
 

 

저작자표시-비영리-변경금지 2.0 대한민국 

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게 

l 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.  

다음과 같은 조건을 따라야 합니다: 

l 귀하는, 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건
을 명확하게 나타내어야 합니다.  

l 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.  

저작권법에 따른 이용자의 권리는 위의 내용에 의하여 영향을 받지 않습니다. 

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.  

Disclaimer  

  

  

저작자표시. 귀하는 원저작자를 표시하여야 합니다. 

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다. 

변경금지. 귀하는 이 저작물을 개작, 변형 또는 가공할 수 없습니다. 

http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/


이학박사 학위논문 

 

플라즈모닉 귀금속 나노구조물의 합성 및 광학적 응용 

 

Synthesis and Optical Application of  

Plasmonic Noble Metal Nanostructures 

 

 

 

2020 년  8 월 

 

 

서울대학교 대학원 

화학부 물리화학 전공 

김 준 기 

 



A Ph. D. Dissertation 

 

 

Synthesis and Optical Application of  

Plasmonic Noble Metal Nanostructures 

 

 

By Joon Ki Kim 

 

Supervisor: Professor Du-Jeon Jang 

Major: Physical Chemistry 

 

Department of Chemistry 

Graduate School of Seoul National University 

 

August 2020 



Table of Contents 

 

Abstract of dissertation                                        i 

 

 

List of figures and tables                                       iv 

 

 

Chapter 1. General introduction     1 

1.1 Preparation of noble metal nanostructures    2 

1.2 Surface plasmons on noble metal nanoparticles   6 

1.3 Near-field enhancement on hotspot    8 

1.4 References             10 

 

 

Chapter 2. Metal-enhanced fluorescence of gold nanoclusters adsorbed onto 

Ag@SiO2 core-shell nanoparticle     12 

2.1  Abstract        13 

2.2  Introduction       14 

2.3  Experimental section      17 

2.4  Result and discussion      21 

2.5  Conclusion       45 

2.6  Acknowledgements      46 

2.7  References       46 

 



Chapter 3. Hollow and inward-bumpy gold nanoshells fabricated using 

expanded silica mesopores as templates    50 

3.1  Abstract        51 

3.2  Introduction       52 

3.3  Experimental section      54 

3.4  Result and discussion      59 

3.5  Conclusion       81 

3.6  Acknowledgements      81 

3.7  References       82 

 

 

Chapter 4. Surface-enhanced Raman scattering and photothermal effect of 

hollow Au nanourchins with well-defined cavities   85 

4.1  Abstract        86 

4.2  Introduction       87 

4.3  Experimental section      90 

4.4  Result and discussion      93 

4.5  Conclusion       112 

4.6  Acknowledgements      113 

4.7  References       113 

 

 

Chapter 5. Fabrication of plasmonic silver nanoparticle arrays by laser-

induced dewetting of commercial silver paste    116 

5.1  Abstract        117 

5.2  Introduction       118 

5.3  Experimental section      122 

5.4  Result and discussion      125 



5.5  Conclusion       148 

5.6  Acknowledgements      149 

5.7  References       149 

 

 

Appendices        153 

A.1. List of publications      154 

A.2. List of presentations      155 

A.2.1. International presentations 

A.2.2. Domestic presentations 

 

 

Abstract (Korean)       157



i 

 

Abstract of dissertation 

 

In this dissertation, synthesis and optical application of plasmonic noble metal 

nanostructures are mainly discussed. Various methods to fabricate core-shell, nanoshells, 

nanospike, and nanoparticle arrays structures have been investigated. The optical and 

morphological properties of as-prepared nanostructures have been also studied by using 

UV/vis spectroscopy, Raman spectroscopy, and electron microscopy. A brief overview on 

preparation methods and the plasmonic resonance of noble metal nanostructures are 

presented in Chapter 1.  

Chapter 2 presents the metal-enhanced fluorescence (MEF) of gold nanoclusters 

adsorbed onto Ag@SiO2 core-shell nanoparticle. The static and time-resolved MEF of 

Au25-adsorbed Ag@SiO2 core-shell nanoparticles (NPs) has been studied systematically 

with variation of shell thicknesses, core sizes, and excitation wavelengths. The emission 

of Au25-adsorbed Ag@SiO2 NPs is blue-shifted and highly enhanced compared with that 

of free Au25 clusters. The photoluminescence (PL) intensity of Au25-adsorbed Ag@SiO2 

NPs is higher as much as 7.4 times than that of free Au25 clusters. The increase of the 

radiative decay rate constant with separation is identical to that of PL enhancement, 

suggesting that the MEF of Au25-adsorbed Ag@SiO2 NPs arises from the increase of the 

radiative decay rate constant induced by the near-field enhancement of plasmonic Ag NPs.  

Chapter 3 describes the fabrication of hollow and bumpy Au (HBA) NSs with rough 

surfaces using expanded silica mesopores as templates. Because some Au seeds were 
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located at the inner surfaces of silica mesopores, produced Au NSs have inherent inward-

grown nanobumps. During seven successive reduction steps, the LSPR peak of Au 

nanostructures shifted progressively toward a longer wavelength as the sizes of Au seeds 

increased gradually. Measuring the cross-sections of HBA NSs milled by a focused ion 

beam, we have found that hollow and bumpy nanostructures arose from the pore structures 

of mSiO2 NPs. HBA NSs confine Raman-probe molecules well owing to their hollow 

structures and have ragged surfaces due to their inward-bumpy morphologies, exhibiting 

highly efficient surface-enhanced Raman scattering activity. 

Chapter 4 presents the fabrication of genuinely hollow Au nanourchins (HANUs) using 

SiO2 NPs as hard templates. Ag-SiO2 NPs were fabricated via amine-assisted reduction. 

Then, Au nanourchins (ANUs) were synthesized by the galvanic replacement reaction of 

Ag-SiO2 NPs using L-3,4-dihydroxyphenylalanine (DOPA) as a reductant and a capping 

agent. The silica cores of ANUs were etched using HF(aq) to produce HANUs. Measuring 

cross sections, we have found that HANUs have well-defined hollow morphologies. 

Compared with nanourchins made via DOPA-mediated reduction, HANUs hardly contain 

residual silver because very tiny silver seeds were used as the initiation sites of galvanic 

replacement. HANUs have revealed large surface-enhanced Raman scattering 

enhancement and a significant photothermal effect under a weak illumination. 

Chapter 5 describes that highly dense plasmonic silver NP arrays have been fabricated 

by laser-induced dewetting of commercially available silver paste as a starting bulk 

material. The first laser-scan mode has produced unprecedented intermediate structures, 

so called laser-induced fine silver nanostructures (LIFSNs) while the second laser-scan 
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mode has transformed LIFSNs into plasmonic silver NP arrays via the dewetting of the 

priorly formed nanostructures. The laser-induced fabrication of silver NP arrays has been 

found to be very sensitive to distance from secondly irradiated laser pulses, suggesting that 

the fine control of laser intensity is very important. As-prepared silver NP arrays have 

generated numerous hot spots to show highly strong surface-enhanced Raman scattering 

signals. 

 

 

Keywords: Plasmonics, Noble metal nanoparticles, Silica, Surface plasmon resonance, 

Core-hell, Hollow nanoshells, Nanotips, Chemical reduction, Laser-dewetting, Laser 

scanning, Surface-enhanced Raman spectroscopy 
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Chapter 1. General introduction 
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1.1.  Preparation of noble metal nanostructures 

Figure 1-1. The size-effect on metal materials. While bulk metal and metal nanoparticles have a 

continuous band of energy levels, metal clusters having the confined number of atoms results in 

discrete energy levels. Reproduced from ref. 3 

   

Various nanostructures having distinct functional properties have been widely studied 

recently.1-5 As semiconductor materials become smaller in nano-size, it can be synthesized 

in the form of quantum dot emitting light. As size of metal materials decreases, it may have 

a low melting point below 200 °C.6 In addition, dielectric materials generally have a 

maximum dielectric constant of 1 micrometer-size or less. Since these properties are very 

different depending on the size and shape of nanostructures, it is very important to study 

the morphological properties for nanochemistry (Figure 1-1). In particular, noble metal 

nanoparticles (NPs) attract scientific potential because they can be used in diverse and 
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wide applications such as surface-enhanced Raman spectroscopy (SERS), catalysts, 

devices, and diagnostic biological probes.7-10 Morphology and size provide important 

factors over many of the physical and chemical properties of nanomaterials.  

 

Figure 1-2. The illustration scheme of nanoparticles synthesis by top-down and bottom-up methods.  

 

A variety of synthesis methods have been reported for preparing noble metal 

nanostructures. These can be broadly classified into two categories; (i) top-down and (ii) 

bottom-up approach (Figure 1-2).6 The top-down method carves nanostructures by 

confined etching of large and bulk materials. In top-down nanofabrication, nanoscale 

features are fabricated via commonly lithographic techniques; optical, electron, or ion 

beam lithography. However, these techniques have various disadvantages. One of the 

alternative methods for producing nanostructures is laser-induced heating via laser-direct-

writing (LDW) processing.11-14 This processing is based on the photothermal effect 

induced by a laser pulse that offers a confined area with high temporal and spatial accuracy. 

Several laser process parameters, such as laser beam fluence, laser pulse width, and scan 

rate can be considerable. This processing has advantage on high process rate and special 

accuracy, allowing precise and fast fabrication of the desired material. As laser-induced 
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heat can be confined to a specific area, it is possible to selectively anneal the desired part 

or area without any thermal side effect with the substrates and adjacent nanostructures. 

In bottom-up method, the common method is chemical reduction of soluble metal 

salts.1-2 The fabrication of NPs makes use of a metal ion salts, reducing agents, and 

stabilizing or capping agents. The stabilizing agent adsorbs the NPs and prevent further 

growth of specific facet. The control of crystal lattice planes of noble metal NPs has 

become important factor for surface modification, passivation, and morphological parts 

arising from the surface plasmon resonance (SPR) effects. Polymer, organic compound, 

and proteins also bind to the NPs’ surface and thus serve the role of stabilizer. Many NPs 

can be fabricated with a pretty good degree of shapes and sizes. A number of morphologies 

including cubes, belts, triangle, and stars can be generated by chemical reduction method. 

The interest of nanoscience now shifts to the preparation of more complex morphologies 

such as core-shell and hollow forms for various application. Hollow structures, a class of 

NPs with empty spaces inside solid shells, have greatly attracted attention because of their 

unique properties associated with the hollow morphology. Hollow NPs can be employed 

as nano-containers to load pharmaceutical compounds, proteins, and DNA. Also, plasmon 

resonances of noble metal NSs can be effectively tuned to a wavelength ranging from the 

visible to the infrared region by varying the ratio of cavity diameter to metallic shell 

thickness.15-18 

Recently, many intensive techniques are available to prove the morphology of NPs and 

overall composition. Advanced characterization techniques for NPs include scanning 

electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), 
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focused ion-beam (FIB) milling, energy-dispersive X-ray spectroscopy (EDX), X-ray 

photoelectron spectroscopy (XPS) but also traditional method such as UV/vis spectroscopy, 

infrared spectroscopy, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) analysis, 

and Raman spectroscopy. 
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1.2.  Surface plasmons on noble metal nanoparticles 

 

Surface-enhanced Raman scattering (SERS) can have an ultrahigh sensitivity down to 

the single-molecule level by using noble metal NPs. The SERS effect is owing to the 

enhancement of Raman signal of analytes by several orders of magnitude when the Raman 

probes are located at close to noble metal NPs.8 The enhancement of Raman signal strongly 

due to the surface plasmon resonance (SPR) properties of noble metal NPs, which can 

strong amplify the local electromagnetic field because of the excitation of SPR (Figure 1-

3). 

 

 

Figure 1-3. (a) Absorption spectra and optical images of Ag NPs with different size. (b) Absorption 

spectra and optical images of Au nanorods. (c) Size and shape dependency of localized SPR of 

various Ag NPs and Ag triangle arrays. (down) the representative AFM image of silver triangle 

arrays. Reproduced from ref. 2 
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Unlike semiconductor materials made of covalent bonds, the metal nanostructures cause 

the electrons to collectively fluctuate by the incident electromagnetic field. This oscillation 

of free electron density generates a dipole moment and amplifies the surrounding 

electromagnetic field. The free electrons are affected by a columbic force opposite to that 

of the changing incident electromagnetic field. The result of the free electrons will have 

oscillatory motion. Thus, the free electrons have a distinct plasma frequency. The degree 

of incident electromagnetic field will be constant in the NPs if they are smaller than the 

incident wavelength, inducing a uniform oscillation motion of the dipole moment. Due to 

SPR of noble metal nanostructures, the local electromagnetic field is amplified, and this 

phenomenon is called plasmonic properties. Since the metal has a negative dielectric by 

free electrons, it reflects the incident electromagnetic field and can concentrate locally. 

Quality factor for plasmonics can be obtained through the metal dielectric, and the most 

common plasmonic metals are gold and silver. The surrounded environment-induced 

change in noble metal NPs can be detected using a UV-vis absorption spectrometer. 

Since the SPR is very dependent on the size and shape of metal nanoparticles, the 

phenomenon that occurs in these isotropic particles and the SPR phenomenon resulting 

from anisotropic morphologies such as triangle, cube shape, and nanorod are very different. 

In addition, the main reason that SPR phenomenon is attracting attention is that they cause 

plasmonics. Plasmonic properties have the effect of overcoming the diffraction limit of 

light by focusing and amplifying light through interaction between light and free metals. 

The plasmonic field first proceeds by synthesizing original and functional metal 

nanostructures and studying the optical properties. The research direction for synthesizing 
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complex, high-dimensional nanoparticles that have hollow or sharp, tip structure. 

 

 

1.3.  Near-field enhancement on hotspot 

 

 
Figure 1-4. Generation of plasmonic hotspot. (a-d) single and coupled nanostructures. (f,g) 

nanostructured assembly and controlled noble metal surface. Reproduced from ref. 8 

 

Controlling surface morphologies of nanostuructures is a key issue in enhancing their 

structural and optical properties.19-21 There are two major approach to maximize the SPR. 

When the NPs are spaced between the NPs and maintained in the form of nanosized gap, 

there structures can confine and amplify the electromagnetic field like complete mirrors. 

In addition, the surface of the structure has a rough or curved curvature shape, that is, the 

shape of nanotips can also localize the electromagnetic field. As such, the study of 

concentrating and using light locally through a nanotip or nanogap structure can be defined 
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as plasmonics. Roughnesses, spikes, and tips in nanoscale are interesting structures owing 

to the anisotropic enhancement of the electromagnetic field, an effect similar to the 

lightning rod effect. Their local plasmonic features allow the modulation of localized 

surface plasmon resonance (LSPR) modes by tuning their lengths, densities, and aspect 

ratios. The reason for synthesizing the particles with nanotips is to concentrate the 

electromagnetic field around the nanotips to create an plasmonic effect and use them to 

improve optical, catalytic, and electrical properties. When the electromagnetic wave 

moves, the photons have a near-field enhancement phenomenon locally due to the 

lightning rod effect that collects in the nanotip structure. Precious metal nanoparticles have 

a negative dielectric constant by free electrons, which reflect and confine the 

electromagnetic field like an ideal mirror rather than passing through the electric field. 

In addition noble metal nanostructures with nanogaps have been of special interest due 

to their extremely electromagnetic fields and controllable optical properties that can be 

useful for plasmonic application.22-24 More specifically, the coupled metallic morphologies 

with small nanogaps can generate strong and tunable near-field enhancement that can 

generate significant SERS signals. 
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Chapter 2. Metal-enhanced fluorescence of gold nanoclusters adsorbed onto 

Ag@SiO2 core-shell nanoparticle 

 

 

 

 

 

 

 

 

† This is reproduced from Joon Ki Kim and Du-Jeon Jang, J. Mater. Chem. C., 2017, 5, 

6037-6046. ⓒ 2017 Royal Society of Chemistry Publishing 
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2.1.  Abstract 

 

The static and time-resolved metal-enhanced fluorescence (MEF) of Au25-adsorbed 

Ag@SiO2 core-shell nanoparticles (NPs) has been studied systematically with variation of 

shell thicknesses, core sizes, and excitation wavelengths. The emission of Au25-adsorbed 

Ag@SiO2 NPs is blue-shifted and highly enhanced compared with that of free Au25 clusters. 

The blue shift arises from the plasmonic coupling of Au25 clusters with Ag NPs, which 

decreases exponentially with the increase of separation between Au25 clusters and Ag NPs. 

The photoluminescence (PL) intensity of Au25-adsorbed Ag@SiO2 NPs is higher by a 

factor of 7.4 times than that of free Au25 clusters. The PL enhancement of Au25-adsorbed 

Ag@SiO2 NPs is determined by two competing processes of near-field enhancement and 

fluorescence resonance energy transfer (FRET). The increase of the radiative decay rate 

constant with separation is identical to that of PL enhancement, suggesting that the MEF 

of Au25-adsorbed Ag@SiO2 NPs arises from the increase of the radiative decay rate 

constant induced by the near-field enhancement of plasmonic Ag NPs. Au25-adsorbed 

Ag@SiO2 NPs have also been found as a highly sensitive and selective ‘turn-off’ sensor 

for Cu2+ ions. 
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2.2.  Introduction 

 

Plasmonic noble-metal nanoparticles (NPs) have ability to localize and enhance an 

incident electric field when their surface plasmon resonance (SPR) is excited.1,2 Confined 

electron oscillations of SPR lead to an intense local electric field, which can be several 

orders of magnitude stronger than the incident field. SPR is extremely sensitive to change 

in distance from the surface of metal NPs so that its electric field decays in 10-30 nm.3 The 

understanding of spatial interactions between SPR and nearby excited fluorophores helps 

to build a model for fluorescence-based biological detectors and sensors.4,5 It is well known 

that excitation and emission processes can be altered when a fluorophore is near a metal 

NP.3-5 Metal-enhanced fluorescence (MEF), occurring between the SPR-induced near-field 

and an excited fluorophore located in close proximity to the plasmonic metal surface, has 

been widely studied because it is an efficient way to amplify fluorescence signals.6-8 There 

are two mechanisms for MEF related to near-field enhancement.4,9 One is that a metal NP 

can concentrate and enhance the local electric field, so fluorophores around the metal NP 

can effectively absorb more light. This effect is called the nanoantenna effect,4 which can 

increase the rate of excitation. The second is that the metal NPs can generate an additional 

metal-modified radiative decay process, which can increase the total radiative decay rate. 

As a result, MEF induced by near-field enhancement is determined by the combination of 

excitation enhancement and emission enhancement. MEF depends strongly on the size and 

the shape of the metal NP and on separation between the fluorophore and the metal NP. 
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Especially, the dependence of fluorescence on the distance of the metal NP from the 

fluorophore is crucial to the MEF effect. At a close distance, fluorescence quenching can 

be observed due to nonradiative energy transfer from the fluorophore to the metal NP. 

However, at a certain distance from the plasmonic metal surface, energy transfer into the 

plasmon resonance is reduced and the electric-field strength can be great enough to 

enhance fluorescence emission.4,5 There have been many attempts to measure the distance 

dependence of fluorescence enhancement and quenching employing diverse fluorophores 

such as organic dyes, quantum dots, and conjugated polymers.6-11 However, it is still 

necessary to predict and measure the change of fluorescence using new types of 

fluorophores for wide scientific applications. In addition, enhancement factors reported in 

the literature are highly inconsistent and the mechanism of MEF due to near-field 

enhancement is still not clear. Therefore, it is necessary to understand the distance-

dependent MEF effect with a new type of fluorophores. 

As plasmonic metal NPs are smaller than the exciton Bohr radius, they can become 

fluorescent noble-metal nanoclusters (NCs), which consist of only a few to several tens of 

atoms with a size smaller than 2 nm. NCs are placed between atoms having discontinuous 

electronic energy levels and nanoparticles having continuous SPR bands, so they show 

molecule-like characteristics in fluorescence resulting from discrete and size-tunable 

electronic transitions.12,13 Thus, fluorescent metal NCs have been developed as a new class 

of fluorophores. Compared with conventional quantum dots, noble-metal NCs do not 

contain toxic heavy metals. In addition, unlike organic dyes, they are photostable and can 

be readily incorporated with various biological molecules, extending their applications 
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further in the biotechnology.13 Especially, protein-protected-Au25 NCs have attracted 

particular interest due to their facile synthesis, low cost, stability, and easy bio-

conjugation.14-17 Because metal NCs are chosen as promising luminescent materials, it is 

highly valuable to enhance their optical properties for practical applications. As noble-

metal NCs possess a low quantum yield, they are not used currently for practical sensing 

and detecting applications. A lot of efforts have been made to enhance optical properties 

of the emitters.18-20 However, up to now, there have been few studies on the 

photoluminescence (PL) enhancement of noble-metal NCs by the presence of plasmonic 

NPs. While Muhammed et al. have briefly reported the MEF of Au NCs in the presence of 

Ag NPs,21 Qin et al. have studied fluorescence resonance energy transfer (FRET) between 

Au NCs and Au nanorods.22  

 

 

 

Figure 2-1. Schematic for the preparation process of a Au25-adsorbed Ag@SiO2 core-shell 

nanoparticle, where BSA and TEOS stand for bovine serum albumin and tetraethyl orthosilicate, 

respectively.  
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In this paper, we are reporting that the MEF of Au25-adsorbed Ag@SiO2 core-shell NPs, 

prepared via the schematically shown procedure of Figure 2-1, depends on the thickness 

of SiO2 shells as well as the size of Ag cores and the wavelength of excitation. In order to 

gain a deeper understanding of the MEF mechanism, we have compared the PL intensity 

and decay time of adsorbed Au25 on Ag@SiO2 NPs with the respective ones of free Au25 

clusters. The PL quantum yield of Au25-adsorbed Ag@SiO2 nanoparticles with a shell 

thickness of 6 nm are higher by a factor of 9.3 times than that of free Au25 clusters, arising 

from the increase of the radiative decay rate constant by a factor of 17. In addition, we 

have found that Au25-adsorbed Ag@SiO2 NPs can be exploited as a “turn-off” sensor for 

the sensitive and selective detection of Cu2+ ions. 

 

 

2.3.  Experimental section 

 

2.3.1.  Chemicals 

Silver nitrate (s, 99.9%), HAuCl4·3H2O (s, 99%), trisodium citrate dihydrate (s, 99%), 

tannic acid (s, ACS reagent), tetraethyl orthosilicate (TEOS, l, >98%), bovine serum 

albumin (BSA, s, 98%), CuCl2·2H2O (s, ACS reagent), CoCl2·6H2O (s, ACS reagent), 

Fe(NO3)3·9H2O (s, ACS reagent), ZnCl2 (s, >98%), %), HgCl2 (s, ACS reagent), 

Cr(NO3)3·9H2O (s, 99%) and PbCl2 (s, 98%) were purchased from Sigma-Aldrich. Sodium 

hydroxide (s, 99%), 25% ammonia(aq), and NiCl2·6H2O (s, 99.9%) were obtained from 
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MERCK, and absolute ethanol(l) was purchased from Daejung Chemicals. Deionized 

water (>15 MΩ cm) from an Elga PURELAB option-S system was used throughout the 

experiments. 

 

2.3.2. Synthesis of Ag NPs 

Ag NPs were prepared according to the reported procedure with slight modification.23 

To prepare 50 nm Ag NPs, 8.4 mg of silver nitrate was dissolved in 100 mL water. Another 

solution is prepared by dissolving 20.0 mg of tannic acid and 19.8 mg of trisodium citrate 

dihydrate in 25 mL water. Both solutions were heated to 60 ℃ before being combined 

together under vigorous stirring. The mixed solution was boiled for 30 min, then left to 

cool until room temperature was reached. The resulting solution was centrifuged with a 68 

mM aqueous citrate solution (8000 rpm, 10 min) three times and dispersed in 30 mL of 

water. The concentration of the resulting Ag colloid was calculated to be 0.28 nM (1.7×108 

NPs/μL). 

 

2.3.3. Synthesis of Ag@SiO2 core-shell NPs 

The coating of SiO2 shells on Ag NPs was realized by the Stober method.10 1.0 mL of 

the as-prepared Ag colloidal solution was added into 8.0 mL of ethanol under vigorous 

stirring. And then a specified 5.0-25 μL amount of a 20% (v/v) TEOS ethanol solution was 

added in the ethanol-added Ag colloidal solution. After 20 min of stirring, 0.30 mL of 25% 

ammonia(aq) was added dropwise to the reaction mixture. After being stirred for overnight 

at room temperature, the solution was centrifuged with ethanol (9000 rpm, 10 min) five 
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times and dispersed in 10 mL of water. Note that Ag NPs coated with a SiO2 shell having 

a thickness of L nm will be designated hereafter as Ag@SiO2(L) NPs. 

 

2.3.4. Synthesis of Au25 clusters 

Au25 clusters were prepared according to the procedure published elsewhere.14 5.0 mL 

of an aqueous 10 mM HAuCl4(aq) at 37 ℃ was added to 5.0 mL of an aqueous 50 mg/mL 

BSA solution at 37 ℃ under vigorous stirring. 5.0 min later, 0.50 mL of 1.0 M NaOH(aq) 

was added dropwise to the mixture, and the reaction was allowed to proceed under 

vigorous stirring at 37 ℃ for overnight. The color of the solution became deep brown. 

 

2.3.5. Preparation of samples for optical characterization 

For static and time-resolved emission measurements, each colloidal solution of Ag NPs 

and Ag@SiO2 NPs was diluted so that the maximum optical density of the SPR band 

became 0.3. Then, 5.0 mL of the colloidal solution was added with 5.0 μL of the as-

prepared Au25 solution and stirred gently for 3 h. 5.0 μL of the as-prepared Au25 solution 

was also added to 5.0 mL of water as a reference. For the evaluation of the sensing 

selectivity of heavy-metal ions such that Cu2+, Ni2+, Co2+, Fe3+, Zn2+, Ag+, Au3+, Hg2+, Cr3+ 

and Pb2+, 0.10 mL of an aqueous 0.70 mM solution of each cationic species was added to 

3.4 mL of the diluted colloidal solution of Au25-adsorbed Ag@SiO2 NPs. Note that the 

final concentrations of Ag or Ag@SiO2 NPs, Au25 clusters, and an ionic heavy metal were 

1.1 pM, 0.18 μM, and 20 μM, respectively.  
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2.3.6. Characterization 

For transmission electron microscopy (TEM) measurements, 7.0 μL of a colloid was 

dropped on a carbon-coated copper grid, air-dried, and then examined with a Hitachi H-

7600 microscope. While energy-filtering TEM (EFTEM) images were recorded using a 

Carl Zeiss LIBRA 120 microscope, high-resolution TEM (HRTEM) images were 

measured using a JEOL JEM-2100F microscope. Matrix-assisted laser desorption 

ionization time-of-flight (MALDI-TOF) mass spectra were measured using a Bruker 

Daltonics Bruker Autoflex III mass spectrometer; all the spectra were collected in the 

positive mode using α-cyano-4-hydroxycinnamic acid as the matrix. While UV/vis 

absorption spectra were measured with a Scinco S3100 UV/vis. spectrophotometer, 

emission spectra were obtained using a homebuilt fluorometer consisting of a 75 W Acton 

Research XS 432 Xe lamp with an Acton Research Spectrapro150 monochromator of 0.15 

m and an Acton Research PD438 photomultiplier tube attached to an Acton Research 

Spectrapro300 monochromator of 0.30 m. Picosecond time-resolved photoluminescence 

kinetic profiles with excitation of third harmonic pulses (355 nm) from a mode-locked 

Quantel YG901-10 Nd:YAG laser of 25 ps were detected using a Hamamatsu C2830 streak 

camera of 10 ps attached to a Princeton Instruments RTE128H CCD detector. Emission 

wavelengths were selected by cut-off filters (550+ nm). Emission kinetic constants were 

extracted by fitting measured kinetic profiles to computer-simulated kinetic curves 

convoluted with instrument temporal response functions. 
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2.4.  Results and discussion 

 

 

Figure 2-2. (a) MALDI-TOF MS of BSA (green) and BSA-capped Au NCs (red). (b) HRTEM 

image of BSA-capped Au25 NCs.  

 

We have synthesized BSA-stabilized Au25 clusters in basic aqueous conditions.14 Mass 

spectrometric analysis was carried out with a MALDI-TOF mass spectrometer to 

understand the number of gold atoms in a Au cluster. While the pure BSA protein showed 



22 

 

the peak at 66.3 kDa, as-prepared Au clusters showed the peak at 71.2 kDa (Figure 2-2), 

supporting that a typical Au cluster consists of 25 gold atoms. Our result agrees with the 

previous reports that Au NC with 25 Au atoms is thermodynamically most stable and 

corresponds to the most common magic cluster size.14,21 Meanwhile, the HRTEM image 

of Figure 2-2b displays that the average diameter of Au25 clusters is 1.7 nm and the average 

d-spacing value of 0.235 nm agrees well with the standard spacing of 0.2355 nm between 

the (111) planes of the fcc gold crystal (JCPDS-04-0784). Overall, Figure 2-2 indicates 

that BSA-protected Au25 clusters have been prepared well. 

 

 

 

 

Figure 2-3. TEM images of Ag@SiO2(L) NPs, whose L values are indicated inside. Each scale bar 

indicates 50 nm. 
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Ag NPs have been prepared via the co-reduction method.23 If not specified otherwise, 

the average diameter of as-prepared Ag NPs is 50±6 nm, which is suitable to induce the 

MEF effect.24 Ag@SiO2 core-shell NPs with various shell thicknesses (L) were obtained 

through the Stober method by changing the amount of added TEOS (Figure 2-3). The 

core−shell structure has been reported as an effective mean to provide spatial separation 

between a noble metal and a fluorophore for the metal enhancement of fluorescence and 

the high stability of metal NPs.7,10 In particular, silica shells are eco-friendly and optically 

transparent. 

 

Figure 2-4. Extinction spectra Ag@SiO2(L) NPs, whose L values are indicated inside. 

 

Figure 2-4 shows that the SPR of Ag NPs is shifted gradually to the red as the thickness 

of SiO2 increases. The red shift with silica coating has been attributed to the increase of 
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the refractive index of the surrounding medium;25 the refractive indices of water and silica 

are 1.33 and 1.45, respectively.  

 

 

Figure 2-5. (a) EFTEM and (b) HRTEM images of Au25-adsorbed Ag@SiO2(6) NPs. While dotted 

circles designate Au25 clusters, the inset shows the enlarged HRTEM image of a Au25 cluster. Note 

that the NP of Figure 2-5a is different from the NP of Figure 2-5b. 
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The EFTEM and HRTEM images of Figure 2-5 reveal the structure of Au25-adsorbed 

Ag@SiO2(6) NP. While the EFTEM image of Figure 2-5a indicates that Au NCs with an 

average diameter of 1.5 nm are adsorbed on the surface of a Ag@SiO2 NP with a core 

diameter of 43 nm and a shell thickness of 7.4 nm, the HRTEM image of Figure 2-5b 

shows that Au NCs with a typical diameter of 1.7 nm are adsorbed on a Ag@SiO2 NP with 

a shell thickness of 5.9 nm. Note that only a small fraction of Au NCs can be seen due to 

the phase-contrast problem of EFTEM and HRTEM images. In particular, the images of 

Au NCs are too weak to be observed on the image of a Ag core. The d-spacing value of 

0.236 nm observed in the core HRTEM image of Figure 2-5b agrees very well with the 

standard spacing of 0.2359 nm between the (111) planes of the fcc silver crystal (JCPDS-

04-0783). In addition, the d-spacing value of 0.235 nm shown in the inset image of Figure 

2-5b matches well with the standard spacing of 0.2355 nm between the (111) planes of the 

cubic gold crystal (JCPDS-04-0784). In the meantime, lattice fringes have not been 

observed at all in the shell HRTEM image of Figure 2-5b, suggesting that the silica shell 

has an amorphous structure. Overall, Figure 2-5 indicates a Au25-adsorbed Ag@SiO2(6) 

NP consists of fcc Au NCs with an average diameter of 1.6 nm, an amorphous silica shell, 

and an fcc silver core. We suggest that for a Au25-adsorbed Ag@SiO2 NP, 2 x 105 BSA-

capped Au NCs bind to the surface of a silica shell by electrostatic attraction between the 

positive amine groups of BSA and the negative charges of the silica shell surface.26,27 A 

silica shell can offer specific sites to bind protein molecules via electrostatic interactions 

and hydrogen bonding. Yu et al. have reported that Fe3O4@SiO2 NPs can uptake a high 

loading of BSA molecules.45 NPs covered with silanol groups assist the immobilization of 



26 

 

BSA primarily through electrostatic interactions. The adsorption of BSA to NPs is also 

attributed to hydrogen-bonding interactions between C=O and N-H functional groups of 

BSA and surface hydroxyl groups of Fe3O4@SiO2 NPs. In case of bare Ag NPs, Bardhan 

et al. have reported that BSA binds to NPs by electrostatic and salt-bridge interactions 

between the amino acid groups of the protein and the negative charges of the metal 

surfaces.26,46 

Figure 2-6. Extinction (dotted) and emission spectra (solid) of 50 nm silver NPs (blue) and BSA-

capped Au25 clusters (red) suspended in water. The sample was excited at 355 nm for the emission 

spectrum. 

 

On one hand, the UV/vis. extinction spectrum of a 50±6 nm Ag colloidal solution in 

Figure 2-6 indicates that the maximum of its SPR band is located at 433 nm. The extinction 

of light by a metal colloid is composed of absorption, leading to fluorescence quenching, 

and scattering, leading to fluorescence enhancement.3 Among noble-metal NPs, Ag NPs 
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have been recognized as an attractive fluorescence enhancer because of their narrow 

plasmon band and high scattering efficiency.10 On the other hand, BSA-capped Au25 

clusters show a featureless absorption band, whose slope changes at 450 nm, and an 

emission band with the peak at 640 nm. The emission of Au25 clusters may be attributed to 

interband transitions between the 6(sp)1 conduction band and the filled 5d10 band.28 The 

calculated quantum yield (QY) of the BSA-capped Au25 clusters has been measured as 5.2% 

by taking rhodamine B as a reference (QY = 65% at 355 nm excitation in ethanol), which 

is similar to the QY of the previous report.14 Whereas the SPR band of Ag NPs overlaps 

significantly with the absorption band of Au25 clusters, it does not overlap sufficiently with 

the emission band of Au25 clusters. Therefore, excitation enhancement can be expected to 

occur due to the near-field enhancement induced by the SPR of Ag NPs while energy 

transfer from excited Au25 clusters to the SPR band of Ag NPs would hardly take place. 
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Figure 2-7. PL spectra of Au25-absorbed Ag@SiO2 NPs suspended in water with excitation at 355 

nm. The shell thickness of silica in the unit of nm is indicated near each spectrum, while ‘free’ 

stands for free Au25 clusters without Ag@SiO2 NPs. 

 

Figure 2-7 shows that the emission of Au25-adsorbed Ag@SiO2 NPs is highly enhanced 

and blue-shifted with respect to that of free Au25 clusters. First of all, the PL intensity of 

Au25-adsorbed Ag@SiO2(0) NPs is higher 5.5 times in intensity than that of free Au25 

clusters. It has been widely reported that PL quenching instead of PL enhancement takes 

place in close proximity (<3 nm) to the metal NP surface due to energy transfer from 

excited fluorophores to metal NPs.10,29 In fact, an intrinsic distance of 3.32 nm exists 

between the Ag@SiO2(0) NPs and Au25 clusters because the hydrodynamic diameter of 

BSA is reported to be 6.64 nm.18 Thus, PL enhancement rather than PL quenching has been 

observed for Au25-adsorbed Ag@SiO2(0) NPs. For a close examination of PL enhancement 

as a function of separation between Au25 clusters and Ag NPs, from now on, optical 
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properties such as wavelength shifts and enhancement factors (EFs) will be expressed as 

the variation of separation, which is (L + 3.32) nm. 

 

 

Table 2-1. Emission decay constants of free Au25 clusters and Au25-adsorbed Ag@SiO2 NPs with 

various silica shell thicknesses. 

Sample 
a EF λmax/nm Decay time/ps QY/% kr /ns-1 knr /ns-1 krm /ns-1 (kr+krm)/kr 

Au25 1.00 640  799 5.2 0.065 1.19 0.00 1.0 

Au25-Ag@SiO2(0) 5.54 622 476 43.5 0.065 1.19 0.846 14 

Au25-Ag@SiO2(3) 6.46 623 450 46.5 0.065 1.19 0.967 16 

Au25-Ag@SiO2(6) 6.76 628 432 48.6 0.065 1.19 1.060 17 

Au25-Ag@SiO2(13) 4.48 630 517 38.4 0.065 1.19 0.679 12 

Au25-Ag@SiO2(20) 3.78 633 559 33.2 0.065 1.19 0.534 9.2 

Au25-Ag@SiO2(26) 3.05 637 597 28.8 0.065 1.19 0.420 7.5 

a Suspended in water, excited at 355 nm, and monitored at 550+ nm. 
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Figure 2-8. (a) Δλ (= λfree - λNP) as a function of separation between Au25 clusters and Ag NPs, 

where λfree and λNP are the wavelengths at the PL maxima of Au25 clusters without and with 

Ag@SiO2 NPs, respectively. The solid line is the best-fitted curve of Δλ0·exp(-d/δ); Δλ0 and δ have 

been estimated as 21.5 and 18.5 nm, respectively, and Δλ0 has been used to yield ΔE0 of 67 meV. (b) 

PL enhancement factors (squares) of Au25-absorbed Ag@SiO2 NPs as a function of separation 

between Au25 clusters and Ag NPs. The solid and dashed lines are the curves best-fitted to (α + βd)6 

and (α + β/d3), respectively; the fitting details are provided in Table 2-2 
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Table 2-2. The fitting details of the PL enhancement factor of Au25-adsorbed Ag@SiO2 NPs as a 

function of separation between Au25 clusters and Ag NPs. 

Separation region Fitting equation α β 

d < dc 
a EF1 = (α + βd)6 1.3 7.5x10-3 nm-1 

d > dc EF2 = α + β/d3 3.0 6.7x103 nm3 

a Maximum enhancement distance (dc, 11.5 nm) when EF1 = EF2 = maximum enhancement factor (EFmax, 

7.4). 

 

Figure 2-7 and Table 2-1 have indicated that the wavelength at the PL maximum (λmax) 

of Au25-adsorbed Ag@SiO2(L) NPs (λNP) is shifted to the blue from the λmax of free Au25 

clusters (λfree) and that the shift decreases as L increases. We consider that the wavelength 

shifts of PL spectra arise from the plasmonic coupling of Au25 clusters with Ag NPs.30 To 

examine the wavelength shifts closely, we have plotted Δλ as a function of separation in 

Figure 2-8a; Δλ decreases exponentially with the increase of separation. Figure 2-8a 

displays that the values of Δλ have been fitted to Δλ0·exp(-d/δ) with Δλ0 of 21.5 nm and δ 

of 18.5 nm. The result suggests that the coupling strength (ΔE0) and the coupling distance 

(δ) of hybridization between Au25 clusters and Ag NPs are 67 meV and 18.5 nm, 

respectively, as the spectral shifts of Au25-adsorbed Ag@SiO2 NPs can be explained by the 

plasmon hybridization. The plasmon hybridization theory has been developed to 

understand how the SPRs of elementary geometries interact with each other to generate 

the hybridized plasmon modes of a nanocomposite.31-33 This interaction results in the 

splitting of the plasmon resonances into two new resonance bands: the lower-energy 
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bonding plasmon band and the higher-energy antibonding plasmon band. Thus, the 

emission property of Au25-adsorbed Ag@SiO2 NPs has been modified due to the plasmon 

coupling, which leads to the increase of the emission energy and decreases exponentially 

with the increase of separation. Nevertheless, Figure 2-8a indicates directly that the SPR 

of Ag NPs interacts with Au25 clusters to increase the PL intensity of Au25 clusters 

enormously as shown in Table 1 and Figure 2-8b (see below).  

Figure 2-7 and Table 2-1 indicate that the PL intensity of Au25-adsorbed Ag@SiO2(L) 

NPs increases in the beginning and then decreases as L increases. In order to have an 

insight into the distance-dependent MEF of Au25-adsorbed Ag@SiO2 NPs, the 

enhancement factor (EF) of PL, which is the PL ratio of adsorbed Au25 clusters on 

Ag@SiO2 NPs to free Au25 clusters, has been plotted as a function of separation in Figure 

2-8b. On one hand, EF values before the maximum enhancement distance (dc) have been 

fitted to a d6 dependency, which is in agreement with the fluorescence resonance energy 

transfer (FRET).3,34,35 On the other hand, EF values after dc have been fitted to a d-3 

dependency, which is in agreement with the MEF effect.34,35 The obtained constants of the 

fitting equations in Table S1 are found to be similar to the respective values of the previous 

report.35 The maximum enhancement factor (EFmax) and dc were estimated as 7.4 and 11.5 

nm, respectively. This suggests that as supported by the plasmonic coupling of Figure 2-

8b, MEF increases due to the increase of the near-field enhancement as a silver nanosphere 

approaches to a Au25 cluster. However, within a distance shorter than 11.5 nm, MEF 

decreases with the decrease of separation because the d-3-dependent increase of MEF is 

overwhelmed by the d6-dependent decrease of FRET. It is interesting to note that our 
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estimated optimal MEF distance of 11.5 nm is consistent with the fact that the maximum 

PL enhancement generally occurs in a range of 10-12 nm from a plasmonic surface.6,7,29 

Overall, Figures 2-7 and 2-8 have revealed that the MEF effect of Au25-adsorbed Ag@SiO2 

NPs is determined by two competing processes of FRET and the near-field enhancement 

via the plasmonic coupling. 

 

Figure 2-9. Emission decay profiles of indicated free Au25 clusters and Au25-adsorbed Ag@SiO2 

NPs suspended in water, monitored at 550+ nm after excitation at 355 nm. Solid lines are best-fitted 

curves to extract kinetic constants. 

 

In order to gain a deeper understanding of the MEF effect, we have compared the PL 

decay kinetics of Au25 clusters adsorbed on Ag@SiO2 NPs with that of free Au25 clusters. 

Figure 2-9 and Table 2-1 indicate that each picosecond emission kinetic profile of free Au25 

clusters and Au25-adsorbed Ag@SiO2 NPs can be fitted into a single exponential decay; 
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the lifetime is attributed to singlet transitions between excited sp bands and low-lying d 

bands of Au25 clusters.18,28,36 The decay time of Au25-adsorbed Ag@SiO2 NPs is not only 

significantly shorter than that of free Au25 clusters but also dependent on the value of L; 

while the lifetime of free Au25 clusters is 799 ps, the lifetimes of Au25-adsorbed Ag@SiO2 

NPs with L values of 0, 6, and 20 are 476, 432, and 559 ps, respectively. In other words, 

although the lifetime of Au25-adsorbed Ag@SiO2 NPs is always shorter than that of free 

Au25 clusters, it decreases in the beginning and then increases as the shell thickness 

increases. It is noteworthy from Figure 2-7 that the PL intensity of Au25-adsorbed 

Ag@SiO2 NPs increases in the beginning and then decreases as the shell thickness 

increases, although it is always stronger than the PL intensity of free Au25 clusters. These 

results apparently suggest that the increase of the PL intensity is related to the decrease of 

the PL decay time, as presented in Figure 2-10. 
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Figure 2-10. (a) PL enhancement factors (circles) and lifetimes (squares) of Au25-absorbed 

Ag@SiO2 NPs as a function of separation. Note that the values at ∞ were obtained from free Au25 

clusters. (b) PL enhancement factors (circles) and (kr + krm)/kr values (crosses) of Au25-absorbed 

Ag@SiO2 NPs as a function of the separation. 

 

Figure 2-10 indicates that the behavior of EF with separation is almost opposite to that 

of the lifetime, suggesting that the MEF of Au25-adsorbed Ag@SiO2 NPs arises from the 

increase of the decay rate constant of Au25 clusters due to the presence of Ag NPs (see 
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below). This is very unusual; for an ordinary fluorophore, the PL intensity decreases as the 

PL lifetime decreases due to the increase of the nonradiative decay rate constant of the 

excited fluorophore. Figures. 2-8b and 2-11a suggest that as a plasmonic Ag NP approaches 

to a Au25 cluster, the lifetime decreases to increase the MEF effect due to the increase of 

the near-field enhancement. However, within a separation shorter than the maximum 

enhancement distance, the lifetime increases to decrease the MEF with the decrease of 

separation because the increase of the MEF effect is suppressed by the decrease of the 

FRET effect. Furthermore, a close examination of PL intensities and lifetimes reveals that 

the MEF effect of Au25-adsorbed Ag@SiO2 NPs is due to the increase of the radiative decay 

rate constant of Au25 clusters due to the near-field enhancement of Ag NPs, as shown in 

Figure 2-10b. 

The PL decay time (τ0) and the PL quantum yield (Q0) of free fluorophores can be given 

by Eqs. (1) and (2), respectively,37                         

𝜏0 =
1

𝑘𝑟 + 𝑘𝑛𝑟
                                                                     (1) 

 𝑄0 =
𝑘𝑟

𝑘𝑟 + 𝑘𝑛𝑟
= 𝜏0 ∙ 𝑘𝑟                                                            (2) 

where kr and knr are the radiative and the nonradiative decay rate constants, respectively. 

Because Q0 and τ0 of free Au25 clusters have already been measured as 5.2% and 799 ps, 

respectively, kr and knr can be calculated as 0.065 and 1.2 ns-1, respectively, using Eqs. (1) 

and (2). The relaxation dynamics of Au25-adsorbed Ag@SiO2 NPs is complex because 

plasmonic Ag NPs increase the radiative decay rate of the emitters. For Au25 clusters in 
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close proximity to Ag NPs, the metal-modified decay time (𝜏𝑚) and quantum yield (𝑄𝑚) 

and of the Au25 clusters can be given by Eqs. (3) and (4), respectively,26,34  

 

𝜏𝑚 =
1

𝑘𝑟 + 𝑘𝑟𝑚 + 𝑘𝑛𝑟
                                                              (3) 

𝑄𝑚 =
𝑘𝑟 + 𝑘𝑟𝑚

𝑘𝑟 + 𝑘𝑟𝑚 + 𝑘𝑛𝑟
= (𝑘𝑟 + 𝑘𝑟𝑚) ∙  𝜏𝑚                                            (4) 

where krm is a new radiative decay rate constant added due to the presence of Ag NPs. 

When Au25 clusters are near Ag NPs, the enhanced near-field of the Ag NPs increases the 

amount of light absorbed by the clusters. In addition, plasmonic coupling occurs between 

Au25 clusters and Ag NPs, causing an increase in the radiative decay rate constant of Au25 

clusters.26 In this case, the total emission rate constant increases by addition of krm to kr.38 

Assuming that the change of knr in Au25-absorbed Ag@SiO2 NPs is negligible because PL 

quenching is not detected,26 we can calculate krm according to Eq. (3) with the 

experimentally obtained PL decay time of Au25-absorbed Ag@SiO2 NPs. On the basis of 

this analysis, it is possible to quantitatively estimate the emission enhancement, (kr+krm)/kr, 

and the Qm of the Au25-adsorbed Ag@SiO2 NPs,38 as shown in Table 1. The results indicate 

that as the shell thickness becomes near optimal, (kr+krm)/kr becomes as large as 17 to 

enhance QY as highly as 49%, suggesting that Au25-adsorbed Ag@SiO2 NPs can be used 

for biomarkers and sensors as conventionally well-known visible dyes. Figure 2-10b 

indicates that the behavior of emission enhancement with separation is almost identical to 

that of EF, suggesting that the MEF of Au25-adsorbed Ag@SiO2 NPs arises from the 
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emission enhancement of Au25 clusters due to the presence of Ag NPs. As a plasmonic Ag 

NP approaches to a Au25 cluster, the total emission rate constant increases to enhance the 

MEF effect due to the near-field enhancement. However, within a separation shorter than 

the maximum enhancement distance, the emission rate constant decreases to diminish the 

MEF effect with the decrease of separation. Therefore, we can conclude that the PL 

enhancement arises from the increase of the radiative decay rate constant induced by the 

near-field enhancement of plasmonic Ag NPs. 

 

 

 

Figure 2-11. Contour plot for the PL enhancement factors of Au25-adsorbed Ag@SiO2 NPs as 

functions of the separation and the excitation wavelength. 

 



39 

 

The contour plot of Figure 2-11 shows the dependence of the PL enhancement of Au25-

adsorbed Ag@SiO2 NPs on the excitation wavelength as well as on the separation.39 The 

highest PL enhancement can be found from the dark-red ‘hot-spot’ region with the 

separation of 7-11 nm and the excitation wavelength of 360-380 nm. In particular, along 

with the excitation wavelength of 370 nm, the yellow region extends as long as 26 nm in 

separation. In fact, the coupling distance of hybridization between Au25 clusters and Ag 

NPs has been found to be 24.6 nm with excitation at 370 nm, which is significantly longer 

than the coupling distance of 18.5 nm with excitation at 355 nm. We consider that our 

finding would be beneficial for the efficient luminescence applications of BSA-capped 

Au25 clusters. 

 

 

Figure 2-12. TEM images of Ag NPs with diverse average diameters indicated inside. Each scale 

bar indicates 50 nm. 
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Table 2-3. Diameters and extinction λmax values of Ag NPs prepared at various concentrations of 

sodium citrate and tannic acid.  

Diameter/nm λmax/nm Sodium citrate/mM Tannic acid/mM 

10±2 398 0.81 30.6 

28±5 414 0.54 56.4 

50±6 433 0.54 94.1 

71±8 454 0.27 94.1 

85±13 464 0.09 94.1 

 

 

Figure 2-13. PL enhancement factors, with excitation at 355 nm, of Au25-adsorbed Ag@SiO2(0) 

NPs as a function of the diameter of Ag NPs. The red line represents the best-fitted Gaussian curve, 

whose maximum is located at 90 nm. 
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MEF depends strongly on the sizes of metal NPs. Especially, Ag NPs have high 

scattering efficiencies, and their optical properties are highly dependent upon their 

diameters. Thus, we have also measured how the PL enhancement of Au25-adsorbed Ag 

NPs is dependent on the diameters of Ag NPs. The diameters of Ag NPs were controlled 

in the range of 10-85 nm by altering the respective concentrations of tannic acid and 

sodium citrate; the diameters of Ag NPs have been found to increase with the concentration 

increase of tannic acid and the concentration decrease of sodium citrate, as shown in Figure 

2-12 and Table 2-3. Figure 2-13 indicates that the PL intensity of Au25-adsorbed Ag NPs 

increases initially with the sizes of Ag NPs. Although we could not synthesize Ag NPs with 

diameters of >90 nm via the co-reduction method,23 we have been able to estimate the 

dependence of the PL enhancement on diameters longer than 90 nm by fitting our diameter-

dependent EF values to a Gaussian curve, whose maximum is located at a diameter of 90 

nm. As the average diameter of Ag NPs increases in the beginning, a scattering portion of 

Ag NPs increases, enhancing the MEF effect. However, the intensity of the electric field 

near plasmonic metal NPs has been reported to decrease with a further increase of particle 

sizes,24 supporting our estimation that the PL enhancement of Au25-adsorbed Ag NPs 

would reach the maximum at a particle diameter of 90 nm. 
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Figure 2-14. Sensing selectivity of Au25-adsorbed Ag@SiO2(6) NPs for Cu2+ over other heavy 

metal ions. The concentrations of the respective metal ions were 20 μM, and samples were excited 

at 370 nm. The gray bars stand for the PL intensities of free Au25 clusters while the red bars stand 

for the PL intensities of Au25-adsorbed Ag@SiO2(6) NPs. 

 

Metal-selective colloidal nanosensors have attracted intense attention in environmental 

issues.40 The PL of Au25 clusters can be used be as a highly sensitive and selective “turn-

off” sensor for Cu2+ ions.41,42 The PL quenching occurs due to interactions between a Cu2+ 

ion and the carboxyl group of BSA adsorbed to a Au25 cluster because the Cu2+ ion has 

more affinity toward BSA than any other types of ions.21 When Cu2+ ions are added to an 

aqueous solution of Au25 clusters, the ions mediate attractive protein–protein interactions 

and lead to PL quenching due to the aggregation of BSA-capped Au25 clusters; this effect 

is called aggregation-induced PL quenching.43 Figure 2-14 shows the PL intensities of free 

Au25 clusters and Au25-adsorbed Ag@SiO2(6) NPs upon exposure to six heavy metal ions 

in water, where F0 and F are PL intensities in the absence and presence of metal ions, 



43 

 

respectively. The concentration of each ionic metal is 20 μM, which is the maximum safety 

level of Cu2+ in drinking water defined by the US Environmental Protection Agency.42 

Sensing selectivity was measured with excitation at 370 nm, the excitation wavelength 

yielding the maximum MEF effect in Figure 2-11 

 

 

Figure 2-15. Sensing selectivity of Au25-adsorbed Ag@SiO2(0) NPs for Cu2+ over other heavy 

metal ions. The concentrations of the respective metal ions were 20 μM, and samples were excited 

at 370 nm. The gray bars stand for the PL intensities of free Au25 clusters while the red bars stand 

for the PL intensities of Au25-adsorbed Ag@SiO2(0) NPs. 

 

The gray bars in Figures 2-14 and 2-15 stand for the PL intensities of free Au25 clusters. 

The emission was quenched almost completely only in the presence of Cu2+ and remained 

almost invariant in the presence of the other metal ions; the PL intensity was decreased 

4.1-fold in the presence of Cu2+. The PL of Au25-adsorbed Ag@SiO2 NPs was drastically 
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quenched by Cu2+ with respect to that of free Au25 clusters. As already presented, Au25 

clusters emit enhanced PL when they interact with Ag@SiO2 NPs. Thus, when Au25 

clusters having the MEF effect were aggregated by Cu2+ ions, their emission was more 

severely quenched. Figure 2-15 shows that the PL intensity of Au25-adsorbed Ag@SiO2(0) 

NPs decreases 8.3-fold in the presence of Cu2+; the turn-off ratio for Au25-adsorbed 

Ag@SiO2(0) NPs is two times larger than that of free Au25 clusters. In the presence of Hg2+ 

ions, the PL intensity of Au25-adsorbed Ag@SiO2(0) NPs decreases 5.5-fold. It is reported 

that the emission of BSA-capped Au clusters can be used be as a sensitive and selective 

sensor for Hg2+ ions based on high-affinity metallophilic Hg2+-Au+ interactions; Hg2+ ions 

have a very high affinity for thiol-containing biomolecules so that Hg2+ ions can coordinate 

to amino acids of BSA-protected Au25 clusters, inducing the aggregation of Au clusters.43,47 

However, the turn-off ratio of Hg2+ ions for Au25-adsorbed Ag@SiO2(0) NPs is just 1.7 

times larger than that for free Au25 clusters, indicating that the sensing selectivity of Au25-

adsorbed Ag@SiO2(0) NPs is lower for Hg2+ ions than for Cu2+ ions. Meanwhile, the 

sensing selectivity for Au3+ ions is very unusual. The PL emission of free Au25 clusters 

remained almost invariant in the presence of the Au3+ ions. However, the PL emission of 

Au25-adsorbed Ag@SiO2(0) NPs was drastically quenched in the presence of Au3+ ions. 

The colloidal color of Au25-adsorbed Ag@SiO2(0) NPs changed from yellow to blue upon 

addition of Au3+(aq). Thus, we suggest that the color change of the plasmonic metal colloid 

resulted from galvanic replacement; silver-gold alloy nanoparticles were generated and 

aggregated together with adsorbed Au25 clusters.48 Surprisingly, the PL intensity of Au25-

adsorbed Ag@SiO2(6) NPs decreases 13.7-fold by Cu2+; the turn-off ratio for Au25-
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adsorbed Ag@SiO2(6) NPs is 3.3 times larger than that of free Au25 clusters. It has already 

been shown that Au25-adsorbed Ag@SiO2(6) NPs have the most effective PL enhancement. 

In addition, electrostatic attraction between Au25 clusters and Ag@SiO2 NPs is known to 

be weaker than attraction between Au25 clusters and Ag NPs, suggesting that aggregation-

induced PL quenching by Cu2+ ions would be more prominent in Au25-adsorbed 

Ag@SiO2(6) NPs than in Au25-adsorbed Ag NPs.8,44 Overall, our results have shown that 

Au25-adsorbed Ag@SiO2(6) NPs with the strongest MEF effect also become the most 

sensitive and selective ‘turn-off’ sensor for Cu2+ ions.  

 

 

2.5.  Conclusions 

 

The MEF effect of Au25-adsorbed Ag@SiO2 core-shell NPs depends on the thickness of 

silica shells as well as the wavelength of excitation, and the diameter of Ag NPs. The 

emission of Au25-adsorbed Ag@SiO2 NPs is blue-shifted and highly enhanced compared 

with that of free Au25 clusters. The emission wavelength shift arises from the plasmonic 

coupling of Au25 clusters with Ag NPs, which decreases exponentially with the increase of 

separation between Au25 clusters and Ag NPs. The PL intensity of Au25-adsorbed Ag@SiO2 

NPs is higher by a factor of 7.4 times than that of free Au25 clusters. The PL enhancement 

of Au25-adsorbed Ag@SiO2 NPs is determined by two competing processes of FRET and 

the near-field enhancement via the plasmonic coupling. A close examination of PL 

lifetimes has revealed that the MEF effect of Au25-adsorbed Ag@SiO2 NPs is due to the 
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increase of the radiative decay rate constant of Au25 clusters resulting from the near-field 

enhancement of Ag NPs. Au25-adsorbed Ag@SiO2 NPs have also been found as a highly 

sensitive and selective ‘turn-off’ sensor for Cu2+ ions. 
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Chapter 3. Hollow and inward-bumpy gold nanoshells fabricated using 

expanded silica mesopores as templates 

 

 

 

 

 

 

 

 

 

† This is reproduced from Joon Ki Kim and Du-Jeon Jang, New J. Chem., 2019, 43, 9732-
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3.1.  Abstract 

 

Plasmonic nanoparticles can produce an enhanced electromagnetic field in their 

vicinity due to their localized surface plasmon resonance (LSPR). In particular, gold 

nanoshells (NSs) are of great interest due to their tunable LSPR absorption band ranging 

from the visible to the infrared region with superior bio-compatibility. We have fabricated 

hollow and bumpy Au (HBA) NSs with rough surfaces using expanded silica mesopores 

as templates. Because some Au seeds were located at the inner surfaces of silica mesopores, 

produced Au NSs have inherent inward-grown nanobumps. During seven successive 

reduction steps, the LSPR peak of Au nanostructures shifted progressively toward a longer 

wavelength as the sizes of Au seeds increased gradually. Measuring the cross-sections of 

HBA NSs milled by a focused ion beam, we have found that hollow and bumpy 

nanostructures arose from the pore structures of mSiO2 nanotemplates. HBA NSs confine 

Raman-probe molecules well owing to their hollow structures and have ragged surfaces 

due to their inward-bumpy morphologies, exhibiting highly efficient surface-enhanced 

Raman scattering activity. 
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3.2.  Introduction 

 

Plasmonic nanoparticles (NPs) have been actively investigated for their unique optical 

properties as their localized surface plasmon resonance (LSPR) is excited.1,2 They can 

produce an enhanced electromagnetic (EM) field in their vicinity due to their LSPR; in 

particular, gold NPs have shown a great promise in wide scientific fields, including 

surface-enhanced Raman scattering (SERS), catalysis, and optoelectronic applications.3-7 

The performance of SERS analysis depends on the degree of ‘hotspots’, spatially localized 

regions with extremely strong near-fields, which are critically important to get enhanced 

performances in the application of plasmonic NPs.8 Another contribution of Raman signal 

enhancement is known as the chemical mechanism or charge transfer mechanism, which 

involves the bonding of the analytes to the substrate surfaces. This bonding increases the 

polarizability, and thereby Raman scattering intensity.43 There are generally two structural 

strategies to introduce strong hotspots in plasmonic NPs; hotspots can be revealed by 

nanogaps on inter-particle or intra-particle structures9,10 or created by sharp tips and high-

curvature surfaces obtained by morphologically controlled synthesis.9,11,12 In particular, the 

structures with high curvatures or rough surfaces have been paid attention to create 

hotspots.13-15 Rough or bumpy surfaces which can induce a stronger near-field 

enhancement in the vicinity of NPs are more desirable than smooth metal surfaces for 

SERS analysis.16-18 
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Gold nanoshells (NSs) composed of a dielectric core and a gold-metal shell are of great 

interest due to their tunable LSPR band ranging from the visible to the IR region with 

superior bio-compatibility.19,20 Numerous works on the synthesis or tunability of optical 

properties have been reported.17,21-23 Especially, for the past two decades, various efforts 

have been reported to increase the near-field enhancement effect of Au NSs. Kang et al. 

have reported a seedless and one-step synthetic route to produce bumpy Ag NSs, which 

can be a NIR-sensitive SERS substrate.16 Sauerbeck et al. investigated the strong near-field 

enhancement of an incomplete nanoshell morphology arising from hotspots at gaps 

between isolated islands19 while Fan et al. reported the synthesis of high-density Au-Ag 

alloy nanoislands as secondary nanostructures on the surfaces of Au NSs.11 However, 

SERS effect due to contribution from the inner surfaces of Au NSs has been hardly 

discussed. Clearly, if the inside surfaces of plasmonic nanoshells also have roughness, 

hotspots can be present at the inner surfaces of Au NSs as well. In addition, if hollow 

structures are employed, it will be possible to detect biomolecules of an extremely low 

concentration by the structural trapping effect of Raman probes.24  

Herein, we report that hollow and inward-bumpy Au (HBA) NSs have been synthesized 

on mesoporous silica NPs by a templated-growth method. While these nanostructures 

cannot be obtained by the conventional shell-growth method, they can be synthesized by 

the sequential reduction-growth method. The synthesis of significantly rough surfaces on 

the inside as well as the outside of nanoshells has adopted a templated-growth method, 

which is an easy way to create the shape replica of mesoporous silica templates.18,25 The 

method does not use structure-directed molecules such as capping agents or surfactants, 
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which prevent Raman probes from accessing plasmonic metal surfaces. Also, the method 

can be employed to fabricate very complex plasmonic structures that are difficult to be 

produced via a conventional way. In fact, although the synthesis of Au nanostructures 

using mesopores silica has been already reported, Au nanoshell structures have not been 

synthesized yet.26,27 However, we have fabricated hollow and inward-bumpy nanoshells 

with rough surfaces using expanded silica mesopores as templates. The nanoshells confine 

Raman-probe molecules well due to their hollow structures and have ragged surfaces due 

to their inward-bumpy morphologies. Thus, fabricated HBA NSs have revealed large 

SERS enhancement in the detection of rhodamine 6G. 

 

 

3.3.  Experimental section 

 

3.3.1.  Materials 

Chemicals were used as purchased without further purification: HAuCl4·3H2O (s, 

≥99.9%), tetraethylorthosilicate (TEOS, l, ≥99.0%), (3-aminopropyl)triethoxysilane 

(APTES, l, 99%), trimetylbenzene (TMB, l, 98.0%), HCl (aq, 35%), NaOH (s, 99.99%), 

K2CO3 (s, 99.5%), NaBH4 (s, ≥99.0%), ascorbic acid (s, ≥99%), methylene blue (MB, s, 

≥82%), methyl orange (MO, s, 85%)  and rhodamine 6G (R6G, s, ≥82%) from Sigma 

Aldrich; HF (aq, 48.0-51.0%) from J.T. Baker; NH4OH (aq, 25-28%), ethanol (l, ≥99.8%) 

from Daejung Chemicals. Water (>15 MΩ cm-1) purified from an Elga PURELAB Option-

S system was used in all the experiments. 
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3.3.2.  Synthesis of pore-expanded mesoporous silica (mSiO2) NPs 

NPs of mSiO2 were fabricated by following the Stober method.25 120 mL of a 6 mM 

aqueous CTAB solution was prepared in a beaker and maintained at 40 ºC with stirring for 

30 min. The beaker was kept under aluminium foil to avoid dust contamination. When 50 

mL of ethanol was poured into the CTAB solution, the solution turned cloudy and then 

became transparent. 1.5 mL of NH4OH was added and then 1.5 mL of TEOS was added 

dropwise under vigorous stirring. The solution was heated to 60 ºC and maintained at this 

temperature for 2 days under gentle stirring. Produced mSiO2 NPs were washed with 

ethanol by centrifugation (10 min, 7000 rpm, twice) and stored in 20 mL of ethanol. To 

expand pore sizes, 20 mL of as-prepared mSiO2 NPs, 10 mL of water, and 10 mL of TMB 

were mixed and stirred vigorously for 10 min.28,29 The mixture solution was then loaded 

into a Teflon-lined stainless-steel autoclave with a capacity of 50 mL. The sealed autoclave 

was put into an oven at 120 ºC for 2 days and cooled to room temperature. The product 

was washed with ethanol by centrifugation (10 min, 7000 rpm, twice) and stored in 20 mL 

of ethanol. To extract CTAB templates, 20 mL of as-prepared pore-expanded mSiO2 NPs 

and 3 mL of HCl were mixed and stirred gently for 4 h at 70 ºC. Then, the product was 

washed with ethanol by centrifugation (10 min, 7000 rpm, twice) and stored in 20 mL of 

ethanol.  

 

3.3.3.  Synthesis of Au seeds-decorated mSiO2 (Au-mSiO2) NPs 

The surfaces of mSiO2 NPs were modified with functional amine groups using 

APTES.17 5.0 mL of as-prepared mSiO2 NPs, 30 mL of ethanol, and 6.0 mL of APTES 
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were mixed, heated to 60 ºC, and stirred for 4 h. Produced amine-modified mSiO2 NPs 

were washed twice with ethanol by centrifugation (10 min, 7000 rpm) and redispersed in 

10 mL of ethanol. Then, 10 mL of the as-prepared amine-modified mSiO2 colloid, 30 mL 

of ethanol, and 1.5 mL of 0.02 M HAuCl4(aq) were mixed, heated to 50 ºC, and stirred for 

4 h. Au ions-adsorbed mSiO2 NPs were washed twice with ethanol by centrifugation (10 

min, 7000 rpm) and re-dispersed in 30 mL of ethanol. To grow small Au seeds onto mSiO2 

NPs, 0.3 mL of 10 mM NaBH4(aq) was added in 30 mL of the Au ions-adsorbed mSiO2 

colloid with vigorous stirring. As the mixture turned brownish red, it was kept for 

overnight to produce Au-mSiO2 NPs. 

 

3.3.4.  Synthesis of Au NSs 

To prepare a K-gold solution (Au-plating solution), 3.0 mL of 20 mM HAuCl4(aq) was 

added to 80 mL of water containing 20 mg of K2CO3 under vigorous stirring.19 The 

resulting solution was stored in the dark for overnight. To grow Au NSs, 0.40 mL of the 

Au-mSiO2 colloid was stirred in a 100 mL vial and then 2.0 mL of the prepared K-gold 

solution was added and sonicated for 30 s. After 3 min, 0.20 mL of 10 mM ascorbic acid(aq) 

was added. After 10 min, 2.0 mL of the K-gold solution added again and sonicated for 30 

s. After 3 min, 0.20 mL of 10 mM ascorbic acid(aq) was added again. Sonication was 

employed to aid the growth of Au NSs without using surfactants or capping agents by 

preventing irreversible aggregation. We will regard the 2.0 mL addition of the K-gold 

solution followed by the 0.20 mL addition of 10 mM ascorbic acid(aq) as a step. After 
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seven steps, Au NSs were washed twice with ethanol by centrifugation (10 min, 7000 rpm) 

and re-dispersed in 10 mL of ethanol. 

 

3.3.5.  Synthesis of hollow and bumpy Au NSs (HBA NSs) 

To etch silica cores, 1.0 mL of a 0.5% ethanoic HF solution was slowly added into 2.0 

mL of the as-prepared Au colloid under gentle stirring (~100 rpm). 1.0 mL of the HF 

solution was added additionally three times with an interval of 10 min. HBA NSs were 

washed twice with ethanol by centrifugation (10 min, 7000 rpm) and re-dispersed in 5.0 

mL of ethanol. 

 

3.3.6. Measurement of surface-enhanced Raman scattering (SERS) 

R6G, MB, and MO were used as probes for Raman scattering measurement. 

Representatively, 10 μL of a Au colloid and 10 μL of a 10 μM R6G ethanol solution were 

consecutively drop-casted onto a p-type Si substrate, which had been already cleaned 

sequentially with water, acetone, and ethanol. Raman signals of pristine R6G were 

measured using 10 μL of 0.10 M R6G(ethanol). To test the pH-dependent SERS efficiency 

of HBA NSs, 0.10 mL of HBA NSs and 0.10 mL of a 10 μM R6G ethanol solution were 

mixed in a 1 mL vial. Then, the different pH values of the mixture were adjusted by adding 

a 0.1 M HCl or NaOH solution. Raman spectroscopic analysis was carried out using an 

OLYMPUS BX41 confocal microscope Raman system equipped with a SLOC Laser 
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GL532RA-100DPSS laser; a 5.0 mW laser beam of 532 nm was focused to a sample with 

a spot diameter of 2.0 μm.  

 

3.3.7. Characterization 

UV-visible absorption spectra were measured using a Scinco S-3100 spectrophotometer. 

Transmission electron microscopy (TEM) images were acquired using a Hitachi H-7600 

microscope at an accelerating voltage of 100 kV while field emission scanning electron 

microscopy (FESEM) images were taken with a ZEISS MERLIN Compact microscope 

operated at an accelerating voltage of 3 kV. Nitrogen adsorption/desorption isotherms were 

measured with a MicrotracBEL BELSORP MINI-II apparatus. Surface-area calculation 

was carried out using the BET method and the pore size distribution was calculated 

according to the BJH method.32 X-ray diffraction (XRD) patterns were collected with a 

Bruker New D8 advanced diffractometer using Cu-Kɑ radiation. A focused ion beam (FIB) 

was applied using a Carl Zeiss AURIGA apparatus to mill the assembly of as-prepared 

nanoparticles at ambient temperature. Substrates were fixed with Ag paste after coating 

samples with Pt for 30 s via ion sputtering (HITACHI, E-1010). A JEOL JEM-2100F 

microscope at an accelerating voltage of 200 kV was employed to acquire high angle 

annular dark field-scanning transmission electron microscopy (HAADF-STEM) images 

and energy dispersive X-ray (EDX) elemental profiles. 
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3.4.  Results and discussion 

 

 

 

 

 

Figure 3-1. (a) Schematic illustration for the fabrication of pore-expanded mSiO2 NPs. (b,c) TEM 

images of (b) mSiO2 NPs and (c) pore-expanded mSiO2 NPs. The scale bar in the inset of Figure 3-

1c indicates 50 nm. 
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Figure 3-2. (a) N2 adsorption/desorption isotherms of pore-expanded mSiO2 NPs, where closed and 

open circles correspond to adsorption and desorption points, respectively. (b) Pore-size distribution 

plot corresponding to the N2 adsorption/desorption isotherm of pore-expanded mSiO2 NPs. 

 

The first step for the conventional synthesis of Au NSs requires the decoration of Au 

seeds onto SiO2 cores.20 Thus, prior to the fabrication of Au NSs, we have been concerned 

about the synthesis of Au-mSiO2 NPs having Au seeds in mesopores. mSiO2 NPs are 

usually obtained through surfactant-templated synthesis via the Stober method, where 

CTAB is widely used as a surfactant.31 It is generally known that pores with sizes of 2-3 

nm can be obtained using CTAB templates. We have considered that it is difficult to adsorb 

functional APTES to the surfaces of typical-size mesopores because the length of APTES 

is as long as 5-8 nm. To prepare pore-expanded mSiO2 NPs, we have employed an 

expansion strategy using trimethylbenzene (TMB) as a swelling agent (Figure 3-1).28,29 

The TEM image of pore-expanded mSiO2 NPs shows rather rough surfaces with numerous 

radial mesopores, compared with that of pristine mSiO2 NPs.25 The Brunauer-Emmett-

Teller (BET) average pore size and the average surface area for pore-expanded mSiO2 NPs 
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were 7.8 nm and 1100 m2/g, respectively (Figure 3-2). Hereafter, we will call pore-

expanded mSiO2 simply as mSiO2. 

 

 

Figure 3-3. (a) HRTEM image of Au-mSiO2 NPs. (b) Size-histogram of Au seed in Au-mSiO2 NPs. 

(c) UV-vis absorption and (d) XRD data of (black) mSiO2 NPs and (red) Au-mSiO2 NPs.  

 

 

Although there are two methods to decorate mSiO2 NPs with Au seeds, we have adopted 

the deposition-precipitation (DP) method because tetrakis(hydroxymethyl)phosphonium 

chloride-mediated Au seeds cannot enter into mesopores easily.21 We have fabricated Au 

seeds-decorated mSiO2 (Au-mSiO2) NPs by the NaBH4 chemical reduction of Au ions via 

a modified DP method. Our chemical reduction method is advantageous in creating small 

Au seeds during a relatively short reaction time. The HRTEM image of Au-mSiO2 NPs in 
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Figure 3-3a reveals that numerous Au seeds with an average diameter of 4.5 nm are 

adsorbed on the surfaces of mSiO2 NPs, suggesting that APTES molecules have enabled 

us to fabricate evenly distributed Au seeds with uniform sizes (Figure 3-3b). The UV-vis 

absorption spectra of Figure 3-3c indicate that Au-mSiO2 NPs have a shoulder peak at 550 

nm, suggesting that Au seeds have plasmonic properties as well. Wide-angle X-ray 

diffraction analysis was used to confirm the adsorption of Au seeds (Figure 3-3d). While a 

22º broad peak confirms the amorphous nature of mSiO2 NPs,32 the characteristic XRD 

peaks of Au seeds were clearly observed at 39º ((111) planes) and 42º ((200) planes) for 

Au-mSiO2 NPs (JCPDS No. 65-2870). The full width at the half maximum (FWHM) of 

an XRD peak is affected by particle sizes according to the Scherrer equation: D = Κ λ / (β 

cosθ), where D is the average particle size, Κ is a constant equal to 0.94, λ is the Cu-Κα 

radiation wavelength (0.154 nm), β is the FWHM of a diffraction peak, and θ is the 

diffraction angle. The calculated average size of Au seeds is 2.9 nm, determined from (111) 

planes using the Scherrer equation. 
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Figure 3-4. (a) Schematic illustration for the fabrication of HBA NS. (b-f) TEM images of 

progressively growing (b) mSiO2 NPs, (c) Au-mSiO2 NPs, (d) growth intermediates, (e) Au NSs, 

and (f) HBA NSs. (g) SEM image of HBA NSs. Each scale bar indicates 100 nm. 

 

Figure 3-4a illustrates the synthesis of HBA NSs. Through the direct growth of Au seeds 

on mSiO2 surfaces, Au-mSiO2 NPs have been firstly synthesized (Figure 3-4b and 4c). The 

followed sequential reduction of gold ions has grown the Au seeds of Au-mSiO2 NPs 
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progressively until Au seeds coalesce and fuse together (Figure 3-4d and 4e). Because the 

Au seeds are located partly at the inner surfaces of mesopores, produced Au NSs have 

inherent nanobumps (Figure 3-4e). Finally, as silica cores were etched using a HF solution, 

Au NSs were transformed into hollow and bumpy Au nanoshells (HBA NSs, Figure 3-4f). 

The SEM image of Figure 3-4g reveals that the outside surfaces of HBA NSs have inherent 

nanobumps indeed, although it is difficult to observe the inner morphologies of HBA NSs 

by measuring ordinary TEM or SEM images. 
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Figure 3-5. (a) UV-vis extinction spectra of Au NPs synthesized by (blue) the conventional method 

and (red) our sequential reduction method. (b) TEM image of irregular Au NPs synthesized by the 

conventional method. 
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Figure 3-6. (a) Extinction spectra measured at successive steps during the growth reaction of Au 

NSs. (b) UV-vis extinction spectra of (i) Au-mSiO2 NPs, (ii) step-1 NPs, (iii) step-4 NPs, (iv) Au 

NSs, and (v) HBA NSs. 

 

Although it was generally reported19,20,33,34 that Au NSs could be fabricated by reducing 

gold ions at one go, we could not use the conventional reduction method to produce Au 
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NSs. However, we fabricated Au nanostructures as well via the conventional mehtod as a 

comparative experiment; 0.40 mL of the Au-mSiO2 NPs colloid was added to 14 mL of the 

K-gold solution, which was then added with 1.4 mL of 10 mM ascorbic acid(aq). Figure 

3-5a shows that the LSPR characters of Au NSs are more prominent in the UV-vis extintion 

spectrum of Au NSs fabricated by our sequential reduction method than in the spectrum of 

Au nanostructures synthesized by the conventional method. Figure 3-5b shows that Au 

nanostructres fabricated by the conventional method have irregular shapes. However, Au 

NSs prepared by the sequential reduction method, where the conventional method was 

divided into 7 steps, have well-defined shapes. Figure 3-6a shows that LSPR shifted to the 

red and its bandwidth became broader progessively with the increase of growth steps. The 

LSPR peak of step-1 NPs is remarkable at 550 nm, supporting that Au seeds have grown 

in sizes. This trend was observed until the sequential reduction of the step 2 took place. 

The reasons why we should use the sequential reduction method are as follows. A 

periodically sequential sonication process is essential to introduce Au ions well in the 

mesopores. Also, the sequential reduction method without using surfactants or capping 

agents prevents Au NPs from irreversible aggregation. 
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Figure 3-7. TEM images of progressively growing Au NSs. Each scale bar indicates 100 nm. 

 

During seven successive steps, the LSPR peak of Au nanostructures shifted 

progressively toward a longer wavelength as the sizes of Au seeds increased further. The 

small Au seeds were likely to collide and coalesce with neighbouring Au seeds to form 

nanoshells (Figure 3-7). The morphologies of Au NSs formed on mSiO2 templates reveal 

that nanoshell structures are well-defined and uniform. Au NSs prepared at the step 7 show 

the LSPR peak at 697 nm, suggesting that their nanoshell structures are not completely 

closed. It has been generally reported that Au NSs having a fully closed shell structures 

with an average diameter of less than 200 nm have the LSPR peak at ≥800 nm.19,20 

However, as-synthesized Au NSs have shown the LSPR band at 697 nm, so the 

morphologies of Au NSs were inferred to be not completely closed, as shown in Figure 3-
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4f. We did not control the thickness of Au NSs. If we conduct further reduction steps, an 

increase in shell thickness can be achieved and completely closed-nanoshell morphologies 

can be obtained as well. There are some attractive reasons for the synthesis of incompletely 

closed-nanoshell morphologies. Not only Raman probe molecules are easily accessible to 

inherent pore structures17 but also high near-field enhancement is induced well at 

incomplete nanoshell morphologies.19 Finally, as silica cores were etched using a HF 

solution, Au NSs were transformed into HBA NSs. The extinction spectrum of HBA NSs 

(Figure 3-6b) is slightly blue-shifted compared to that of Au NSs, suggesting that the 

etching of silica cores has reduced the sizes of Au NSs. We have investigated the particle-

size distribution histograms of Au nanostructures shown in Figure 3-6b. While the average 

diameter of as-prepared mSiO2 NPs is 130 nm, the average particle diameters of 

synthesized Au nanostructures range from 138 to 161 nm, suggesting that the average shell 

thickness of Au NSs is about 15 nm (Figure 3-8). The average diameter of HBA NSs is 

150 nm, which is slightly shorter than that of Au NSs (161 nm), as predicted with the 

extinction spectra of Figure 3-6b. 
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Figure 3-8. Particle size-distribution histograms of respectively indicated samples. 
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Figure 3-9. (top) HADDF-STEM image and EDX elemental map of a HBA NS. (bottom) Line-

scanned elemental profiles of HBA NS. 

 

For the further characterization of HBA NSs, elemental compositions and distributions 

have been determined by measuring an EDX elemental map and line-scanned elemental 

profiles, as well as a HAADF-STEM image. The HAADF-STEM image and the elemental 

map of Figure 3-9 reveal that a HBA NS has a hollow, porous, and bumpy nanoshell 

structure. Because Au seeds were located partly at the inner surfaces of mesopores, 

produced Au NSs have inherent inward nanobumps. In particular, two characteristic sharp 

peaks of the line-scanned gold elemental profile in Figure 3-9 indicate that the HBA NS is 
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hollow indeed. Furthermore, the fluctuating ripple peaks of the gold elemental profile 

suggest that the HBA NS has a porous structure. The relatively very small elemental 

intensities of Si and O in Figure 3-9 indicate that the residual amount of mSiO2 in the HBA 

NSs is negligible. However, it is difficult to observe the inner morphologies of HBA NSs 

by measuring HAADF-STEM images. Furthermore, TEM-based tomographic analysis is 

not suitable for inner shapes of Au nanostructures because noble-metal nanostructures 

hardly transmit an electron beam.35 

 

Figure 3-10. Cross-section SEM images of (a,b) Au NSs and (c,d) HBA NSs obtained by the 

focused-ion-beam milling method. 
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For the precise analysis of the inner morphologies of HBA NSs, we have inves

tigated the cross-sections of NSs milled by a focused ion beam. To mill numerou

s Au nanostructures via one process, we drop-casted the Au NSs colloid several t

imes to heap Au NSs up at the same spot. In addition, to prevent substrates fro

m slipping down, we fixed them with a Ag-paste adhesive. The beam-milled cros

s-sections of Au NSs in Figure 3-10a and 10b display bright Au NSs as well as 

relatively dark silica cores. It is noteworthy that Au seeds were embedded in mSi

O2 NPs. The embedded morphologies arose from Au seeds formed at the deeply i

nside surfaces of mesopores during the fabrication process of Au-mSiO2 NPs. Dee

ply located Au seeds grew hardly because gold ions near deeply located Au seed

s could not react well with reducing agents. Figure 3-10c and 10d show hollow and 

inward-bumpy nanoshell structures, which could not be observed in the SEM images of 

Au NSs because inner shapes were screened by silica cores. We consider that hollow and 

bumpy structures arose from the pore structures of mSiO2 templates. HBA NSs are 

expected to confine Raman-probe molecules well due to their hollow structures. Also, 

because their inner surfaces are ragged, the nanoshells would exhibit high plasmonic 

properties. The cross sections of HPA NSs look slightly elliptical because a strong Ga-ion 

beam has thermally distorted Au nanostructures.36 We are reporting the inward-bumpy 

surfaces of Au NSs for the first time to our knowledge. 

 



74 

 

Figure 3-11. TEM image of inward grown Au nanotips in mesoporous silica NPs. 

 

 

A few interesting aspects have been observed during our TEM study. We have identified 

inward-grown gold nanotips located in mesopores (Figure 3-11). We have already 

described with Figure 3-10 that Au seeds were embedded in the mesopores of mSiO2 NPs. 

The Au seeds grew to form nanorods in the mesopores of mSiO2 NPs. The fabrication of 

nanoparticles-embedded SiO2 NPs using mesopore channels as templates has already been 

reported.25,37,38 If both of gold ions and reducing agents could move freely in the mesopores 

of mSiO2 NPs, it would be possible to fabricate more functional Au NSs having inward-

grown (convergent) nanotips. 
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Figure 3-12. (a) SERS spectra of 10 μM R6G(ethanol) adsorbed on HBA NSs, Au NSs, Au NPs, 

and Si. Note that 0.10 M R6G(ethanol) was used to record the Raman signal of the Si substrate. (b) 

The SERS enhancement factors of HBA NSs acquired via measuring relatvie Raman intensities at 

1382 cm-1. (c) SERS sepctra of R6G at concentrations ranging from 10-8 M to 10-3 M  (d) SERS 

intensity of R6G at 1382 cm-1 as a function of the logarithm of the R6G concentration. The inset 

shows a representative optical image of a HBA NSs-R6G SERS substrate on a Si piece (scale bar: 

1 cm) 

 

The SERS capabilities of HBA NSs, Au NSs, and Au NPs (having an average diameter 

of 150 nm) have been investigated using R6G as a Raman probe with excitation at 532 nm 

(Figure 3-12); the Au NPs were prepared using the seed-mediated growth method.39 The 

peaks in the region between 800 and 1700 cm-1 arose from the bending modes of C-H and 

the stretching modes of the carbon skeleton. The SERS enhancement factors (EF) of Au 
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nanostructures acquired by measuring relative Raman intensities were 4.9 × 104 for Au 

NPs, 8.0 × 104 for Au NSs, and 1.8 × 105 for HBA NSs. Note that the SERS efficiency of 

HBA NSs was 2.3 times greater than that of Au NSs and 3.7 times larger than that of Au 

NPs. The EF value of HBA NSs has also been compared with the reported EF values of 

various plasmonic nanoparticles in Table 3-1.  

 

Table 3-1. SERS EFs of various plasmonic nanoparticles. 

Entry EF 
Excitation wavelength,  

Raman probe 
Reference 

Porous Au-Ag nanospheres  

1.3 × 107 633 nm, crystal violet ref. 24 

Island-on-Au NSs  

5.0 × 106 633 nm, crystal violet ref. 11 

Au nanorings array 

5.0 × 105 
532 nm,  

4-aminothiophenol 
ref. 41 
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HBA NSs 

1.8 × 105 532 nm, R6G this work 

Ag nanoplates 

1.7 × 105 633 nm, R6G ref 42 

Au nanorods 

1.7 × 105 785 nm, rose bengal ref. 40 

Hollow and porous Au NSs 

1.0 × 105 532 nm, methylene blue ref. 17 

Au-mSiO2 hybrid microspheres 

3.2 × 103 633 nm, crystal violet ref. 22 
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The largest SERS enhancement of HBA NSs has been attributed to hollow structures 

confining probe molecules as well as to inward-bumpy structures exhibiting high 

plasmonic properties. Meanwhile, we also tried to understand SERS enhancement from 

the perspective of the LSPR-mediated charge transfer mechanism. The charge transfer 

mechanism involves the bonding of the Raman probes to the surfaces of substrates. The 

mechanism is also called as the ‘first layer effect’; Raman probes and metal surfaces need 

to be in close contact with each other.44 Because Au NSs with rough surfaces have higher 

surface area than Au NPs with smooth surfaces, Au NSs have superb first-layer effect. 

However, as silica cores were etched using a HF solution, HBA NSs show the largest SERS 

enhancement owing to the hollow and inward-bumpy structures, which were not seen in 

Au NSs having silica cores. Furthermore, high SERS reproducibility has been explored by 

comparing Raman signals measured at ten different spots (Figure 3-12b). The relative 

standard deviation of the ten measured Raman intensities has been calculated as 13%, 

indicating that HBA NSs have outstanding SERS reproducibility. The SERS spectra of 

R6G at concentrations ranging from 10-8 to 10-3 M using HBA NSs as substrates are shown 

in Figure 3-12c. It can be observed from the SERS spectra that the intensities of 

characteristic peaks decrease with the decrease of R6G concentrations. The peak at 1382 

cm-1 could be observed when the R6G concentration was as low as 1 × 10-8 M. Hence, the 

detection limit of HBA NS substrates has been estimated as 10-8 M of R6G. The logarithm 

of the Raman intensity of R6G at different concentrations ranging from 10-3 M to 10-8 M 

was plotted in Figure 3-12d to obtain a standard calibration curve with a correlation 

coefficient of 0.9954, suggesting that a good linear response was found to R6G 
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concentrations ranging from 10-8 to 10-4 M. We have also tested the pH-dependent SERS 

stability of HBA NSs (Figure 3-13).  

 

Figure 3-13. SERS spectra of 10 μM R6G(ethanol) adosrbed on HBA NSs at different pH values. 

 

 

Figure 3-14. SERS spectra of (a) 10 μM MB(ethanol) and (b) 10 μM MO(aq) adsorbed on HBA 

NSs, Au NSs, Au NPs, and Si. Note that 0.10 M MB(ethanol) and 0.10 M MO(aq) were used to 
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record the Raman signals of the Si substrate. 

The SERS intensities and frequencies of R6G were almost invariant regardless of pH 

variation, indicating that the molecular structures of R6G46 and the morphologies of HBA 

NSs were stable at all the investigated pH values. To demonstrate the universality of HBA 

NSs as SERS substrates, we have investigated the SERS efficiency using MB and MO as 

Raman probes with excitation at 532 nm. Figure 3-14a shows that the SERS efficiency of 

HBA NSs is 1.4 and 1.9 times greater than the respective ones of Au NSs and Au NPs for 

the MB Raman probe while Figure 3-14b indicates that the SERS efficiency of HBA NSs 

is 1.3 and 1.6 times larger than the respective ones of Au NSs and Au NPs for the MO 

Raman probe. Thus, Figures 3-12 and 3-14 indicate that although the SERS enhancement 

factor of HBA NSs depends on Raman probes, HBA NSs can be used universally as Raman 

substrates owing to their hollow and inward-bumpy morphologies. 

 

 

 

 

 

 

 

 

 

 

 

 



81 

 

3.5.  Conclusions 

 

We have fabricated hollow and inward-bumpy Au (HBA) nanoshells (NSs) of 150 nm 

diameters with an average thickness of 15 nm using expanded silica mesopores as 

templates. Because some Au seeds were located at the inner surfaces of silica mesopores, 

produced Au NSs have inherent inward-grown nanobumps. While these nanostructures 

could not be obtained by the conventional shell-growth method, they have been 

synthesized by a sequential-reduction growth method. During seven successive reduction 

steps, the LSPR peak of Au nanostructures shifted progressively toward a longer 

wavelength as the sizes of Au seeds increased gradually. Measuring the cross sections of 

HBA NSs milled by a focused ion beam, we have   found that hollow and bumpy 

structures arose from the pore structures of mSiO2 templates. HBA NSs confine Raman-

probe molecules well owing to their hollow structures and have ragged surfaces due to 

their inward-bumpy morphologies, thus exhibiting highly efficient SERS activity. 
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Chapter 4. Surface-enhanced Raman scattering and photothermal effect of 

hollow Au nanourchins with well-defined cavities 
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4.1.  Abstract 

 

We have prepared genuinely hollow Au nanourchins (HANUs) using SiO2 nanoparticles 

(NPs) as hard templates. Ag-SiO2 NPs were fabricated via amine-assisted reduction. Then, 

Au nanourchins (ANUs) were synthesized by the galvanic replacement reaction of Ag-

SiO2 NPs using L-3,4-dihydroxyphenylalanine (DOPA) as a reductant and a capping agent. 

The silica cores of ANUs were etched using HF(aq) to produce HANUs. Measuring cross 

sections, we have found that HANUs have well-defined hollow morphologies. Compared 

with nanourchins made via DOPA-mediated reduction, HANUs hardly contain residual 

silver because very tiny silver seeds were used as the initiation sites of galvanic 

replacement. HANUs have revealed large surface-enhanced Raman scattering 

enhancement and a significant photothermal effect under a weak illumination. 

 

 

 

 

 

 

 



87 

 

4.2.  Introduction 

 

Hollow nanoparticles (NPs), a class of nanostructures having cavities inside nanoshells 

(NSs), have attracted growing attention due to their unique structural properties.1,2 Some 

intrinsic features of hollow nanostructures, such as large surface areas, low densities, and 

immense inner void spaces, have been harnessed in a variety of applications. For instance, 

hollow Pt nanospheres are twice as active as solid Pt NPs for methanol oxidation. Hollow 

NPs can be employed as nanoscale containers to load small organic molecules such as 

pharmaceutical compounds, proteins, and DNA. Also, plasmon resonances of noble metal 

NSs can be effectively tuned to a wavelength ranging from the visible to the infrared region 

by varying the ratio of cavity diameter to metallic shell thickness.3-6 Diverse fabrication 

strategies of hollow nanostructures have been based on two classifications: self-

organization and sacrificial templating.1 The galvanic replacement reaction, a class of 

sacrificial template methods, is a redox process between two metals with distinct reduction 

potentials. The reaction provides a simple and versatile route to fabricate a range of 

advanced multifunctional NPs with plasmonic cavities and porous walls.7-9 

Controlling surface morphologies of nanostuructures is a key issue in enhancing their 

structural and optical properties. Roughnesses, spikes, and tips in nanoscale are interesting 

structures owing to the anisotropic enhancement of the electromagnetic field, an effect 

similar to the lightning rod effect.10-16 Their local plasmonic features allow the modulation 

of localized surface plasmon resonance (LSPR) modes by tuning their lengths, densities, 

and aspect ratios.17-21 They have shown a great promise in surface-enhanced Raman 
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scattering (SERS), optoelectronic applications, and catalysis.10,11,22-26 Several years ago, 

Liu et al. reported a highly sensitive SERS performance arising from aggregated hollow 

Au-Ag alloy nanourchin (HAAA-NU) substrates.27 The nanourchins (NUs) were 

synthesized via a seed-mediated growth method using L-3,4-dihydroxyphenylalanine 

(DOPA) as a reductant as well as a capping agent.28 The NUs have attracted growing 

attention due to their hieracrchical and functional structures. You et al.25 have reported that 

controlling the morphologies of Pt–Au NUs can provide a great opportunity to increase 

their catalytic activity and to improve their durability at the same time. The Pt–Au NUs 

have been demonstrated to have an ultrahigh density of sharp tips and a uniform coating 

of 2 nm Pt NPs. In addition, Ong et al.10 have reported a seed-mediated synthesis of 

multibranched Au NPs using L- or D-DOPA for active cancer targeting. Here, a few things 

for the synthesis of the reported NUs should be improved for further applications. Firstly, 

it is not sure that the reported NUs have hollow morphologies actually; the real sizes of 

cavities have not been reported yet. Secondly, as-synthesized HAAA-NUs have some 

residual amounts of silver because large Ag NPs of tens nm in diameters were used as 

sacrificial templates. Silver can dissolve rather easily in aquous solutions so that HAAA-

NUs are not bio-comparative. 
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Figure 4-1. Schematic illustration for the fabrication of HANU. 

 

Herein, we have prepared genuinely hollow Au nanourchins (HANUs) using SiO2 NPs 

as hard templates. These templates are advantageous because of diverse reasons including 

their narrow size distribution, availability in large amounts with wide ranges of sizes, and 

simplicity of their synthesis using the well-known formulation.19,23,29 Figure 4-1 illustrates 

the synthetic procedure of HANUs. We fabricated Ag-SiO2 NPs via oleylamine-assisted 

reduction.23,24 Next, the Au nanourchins (ANUs) were synthesized via a seed-mediated 

growth route using DOPA as not only a reductant but also a capping agent.27,30 As silica 

cores were etched with HF(aq),31 ANUs were transformed into HANUs. Measuring the 

cross-sections of HANUs, we have found that HANUs have well-defined hollow 

morphologies arising from hard-template SiO2 NPs. Compared with previously reported 

NUs prepared via DOPA-mediated reduction, HANUs contain a very small amount of 



90 

 

silver because we used very tiny silver seeds as initiation sites for galvanic replacement. 

HANUs reveal high SERS enhancement for the determination of rhodamine 6G (R6G) and 

a substantial photothermal effect under weak illumination of a Xe lamp. 

 

 

4.3.  Experimental section 

 

4.3.1.  Materials 

Chemicals were used as purchased without further purification: HAuCl4·3H2O (s, 

≥99.9%), AgNO3 (s, ≥99.0%), oleylamine (technical grade, 70%), polyvinylpyrrolidone 

(PVP, s, K 30), L-3,4-dihydroxy phenylalanine (DOPA, s, ≥98%), HCl (aq, 35%), 

tetraethylorthosilicate (TEOS, l, ≥99.0%), (3-mercaptopropyl)triethoxysilane (MPTES, l, 

80%), R6G (s, ≥82%) from Sigma Aldrich; NH4OH (aq, 25-28%), ethylene glycol, and 

ethanol (l, ≥99.8%) from Daejung Chemicals; HF (aq, 48.0-51.0%) from J. T. Baker. 

Purified water (>15 MΩ cm-1) via an Elga PURELAB Option-S system has been employed 

in all the experiments. 

 

4.3.2.  Preparation of SiO2 NPs 

SiO2 NPs were produced by following the Stober method.5 6.0 mL water was poured 

into 120 mL ethanol. 6.0 mL NH4OH(aq) was added and then 400 μL of TEOS was added 

dropwise with vigorous stirring at room temperature. The produced precipitate was 
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centrifuged (7000 rpm, 10 min), washed twice with ethanol, and then dispersed in 20 mL 

ethanol. 

 

4.3.3.  Preparation of Ag seeds-adsorbed SiO2 (Ag-SiO2) NPs 

The surfaces of SiO2 NPs were modified with functional sulfur groups using MPTES. 

10 mL as-prepared SiO2 colloid, 30 mL ethanol, 1.0 mL NH4OH(aq), and 6.0 mL MPTES 

were mixed together, heated to 60 ºC, and stirred for 4 h. Generated sulfur-modified SiO2 

NPs were washed twice with ethanol by centrifugation (7000 rpm, 10 min) and redispersed 

in 10 mL ethanol. 6.0 mL of the sulfur-modified SiO2 colloid was mixed with 45 mL of 

EG, followed by the addition of 12 mg of PVP. Then, 5.0 mg of AgNO3 was mixed with 

the EG solution. A variously specific amount of oleylamine was quickly added to the 

reaction mixture, and the mixture was stirred for 1 h at room temperature. Finally, 

synthesized Ag-SiO2 NPs were centrifuged (7000 rpm, 10 min), washed several times with 

ethanol, and then dispersed in 10 mL ethanol. 

 

4.3.4. Preparation of hollow Au nanourchins (HANUs) 

For the preparation of Au nanourchins (ANUs), 0.30 mL of 10 mM HAuCl4(aq) was 

mixed with 2.0 mL of cold water. Then, 0.50 mL the as-synthesized Ag-SiO2 colloid was 

added. After adding 0.30 mL of 10 mM DOPA(aq) to the solution, the mixture was gently 

shaken for several seconds. The color of the mixture changed from light yellow to bluish 

brown. After 20 min, brown suspension containing ANUs was produced. The product was 



92 

 

collected by centrifugation at 5000 rpm for 5 min, then washed sequentially with 0.2 M 

HCl(aq), 0.2 M ammonia(aq), and water. The product was then dispersed in 5.0 mL of 

water. To remove SiO2 cores, 1.0 mL of 0.5% HF(aq) was added gently into 2.0 mL as-

synthesized ANU colloid under stirring (~100 rpm). HANUs were washed three times with 

water by centrifugation (5000 rpm, 10 min) and redispersed in 4.0 mL of water. 

 

4.3.5. Measurement of SERS and photothermal effect 

The measurement procedure of SERS is similar to that of our reported paper.31 For the 

measurement of a photothermal effect, 2.0 mL of the colloid of HANUs was placed in a 

plastic cuvette and illuminated using a Xe lamp with irradiance of 340 mW/cm2 for 15 min. 

The temperature of the colloid was measured via immersing a digital thermometer. 

Photothermal effects of HANUs, reference NUs, and purified water were performed at the 

same conditions. 

 

4.3.6. Characterization 

The measurements of UV-visible absorption spectra, transmission electron microscopy 

(TEM) images, scanning electron microscopy (SEM) images, and Raman spectroscopic 

analysis were already described in detail.31 X-ray diffraction (XRD) patterns were 

collected using a Bruker New D8 advanced diffractometer with Cu-Kɑ radiation. A focused 

ion beam (FIB) was applied with a Carl Zeiss AURIGA apparatus to mill the assembly of 

NPs. A JEOL JEM-2100F microscope operating at 200 kV was employed to acquire high 
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angle annular dark field-scanning transmission electron microscopy (HAADF-STEM) 

images and energy dispersive X-ray (EDX) elemental profiles. X-ray photoelectron 

spectroscopy (XPS) spectra were obtained with a KRATOS AXIS-HSi spectrometer using 

Al-Kɑ radiation and the measured binding energies were calibrated with the C 1s peak at 

284.5 eV of contaminated carbon. 

 

 

4.4.  Results and discussion 

Ag-SiO2 NPs, starting materials to fabricate HANUs, were synthesized via 

oleylamine-assisted reduction. Yang et al.24 reported a facile synthesis of Ag 

nanoshells via alkylamine-assisted reduction. The rapid growth was attributed to a 

decrease in the reduction potential of Ag+ in ethylene glycol (EG) through the 

formation of a Ag/EG complex; it was easy for Ag+ to be reduced by an alkylamine 

even at room temperature. However, it was difficult to scoop up a precisely desired 

amount of a reductant because some alkylamines are sticky and solid at room 

temperature. Thus, instead of an alkylamine, we have used oleylamine, which is 

liquid at room temperature. This has simplified the washing procedure after the 

chemical synthesis of NPs, supporting that oleylamine is a well-known capping 

agent for synthesises of nanomaterials.32 The TEM images of Figure 4-2 and the 

UV-visible absorption spectra of Figure 4-3 reveal that Ag nanoshells could be 

synthesized as the concentration of oleylamine increased from 1.1 to 3.2 μM. 
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However, completely closed Ag nanoshells were not synthesized because of the 

steric hindrance of oleylamine (Figure 4-4).22 

 

 

 

 

Figure 4-2. Effects of AgNO3 and oleylamine concentrations on the formation of Ag-SiO2 NPs. 

TEM images show the structures of Ag seeds adsorbed on SiO2 NPs at various concentrations of 

AgNO3 and oleylamine. 
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Figure 4-3. UV-vis absorbance spectra of Ag-SiO2 NPs prepared at various oleylamine 

concentrations in ethanol. 

 

 

 

Figure 4-4. SEM image of Ag-SiO2 NPs obtained with 0.8 mM AgNO3 and 2.5 μM oleyamine. 
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Figure 4-5. (a) TEM and (b) SEM images of Ag-SiO2 NPs. (c) Ag seed-size histogram of Ag-SiO2 

NPs. (d) HRTEM image of Ag-SiO2 NP.  

 

We used Ag-SiO2 NPs, which had been synthesized at the concentrations of 0.8 mM 

AgNO3 and 1.1 μM oleylamine, as starting materials for the production of ANUs. Through 

the direct decoration of Ag seeds on the surfaces of SiO2 NPs via oleylamine-assisted 

reduction, uniform Ag-SiO2 NPs have been prepared. The TEM (Figure 4-5a) and SEM 

(Figure 4-5b) images of Ag-SiO2 NPs reveal that countless Ag seeds with a typical 

diameter of 9 nm are uniformly decorated to the surfaces of SiO2 NPs, implying that 

MPTES has enabled us to synthesize uniformly size-distributed Ag seeds on SiO2 NPs 
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(Figure 4-5c). The average d-spacing value of 0.24 nm presented in the HRTEM image of 

Figure 4-5d corresponds well to the standard spacing between the (111) planes of the fcc 

silver (JCPDS-04-0783). The fast Fourier transformation pattern (inset in Figure 4-5d) 

indicates that the Ag seed has single crystallinity. 

 

Figure 4-6. (top) Schematic illustration for the fabrication of ANU. (a-e) TEM images of (a) Ag-

SiO2 NPs, (b-d) progressively growing intermediates ii-iv, and (e) ANUs. (f) SEM image of ANUs. 

 

Figure 4-6 illustrates the synthetic procedure of ANUs. It was difficult to obtain TEM 

images of intermediate NPs produced as a function of the reaction time because the 

reaction took place rapidly; the color of the reaction solution changed immediately as Au 

ions and DOPA were added. Therefore, the synthetic mechanism could be investigated by 
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measuring the TEM image of NPs synthesized with decreased amounts of the gold 

precursor and the reducing agent. The galvanic replacement reaction could be considered 

to take place at five different steps; the intermediates i, ii, iii, iv, and v can be considered 

as the products generated after adding 0, 1/8, 1/4, 1/2, and 1, respectively, of the 

stoichiometric amounts of the gold precursor and the reducing agent. The DOPA-mediated 

reduction of gold ions took place progressively to produce gold shell morphologies (Figure 

4-6). Produced Ag/Au alloy nanostructures have nanobump morphologies because the 

galvanic replacement took place at individual Ag seeds on SiO2 NP surfaces.7,33 As the 

reaction proceeded further, Ag seeds were depleted off and subsequently produced a Au 

NS to surround a SiO2 nanosphere template. After numerous Au nanotips were overgrown 

on Au NSs, ANUs were finally generated. The TEM image of Figure 4-6e and the SEM 

image of Figure 4-6f show that there are lots of Au nanotips on the surfaces of ANUs. 

DOPA has a glue function;34 the amine group of DOPA adsorbs to the noble-metal surface 

while the hydrogen boding of hydroxyl groups and the Π - Π interaction of benzene rings 

tend to aggregate DOPA molecules with each other. The aggregation can provide exposed 

spaces to allow Au ions to be deposited so that gold nanotips can be produced.11  
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Figure 4-7. Absorbance spectra of (i) Ag-SiO2 NPs, (ii-iv) progressively growing intermediates, 

and (v) ANUs. 
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Figure 4-8. Particle-size distribution histograms of resepctively indicated samples. 

 

 

 

 

 



101 

 

 

Figure 4-9. XRD data of (black) SiO2 NPs, (green) Ag-SiO2 NPs, and (red) ANUs. 



102 

 

Figure 4-10. XPS spectra of ANUs in the regions of (a) Au 4f and (b) Ag 3d. 

 

Figure 4-7 indicates that the maximum of LSPR shifted to a longer wavelength and the 

bandwidth of LSPR became broader as the galvanic replacement reaction proceeded 

progressively. The wavelength of the LSPR maximum of ANUs is longer than 1000 nm, 

suggesting that spiky and shell morphologies have been produced.35 Figure 4-8 reveals that 

whereas the typical diameter of as-synthesized SiO2 NPs is 173 nm, the average particle 
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diameter of the prepared intermediate iv is 297 nm, implying that the typical thickness of 

the intermediate gold nanoshells is about 60 nm. Finally, the average diameter of produced 

ANUs is 375 nm. Figure 4-9 shows that the XRD patterns of Ag-SiO2 NPs and ANUs are 

very close to each other since Au and Ag metals have similar lattice constants.30 The XRD 

peaks of ANUs are more intense than those of Ag-SiO2 NPs because NUs are much larger 

than silver seeds in Ag-SiO2 NPs. Any significant XRD peaks were not observed at all in 

amorphous SiO2 NPs. The chemical states of ANUs were analyzed by measuring XPS 

profiles (Figure 4-10). The significant Au 4f signals at 87.2 and 83.5 eV confirm that ANUs 

consist of metallic Au indeed.25,36 The Ag 3d scan of the ANUs reveals doublet peaks at 

373 and 367 eV, indicating that metallic Ag also exists in ANUs. However, the low signal-

to-noise ratios of Ag signals suggest that the fractional amount of Ag is much smaller than 

that of Au. 
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Figure 4-11. (a) HAADF-STEM image of ANU. (b) Line-scanned elemental profiles of ANUs. (c) 

HRTEM image of a few nanotips in ANU.  



105 

 

For the structural characterization of ANUs, elemental distributions have been 

determined by measuring a HAADF-STEM image as well as line-scanned elemental 

profiles. Figure 4-11a reveals that ANU has a SiO2 core and its surface is surrounded by 

numerous gold nanotips. The lengths of the nanotips range from 5 to 30 nm. In particular, 

two sharp characteristic peaks of the Au elemental profile displayed in Figure 4-11b 

indicate that a Au NS encircles a SiO2 template. Also, the Si element arising from the SiO2 

core can be seen on the central region. The very small intensity of Ag indicates that the 

fractional amount of Ag in ANU is negligible. The weight percentages of Au and Ag in 

ANU are 98% and 0.2%, respectively, indicating that the weight fraction of Ag is about 

500 times smaller than that of Au because we have employed very tiny silver seeds for the 

initiation sites of galvanic replacement. The d-spacing value of 0.24 nm presented in the 

nanotip image of Figure 4-11c corresponds well to the standard spacing between the (111) 

planes of the fcc gold (JCPDS-04-0784). Twin planes are located in the center of a nanotip, 

demonstrating that our observation matches well with previous reports.11 It has been 

suggested that the spiky nanotips have originated from twin planes-induced anisotropic 

growth. 
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Figure 4-12. SEM images of (a,c) HANUs and (b,d) reference NUs. NP’s cross sections have been 

observed by a FIB process. (e) Cavity diameter and shell thickness of each indicated NP obtained 

by a FIB process. 
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Silica cores were removed using HF(aq) to convert ANUs into hollow Au nanourchins 

(HANUs). The aim of this research is to fabricate functional NUs having distinctly more 

hollow morphologies than any published NUs. To compare the hollowness of HANUs with 

that of reported NUs, we have fabricated reference NUs (HAAA-NUs) having an average 

diameter of 370 nm.27 For the synthesis of reference NUs, 0.30 mL of 10 mM HAuCl4(aq) 

was mixed with 2.0 mL of cold water. Then, 0.20 ml of 100 nm silver seed colloid 

(purchased from Sigma-Aldrich) was added. After adding 0.30 mL of 10 mM DOPA(aq) 

to the solution, the mixture was gently shaken for several seconds. Then, brown suspension 

containing reference NUs was produced. The product was collected by centrifugation and 

then washed sequentially with 0.2 M HCl(aq), 0.2 M ammonia(aq), and water. Figure 4-

12a and 12b shows that both HANUs and reference NUs have similar surface 

morphologies with numerous nanotips. For the accurate analysis of the cavities of NUs, 

we have monitored the cross sections of NUs milled with a focused ion beam (FIB). Only 

the largest cavity is meaningful because the regions where the NUs are milled are varied 

depending on the positions of milled NUs. HANUs have been found to have cavities of 

≤160 nm diameters owing to the etching of SiO2 templates. Considering that the average 

diameter of SiO2 NPs is 173 nm, we suggest that the cavities are slightly smaller than the 

SiO2 templates due to the melting and contraction of the Au nanoshells during the FIB 

process. Inside the cavity of Figure 4-12c, a porous nanostructure having traces of Ag seeds 

depleted via the galvanic replacement can be seen. The cross sections of HANUs look 

slightly elliptical and smooth as a strong Ga-ion beam has distorted thermally and melted 

original gold nanostructures having spiky nanotips. Nevertheless, the cavities of HANUs 
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are definitely more distinct and larger than those of reference NUs. The average cavity 

diameter and shell thickness of HANUs are 160 and 100 nm, respectively, while those of 

reference NUs are 80 and 150 nm, respectively (Figure 4-12c~12e). The volume 

percentages of cavities to NUs have been calculated 9% for HANUs and 1% for reference 

NUs. Thus, we have fabricated genuinely hollow Au nanourchins (HANUs) using SiO2 

nanospheres as hard templates. We consider that HANU can be widely used in plasmonic 

applications because the inner large cavity and the outer countless nanotips can induce 

strong near-field enhancement.  
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Figure 4-13. (a) SERS spectra of 10 mM R6G (in ethanol) adsorbed on HANUs, reference NUs, 

and Si. Note that 0.1 M R6G (in ethanol) was employed to monitor the Raman intensity of the Si 

substrate. (b) SERS enhancement factors of HANUs obtained by monitoring Raman intensities at 

1382 cm-1. 
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The SERS capabilities of HANUs and reference NUs were studied with R6G after 

excitation at 532 nm (Figure 4-13a). High-frequency bands at 1172, 1356, 1504, 1571, and 

1647 cm-1 with large scattering cross sections have been attributed to stretching modes of 

aromatic benzene rings. The observed SERS frequencies and relative intensities 

demonstrate that the plasmonic nanotips of HANUs perturb the vibrational transitions of 

R6G. Additional hot spots could be created via interparticle assemblies, which were greatly 

beneficial to improve the uniformity and reproducibility of SERS signals.27 SERS 

enhancement factors obtained by measuring relative Raman signals were 2.4 x 105 for 

HANUs and 1.7 x 105 for reference NUs. The SERS efficiency of HANUs was 30% greater 

than that of reference NUs. The significant SERS enhancement of HANUs has been 

attributed to high plasmonic properties originating from well-defined hollow morphologies 

confining R6G molecules as well as spiky nanotips. In addition, we have observed high 

SERS reproducibility by comparing Raman intensities measured at ten different spots 

(Figure 4-13b). The relative standard percent deviation of the measured Raman intensities 

has been calculated as 11%, designating that the SERS reproducibility of HANUs is 

outstanding. 
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Figure 4-14. Photothermal effects of HANUs, reference NUs, and pure water. 

 

These complex gold nanostructures can exhibit a vigorous enhancement of the 

electromagnetic field at nanotips and cavities, thus efficiently transducing photon energy 

into heat. To measure photothermal conversion properties induced by Xe-lamp light, 

HANUs and reference NUs were tested. As displayed in Figure 4-14, purified water did 

not reveal any noticeable response to the irradiation of 340 mW/cm2. However, the 

temperature of the HANU colloid became high with the increase of irradiation time to 

reach 30 °C in 8 min, whereas irradiation to the reference NU colloid led to a relatively 

low temperature of 27 °C at 8 min. Thus, it is suggested that due to numerous sharp 

nanotips and hollow morphologies, HANUs can be promising nanostructures for 

photothermal transducers in various theragnostic applications. 
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4.5.  Conclusions 

 

We have fabricated genuinely hollow Au nanourchins (HANUs) by etching the SiO2 

cores of Au nanourchins (ANUs), which were synthesized by the galvanic replacement 

reaction of Ag-SiO2 NPs using DOPA as not only a reductant but also a capping agent. The 

weight percentages of Au and Ag in ANU are 98% and 0.2%, respectively, because we 

have employed very tiny silver seeds for the initiation sites of the galvanic replacement 

reaction. Measuring the cross-sections of HANUs, we have found that well-defined hollow 

morphologies have been produced indeed. The volume percentages of cavities have been 

calculated as 9% for HANUs and 1% for reference NUs. HANU can be widely used in 

plasmonic applications because the inner large cavity and the outer countless nanotips can 

induce strong near-field enhancement; HANUs reveal high SERS enhancement for the 

detection of R6G and a substantial photothermal effect under weak illumination of a Xe 

lamp. 
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Chapter 5. Fabrication of plasmonic silver nanoparticle arrays by laser-

induced dewetting of commercial silver paste 
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5.1.  Abstract 

 

Highly dense plasmonic silver nanoparticle (NP) arrays have been fabricated by laser-

induced dewetting of commercially available silver paste as a starting bulk material. Laser-

irradiation criteria for the laser melting, dewetting, and ablation of silver paste films have 

been determined in order to understand the optimal conditions of laser fabrication. The 

first laser-scan mode has produced unprecedented intermediate structures, so called laser-

induced fine silver nanostructures (LIFSNs) while the second laser-scan mode has 

transformed LIFSNs into plasmonic silver NP arrays via the dewetting of the priorly 

formed nanostructures. The laser-induced fabrication of silver NP arrays has been found 

to be very sensitive to distance from secondly irradiated laser pulses, suggesting that the 

fine control of laser intensity is very important. Silver NP arrays of sub-100 nm diameters 

with narrow size distribution have been fabricated well at a laser scanning rate of ≥50 μm/s. 

As-prepared silver NP arrays have generated numerous hot spots to show highly strong 

surface-enhanced Raman scattering signals; the Raman enhancement factor of silver NP 

arrays for rhodamine 6G has been found as 1.2x106. Overall, our fabrication method of 

plasmonic silver NP arrays via laser-induced dewetting is facile, scalable, and reproducible. 
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5.2.  Introduction 

 

Plasmonic noble-metal nanoparticles (NPs) exhibit unique optical properties when their 

surface plasmon resonance (SPR) is excited, concentrating and enhancing an incident 

electromagnetic (EM) field.1 This ‘hot-spot’ theory extensively contributes to the highly 

sensitive spectroscopic techniques of biochemical molecules such as metal-enhanced 

fluorescence (MEF) or surface-enhanced Raman scattering (SERS).2-5 SERS is a powerful 

tool that provides a fingerprint on the composition of analytes through Raman scattering 

that is highly enhanced by the EM field for molecules adsorbed to hot spots on plasmonic 

substrates. Some research groups produced hot spots by dropping a noble-metal NP colloid 

on a substrate although the locations of the hot spots were relatively sparse.1,6,7 Thus, it is 

still ambiguous to fabricate a SERS-active substrate with high sensitivity and good signal 

reproducibility in a large area using a metal colloid. 

Some research groups have reported facile and reliable attempts to fabricate certain 

noble-metal nanostructures on a substrate with high hot-spot density.8-12,50 Noble metals 

are considered to be hard materials having melting points around 1000 ºС. Therefore, the 

common method used to build noble-metal nanostructures is e-beam lithography, which 

etches metals with an electron beam, making it possible to produce uniform and functional 

plasmonic nanostructures.13 However, this technique has various disadvantages: high cost, 

harsh conditions (high temperature and high vacuum), time consumption, and complex 

fabrication processes. One of the alternative methods for producing plasmonic 
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nanostructures is laser-induced melting and dewetting via laser-direct-writing (LDW) 

processing.14-17 Dewetting is a spontaneous physical phenomenon that describes the 

rupture of a thin film on a substrate as well as the formation of discrete NPs or other 

nanostructures.18 The overall driving force for dewetting is the minimization of the surface 

free energy of the metal film at the metal-substrate interface.19 So far, researches of laser-

induced dewetting have usually been performed using ultrashort laser sources such a 

femtosecond laser and relatively thin (<0.5 μm) noble-metal films. While Tsai et al.16 have 

reported the fast fabrication of silver aggregates by irradiating femtosecond laser pulses to 

a AgOx thin film, Ionin et al.15 have also studied the femtosecond-laser fabrication of self-

organized plasmonic nanotextures on thin silver films. The reason for using an ultrashort 

laser source is that the heat-affected zone (HAZ) has a limited area because the surface 

treatment is neat and because the generation of byproducts such as metal debris is 

diminutive due to nonthermal melting via electron excitation.20,21 During a femtosecond 

pulse width, only the surface lattice is heated so the shape and size of a metal 

microstructure are kept nearly unchanged. Meanwhile, for a nanosecond pulse, laser 

thermal effect is dominant compared to nonthermal melting. Because HAZ is broad, 

nanosecond-laser melting and dewetting can lead to an enormous structural change in a 

starting metal material. From an economic point of view, the fabrication of metallic 

microstructures using a cost-effective nanosecond-laser process is increasingly important 

because the price of a femtosecond laser is higher by an order of magnitude than that of a 

nanosecond laser. Therefore, nanosecond-laser processing is practical for the production 

of plasmonic NP arrays because drastic structural changes take place in a bulk noble metal.  
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There is a lack of researches on the fabrication of plasmonic NP arrays on a relatively 

thick (>1 μm) or rough bulk noble metal via laser irradiation. Diverse researches have been 

reported on sputtered or thermally evaporated metal thin films as starting materials.22-26 It 

is facile to fabricate plasmonic NP arrays and to observe a phenomenon on the surface of 

a thin film because the film is moderately uniform.50 For practical applications, however, 

it is important to use the bulk state of a noble metal as a starting material because a bulk 

metal is ubiquitous and easy to handle. Also, it is simple to fabricate a large-size functional 

substrate using a LDW method with controlling laser repetition rates and moving 

translation stages finely.15-16 Researches on the unique morphologies of noble metal 

nanostructures using a laser-scanning method have attracted a great deal of attention.27-29 

Two factors, the repetition rate and the overlap degree, can control the overall heat input 

into the material via a heat-accumulation effect, enabling the efficient fabrication of 

desired noble-metal nanostructures. Thus, the laser-scanning method has led us to fabricate 

noble-metal NP arrays having extremely SERS-active hot spots. 
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Figure 5-1.  Transformation of (a) silver paste into (c) plasmonic silver NP arrays via forming (b) 

LIFSNs under nanosecond-laser irradiation. 

 

In this paper, we report that highly dense silver NP arrays have been fabricated facilely 

by the nanosecond laser-induced dewetting of commercially available silver paste as a 

starting bulk material (Figure 5-1). The plasmonic arrays have been generated via forming 

unprecedented intermediate structures, so called laser-induced fine silver nanostructures 

(LIFSNs). We have also determined the detailed formation mechanism of silver NP arrays 

during the laser scanning. Due to the facile laser-processing method, we have achieved 

highly sensitive and reproducible SERS signals of rhodamine 6G (R6G) on a centimeter-

scale plasmonic substrate. Confirming the presence of hot spots arising from silver NP 

arrays, we will propose a facile and convenient fabrication method of sensitive SERS 

substrates. 

 

 

 



122 

 

5.3.  Experimental section 

 

5.3.1.  Nanosecond-laser direct writing 

Commercially available P-100 silver paste purchased from El-coat was used without 

further purification. Soda lime glass, polyethylene terephthalate (PET), and printing paper 

were used as substrates. The glass was cleaned sequentially with Alconox dissolved in 

purified water (>15 MΩ/cm), acetone, and isopropyl alcohol. A 30 μm-thick silver paste 

film was made by dropping and blading silver paste on the center of a glass substrate which 

had been already attached with 30 μm-thick Scotch tapes. The silver paste film was then 

placed on a PC-controlled motorized X-, Y-axis stage (SHOT-202, Sigma-Koki, 1 μm 

resolution). A Nd:YAG nanosecond laser (Brilliant B, Quantel, λ = 532 nm, pulse duration 

= 6 ns, repetition rate = 10 Hz) was used as a light source. The laser beam was focused 

using an f/4 spherical lens, and the spot diameter of the laser beam at the sample was 0.12 

mm. All the experiments were carried out in ambient conditions. 

 

5.3.2.  Characterization 

Scanning electron microscopy (SEM) images were recorded with a MERLIN compact 

microscope operating at 5 kV. UV/vis extinction spectra were measured with a Scinco 

S3100 spectrophotometer. SERS spectra were measured by using an OLYMPUS BX41 

confocal microscope Raman system equipped with a 532 nm SLOC-Laser GL532RA-100 

DPSS laser. Each SERS spectrum was averaged over five measurements, and the baseline 

was subtracted from each spectrum to eliminate background noises. The recorded spectra 
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were imported into an Originlab OriginPro8.5 program to facilitate data analysis. 

Hyperspectral SERS was measured with an epi-confocal Raman spectrometer equipped 

with a diode laser (λex = 671 nm, Shanghai Dream Lasers Technology), a high-NA 

objective lens (1.49 NA, oil-immersion type, Apo N, OLYMPUS), a nanopositioning 

scanner (P-545.2R7, Physik Instrumente, GmbH & Co. KG.), and a spectrometer 

(Shamrock 193i and iXon Ultra 888, Andor Technology). 

 

5.3.3.  SERS analysis 

R6G was purchased from Sigma-Aldrich and dissolved in ethanol at various 

concentrations (10 nM, 0.1 μM, 1 μM, 10 μM, and 0.1 mM). 7 μL of an R6G ethanol 

solution was dropped on a SERS substrate and the ethanol solvent was subsequently 

evaporated. The SERS enhancement factor (EF) was calculated following the conventional 

method. [30] In the SERS measurement, 7 μL of a 0.1 mM R6G aqueous solution was 

dropped to form a circular spot of 12.6 mm2 on a laser processed area. In the normal 

Raman measurement, 7 μL of a 1 M R6G aqueous solution was dropped to form a circular 

spot of 28.3 mm2 on a glass substrate. 

 

5.3.4.  Finite-difference time-domain calculation 

The morphologies of dewetted Ag structures were extracted from SEM images to the 

input file using the Image J software. To simplify the computation, the structures were 

assumed to be cylindrical objects with flat-top topographies. The objects were placed onto 

a thin Ag substrate with 100 nm thickness, and lateral positions were located so that the 
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spatial arrangement closely mimicked the experimental patterns. To calculate electric field 

distributions of each pattern, a plane wave with a wavelength of 532 nm was irradiated 

(normal incidence) to the sample surface. All electric field distributions were sampled from 

the boundary between Ag cylindrical patterns and a Ag substrate with 1 nm mesh size, and 

were modeled with a finite-difference time-domain method (Lumerical FDTD Solutions 

8.15.736). The detail of geometrical FDTD simulation is illustrated in Figure 5-2. 

 

 

 

 

Figure 5-2. Schematic illustrations of the boundary conditions of (a) top (xy-plane) and (b) side 

(xz-plane) view for FDTD simulation. 
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5.4.  Results and discussion 

 

Figure 5-3. (a) SEM image of silver flakes in commercial silver paste. The inset represents an 

optical image of a silver paste film on a glass plate (scale bar: 1 cm). (b) Schematic of laser-direct-

writing (LDW) processing with a PC-driven X-, Y-axis motorized stage. 

 

The employed starting material was silver paste, which was made by blending micro-

sized silver flakes in organic solvents. The paste has been widely used in the metallization 

process of electrode formation in the solar cell industry,31 and it has also been used as a 

silver-metal source in chemical laboratories.32 The SEM image of Figure 5-3a shows that 
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an as-prepared silver paste film consists of plate-like silver flakes having typical sizes of a 

few micrometers.   Although the paste film is rough and not well-defined compared to 

sputtered or thermally evaporated metal thin films, it will be shown in this paper that 

plasmonic silver NP arrays can be produced directly from the bulk paste film via LDW 

processing. The experimental setup of the LDW process is illustrated in Figure 5-3b; a 

silver paste film is placed on a micrometer-precision motorized stage, and a 532 nm pulse 

beam from a 6 ns Nd:YAG laser is employed as the light source. 

 

 

 

Figure 5-4. (a) Optical image of a laser-irradiated silver paste film. The red-circled region indicates 

the laser-processed area. SEM images of (b) a pristine region and (c) a laser-processed area in a 

silver paste film. 

 

First of all, we have determined the threshold of the laser fluence necessary to melt silver 

flakes. The optical image of Figure 5-4a reveals a melted region that has been formed 

under the irradiation of a single laser pulse of 0.25 J/cm2 (the red-circled region). While 
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Figure 5-4b indicates pristine silver flakes, Figure 5-4c shows the melted shapes of silver 

flakes in the laser-processed area. Micro-protruded spherical tips are created sparsely due 

to the high surface tension of the liquid-phase silver structures, demonstrating good 

agreement with the previous observations.15,27,33 Silver flakes in the paste have micrometer 

sizes so their melting point is about 960 ºС, which is the melting point of bulk silver. 

Because the focused laser pulse could heat the irradiated area to reach the melting point, 

silver flakes melted to produce spherical silver particles. The organic matters in the paste 

film, such as toluene and resin, were evaporated during laser processing. 

 

 

Figure 5-5. Nanosecond laser irradiation criteria for the melting, dewetting, and ablation of a silver 

paste film. 

In order to show the optimal conditions of laser fabrication, we have presented 

nanosecond-laser irradiation criteria for the laser melting, dewetting, and ablation of silver 
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paste films in Figure 5-5. The morphologies of irradiated surfaces have been studied with 

variation of the laser fluence from 0.32 to 1.56 J/cm2 and the shot number of applied pulses 

from 1 to 3000. The surface structural changes of the silver paste film irradiated by 

nanosecond-laser pulses are illustrated with a series of representative SEM images in 

Figure 5-6. 

 

 

 

Figure 5-6. SEM images elucidating (a) laser melting, (b) laser dewetting, and (c) laser ablation, 

induced by nanosecond-laser irradiation. (d) Magnified SEM image of silver particles created from 

laser dewetting. 
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A dominantly occurring phenomenon via a small number of laser shots at a low fluence 

is the laser melting (Figure 5-6a). Compared to the laser melting, the laser dewetting is 

observed at a higher laser fluence and a larger number of laser shots (Figure 5-6b). The 

laser dewetting refers to the phenomenon that spherical silver particles are produced from 

a silver paste film in order to minimize the surface energy of unstable silver structures 

induced by the laser irradiation.34,35 Figure 5-6d shows that spherical silver particles are 

formed along with the traces of melted and resolidified silver flakes. In the laser ablation 

region of Figure 5-6, silver particles produced via the laser melting and dewetting were 

evaporated by extremely high laser energy (Figure 5-6c).25 The threshold energy of the 

laser dewetting is higher than that of the laser melting and lower than that of the laser 

ablation. Thus, it has been deduced from Figure 5-5 that the laser dewetting at the laser 

fluence of 1.3 J/cm2 occurs when the shot number of applied pulses ranges from 10 to 3000. 

However, plasmonic silver NP arrays were not created by laser irradiation when the silver 

paste film was located at a fixed position. Particles in a laser-melted or laser-dewetted 

region show plasmonic properties but do not exhibit hot spots densely because they are 

located sparsely. Therefore, in order to fabricate plasmonic silver NP arrays, we have 

adopted a laser scanning method, where a laser is scanned at a moderate fluence of 1.3 

J/cm2 to avoid the ablation of silver particles from a silver paste film.  
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Figure 5-7. (a) SEM image of a laser-scanned silver paste film, where yellow arrows indicate 

scanned directions. (b) Schematic showing the laser-sanning process, where a laser beam with 6 ns 

pulses of 1.3 J/cm2 was scanned on the film at a rate of 50 μm/s. SEM images of (c) the spot i, (d,e) 

the spot ii, (f) the spot iii, and (g,h) the spot iv. 

 

Compared with other techniques,36 LDW is an easy method to fabricate a large-scale 

functional substrate because we can ‘scan’ a laser beam. The nanosecond-laser scanning 

can reshape an as-irradiated metal structures; reshaping can be realized by the multiple 

irradiation of the already irradiated region.15 We have scanned a silver paste film by 

moving the motorized stage horizontally in a straight line as the first laser-scan mode. 

Figure 5-7a indicates the SEM image of a laser-scanned silver paste film, which was 

scanned by a laser beam of 1.3 J/cm2 at a rate of 50 μm/s (the upper line, scanned forward; 

the lower line, scanned forward and backward). Since the beam diameter is about 120 μm 

and the beam movement between two laser pulses is 5 μm (Figure 5-7b), the overlapping 

portion between two sequential laser shots is about 96%. When the laser beam was scanned 
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once in the forward direction, the melting of silver flakes took place so that a smooth silver 

film, rather than a rough silver flake surface, was observed. However, a close look of the 

smooth silver film reveals that the laser scanning led to the formation of sub-micrometer 

bumps, cavities, and protrusions due to the fast freezing of laser-melted silver (Figure 5-

7c and 7d).15,28,37,38 Figure 5-7e shows that the smooth silver film is covered with fine silver 

nanostructures, which have been formed by the melting, ablation, and resolidification of 

silver flakes in a silver paste film. Once a laser beam was scanned at a high fluence, silver 

paste went through the laser melting to produce a smooth silver film. Meanwhile, some 

silver materials also underwent ablation. The subsequent cooling, nucleation, and 

coalescence of the ablated silver led to the deposition of fine silver structures on the smooth 

silver film. The entire processes of ablation, cooling, and resolidification was completed 

within 0.1 ms and the repetition rate of the employed nanosecond laser was 10 Hz, 

indicating that the entire processes induced by a single laser shot were completed before 

the arrival of another laser shot.21 Barcikowski et al.26,39 have reported that the laser 

ablation of a metal film in water induces two different particle species: (i) primary particles 

of 8–10 nm in diameter, which show a smooth concentration gradient starting from the 

target and (ii) secondary particles of 45 nm in diameter. Also, Zhigilei et al.40 have 

theoretically reported that laser pulses generate silver vapor, which falls down to form 

silver NPs through cooling and resolidification. Hereafter, laser-induced fine silver 

nanostructures, as shown in Figure 5-7e, will be designated as LIFSNs. We consider that 

our laser scanning method has the following three remarkable aspects. (1) Bulk and rough 

silver flakes were used as starting metal materials; each silver flake can act as an active 
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site where ablation and resolidification can take place. (2) Fabricated silver nanostructures 

remain unablated because the laser beam scans different regions continuously. (3) 

Nanosecond-laser melting and dewetting can lead to enormous structural changes in a 

starting metal material because HAZ is broad. LIFSNs are key intermediates in the 

fabrication of plasmonic NP arrays. Figure 5-7f and 7g suggests that the backward second 

laser scan has erased microbumps and cavities generated by the forward first laser scan to 

produce a smooth silver film. It is also observed that the backward laser scanning has 

ablated the LIFSNs of Figure 5-7e formed by the forward laser scanning (Figure 5-7h). 
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Figure 5-8. (a) SEM image of a crossly line-scanned silver paste film (yellow arrows: scan 

directions). (b,c) SEM image of the spot i. (d.e) SEM image of the spot ii. 

 

We have scanned a silver paste film by moving the motorized stage perpendicularly to 

the already scanned line as the second laser-scan mode. Figure 5-8a indicates the SEM 

image of a silver paste film crossly laser-scanned with 6 ns pulses of 1.3 J/cm2 at a rate of 

50 μm/s. While Figure 5-8b and 8c displays the SEM image of the spot i, Figure 3-8d and 

8e shows the SEM image of the spot ii. Interestingly, plasmonic silver NP arrays were 

generated at the spots i and iii of the laser-scanned cruciform structure whereas silver NP 

arrays were not produced at the spots ii, iv, and v (Figure 5-9).  
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Figure 5-9. SEM images of silver nanostructures formed at the spot v of Figure 5-8. 

 

In the spot i, typical droplet-like silver NPs were formed on the smooth silver film.30,34,41 

As a laser beam was vertically scanned over LIFSNs like the arrow 2 of Figure 5-8a, a 

vertical line bearing LIFSNs is newly generated (Figure 5-8d and 8e). However, the 

already produced LIFSNs in the spots i and iii has been transformed into plasmonic NP 

arrays by the second laser-induced dewetting of the priorly formed nanostructures. The 

cause of this phenomenon is due to the inhomogeneous energy distribution of the 

nanosecond laser pulse. A detailed description of the formation mechanism will be given 

later. The spatial distribution of the silver NP arrays is not uniform due to the 

inhomogeneous appearance of the microbumps and cavities generated by the first 

horizontal laser scan. Meanwhile, in the crossly scanned central region of the spot v (Figure 

5-9), LIFSNs have been ablated by the second vertical laser scan.  
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Figure 5-10. (top) Spatial energy distribution of a nanosecond laser pulse and SEM image of a 

silver paste film bearing LIFSNs, which was irradiated again with a single laser pulse in the middle. 

(bottom) SEM images measured at the respectively indicated positions. 
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In order to understand the formation mechanism of silver NP arrays by the second laser-

scan mode, we irradiated a single laser pulse to the middle of a horizontally laser-scanned 

line bearing LIFSNs. Figure 5-10 indicates that silver NP arrays have been generated 

clearly at both spots i and ii via the laser-induced dewetting of the priorly formed LIFSNs, 

although silver NPs are more uniform at the spot ii than at the spot i. However, in the spot 

iii which is 40 μm apart from the center of the laser pulse, original LIFSNs, as well as 

newly formed silver NPs, can be observed; the boundary between original LIFSNs and 

silver NP arrays can be seen clearly in Figure 5-11. 

 

 

Figure 5-11. Low-magnified SEM image of silver nanostructures formed at the spot iii of Figure 5-

10. 
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The clear boundary observation indicates that there exists a threshold energy of laser-

induced dewetting. In the spot iv, silver NP arrays can hardly be observed, indicating that 

LIFSNs consisting of fine silver nanostructures remain intact because of insufficient laser-

induced heat in this area. Thus, Figure 5-10 has indicated that the laser-induced fabrication 

of silver NP arrays is very sensitive to distance from the secondly irradiated laser pulse, 

suggesting that the fine control of laser intensity is very important for the laser fabrication. 

Nonetheless, we have shown that plasmonic silver NP arrays can be produced via the 

nanosecond-laser-induced dewetting of commercial silver paste. 
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Figure 5-12. (top) SEM images with particle size-distribution histograms and (bottom) electric-

field intensity distributions, calculated numerically by using the finite-difference time-domain 

method, of Ag NP arrays obtained by cross line scanning at rates of (left) 50 and (right) 200 μm/s. 

Each scale bar indicates 100 nm. 
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Figure 5-13. SEM images of Ag NP arrays formed by cross line scanning at rates of (a) 5 and (b) 

20 μm/s. Insets: Particle size-distribution histograms of Ag NP arrays. 

 

We have investigated the particle-size distribution of silver NP arrays formed by cross 

line laser scanning at various rates (Figure 5-12 and 13). Because the laser-induced 

dewetting is a thermodynamically spontaneous reaction, it is difficult to precisely control 

the diameters and gap sizes of silver NP arrays. However, Figure 5-12 and 13 display that 

silver NP arrays of sub-100 nm diameters with narrow size distribution can be fabricated 

well at a laser scanning rate of ≥50 μm/s. The average particle-diameters of silver NP 

arrays have been found to range from 32 to 45 nm. This is comparable to previously 

reported laser-processing results.30,41 When the scanning rates were below 50 μm/s, 

produced silver NPs were not uniform in sizes so that the standard diameter deviation was 

as large as 70 nm at a scanning rate of 5 μm/s. When the scan rate was too slow, the 

overlapping degree between two sequential laser shots was too high to produce uniform 
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silver NP arrays from LIFSNs. When LIFSNs absorbed too much laser-induced heat, the 

mobility of silver atoms became so large that the Ostwald ripening occurred severely, 

producing very large particles with wide size distribution. We have also carried out the 

electric-field intensity simulation based on the finite-difference time-domain (FDTD) 

method to explore whether these silver arrays produce sufficiently enhanced and localized 

EM fields at hot spots.41 The simulated results of Figure 5-12 show that the hot spots are 

localized in the narrow gaps of neighboring silver NPs, suggesting that strong plasmonic 

effects are generated between silver NPs. It is well observed that very high EM fields are 

concentrated on the edges of silver NPs. The simulations have confirmed that the laser-

fabricated arrays can generate hot spots and produce highly enhanced SERS signals for 

molecules located in the nanogaps of silver NPs.  
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Figure 5-14. (a) Raman signals of R6G adsorbed on the spots i, ii, and iii of Figure 5-15. (b) Raman 

signals of R6G adsorbed to Ag NP arrays on the spot iii. The samples were excited at 532 nm, and 

the concentration of R6G is indicated near each spectrum. 
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Figure 5-15. SEM image of a crossly line-scanned silver paste film. 

 

The strong plasmonic effect of silver NP arrays is potentially useful for sensors, solar 

energy devices, bio-imaging, and so on.42-44 The plasmonic performances of as-fabricated 

silver NP arrays have been evaluated by recording SERS spectra. Figure 5-14a shows the 

Raman spectra of 0.1 mM R6G on pristine silver paste, LIFSNs, and silver NP arrays. 

Among the examined three substrates, silver NP arrays exhibited the strongest Raman 

enhancement. The EF of R6G at the peak of 1381 cm-1 has been found as 1.2x106 for silver 

NP arrays and 5.8x105 for LIFSNs. The EM field enhancement is widely accepted for the 

mechanism of SERS;45,46 the larger EF of SERS is due to the enhanced EM field, where 

the optical excitations of localized surface plasmon resonance (LSPR) in metallic 

nanostructures enhance the Raman signal intensity. Such an outstanding enhancement 
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effect is attributed to the plasmonic property of hot spots localized in the narrow gaps of 

neighboring silver NPs, which may effectively couple with laser light used in Raman 

analysis. Even if plasmonic silver NP arrays do not have uniform arrangement, they have 

been found to show an efficient SERS effect.12,29 Figure 5-14b exhibits that it is possible 

to detect the Raman signal of R6G at a very low concentration of 10 nM when R6G 

molecules are adsorbed on the surfaces of silver NP arrays. 

 

 

 

Figure 5-16. Real images of fishnet-likely scanned silver paste films on (a) a glass plate, (b) a PET 

sheet, and (c) a paper slip. The areas i and ii of the panel a indicate laser-scanned and pristine silver 

paste films, respectively. (d) SEM image of the laser-scanned area. (e) Magnified SEM image of 

the spot iii in the panel d with a size-distribution histogram. (f) Hyperspectral Raman mapping of 

the spot iii. (g) Raman intensity distribution with standard deviations of 19.1% on the spot iii. 
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The laser scanning method has the advantage of producing a large-size functional 

substrate at a high processing speed, compared to reported plasmonic substrate fabrication 

methods including conventional lithography.42 We have scanned a silver paste film by 

moving the motorized stage of Figure 5-2b in a fishnet-like format. Figure 5-16a~16c 

shows the real optical images of fishnet-likely scanned silver paste films on a glass 

substrate, a PET sheet, and a paper slip. Because laser heating and subsequent cooling are 

completed within 0.1 ms at the surface of silver paste, the substrates such as a PET sheet 

and a paper slip remain intact during the laser processing. For the fast fabrication of large-

size plasmonic silver NP arrays, a laser beam of 3.0 J/cm2 was scanned on a silver paste 

substrate at a rate of 1.0 mm/s with +30 mm defocusing of the z-axis from the focal point. 

It took 10 s to scan a line of 1.0 cm, 17 min to scan 100 lines, and 34 min to scan 1.0 cm2 

(100 x 100 lines). Figure 5-16d reveals that the laser scan has melted the silver flakes to 

form fishnet-like smooth silver films. The average particle diameter of silver NP arrays 

has been found to be 32±21 nm (Figure 5-16e), which is similar to the value observed in 

Figure 5-8c. These silver arrays may produce sufficiently enhanced and localized EM 

fields at hot spots. Figure 5-16f, observed on the spot iii of Figure 5-16d, shows the 

hyperspectral Raman mapping image of R6G at 1381 cm-1. The Raman mapping was 

scanned over an area of 0.1 x 0.1 mm2 to display 700 x 350 data points. Frequently 

appearing strong Raman signals thoughout the scanned area confirm that the efficient 

SERS effect of the laser-scanned silver paste film is reliable and applicable. The standard 

deviation of Raman intensities over 350 channels is 19.1% and the entire Raman intensities 

change within a factor of 2, also assuring that the SERS effect is reliable and steady. 
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Overall, our fabrication method of plasmonic SERS substrates via laser-induced dewetting 

is easily scalable and reproducible. 

 

  

Figure 5-17. Absorption spectrum of a fishnet-likely scanned silver paste film on a glass plate (the 

area i of Figure 5-16a). Inset: optical microscope image of the paste film. 

 

The simplest method to identify the LSPR of plasmonic substrates is a measurement of 

absorption spectra using a UV/vis spectrophotometer. The UV/vis absorption spectrum of 

a fishnet-likely scanned silver paste film in Figure 5-17 indicates that the maximum of its 

SPR band is located at 410 nm, suggesting that the laser-scanned silver paste film consists 

of plasmonic silver NPs.2,50 Compared with the SPR bands of typical silver colloids, the 

observed band width is relatively broad because the size distribution of laser-induced silver 

NPs is wide. Thermal annealing using a furnace is usually employed for the dewetting of 
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noble-metal thin films.41 However, the thermal sintering method has diverse drawbacks 

such as slow and nonlocal heating. We heated pristine silver paste films under a furnace at 

300, 500, and 700 ºС for 1 h (Figure 5-18). Silver NP arrays have not been generated via 

annealing at ≤700 ºС although our nanosecond-laser-induced dewetting method has 

produced plasmonic silver NP arrays readily at room temperature via fast, efficient, and 

local heating of silver paste films. 

We have compared our data with three published papers47-49, which differ from our 

paper in the point that they used nm-scale thin films as a starting material. In refs. 47 and 

48, a conventional thermal annealing is used to fabricate Au NP arrays or Ag nanoislands. 

The furnace annealing method has diverse drawbacks such as slow and nonlocal heating. 

The laser direct writing (LDW) technique is a promising process for the alternative low-

cost annealing method. Meanwhile, in ref. 49, they developed a novel method of direct 

laser writing via cutting amorphous silicon square patches by femtosecond laser irradiation. 

They produced very uniform and large-sized crystalline Si nanoparticle arrays. However, 

the separation distance between particles is relatively long (≈ 1 μm), and there is a limit 

for SERS application in the aspect that plasmonic noble metals have not been studied. 
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Figure 5-18. SEM images of (a) pristine and silver paste films conventionally sintered at (b) 300, 

(c) 500, and (d) 700 ºС. 
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5.5.  Conclusions 

 

Highly dense plasmonic silver NP arrays have been fabricated by laser-induced 

dewetting of commercially available silver paste as a starting bulk material. Laser-

irradiation criteria for the laser melting, dewetting, and ablation of silver paste films have 

been determined in order to understand the optimal conditions of laser fabrication. The 

first laser-scan mode has produced LIFSNs as key intermediates in the fabrication of 

plasmonic arrays. Meanwhile, the second laser-scan mode has transformed LIFSNs into 

plasmonic silver NP arrays by the laser-induced dewetting of priorly formed fine silver 

nanostructures. The laser-induced fabrication of silver NP arrays has been found to be very 

sensitive to distance from secondly irradiated laser pulses, suggesting that the fine control 

of laser intensity is very important. Silver NP arrays of sub-100 nm diameters with narrow 

size distribution have been fabricated well at a laser scanning rate of ≥50 μm/s. Carrying 

out electric-field intensity simulation, we have confirmed that our laser-scanned substrates 

have generated numerous hot spots to show highly enhanced SERS signals; the EF of silver 

NP arrays for R6G has been found as 1.2x106. Overall, our fabrication method of 

plasmonic SERS substrates via laser-induced dewetting is facile, scalable, and 

reproducible. 
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Abstract (Korean) 

독창적이고 기능적인 플라즈모닉 귀금속 나노입자의 합성과 광학적 특성에 

대해 주로 연구하였다. 다양한 합성방식으로 코어쉘, 속이 빈 껍질, 나노스

파이크 그리고 나노입자 어레이 구조를 합성해보았다. 분광광도계와 라만광

도계, 전자현미경 등을 이용하여 제작된 나노구조물의 광학적, 구조적 특성

을 연구해보았다. 귀금속 나노입자 합성방법과 플라즈모닉 공명현상을 

Chapter 1에 간략히 소개하였다.  

Chapter 2에서는 금 클러스터가 흡착된 Ag@SiO2 코어쉘 나노입자의 금속-증

강 형광 (Metal-enhanced fluorescence, MEF)에 대해 연구하였다. 금속나노입

자는 입사 광에 의해서 표면의 자유전자들이 집단적인 진동하는 표면플라즈

몬공명 (surface plasmon resonance, SPR)이라는 독특한 광학적 특성을 가진

다. 이러한 현상을 통해 나노입자 표면에서는 입사되는 전자기장의 세기보다 

수천~수만 배 더 큰 세기로 증폭될 수 있으며, 이러한 현상을 근접장증폭이

라 불리고 있다. 이러한 광학적인 기능성을 가지는 금속나노입자에 실리카 

껍질을 두르면, 금속입자 표면이 보호되거나 SPR 현상을 더욱 증강시킬 수 

있다. 은 나노입자는 수용액상에서 은 이온의 화학적 환원을 통해 구 형태로 

합성한 다음, 실리카 물질의 전구체를 이용한 Stober method를 통해 은 나노

입자 표면에 실리카 껍질을 구현하였다. TEOS 양을 달리 함에 따라 실리카 

쉘 두께를 변화시켜 각기 다른 Ag@SiO2 코어쉘 나노입자를 합성한 다음, 거리

-의존적인 SPR 현상을 관찰하였습니다. 

보통, 나노입자는 열역학적으로 가장 안정한 구(sphere) 형태로 합성된다. 

열역학적의 한계를 넘어서 좀 더 고차원적이고 기능성을 가지는 나노입자 제

작에 관한 연구가 국내외 연구진에서 활발하게 진행되고 있다. 나노쉘 

(nanoshell) 형태의 입자란, 실리카 같은 유전물질이 중심에 존재하고, 그 

표면을 금속물질로 껍질처럼 둘러싸인 구조를 말하는데, 나노쉘입자는 구 형
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태의 입자보다 SPR 현상을 더욱 강하게 발현시키고, 적외선 영역 쪽에서 광

학적 활성을 보이는 고기능성 구조이다. Chapter 3에서는 이전에 보고되지 않

았던 구조인, 속이 비어있고 그 안쪽에 표면에 거칠기가 있는 금 나노쉘 입

자를 합성에 대해 설명하였다. 나노입자의 표면이 거칠다면, 나노미터 스케

일에서 전자기장을 산란시킬 수 있으므로 SPR 효과를 더욱 증강시킬 수 있다. 

속이 비어있고 안쪽의 표면이 거진 나노쉘 구조를 만들기 위해 메조포러스

(mesoporous) 실리카 나노입자를 주형으로 이용했는데, 메조포러스 실리카는 

입자 내에 CTAB 분자들의 자가조립에 의해서 만들어진 공동이 무수히 존재하

는 실리카 입자를 말한다. 메조포러스 실리카 공동에 표면처리를 통해서 자

그마한 금 나노입자를 부착시키고, 화학적 환원법을 통해 금 나노입자들을 

성장시킨다. 성장되는 금 나노입자들은 입자가 커짐에 따라 실리카 공동구조

를 부분적으로 채우게 되고, 추후 실리카를 HF로 에칭함으로서 속이 비어있

고 안쪽에 거친 표면을 가지는 금 나노쉘 (hollow and bumpy gold nanoshell, 

HBA NS) 합성할 수 있었다. 

어떠한 금속 나노구조물에 나노스케일의 거칠기나 나노팁 형태를 부여하면 

더욱 향상된 플라즈모닉 성질을 보일 수 있다. 음의 유전율을 가지는 귀금속 

나노구조물은 입사하는 전자기장을 국부적으로 구속하는 능력이 가지게 되고, 

특히나 나노팁과 같이 구조체의 곡률이 심하게 변화하는 곳은 그 효과가 더

욱 증폭됩니다. Chapter 4에서는 입자 안의 cavity가 확실히 존재하고 표면

에 나노팁이 무수한 입자를 합성하고자 노력하였다. SH-로 표면개질된 실리

카 나노입자를 합성한 다음, 아주 작은 크기의 은 나노입자를 실리카 표면에 

합성한다. 이후, 점진적인 galvanic replacement 반응을 통해서 실리카 표면 

위에 금 나노팁이 무수하게 존재하는 나노성게 입자(spiky Au nanourchins, 

SANUs) 를 합성한다. HAADF-STEM 측정방식을 통해서 SANUs 입자 중간에 실리

카 입자가 확실히 보이며, galvanic replacement 반응으로 금 나노껍질이 환
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원된 모습이 관찰된다. 또한 EDX line-mapping과 원소분석을 통해서, SANUs 

입자는 속이 비어있고 금 성분이 98 wt%로 관찰되는 데 반해, 은 성분은 0.2 

wt% 아주 극미량으로 구성되어있음을 확인하였다. 최종적으로 합성된 SANUs 

입자에 HF로 실리카 성분을 녹여서 속이 비어있고 나노팁이 무성한 금 나노

성게 (hollow and spiky Au nanourchins, HSANUs)를 얻어보았다. FIB 

(focused-ion beam) 기법으로 그 단면을 조사하여 HSANUs 입자 안쪽에 확연

한 cavity 형태를 확인하여, 중국의 연구진들에 의해 제안된 나노성게 입자

의 cavity의 크기가 확연히 비교됨을 확인하였다.  

레이저를 이용한 미세구조 가공기술은 레이저 빔의 고집속성 및 시공간적 

정밀함으로 인해 반도체, 전자, 메카트로닉스 등의 첨단산업 분야에서 필수

적인 기술로서, 신 공정 개발에 기여해왔습니다. 광열적 부작용이 적어서 마

이크로-나노 급의 형상 가공이 가능한 극초단파 레이저(ultrafast laser)의 

도입과 연구가 활발히 진행되고 있는데, chapter 5에서는 극초단파 레이저 광

원을 사용하여 금속 나노구조를 손쉽게 제작한 연구를 설명하였다. 나노세컨

드 레이저는 연속파 레이저에 비해 강한 파워를 가짐과 동시에 비교적 열적 

영역 (heat-affected zone)이 넓어서 벌크물질에 극심한 형태변화를 유도할 

수 있기 때문에 top-down 방식의 제작에 유리하다 판단하였습니다. 1.3 J/cm2

의 파워와 50 μm/s의 속도로 레이저를 십자가 형태로 스캔한 (cross-line 

scanning) 실버 페이스트 필름에서, 균일한 나노입자배열이 십자가의 왼쪽, 

오른쪽 가지에 관찰되었고 위, 아래의 가지에서는 이전에 관찰되었던 미세하

고 무수한 은 입자들이 제작되었다. 가로방향의 스캔으로 통해 미세하고 무

수한 은 나노입자를 제작한 다음, 세로방향으로 스캔 할 때, 불균일한 에너

지 분포 형태의 Gaussian form을 가지는 레이저 빔에 의해서 dewetting 

threshold를 넘어가는 공간적 영역에서는 dewetting 현상이 일어나 나노입자

배열이 제작되는 것을 발견하였다. 십자가 레이저 스캔 모드 양식의 확장으
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로서, 그물모양의 레이저 스캔을 시행하면 센티미터급의 대면적의 플라즈모

닉 나노구조배열을 얻을 수 있었고 강한 전자기장 증강으로 표면증강라만산

란기법 (Surface-enhanced Raman scattering)을 통해서 하여금 분석하고자 하

는 물질의 농도가 nM 수준으로 내려가도 충분히 검출 가능한 기능성 기판 제

작에 성공하였다. 
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