell and Shavlik [19] propose and evaluate a method for extracting expert- comprehensible rule 

set from learning NNs, called NOFM. The name NOFM comes from the concept of IF (M of antecedents 
are true) THEN Results obtained by extracting rules closely mimic the original network's accuracy. 

Fu [20] presents an algorithm called Knowledgetron (KT), which extracts the rule set from a 

backpropagation network, and it can deal with single-layer and multi-layer networks. Another work was 

done by Quinlan [21], which aimed to transform decision trees into production rules. The proposed 

method makes use of a training set from which the decision tree was built. The author finds out the 

produced rules are more accurate when predicting unseen instances. Núñez, Angulo, and Català [22] 

propose a method to extract a rule from the Support Vector Machine named SVM+ Prototypes method. 

The procedure of extracting rules uses support vector and geometric operation to define ellipsoids in the 

input space, which are converted later into a rule-set.  

Few works in the literature are concerned with construct a rule-set from Naïve Bayes. An attractive 

work close to our work was conducted by Śnieżyński [23], which presents a new method that converts 

the Naïve Bayes model to a rule-set. The researcher's major concern is to prove the possibility of 

converting the NB model into rules with relatively high accuracy. Another paper was presented by 

Alashqur [16] in which he proposes a new approach called Rule-based Naïve Bayesian Classifier (RNBC). 

The author uses a simple three steps for constructing a classification rule set. Diederich and Barakat [24] 

propose a novel approach for extracting the rule set from SVM. Their method simulates the original 

model via a learning task that utilized a training dataset and updated or different datasets to convert 

SVM into a set of non-overlapping rules. Setiono et al. [25] introduce a rule extraction algorithm called 

Recursive-Rule eXtraction (Re-RX), which aims to extract rules from NN. This algorithm can deal with 

discrete and continuous variables and work efficiently with large datasets. Credit risk datasets have been 

used to validate the extracted rules. 

2.2. Naïve Bayes Classifier 
NB considered amongst the foremost efficient classification models depended on the Bayesian 

Theorem [29][30]. The NB classifier focuses the conditional probability of instances in the training data; 

that is, for each attribute Ai of target C, the likelihood of the target is calculated based on its attributes 

A1, A2 …. An , hence, the target has been predicted along with maximum posterior probability[31]. 

The key idea of NB classifier is that it relies on the independent postulate for the attributes given the 

target class C. hence, all attributes of a certain instance are conditionally independent given target C [32], 

and this trait is considered as a weakness criterion if the hypothesis is not verified. Fig. 2 is illustrated 

the relationship between attributes and the target class of the NB classifier. 

 

Fig. 2.  Naive Bayes Structure 

The Bayes theorem demonstrates in (1). 

𝑃𝑃(𝐴𝐴|𝐵𝐵) = 𝑃𝑃(𝐵𝐵|𝐴𝐴).𝑃𝑃(𝐴𝐴)/𝑃𝑃(𝐵𝐵)  (1) 

Whereas (P) represents the probability, P(A|B) represents a posterior probability of the target when 

the attribute is specified. P(A) is the preceding probability of a target, and P(B|A) represents a Likelihood 

of instance A given target C, whereas P(B) represents the past probability of the predictor. The divisor 

P(B) is eliminated when calculating P(A|B) because it considers as fixed (constant) to all targets, as 

shown in (2) [24][25].  

𝑃𝑃(𝐴𝐴|𝐵𝐵)~𝑃𝑃(𝐵𝐵|𝐴𝐴).𝑃𝑃(𝐴𝐴)  (2) 
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The symbol "~" refers to that LHS (i.e., Left Hand Side) is prorated to the RHS (i.e., Right Hand 

Side). The target that has a maximum posterior probability will be considered as a final class for the 

overall prediction targets [16][31][33]. It is worth mentioning that NB is computationally fast if it is 

applied to relatively small data, yet it works well with large data at the expense of the execution time. 

2.3. Rule-Based Classifier 
A pivotal means of interpreting data or information is via rules. RBC utilizes a set of rules for 

classification tasks. A body of the rule is formed as IF condition THEN conclusion. 

The IF part (i.e., LHS) refers to the rule antecedent (which may have one or more attributes as a 

condition); on the other hand, THEN part (i.e., RHS) represents the rule eventual (rule consequent 

that represents the target label) [34]. A rule covers an example whenever the rule antecedent is met. The 

coverage rule is calculated by dividing the number of instances satisfied by the overall number of instances 

in (3). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 (𝑅𝑅) = 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑟𝑟𝑜𝑜𝑁𝑁𝑟𝑟𝑟𝑟 𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑜𝑜𝑠𝑠𝑁𝑁𝑟𝑟 𝑁𝑁𝑏𝑏 𝑁𝑁𝑁𝑁𝑟𝑟𝑁𝑁
𝑇𝑇𝑜𝑜𝑠𝑠𝑠𝑠𝑟𝑟 𝑛𝑛𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑁𝑁𝑁𝑁𝑟𝑟𝑜𝑜𝑁𝑁𝑟𝑟𝑟𝑟

  (3) 

If the same example triggers no two rules in the data, the rule set is mutually exclusive. If it exists, it 

indicates a single rule for each feature combination in the feature space. The rule set is considered 

exhaustive, which means that each feature space segment has a rule. The preceding criteria guarantee 

that each pattern is covered by a single rule [35]. Nevertheless, this is frequently an ideal situation, and 

not all rule-based classifiers exhibit this property. Instances in the dataset that are not launched via any 

rule may be created due to a violation of the exhaustive property. However, if the mutually exclusive 

property is violated, multiple rules may be triggered by the same instance, and once the triggered rules 

generate a different target label, a rule conflict will occur. In this case, a strategy for resolving conflict 

should be issued. 

2.4. Rule of construction methodology 
A derivation set of rules from the NB classifier is applicable. For constructing the rules, the 

unpretentious method is to extract a rule utilizing each attribute of instances. The straightforward form 

could be illustrated as follows: 

Rule (R): Xi====>Yk:L 

𝑋𝑋𝑠𝑠(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3 … ,𝑋𝑋𝑛𝑛)  refers to the instance with its attributes, and Yk (Y1, Y2, …,Yk) refers to the 

target label. The ruling power (i.e., rule strength) is represented by the notation (L). TIf the dataset is 

sufficiently large, this rule extraction method will generate a large number of rules. A parameter controls 

rule construction, and the L parameter is required to reduce a large number of rules. By hiring L, it is 

possible to eliminate weak rules that degrade the model's performance, thereby increasing the 

classification model's accuracy. As a result of the above, the rule construction algorithm-based [23] could 

be viewed in Fig. 3. 

Algorithm: The rule resulted fron the NB 
Input: The probability of NB conditional               
    p(Xi|C), threshold T   
Output: R(Rule-set) 
1   Begin   
2        for each instance Xi  do 
3          for each value of class C do 
4           P: = p(Xi|Ck) 
5             if (P>=T) OR (P<=1-T) then    
6            R=R ⋃ (Xi --> Ck:f(p)) 
7      end 
8     end 
9   End 

Fig. 3.  The constructed Rule Set algortihm based on NB 
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The algorithm takes a Naive Bayes conditional probability P(X|C) and a threshold T as inputs and 

produces a set of IF-Then rules as for output. The number of produced rules will be limited by the 

threshold (T). The probabilistic is defined by the function f(p) in line (6). It can take two different forms. 

The first is a probabilistic mark, which is f(P)=P; in this case, if many rules cause an example and the 

rules' consequents belong to the same class, the consequents should be aggregated by multiplying the 

labels of the rules. Another alternative is to discretize the labels by applying the f(p)=Round(p) [23]. 

The condition in line (5) is used in the preceding algorithm when the input domain is constrained 

to two values, namely 𝑋𝑋𝑠𝑠
𝑗𝑗
  values with a conditional probability close to either 1 or 0. If the domain 

contains more than two values, the condition should then be substituted by the Entropy. 

For instance, Entropy condition Xi for class Yk  can be defined in (4) as follows: 

𝐸𝐸(𝑖𝑖ˎ𝑘𝑘) = ∑ −𝑃𝑃(|𝐷𝐷𝐷𝐷𝑖𝑖|
𝑗𝑗=1 Xi = 𝑥𝑥𝑗𝑗𝑠𝑠|𝑌𝑌 = 𝑦𝑦𝑠𝑠)𝑙𝑙𝐶𝐶𝐶𝐶2𝑃𝑃(Xi = 𝑥𝑥𝑗𝑗𝑠𝑠|𝑌𝑌 = 𝑦𝑦𝑠𝑠)    (4) 

Where 𝐸𝐸(𝑖𝑖ˎ𝑘𝑘) refers to the  probability distribution entropy, 𝐷𝐷𝑋𝑋𝑠𝑠 is input domain. The condition in line 

(5) must take the form: E< T. 

The constructed rules with discrete strength are considered more comprehensible than those 

obtained via a probabilistic one. Rules that have the exact consequent and exact strengths can be 

aggregated in one classification rule by connecting the OR operation rules. 

3. Results and Discussion 

3.1. Datasets 
This research was conducted on three different datasets: Iris, Wisconsin Breast Cancer (WBC), and 

Congressional Voting Records Data Set (Voting). These datasets are available at the UCI repository for 

machine learning tasks [36]. The Voting dataset includes nominal attributes whereas the remainder 

includes numerical attributes. Table 2 epitomizes these datasets. 

Table 2.  Datasets Summary 

Dataset #  Cass Missing value # Nominal 
attribute 

# Numeric 
attribute # Instance 

Iris 3 None 0 4 150 
WBC 2 Several 0 9 699 
Voting 2 Many 19 0 435 

 

The first famed dataset contains three classes, each of which represents the species of the iris. This 

dataset is considered a balanced dataset since classes are equally distributed. WBC includes patient 

information represented by two classes that take either benign or malign of cancer. Whereas in a Voting 

dataset , the target label refers to the party of voter records of Congressmen. The class distribution of 

WBC and Vote datasets reveal that they are unbalanced datasets. 

Weka is a tool that is oriented to solve data mining issues. It includes an aggregation of machine 

learning algorithms related to classification, clustering, regression, feature selection, etc. Weka is fully 

written in Java and provides Java API, hence, their algorithms could be applied straightway to the selected 

dataset or called based on the Java code[37]. The accuracy of NB for our datasets on training data is 

96%, 96.56%, and 90.34% for Iris, WBC, and Vote, respectively. Preprocessing operations are conducted 

on Iris and WBC. In these two datasets, the unsupervised discretization(binning) process on the numeric 

attributes to divide attributes into groups has been applied, then convert them to discrete counterparts 

and facilitates the process of rule construction. 
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3.2. Experiments 
Equal width(EW) and Equal frequency(EF) are two unsupervised binning methods that have been 

used in the discretization process. In each of these methods, a different value of an important parameter 

called bin (which describe the interval of data, subdivision of equal size in the case of equal width or 

divide the data into K groups, each of them contain approximately the same number of values in the 

case of equal frequency) that control discretization process. In [23], just EW  with two bins and a class-

based ordering conflict resolution strategy is employed. The proposed work in this research has adapted 

class-based ordering and size-ordering rule conflict strategies. 

Applying the proposed algorithm, rule sets for every dataset using thresholds with a range (0.6 - 0.9), 

discrete f(p)=Round(p) as a rule labeling (strength) have been constructed. Indeed, threshold T can 

range between (0.1- 0.9). The lower value produces maximum rule-set with low accuracy measure, while 

the upper values gave the smallest count of rules with comparatively rising accuracy. Table 3 shows the 

number of constructing rules for each dataset with two binning values (2 and 3) and threshold (T) with 

ranges (0.6 - 0.9). It is worth noting that only the most powerful rules will be taken when applying rules 

for classification, i.e., the rules with strength equal (1.0). 

Table 3.  Number of Constructed Rules for Dataset (Without Default Rules) 

T Iris, bin=2 WBC, bin=2 Voting 
EW EF EW EF 

0.6 22 18 26 34 49 

0.7 18 16 21 32 43 

0.8 14 16 20 28 30 

0.9 12 12 18 12 10 

T 
Iris, bin=3 WBC, bin=3  

EW EF EW EF 

 

0.6 33 35 49 48 

 

0.7 30 31 39 41 

0.8 26 25 30 33 

0.9 24 24 27 18 

 

The plot in Fig. 4 shows the relationship between the probability threshold T and the number of 

constructing rules with two binning techniques (Equal width, Equal frequency). From the sketch, it is 

clear that the relationship between threshold T and generating rules is reversible. That is, whenever 

increase T, the number of generating rules will decrease. 

 

Fig. 4.  Number of Generated Rules Per Threshold T With Bin=2 
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The constructed rule-sets have been applied as classification rules (i.e., RBC) to the three datasets 

mentioned in Table 2 utilizing software which the authors develop. If no rule matches an instance during 

classification, this case is handled as missing-instance and can be solved by adding a default rule. 

As mentioned in subsection (3.2), not all RBCs are mutually exclusive, which leads to the conflict of 

rules. This implies the use of some conflict resolution strategies. The implementation of classification 

rules will adopt two different strategies. They are (A) class-based ordering and (B) size-ordering. The 

former relies on class, i.e., the class of higher priority is executed first. The latter assigns the highest 

priority to the triggering rules with the "toughest" requirement (i.e., with the most attribute test). Table 

4 highlights the accuracy after applying the rule-set on Iris and WBC datasets, with T ranged (0.6_0.9), 

using bin equal to 3 and two different rule conflict resolution strategies. 

Table 4.  Accuracy of Generated Rule-Set for (Iris, WBC) in Different Configuration 

Iris Dataset 
T Binning # Rules Conflict Strategy Accuracy 

0.6 

 

EW 10 

A 49.33% 

B 71.33% 

EF 10 

A 74.67% 

B 78.67% 

 

0.7 

EW 9 

A 49.33% 

B 71.33% 

EF 9 

A 80.0% 

B 80.0% 

 

0.8 

 

EW 7 

A 90.67% 

B 94.67% 

EF 7 

A 91.33% 

B 95.33% 

 

0.9 

 

EW 6 

A 90.67% 

B 94.67% 

EF 7 

A 91.33% 

B 95.33% 
  WBC Dataset 

 

0.6 

EW 11 

A 68.24% 

B 68.24% 

EF 12 

A 74.11% 

B 74.11% 

 

0.7 

 

EW 10 

A 68.24% 

B 68.24% 

EF 11 

A 76.97% 

B 76.97% 

 

0.8 

 

EW 9 

A 68.53% 

B 68.53% 

EF 8 

A 76.82% 

B 76.82% 

 

0.9 

 

EW 8 

A 68.53% 

B 68.53% 

EF 2 

A 78.97% 

B 78.97% 

 

 The bin number is a vital parameter that affects the accuracy of RBC. The experiments adapted two 

values of this parameter (bin=2 or 3). The reason for choosing these values is that they produce a rule 

set with high accuracy metric when used for classification. What is remarkable in the results is that the 

accuracy of RBC increases with the increase of T. In the Iris dataset, significant results have been 

obtained in accuracy metrics that reach 94.67% and 95.33% in EW and EF, respectively, with T=0.9. If 

the previous configuration has directly been applied on Naïve Bayes (i.e., discretize with bin=3), the 
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obtained accuracy is 94%. The conflict resolution strategy also has an apparent effect on accuracy metrics. 

Fig. 5 reveals that size ordering is more accurate than the class-based ordering strategy when applying 

to the Iris dataset. 

 

Fig. 5.  Accuracy Comparison Between Class-Based Ordering And Size Ordering With EW Binning on Iris 

Dataset 

Equal frequency discretization produces a rule set that shows the superior accuracy compared to the 

Equal width in all datasets for both class-based and size ordering conflict resolution strategies. The plot 

in Fig. 6 shows this situation in the WBC dataset. 

Table 5 summarizes the results of applying a constructed rule set on different threshold T with class-

based and size-ordering strategies on the Vote dataset. In Vote, which is a nominal attributed dataset, 

the class-based ordering shows high classification accuracy than size-ordering. With T=0.9, which 

produces just 4 strength rules, a significant accuracy that reached 95.17% has been obtained, compared 

with 90.34 %, which have been obtained from applying NB directly to the dataset. 

 

Fig. 6.  Accuracy Comparison Between Equal Width and Equal Frequency on WBC Dataset 

Table 5.  The Accuracy of Generated Rule Set For Voting Dataset in Different Configuration 

Vote Dataset 
T # Rules Conflict strategy Accuracy 

0.6 23 

A 75.86% 

B 43.45% 

0.7 20 

A 87.13% 

B 43.45% 

0.8 13 

A 90.34% 
B 46.21% 

0.9 4 

A 95.17% 
B 76.32% 
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Table 6 demonstrates the evaluation of the rule set for the Iris dataset that is constructed with the 

configuration of bin=3, T=0.9, and (EF) discretization scheme. The evaluation is done via famed metrics 

(Coverage, Accuracy, Laplace, M-Estimate). 

Table 6.  Evaluation of iris Rule-Set 

 Rules Coverage Accuracy Laplace M_Estimate 

if (sepallength<-5.5) =====>Iris-setosa:1.0 34.67% 86.54% 83.64% 81.82% 

if (petallength<2.5) =====>Iris-setosa:1.0 33.33% 100.0% 96.23% 94.34% 

if (petalwidth<0.8) =====>Iris-setosa:1.0 33.33% 100.0% 96.23% 94.34% 

if (petallength>=2.5 &&  petallength <4.8)  

=====>Iris-versicolor:1.0 

30.0% 97.78% 93.75% 91.67% 

if (petalwidth>=0.8&&  petalwidth <1.6)  

=====>Iris-versicolor:1.0 

32.0% 93.75% 90.2% 88.24% 

if (petallength>=4.8) =====>Iris-virginica:1.0 36.67% 89.09% 86.21% 84.48% 

if (petalwidth>=1.6)=====>Iris-virginica:1.0 34.67% 34.67% 87.27% 85.45% 

 

The set of rules shown in Table 6 for the Iris dataset that serves as an RBC is more comprehensible 

to humans to interpret than the original NB probability model. A comparison of accuracy related to 

RBC constructed from NB is plotted in Fig. 7. 

 

Fig. 7.  Accuracy Comparisons For Constructed Rule-Set 
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4. Conclusion 
This paper represents an attempt to initiate a method for constructing a decision rule-set from the 

Naïve Bayes classifier that is easily interpreted and is more comprehensible by a human. Two 

discretization methods (Equal width, Equal frequency) have been employed for preprocesses numerical 

datasets to facilitate rules construction. Experimental results show that the rule set constructed from 

Naïve Bayes is pure, with classification accuracy relatively high compared to the original model. 

Implement the rule construction method onto the different problem domains has been planned. Also, 

improving the accuracy of a constructed rule set via proposing a new strategy of implementing the 

classification rules has been attempted. 
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