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 The distance two labelling and radio labelling problems are applicable to find 

the optimal frequency assignments on AM and FM radio stations. The 

distance two labelling, known as L(2,1)-labelling of a graph A, can be 

defined as a function, 𝑘, from the vertex set V(A) to the set of all non-

negative integers such that 𝑑(𝑐, 𝑠) represents the distance between the 

vertices c and s in 𝐴 where the absolute values of the difference 

between 𝑘(𝑐) and 𝑘(𝑠) are greater than or equal to both 2 and 1 if 

𝑑(𝑐, 𝑠)=1 and 𝑑(𝑐, 𝑠) = 2, respectively. The L(2,1)-labelling number of 

𝐴, denoted by 𝜆2,1(𝐴), can be defined as the smallest number j such that 

there is an 𝐿(2,1) −labeling with maximum label j. A radio labelling of a 

connected graph A is an injection k from the vertices of 𝐴 to 𝑁 such that 

𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 1 + 𝑑 ∀ 𝑐, 𝑠 ∈ 𝑉(𝐴), where 𝑑 represents the 

diameter of graph 𝐴. The radio numbers of 𝑘 and A are represented by 𝑟𝑛(𝑘) 

and 𝑟𝑛(𝐴) which are the maximum number assigned to any vertex of 𝐴 and 

the minimum value of 𝑟𝑛(𝑘) taken over all labellings k of 𝐴, respectively. Our 

main goal is to obtain the bounds for the distance two labelling and radio 

labelling of nanostar tree dendrimers. 
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1. INTRODUCTION 

In the field of communication engineering, the radio frequencies are commonly used in 

communication devices such as radio transmitters, computers, televisions, and mobile phones due to the fact 

that the frequency and energy of radio waves are very low. Researchers and engineers are working on 

optimizing the usage of the allotted bandwidth for a specified communication system due to the high cost of 

spectrum. In 1992, Griggs and Yeh [1] optimized the number of channels for the amplitude modulation (AM) 

radio stations in the stipulated bandwidth with the help of a graph labelling technique, known as distance two 

labelling. Motivated by the distance two labelling concept, Chartrand et al. [2] introduced in the early 21st 

century the radio labelling concept for the frequency modulation (FM) radio stations. This type of channel 

allocation concerns with the maximum number of channels in a particular geographical area such that all the 

stations can receive the distinct frequencies. Since the distance between transmitters and their difference in 

frequency has played a vital role in assigning the maximum number of channels, the distance two labelling and 

radio labelling can be defined as follows: The distance two labelling, denoted by L(2,1)-labelling of a graph 

A, is a function, 𝑘, from the vertex set V(A) to the set of all non-negative integers such that 𝑑(𝑐, 𝑠) 

represents the distance between the vertices c and s in 𝐴; therefore, we have |𝑘(𝑐) − 𝑘(𝑠)|≥2 and 

https://creativecommons.org/licenses/by-sa/4.0/


TELKOMNIKA Telecommun Comput El Control   

 

The bounds for the distance two labelling and radio labelling of nanostar tree dendrime (Kins Yenoke) 

53 

|𝑘(𝑐) − 𝑘(𝑠)| ≥ 1 if 𝑑(𝑐, 𝑠) = 1 and 𝑑(𝑐, 𝑠) = 2, respectively. The L(2,1)-labelling number of 𝐴, denoted 

by 𝜆2,1(𝐴), can be defined as the smallest number j such that there is a 𝐿(2,1) −labeling with maximum 

label j. On one hand, Fotakis et al. [3] proved the NP-hardness of the radio coloring problem for graphs with 

diameter 2. On the other hand, Fiala et al. [4] investigated the NP-completeness for series-parallel graphs. 

Havet et al. [5] established the optimal exact algorithm for L(2,1)-labelling as O(3.8730𝑛) via dynamic 

programming. However, Szaniawski et al. [6] improved this bound by 𝑂∗ (3.5616𝑛). By using the algorithm 

proposed by Chang ada Kuo [7], the upper bound 𝜆2,1(𝐴) ≤ ∆2 + ∆ − 2 was determined by Goncalves [8]. 

Bodlaender et al. [9] showed that, for a given permutation graph A, 𝜆2,1(𝐴) ≤ 5∆ − 2𝜆2,1(𝐴) ≤ 5∆ − 2 is 

obtained. In addition, Sakai [10] obtained the distance two labelling of chordal graphs. Smitha and  

Thirusangu [11] proved the results for the quadrilateral snake 𝑄𝑛 as 8 and for the alternate quadrilateral snake 

graph 𝑄𝑛 as 5 for 𝑛 ≥ 2. Kujur et al. [12] proved that 𝜆2,1(𝐵𝑚,𝑛) ≤  13, where the bloom graph is 𝐵𝑚,𝑛(𝑛, 𝑚 >

2). Furthermore, Yenoke et al. [13] found the bounds for silicate and oxide networks as 𝜆2,1(𝑂𝑋(𝑛)) ≤ 8 and 

𝜆2,1(𝑆𝐿(𝑛)) ≤ 10, respectively.  

For a connected graph A, radio labelling is an injection, k, from the vertices of 𝐴 to 𝑁 such that d 

represents the diameter of a graph 𝐴, the result, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 1 + 𝑑 ∀ 𝑐, 𝑠 ∈ 𝑉(𝐴), is obtained. 

The radio numbers of 𝑘 and A are represented by 𝑟𝑛(𝑘) and 𝑟𝑛(𝐴) which are the maximum number assigned 

to any vertex of 𝐴 and the minimum value of 𝑟𝑛(𝑘) taken over all labellings k of 𝐴, respectively. The following 

Figure 1 depicts the definition of radio number.  

For the last two decades, several authors studied the radio labelling problem for general graphs and 

certain interconnection networks. The radio number of the total path of graphs were determined by Vaidya and 

Bantva [14]. Cada et al. [15] obtained the radio number of distance graphs. The same problem for trees was 

studied by Liu [16]. Kim et al. [17] presented the product of graphs namely 𝑃𝑙  (𝑙 ≥ 4) and 𝐾𝑙(𝑙 ≥ 2). Bharati 

and Yenoke [18] determined both upper and lower bounds for the hexagonal mesh as 𝑛(3𝑛2 − 4𝑛 − 1)  + 3 

and 3𝑛2 − 3𝑛 + 2 + ∑ 𝑖(𝑛 − 𝑖 − 1)𝑛−2
𝑖=0 , respectively. Bantva [19] slightly improved the lower bound that 

was established in [20]. In addition, Yenoke et al. [21] proved that 𝑟𝑛(𝐸𝑁 (𝑛, 𝑛)) ≤ (𝑛 − 2)(4𝑛2 − 9𝑛 +
8) + 2(𝑛 − 1)2 + (𝑛 + 1), where 𝐸𝑁 (𝑛, 𝑛) is the enhanced mesh, 𝑛 ≥  4. This paper is divided as follows: 

In section 2, we discuss the methodology of our research work. In section 3, our main results are obtained by 

studying the bounds for the L(2,1)-labelling number and radio number of the general tree dendrimer 𝑇𝑛,𝑝. Our 

research work is concluded in section 4. 
 

 

  

  
 

Figure 1. Different radio labellings and radio number of a graph A, 𝑟𝑛(𝐴) = min{8,6,5,4} = 4 
 

 

2. RESEARCH METHOD 

The author studied in [18], [21] the same problem for the networks that contains the number of vertices 

in the nth dimension as 3𝑛2 − 3𝑛 + 1 and 𝑛2, respectively. In addition, the authors in [14], [15], [17] studied 

the same problem for the graphs with 𝑛 vertices. Since the vertices have been increased in terms of the high 

order for a network, especially of order 𝑛𝑛;  therefore, finding a good solution is very complicated. The authors 

are trying to find a solution for such networks. However, a good bound is obtained in this paper for the tree 

dendrimer chemical network which grows in the order of generation. Further, most of the networks were 

studied separately for the L(2,1) labelling or radio labelling. Due to the exponential growth of communication 

technology, we are today in need to estimate the lower and upper bounds for the graphs that are growing in 

higher order to compete with the consumers’ demand. By taking this into our account and according to the best 

of our knowledge, for the first time ever, we have estimated in this research work the bounds for both  

L(2,1)-labelling and radio labelling numbers for an 𝑛𝑛 (number of vertices) expanding chemical structure, 

known as nanaostar tree dendrimer. This research study provides a detailed analysis of the growth of such 

graph in terms of diameter and vertices for 𝑛, 𝑝 > 2, and its bounds have been obtained separately for  

𝐿(2,1)-labelling number and radio labelling number. Therefore, all obtained results in this study are novel and 

worthy. 
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2.1.  Nanostar tree dendrimer 

Nanostar is a star-looking type of nanoparticle that contains a spherical core with many branches. 

Dendrimers have very complex chemical structures and hyper-branched macromolecules with a star-shaped 

architecture. In addition, dendrimers are classified by a generation which represents the repeated branching 

cycles number that are performed during its synthesis. The structure of these materials has a huge impact on 

the physical and chemical properties of dendrimers due to the uniqueness of dendrimers’ behavior which makes 

them very suitable for various biomedical and industrial applications [22]-[24]. Yang and Xia [24] defined a 

tree dendrimer graph, denoted by 𝑇𝑛,𝑝, as follows: The center vertex of the graph 𝑇𝑛,𝑝 is represented by 𝑣1
0 

which is a 𝑝 −regular graph except the pendant vertices. In addition, the distance from the center vertex 𝑣1
0 to 

every pendant vertex is exactly 𝑛. Moreover, 𝑛 signifies here the 𝑛𝑡ℎ generation of the tree dendrimer. The 

diameter and radius of a tree dendrimer graph are 2𝑛 and 𝑛, respectively.  

In this research work, we have named the 𝑛 generation vertices of the tree dendrimer 𝑇𝑛,𝑝 as follows: 

First, we name the 𝑝 vertices in the first generation which are adjacent to the center vertex 𝑣1
0 as 𝑣1

1, 𝑣2
1 … 𝑣𝑝

1 in 

the clockwise sense. Next, we name the 𝑝(𝑝 − 1) vertices in the second generation as 𝑣1
2 , 𝑣2

2 … 𝑣𝑝(𝑝−1)
2  in the 

same order as we did the previous step. Similarly, we name the vertices of 3𝑟𝑑, 4𝑡ℎ … (𝑛 − 1)𝑡ℎ generations. 

Finally, the 𝑝(𝑝 − 1)𝑛−1 vertices in the 𝑛𝑡ℎ generation are named as 𝑣1
𝑛 , 𝑣2

𝑛 … 𝑣𝑝(𝑝−1)𝑛−1
𝑛  as shown in Figure 2.  

 

 

 
 

Figure 2. Vertices’ Naming in 𝑇3,3 

 

 

3. RESULTS AND ANALYSIS 

The bounds for the L(2,1)-labelling number and radio number of the general tree dendrimer 𝑇𝑛,𝑝 are 

determined in this section. 

Proposition 3.1: For any connected simple graph 𝐴 of diameter 2, 𝜆2,1(𝐴) + 1 = 𝑟𝑛(𝐴). 

Proof: The proof is directly derived from the definitions of L(2,1)-labelling and radio labelling.  

a) Theorem 3.1: For 𝑝 > 2, 𝜆2,1(𝑇1,𝑝) + 1 = 𝑟𝑛(𝑇1,𝑝) = 𝑝 + 2. 

Proof: It is known that the tree dendrimer 𝑇1,𝑝 is an ordinary star graph 𝑆𝑝+1. Rajan et al. [25] showed 

that the radio number of a star graph is 𝑟𝑛(𝑆𝑝+1) =  𝑝 +  2, 𝑝 > 2. Since the diameter of 𝑇1,𝑝 is 2, from 

Proposition 3.1, we obtain 𝜆2,1(𝑇1,𝑝) + 1 = 𝑟𝑛(𝑇1,𝑝) = 𝑝 + 2, 𝑝 > 2. 

b) Theorem 3.2: For 𝑛 = 2 and 𝑝 > 2, the L(2,1) labelling number of 𝑇𝑛,𝑝 satisfies, 𝜆 2,1(𝑇2,𝑝) ≤ 2𝑝. 

Proof: By defining a mapping 𝑘: 𝑉(𝑇2,𝑝) → 𝑁, we have the following: 

 

𝑘(𝑣1
0) = 1  

 

𝑘(𝑣(𝑗−1)(𝑝−1)+𝑖
2 ) = 𝑖 + 1, 𝑖 = 1, 2 … 𝑝 − 1, 𝑗 = 1,2 … 𝑝  

 

𝑘(𝑣𝑖
1) = 𝑝 + 1 + 𝑖, 𝑖 = 1, 2 … 𝑝. 
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Next, we claim that 𝑘 is a valid radio 2-chromatic labelling. 

Let 𝑐 and 𝑠 be any two vertices in 𝑇2,𝑝. 

1) Case 1: Assume 𝑐 and 𝑠 are any two second generation vertices.  

If 𝑐 = 𝑣(𝑧−1)(𝑝−1)+𝑗
2  and 𝑠 = 𝑣(𝑧−1)(𝑝−1)+𝑙

2 , 1 ≤ 𝑗 ≠ 𝑙 ≤ 𝑝 − 1, then we have 𝑑(𝑐, 𝑠) = 2 and  

|𝑘(𝑐) − 𝑘(𝑠)| = 1. Therefore, we have: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3. 

In addition, if 𝑐 = 𝑣(𝑗−1)(𝑝−1)+𝑖
2  and 𝑐 = 𝑣(𝑙−1)(𝑝−1)+𝑖

2 , 1 ≤ 𝑗 ≠ 𝑙 ≤ 𝑝; hence, the distance between them is 4. 

Therefore, the condition is trivially satisfied. 

2) Case 2: Suppose c and s are the first-generation vertices, then 𝑑(𝑐, 𝑠) = 2 and 𝑘(𝑐) = 𝑝 + 1 + 𝑗, 𝑘(𝑠) =
𝑝 + 1 + 𝑙, 1 ≤ 𝑗 ≠ 𝑙 ≤ 𝑝. Therefore, we obtain 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + |𝑗 − 𝑙| ≥ 3. 

3) Case 3: Suppose c is a second-generation vertex and s is a first-generation vertex, then we have: 𝑑(𝑐, 𝑠) ≥
1 and 𝑘(𝑐) = 𝑗 + 1, 𝑘(𝑠) = 𝑝 + 1 + 𝑙, 1 ≤ 𝑗 ≤ 𝑝 − 1, 1 ≤ 𝑙 ≤ 𝑝. Therefore, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥
1 + |𝑝| ≥ 3. 

4) Case 4: If c is the center vertex and 𝑣 = 𝑣(𝑘−1)(𝑝−1)+𝑖
2 , then 𝑑(𝑐, 𝑠) = 2 and |𝑘(𝑐) − 𝑘(𝑠)| ≥ 1. Therefore, 

we obtain: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3. 
5) Case 5: If 𝑐 = 𝑣1

0 and 𝑣 = 𝑣𝑖
1, then 𝑘(𝑐) = 1, 𝑘(𝑠) ≥ 𝑝 + 2. Therefore, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 𝑝 +

3 > 3. 
Hence, the 𝐿(2,1) labelling condition is satisfied, and the vertex 𝑣𝑝

1 attains the maximum value 2𝑝 + 1. Since 

we start labelling from 1, we get 𝜆 2,1(𝑇2,𝑝) + 1 ≤ 2𝑝 + 1, which implies that 𝜆 2,1(𝑇2,𝑝) ≤ 2𝑝. 

c) Theorem 3. 3: Let 𝐴 be a tree dendrimer 𝑇𝑛,𝑝, where 𝑝, 𝑛 > 2, then the L(2,1) labelling number of A satisfies 

𝜆 2,1(𝐴) ≤ 3𝑝 + 1. 

Proof: Define a mapping 𝑘: 𝑉(𝑇𝑛,𝑝) → 𝑁 as follows: 

 

𝑘(𝑣1
0) = 1. 

 

𝑘(𝑣𝑖
1) = 𝑖 + 2, 𝑖 = 1, 2 … 𝑝. 

 

𝑘(𝑣(𝑧−1)(𝑝−1)+𝑖
3𝑗−1

) = 𝑝 + 3 + 𝑖, 𝑖 = 1, 2 … 𝑝 − 1, 𝑧 = 1,2 … (𝑝 − 1)3(𝑗−1)𝑝, 𝑗 = 1,2 … [
𝑛

3
]. 

 

𝑘(𝑣(𝑧−1)(𝑝−1)+𝑖
3𝑗

) = 2𝑝 + 3 + 𝑖, 𝑖 = 1, 2 … 𝑝 − 1, 𝑧 = 1,2 … (𝑝 − 1)3𝑗−2𝑝, 𝑗 = 1,2 … ⌊
𝑛

3
⌋.  

 

𝑘(𝑣(𝑧−1)(𝑝−1)+𝑖
3𝑗+1

) = 𝑖 + 2, 𝑖 = 1, 2 … 𝑝 − 1, 𝑧 = 1,2 … (𝑝 − 1)3𝑗𝑝, 𝑗 = 1,2 … ⌈
𝑛

3
⌉ − 1 as shown in 

Figure 3. 

 

 

 
 

Figure 3. Radio 2-chromatic labelling of 𝑇𝑛,𝑝 with 𝑛 = 𝑝 = 4 which attains the upper bound 
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Next, we verify the radio 2-chromatic labelling condition 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3 ∀ 𝑐, 𝑠 ∈
𝑉(𝑇𝑛,𝑝). By letting 𝑐, 𝑠 ∈ 𝑉(𝑇𝑛,𝑝), we have the following: 

1) Case 1: Suppose 𝑐 and 𝑠 are any two vertices in (3𝑗 − 1)𝑡ℎ generation, where 𝑗 = 1,2 … [
𝑛

3
].  

 Case 1.1: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗−1

 and 𝑠 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑙−1 , 1 ≤ 𝑗 ≠ 𝑙 ≤ [

𝑛

3
], then we have: 𝑑(𝑐, 𝑠) ≥

3 and |𝑘(𝑐) − 𝑘(𝑠)| ≥ 0 . Therefore, we obtain: 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3 . 

 Case 1.2: If 𝑐 = 𝑣(𝑝−1)(𝑤−1)+𝑖
3𝑗−1

 and 𝑠 = 𝑣(𝑝−1)(𝑡−1)+𝑖
3𝑗−1

, 1 ≤ 𝑤 ≠ 𝑡 ≤ (𝑝 − 1)3(𝑗−1)𝑝, then we have: 

𝑑(𝑐, 𝑠) ≥ 4 and |𝑘(𝑐) − 𝑘(𝑠)| ≥ 0 . Therefore, we obtain 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| > 3  

 Case 1.3: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑤
3𝑗−1

 and 𝑠 = 𝑣(𝑝−1)(𝑧−1)+𝑡
3𝑗−1

, 1 ≤ 𝑤 ≠ 𝑡 ≤ 𝑝 − 1, then we have:  

 𝑑(𝑐, 𝑠) = 2 and |𝑘(𝑐) − 𝑘(𝑠)| = |(𝑝 + 3 + 𝑤) − (𝑝 + 3 + 𝑡)| = |𝑤 − 𝑡| ≥ 1, since 𝑤 ≠ 𝑡.  
Hence, we have 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + 1 = 3 . 

2) Case 2: Let us assume that 𝑐 and 𝑠 lie in the (3𝑗)𝑡ℎ generation, where 𝑗 varies from 1 to ⌊
𝑛

3
⌋.  

 Case 2.1: If 𝑐 and 𝑠 are of the form 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗

 and 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑙 , 1 ≤ 𝑗 ≠ 𝑙 ≤ ⌊

𝑛

3
⌋, then the 

distance between them is at least 3, which directly verifies the radio 2-chromatic labelling condition.  

 Case 2.2: If 𝑐 = 𝑣(𝑝−1)(𝑤−1)+𝑖
3𝑗

 and 𝑠 = 𝑣(𝑝−1)(𝑡−1)+𝑖
3𝑘 , 1 ≤ 𝑤 ≠ 𝑡 ≤ (𝑝 − 1)3𝑗−2𝑝, then 𝑑(𝑐, 𝑠) ≥

4 . Therefore, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| > 3 . 

 Case 2.3: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑤
3𝑗

 and 𝑠 = 𝑣(𝑝−1)(𝑧−1)+𝑡
3𝑗

, 1 ≤ 𝑤 ≠ 𝑡 ≤ 𝑝 − 1, then 𝑑(𝑐, 𝑠) =

2 and |𝑘(𝑐) − 𝑘(𝑠)| = |(2𝑝 + 3 + 𝑤) − (2𝑝 + 3 + 𝑡)|. Hence, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 +
|𝑤 − 𝑡| ≥ 3, since 𝑤 ≠ 𝑡. 

3) Case 3: Assume that 𝑐 and 𝑠 are (3𝑗 + 1)𝑡ℎ generation vertices, where 𝑗 = 1,2 … [
𝑛

3
].  

 Case 3.1: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗+1

 and 𝑠 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑙+1 , 1 ≤ 𝑗 ≠ 𝑙 ≤ ⌈

𝑛

3
⌉ − 1, then |𝑘(𝑐) − 𝑘(𝑠)| ≥

0 and the distance between them is greater than 2. Therefore, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3 . 

 Case 3.2: If 𝑐 = 𝑣(𝑝−1)(𝑤−1)+𝑖
3𝑗+1

 and 𝑠 = 𝑣(𝑝−1)(𝑡−1)+𝑖
3𝑗+1

, 1 ≤ 𝑤 ≠ 𝑡 ≤ (𝑝 − 1)3𝑗𝑝, then we have: 

𝑑(𝑐, 𝑠) ≥ 4, which trivially verifies the labelling condition.  

 Case 3.3: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑤
3𝑗−1

 and 𝑠 = 𝑣(𝑝−1)(𝑧−1)+𝑡
3𝑗−1

, then we have 𝑘(𝑐) = 𝑤 + 2 and 𝑘(𝑠) = 𝑡 + 2, 

1 ≤ 𝑤 ≠ 𝑡 ≤ 𝑝 − 1. In addition, the distance between them is exactly 2. Hence, we obtain the 

following: 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3 . 
4) Case 4: Suppose 𝑐 and 𝑠 are first generation vertices then, 𝑘(𝑐) = 𝑤 + 2 and 𝑘(𝑠) = 𝑡 + 2, 1 ≤ 𝑤 ≠

𝑡 ≤ 𝑝 . In addition, in this case 𝑑(𝑐, 𝑠) = 2. Therefore, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + |𝑤 − 𝑡| ≥ 3 since 

𝑤 ≠ 𝑡. 

5) Case 5: Suppose 𝑐 = 𝑣𝑖
1 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖

3𝑗−1
, then 𝑘(𝑐) = 𝑖 + 2, 1 ≤ 𝑖 ≤ 𝑝 and 𝑘(𝑠) = 𝑝 + 3 + 𝑖, 1 ≤

𝑖 ≤ 𝑝 − 1. In addition, 𝑑(𝑐, 𝑠) ≥ 1. Hence, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 1 + |(𝑝 + 3 + 1) − (𝑝 + 2)| = 3. 

6) Case 6: Suppose 𝑐 = 𝑣𝑖
1, 1 ≤ 𝑖 ≤ 𝑝 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖

3𝑗
, 1 ≤ 𝑖 ≤ 𝑝 − 1, 1 ≤ 𝑧 ≤ (𝑝 − 1)3(𝑗−1)𝑝, 1 ≤

𝑗 ≤ [
𝑛

3
], then 𝑘(𝑐) = 2 + 𝑖, and 𝑘(𝑠) = 2𝑝 + 3 + 𝑖. Also, the distance between them is at least 2. 

Therefore, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + |(2𝑝 + 3 + 1) − (𝑝 + 2)| = 𝑝 + 4 > 3. 

7) Case 7: Suppose 𝑐 = 𝑣𝑖
1, 1 ≤ 𝑖 ≤ 𝑝 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖

3𝑗+1
, 1 ≤ 𝑖 ≤ 𝑝 − 1, 1 ≤ 𝑧 ≤ (𝑝 − 1)3𝑗𝑝, 1 ≤ 𝑗 ≤ 

⌈
𝑛

3
⌉ − 1, then |𝑘(𝑐) − 𝑘(𝑠)| ≥ 0. However, the distance between them is at least 3. Hence, we obtain: 

𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3. 

8) Case 8: Suppose 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗−1

 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗

, 1 ≤ 𝑖 ≤ 𝑝 − 1, then we have 𝑘(𝑐) = 𝑝 + 3 +

𝑖, 𝑘(𝑠) = 2𝑝 + 3 + 𝑖 and 𝑑(𝑐, 𝑠) ≥ 1. Therefore, we obtain: 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 1 + |(2𝑝 + 3 +
1) − (2𝑝 + 2)| = 3. 

9) Case 9: Suppose 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗−1

 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗+1

, 1 ≤ 𝑖 ≤ 𝑝 − 1, then 𝑘(𝑐) = 𝑝 + 3 + 𝑖, 𝑘(𝑠) =

𝑖 + 2 and 𝑑(𝑐, 𝑠) ≥ 2. Therefore, we have: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + |(𝑝 + 4) − (𝑝 + 1))| > 3. 

10) Case 10: If 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗

 and 𝑐 = 𝑣(𝑝−1)(𝑧−1)+𝑖
3𝑗+1

, 1 ≤ 𝑖 ≤ 𝑝 − 1, then we get: 𝑘(𝑐) = 2𝑝 + 3 +

𝑖, 𝑘(𝑠) = 𝑖 + 2 and 𝑑(𝑐, 𝑠) ≥ 2. Therefore, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2 + |(2𝑝 + 4) − (𝑝 + 1))| =
𝑝 + 5 > 3.  

11) Case 11: If 𝑐 is the center vertex 𝑣1
0, and 𝑠 is any other vertex in the graph. Then, 𝑑(𝑐, 𝑠) ≥ 1 and 

|𝑘(𝑐) − 𝑘(𝑠)| ≥ 2. Therefore, we obtain: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3. 

Hence, 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ 3 for every pair of vertices c and s in 𝑉(𝑇𝑛,𝑝). 
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In addition, the vertices 𝑣𝑧(𝑝−1)
3𝑗

, 𝑧 = 1,2 … (𝑝 − 1)3𝑗−2𝑝, 𝑗 = 1,2 … ⌊
𝑛

3
⌋ attains the maximum value 3𝑝 +

2, which implies that 𝜆 2,1(𝐴) + 1 ≤ 3𝑝 + 2.  

Thus, 𝜆 2,1(𝐴) ≤ 3𝑝 + 1.  

Remark 1: The branches of the tree dendrimer which are connected to the center vertex 𝑣1
0 by a single edge are 

called the main branches of the tree dendrimer graph. We denote the 𝑝 main branches in 𝑇𝑛,𝑝 as 𝐵𝑗 , 𝑗 =

1,2 … 𝑝. 

Lemma 3.1: Let 𝑇𝑛,𝑝 be a tree dendrimer graph of 𝑛 generations with each vertex of degree 𝑝 expects the 

pendant vertices, then the number of vertices in each main branch 𝐵𝑗  (1 ≤ 𝑗 ≤ 𝑝) is 
(𝑝−1)𝑛−1

𝑝−2
. 

Proof: From the construction of the tree dendrimer, the first generation contains 𝑝 − 1 vertices. Since the root 

vertex of a main branch is a vertex of first generation, there is only a single vertex in the first generation. 

Therefore, the number of vertices in a second generation is 𝑝 − 1. In general, the number of vertices in the 𝑛𝑡ℎ 

generation is (𝑝 − 1)𝑛−1. Hence, the total number of vertices in a main branch is calculated as follows: 
 

1 + (𝑝 − 1) + (𝑝 − 1)2 + ⋯ (𝑝 − 1)𝑛−1 =
(𝑝−1)𝑛−`1

𝑝−1−1
=

(𝑝−1)𝑛−1

𝑝−2
. 

 

d) Theorem 3.4: Let 𝑇𝑛,𝑝 (𝑛, 𝑝 > 2) be a tree dendrimer graph of diameter 2𝑛. Then, an upper bound for the 

radio number of 𝑇𝑛,𝑝 is given by 𝑟𝑛(𝑇𝑛,𝑝) ≤ 𝑛 + (2𝑛 − 1)𝑝 + 1 + ∑ (2𝑙 − 1)𝑝((𝑝 − 1)𝑛−𝑙−1))(𝑝 −𝑛−1
𝑙=1

2) + (2𝑙 − 1)𝑝(𝑝)𝑛−𝑙−1 − 1,  whenever 𝑝 ≥ 2𝑛 − 3. 
Proof: Define a mapping ℎ from the vertex set of 𝑇𝑛,𝑝 to the natural numbers as follows: 

First, we label the center vertex 𝑣1
0 as ℎ(𝑣1

0) = 1. Since the pendant vertices are at a distance 𝑛 from the center 

vertex, we label the 𝑛𝑡ℎ generation pendant vertices in 𝐵𝑗 , 𝑗 = 1,2 … 𝑝 as 𝑘 (𝑣(𝑝−1)𝑛−1(𝑗−1)+𝑧+(𝑝−1)(𝑖−1)
𝑛 ) =

(𝑝(𝑝 − 1)𝑛−2)(𝑧 − 1) + 𝑝𝑖 − 1, 𝑖 = 1,2 … (𝑝 − 1)𝑛−2, 𝑧 = 1,2 … 𝑝 − 1. 

Next, we label the (𝑛 − 1)𝑡ℎ generation vertices in 𝐵𝑗 , 𝑗 = 1,2 … 𝑝 as  

𝑘 (𝑣(𝑝−1)𝑛−2(𝑗−1)+𝑧+(𝑝−1)(𝑖−1)
𝑛−1 ) = (𝑝(𝑝 − 1)𝑛−2)(𝑝 − 2) + 𝑝((𝑝 − 1)𝑛−2) − 1 + (3𝑝((𝑝 − 1)𝑛−3))(𝑧 −

1) + 3𝑝𝑖 − 1, 𝑖 = 1,2 … (𝑝 − 1)𝑛−3, 𝑧 = 1,2 … 𝑝 − 1.  
In general, (𝑛 − 𝑙)𝑡ℎ (1 ≤ 𝑙 ≤ 𝑛 − 1) generation vertices in 𝐵𝑗 , 𝑗 = 1,2 … 𝑝 are labelled as 

𝑘 (𝑣
(𝑝−1)𝑛−𝑙(𝑗−1)+𝑧+(𝑝−1)(𝑖−1)
𝑛−𝑙 ) = 𝑘 (𝑣

(𝑝−1)𝑛−𝑙+1+𝑝−1+(𝑝−1)((𝑝−1)𝑛−𝑙−3−1)
𝑛−𝑙+1 ) + (2𝑙 − 1)𝑝((𝑝 − 1)𝑛−𝑙−2))(𝑧 −

1) + (2𝑙 − 1)𝑝𝑖 − 1, 𝑖 = 1,2 … (𝑝 − 1)𝑛−𝑙−2, 𝑧 = 1,2 … 𝑝 − 1.  

Finally, let us label the first-generation vertices of 𝑇𝑛,𝑝 as 𝑘(𝑣𝑖
1) = 𝑘(𝑣𝑝(𝑝−1)

2 ) + 𝑖(2𝑛 − 1) − 1, 

 𝑖 = 1,2 … 𝑝 as shown in Figure 4. 

 

 

 
 

Figure 4. A radio labelling of 𝑇3,5 which attains the upper bound 
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Given the diameter of the graph is 2𝑛, to prove 𝑘 is a valid radio labelling, we must verify the condition 

𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2𝑛 + 1 for every pair of vertices 𝑐 and 𝑠 in 𝑇𝑛,𝑝.  

1) Case 1: Assume 𝑐 and 𝑠 are any two vertices in the same 𝐵𝑗  (1 ≤ 𝑗 ≤ 𝑝), then we have: 𝑑(𝑐, 𝑠) =
2𝑖, 𝑖 = 1,2 … 𝑛 − 1. Therefore, for such cases, |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2𝑛 − 2𝑖 + 1 since 𝑝 ≥ 2𝑛 − 3. Hence, 

we obtain: 𝑑(𝑐, 𝑠) +  |𝑘(𝑐) − 𝑘(𝑠)| ≥ |2𝑖 − (2𝑛 − 2𝑖 + 1)| = 2𝑛 + 1. 

2) Case 2: Assume 𝑐 is a vertex of 𝐵𝑤 and 𝑠 is a vertex of 𝐵𝑡 , 1 ≤ 𝑤 ≠ 𝑡 ≤ 𝑝, then the distance between 

them is exactly 2𝑛, and |𝑘(𝑐) − 𝑘(𝑠)| ≥ 𝑛. Therefore, we have: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2𝑛 + 1. 

3) Case 3: Assume 𝑐 is the center vertex and 𝑠 is any other vertex in 𝑇𝑛,𝑝.  

 Case 3.1: If 𝑐 is a pendant vertex, then 𝑑(𝑐, 𝑠) = 𝑛 and 𝑘(𝑐) = 1, 𝑘(𝑠) ≥ 𝑛 + 1. Therefore, in this 

sub case, 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2𝑛 + 1. 

 Case 3.2: If 𝑠 is not a pendant vertex, then 𝑑(𝑐, 𝑠) ≥ 1 and 𝑘(𝑐) = 1, 𝑘(𝑠) ≥ (𝑝 − 1)2 + 𝑛 + 1. Since 

𝑝 ≥ 2𝑛 − 3, we obtain: 𝑑(𝑐, 𝑠) + |𝑘(𝑐) − 𝑘(𝑠)| ≥ 2𝑛 + 1. 

Thus, 𝑘 is a valid radio labelling and the vertex 𝑘(𝑣𝑝
1) attains the maximum value 𝑛 + (2𝑛 − 1)𝑝 + 1 +

∑ (2𝑙 − 1)𝑝((𝑝 − 1)𝑛−𝑙−1))(𝑝 − 2) + (2𝑙 − 1)𝑝(𝑝)𝑛−𝑙−1 − 1𝑛−1
𝑙=1 .  

Hence, the radio number of 𝑇𝑛,𝑝 (𝑛, 𝑝 > 2) satisfies 𝑟𝑛(𝑇𝑛,𝑝) ≤ 𝑛 + (2𝑛 − 1)𝑝 + 1 + ∑ (2𝑙 −𝑛−1
𝑙=1

1)𝑝((𝑝 − 1)𝑛−𝑙−1))(𝑝 − 2) + (2𝑙 − 1)𝑝(𝑝)𝑛−𝑙−1 − 1,  whenever 𝑝 ≥ 2𝑛 − 3.  

Hence, the theorem is proven. 

Next, we determine the lower bound for the radio number of 𝑇𝑛,𝑝 (𝑛, 𝑝 > 2) by using the following theorem 

which was proven by Bharati and Yenoke [18]: 

Theorem 3.5 (As Theorem 2 in [18]): Let A be a simple connected graph of order m. Let 𝑚0, 𝑚1 … 𝑚𝑗 be the 

number of vertices that have eccentricities 𝑒0, 𝑒1 … 𝑒𝑗, where 𝑑𝑖𝑎𝑚(𝐴) = 𝑑 =  𝑒0 > 𝑒1 > ⋯ > 𝑒𝑗 = 𝑟𝑎𝑑(𝐴). 

Then, we obtain the following: 

 

𝑟𝑛(𝐴) ≥ {
𝑚 − 2(𝑑 − 𝑒𝑗) + ∑ 2(𝑑 − 𝑒𝑖)𝑚𝑖,                        𝑖𝑓 𝑚𝑗 > 1𝑘

𝑖=1

𝑚 − (𝑑 − 𝑒𝑗) − (𝑑 − 𝑒𝑗−1) + ∑ 2(𝑑 − 𝑒𝑖)𝑚𝑖, 𝑖𝑓 𝑚𝑗 = 1
𝑗
𝑖=1

.  

 

Lemma 3.2. For the tree dendrimer graph 𝑇𝑛,𝑝, the eccentricities 𝑒0, 𝑒1 … 𝑒𝑗  are given by: 

 

 𝑒𝑖−1 = 2𝑛 − 𝑖 − 1, 𝑖 = 1,2 … 𝑛 + 1.  
 

Proof: It is obvious that the diameter of the graph is 2𝑛, and there also exists at least one path 

𝑣1
𝑛 , 𝑣1

𝑛−1 … 𝑣1
2, 𝑣1

1, 𝑣1
0, 𝑣2

2 … 𝑣(𝑝−1)𝑛−1

𝑝−2
1

𝑛 which passes through the center of the graph. Hence, the consecutive 

eccentricates are different by exactly 1. Therefore, the eccentricities of 𝑇𝑛,𝑝 are  𝑒0, 𝑒1 … 𝑒𝑛 . That is,  𝑒𝑖−1 =

2𝑛 − 𝑖 − 1, 𝑖 = 1,2 … 𝑛 + 1. 
Lemma 3.3. For the tree dendrimer graph 𝑇𝑛,𝑝, the number of vertices that have eccentricities  𝑒0, 𝑒1 … 𝑒𝑗=𝑛 are 

given by 𝑚𝑛 = 1 and 𝑚𝑖−1 = 𝑝(𝑝 − 1)𝑛−𝑖 , 𝑖 = 1,2 … 𝑛. 
Proof: We know that every pendant vertex in 𝑇𝑛,𝑝 has (𝑝 − 1) diametrically opposite vertices. Moreover, the 

number of pendant vertices in 𝑇𝑛,𝑝 is 𝑝(𝑝 − 1)𝑛−1. Therefore, the number of vertices that have eccentricity 

 𝑒0 = 2𝑛 is 𝑚0 =  𝑝(𝑝 − 1)𝑛−1. Similarly, we obtain the number of vertices with eccentricities 𝑒𝑖 , 𝑖 =
1,2 … 𝑛 − 1 as 𝑚𝑖 = 𝑝(𝑝 − 1)𝑛−𝑖−1, 𝑖 = 1,2 … 𝑛 − 1. Finally, the centre vertex is the only vertex of radius 𝑛; 

hence, we have: 𝑚𝑛 = 1 and 𝑚𝑖−1 = 𝑝(𝑝 − 1)𝑛−𝑖, 𝑖 = 1,2 … 𝑛. 

e) Theorem 3.6: Let A be a tree dendrimer graph, 𝑇𝑛,𝑝 (𝑛, 𝑝 > 2), of order 𝑝 (
(𝑝−1)𝑛−1

𝑝−2
) + 1. Then, the radio 

number of A satisfies 𝑟𝑛(𝐴) ≥  𝑝 (
(𝑝−1)𝑛−1

𝑝−2
) + 𝑛 + (∑ 2(2𝑛 − (2𝑛 − 𝑖))𝑝(𝑝 − 1)𝑛−𝑖−1𝑛−1

𝑖=1 ). 

Proof: From Lemma 3.3, we have: 𝑚𝐽 = 1; hence, we must apply the second part of the result in Theorem 3.5 

as follows: 

 

𝑟𝑛(𝐴) ≥  𝑚 − (𝑑 − 𝑒𝑗) − (𝑑 − 𝑒𝑗−1) + ∑ 2(𝑑 − 𝑒𝑖)𝑚𝑖
𝑘
𝑖=1   

 

=  𝑝 (
(𝑝−1)𝑛−1

𝑝−2
) + 1 − (2𝑛 − 𝑛) − (2𝑛 − (2𝑛 − 1)) + (∑ 2(2𝑛 − (2𝑛 − 𝑖))𝑝(𝑝 − 1)𝑛−𝑖−1𝑛−1

𝑖=1 ) +

2(2𝑛 − (2𝑛 − 𝑛)) = 𝑝 (
(𝑝−1)𝑛−1

𝑝−2
) + 𝑛 + (∑ 2(2𝑛 − (2𝑛 − 𝑖))𝑝(𝑝 − 1)𝑛−𝑖−1𝑛−1

𝑖=1 )  

 

Hence, the theorem is proven.  
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By combining Theorem 3.4 with Theorem 3.6, the following theorem is obtained: 

f) Theorem 3.7: For 𝑝 ≥ 2𝑛 − 3, the radio number of tree dendrimer graph 𝑇𝑛,𝑝 (𝑛, 𝑝 > 2) satisfies 

𝑝 (
(𝑝−1)𝑛−1

𝑝−2
) + 𝑛 + (∑ 2(2𝑛 − (2𝑛 − 𝑖))𝑝(𝑝 − 1)𝑛−𝑖−1𝑛−1

𝑖=1 ) ≤ 𝑟𝑛(𝑇𝑛,𝑝) ≤  𝑛 + (2𝑛 − 1)𝑝 + 1 +

∑ (2𝑙 − 1)𝑝((𝑝 − 1)𝑛−𝑙−1))(𝑝 − 2) + (2𝑙 − 1)𝑝(𝑝)𝑛−𝑙−1 − 1.𝑛−1
𝑙=1   

 

 

4. CONCLUSION  

The upper bound for the 𝐿(2,1) labelling number of 𝑇𝑛,𝑝 as 3𝑝 + 1 for 𝑝, 𝑛 > 2 has been obtained in 

this research study. The upper and lower bounds have also been determined for the radio labelling for 𝑇𝑛,𝑝. For 

𝑝 < 2𝑛 − 3, the radio labelling problem for 𝑇𝑛,𝑝 is still an open problem. Further research can be extended to 

identify more chemical structures and study their properties due to their various applications in the field of 

communication engineering. 
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