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Abstract

Youngwon Choi
Department of Statistics

The Graduate School
Seoul National University

When data possess some structure, a framework implementing the known struc-

tures of data can alleviate prominent challenges of deep learning such as ro-

bustness, generalizability, and explainability. This dissertation proposes deep

learning frameworks for structured data in two tasks. The first task is to de-

velop a representation learning model to simulate nested data. For example,

the VGGFace2 dataset consists of more than 300 portraits per person on av-

erage. Interpreting such data with a nested structure as i.i.d. observations of a

random process provides a fruitful viewpoint on disentangling representations.

In this point of view, this thesis proposes the Ornstein auto-encoder (OAE),

a promising new family of models for representation learning when data have

a nested structure. The key attraction of OAE is its ability to generate sam-

ples nested within an observational unit, even if the unit is unknown to the

model. This feature distinguishes OAE from conditional models. Furthermore,

when the data exhibit exchangeability, OAE’s reparametrization of Ornstein’s

d-bar distance, an infinite-dimensional optimal transport distance on which the

OAE framework lies, produces a tractable learning algorithm. OAE has suc-

cessfully demonstrated high performance in the three types of tasks that have

been advocated in assessing the quality of generative models, namely exemplar

generation, style transfer, and unit generation. This performance implies that

i



the framework using the structures of data can handle the generalizability issues

of deep learning.

The second part of this dissertation includes a study for learning a predictive

model for capturing a hierarchical correlation in microbiome taxonomic abun-

dance data. Since bacteria are classified at a hierarchy of taxonomic levels, mi-

crobiome abundance data have a hierarchical correlation structure. DeepBiome

is a deep-neural-network-based predictive model for capturing microbiome sig-

nals at different phylogenetic depths. By leveraging the phylogenetic informa-

tion, DeepBiome relieves the heavy burden of tuning for the optimal deep

learning architecture, avoids overfitting, and most importantly enables visual-

izing the path from microbiome counts to disease. The second part contributes

to the development of the software for DeepBiome. Comprehensive simulation

experiments have demonstrated the ability of the software. The DeepBiome

model trained with the developed software shows better generalizability than

other deep learning models. For both regression and classification tasks, com-

pared to sparse regression and other deep learning models, DeepBiome has

competitive performance particularly when microbiome taxa associated with

the outcome are clustered at different phylogenetic levels. More importantly,

DeepBiome enables an explainable visualization of the microbiome-phenotype

association network. In real-life data analysis, DeepBiome software shows the

ability to train a high-performance predictive model and select taxa that are

related to the disease according to previous clinical research.

Keywords: deep learning, representation learning, structured data, face gen-

eration, identity-preserving, microbiome, phylogenetic tree, mixed taxonomic

levels

Student Number: 2016-30094
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Chapter 1

Introduction

A deep learning framework implementing the known structures of data can

alleviate the prominent challenges such as robustness, generalizability, and ex-

plainability. This dissertation proposes deep learning frameworks for structured

data in two tasks. The first task is to develop a representation learning model to

simulate nested data, i.e., data collected from grouped observational units. The

second task is to learn a predictive model for capturing a hierarchical correlation

in the covariates.

1.1 Representation learning from nested data

Many real-world data are collected in grouped observation units. The resulting

sample naturally possesses a nested structure. As a concrete example, consider

the VGGFace2 dataset (Cao et al., 2018), an expansion of the famous VGGFace

dataset (Parkhi et al., 2015). VGGFace2 is a large-scale face dataset containing

3.31 million images of 9,131 people. For each person, it contains 362.6 images
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on average, with a minimum of 30 and a maximum of 843. Unquestionably,

portrayals of the same person are highly correlated. Likewise, the images from

another famous MNIST dataset also retain correlated structure for each digit.

For such nested data, representation learning aims to find a disentangled rep-

resentation that can effectively describe the correlation structure of the data.

Observational units should be well-separated in the representation space. Also,

the model must deal with an unknown total number of observational units when

they are randomly sampled, including the case where the number of observa-

tional units is not bounded. In the VGGFace2 data, for example, the identity of

a portrait can be considered an observational unit. The number of these units

is possibly infinite, and the available sample may not include all the units. The

structure that a representation learning method captures can be demonstrated

by observational-unit-preserving sample generation. Three types of tasks have

been advocated to assess the quality of a generative model (Lake et al., 2019):

1) exemplar generation, which conditionally generates new samples given ob-

servations of a new unit, 2) style transfer, which transfers the variation within

a given observation unit to another unit, and 3) unit generation, which is to

simulate a new observational unit.

Generative latent variable models (LVMs) such as the generative adversar-

ial networks (GAN, Goodfellow et al., 2014) and the Wasserstein auto-encoders

(WAE, Tolstikhin et al., 2018) have delivered promising outcomes. However,

these approaches are not designed for structured data and, thus cannot gen-

erate correlated samples from a specific unit. InfoGAN (Chen et al., 2016)

mitigates this problem by introducing additional latent codes that have high

mutual information within the generated sample. While this approach can gen-

erate correlated samples within each latent code, one cannot determine the

units (codes) since the method is designed in a totally unsupervised manner.
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Class-conditional approaches like conditional adversarial auto-encoders (CAAE,

Makhzani et al., 2016) can be thought of as learning an LVM for each condi-

tional distribution, thereby enabling within-observational-unit sample genera-

tion. This approach, however, assumes a fixed number of units. Thus, in exem-

plar generations and style-transfer tasks, class-conditional approaches cannot

generate such samples from new units unknown to the model.

To obtain a single representation that addresses all the three tasks, a more

sensible approach is to model the nested structure in the latent space directly,

and find appropriate mappings between them. For example, the random inter-

cept model (Diggle et al., 2002; Fitzmaurice et al., 2012; Dundar et al., 2007) is a

common approach in statistics when there are correlations among observations

within a unit:

Zi
j = Bi + Ei

j , Bi i.i.d.∼ N (0, τ20 I), Ei
j

i.i.d.∼ N (0, σ2
0I), Bi ⊥⊥ Ei

j , (1.1)

where Zi
j denotes the jth observation in unit i. Each unit is represented by

the random intercept Bi. Clearly, observed sequence from unit i, i.e., (zij)
ni
j=0,

are correlated. Differing numbers of samples between units are also naturally

handled. A noticeable feature of model (1.1) is that it defines an exchangeable

sequence: within a unit, the order of observation does not matter. Thus the

nested data can be considered an independent, identically distributed (i.i.d.)

copy of the exchangeable sequence.

Interpreting data with a nested structure as i.i.d. observations of a random

process, or, moreover, those of an exchangeable random process, provides a

fruitful viewpoint on disentangling representations. For both VGGFace2 and

MNIST data, permuting the order of portraits in each person or handwritings

in each digit does not notably affect any learning tasks commonly undertaken,
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so we can see them as exchangeable sequences.

The goal of this task is to bring the nested data structure that arises from

various applications down to generative latent variable modeling. If the latent

variables share the nested structure of the observed variables, then the gen-

erative power of the latent space representation is likely to increase. As dis-

cussed above, this nesting often translates to i.i.d. observations of a correlated

random process. Then, we can use the optimal transport distance between sta-

tionary random processes to seek a latent space representation of the observed

sequences.

Contributions The main contribution of the first part of this thesis is to

propose the Ornstein auto-encoder (OAE), a new family of models for repre-

sentation learning when data have a nested structure, that is presented in Choi

and Won (2019). The contributions are as follows:

• Ornstein auto-encoder (OAE), which can be thought of as a stationary

random process version of the Wasserstein auto-encoder (WAE) (Tol-

stikhin et al., 2018), is proposed by introducing Orstein’s d-bar distance,

an infinite-dimensional optimal transport distance on which the OAE

framework lies. To this, a stationary process version of the theorem by

Bousquet et al. (2017) is proved.

• When the data exhibit exchangeability, OAE provided a tractable learning

algorithm.

• High-performance of OAE is demonstrated in the three types of tasks that

have been advocated for assessing the quality of generative models: ex-

emplar generation, style transfer, and unit generation. Importantly, OAE

is robust to data imbalance and can generate samples nested within an
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observational unit, even if the unit is unknown to the model, which has

been impossible with other methods.

• It is demonstrated that OAE can provide disentangled representations,

i.e., latent variables are well-clustered by subjects. This capability has

potential applications in classification and recognition.

1.2 Learning a predictive model for capturing a hier-
archical correlation

The latter part of this dissertation includes a study for learning a predictive

model to capture a hierarchical correlation in microbiome taxonomic abundance

data. Microbiome profile can be a novel predictive biomarker for many diseases

(Sartor, 2008; Gilbert et al., 2016; Ni et al., 2017; Franzosa et al., 2019). How-

ever, bacteria count tables are typically sparse and bacteria are classified at a

hierarchy of taxonomic levels, ranging from species to phylum. For such hierar-

chical data, it is challenging to infer and visualize the bacteria-to-disease path

across taxonomic levels.

Multiple approaches have been proposed to incorporate the phylogenetic

structure into the analysis. For example, Garcia et al. (2013) proposed a sparse

regression model using ℓ1 and ℓ2 regularizations to achieve sparsity at multiple

taxonomic levels. However, this approach can only select taxa at up to three

levels and therefore cannot cover the entire range of phylogenetic depths. Xiao

et al. (2018) have developed a generalized linear mixed model that used the

evolutionary rate as a tuning parameter. This approach can identify clustered

signals without prior knowledge of phylogenetic depth. However, it is not de-

sirable when microbiome effects are clustered at a mixture of taxonomic levels.

Reiman et al. (2017) embedded the phylogenetic tree into a convolutional neural
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network (CNN) architecture to predict the outcome of interest. In that study,

the embedding algorithm translated taxa abundances at every phylogenetic

level into an abundance matrix. This abundance matrix captured the spatial

information of taxa in the phylogenetic tree. However, after embedding, only

a fixed number of layers (three) were used and the taxa lineage information is

lost. The identified neurons do not have any biological meaning and the result

lacks interpretability.

The second part contributes to the development of the software for

DeepBiome, a deep-neural-network-based predictive model, for capturing mi-

crobiome signals at different phylogenetic depths. This model is applicable to

both regression and classification problems. It takes microbiome taxonomic

abundance data as input. By regularizing the neural network architecture to-

wards the phylogenetic structure, DeepBiome greatly reduces the number of

parameters and tuning burden compared to the conventional neural networks.

It is able to identify important taxa that are associated with outcomes at all

taxonomic levels. Phylogeny regularization is achieved by weight decay, a popu-

lar technique (Mundie and Massengill, 1991; Krogh and Hertz, 1992; Gupta and

Lam, 1998) to prevent overfitting and boost performances of deep neural net-

works (DNNs) (Zhang et al., 2019). Currently, all existing weight decay schemes

assume a global rate of decay. DeepBiome instead incorporates the bacteria

evolutionary relationship into a differential weight decay regularization matrix,

thus generating an interpretable effect transfer network in modeling and analyz-

ing microbiome data. Simulation studies and analyses using the datasets from

the American Gut Project (AGP) and a lung microbiome study demonstrate

the superior performance of DeepBiome over commonly used tools , including

support vector machine (SVM), regression with ℓ1 (lasso) or ℓ1+ℓ2 (elastic net)

penalties, DNN without tree regularization, and DNN with ℓ1 penalty.
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Contributions The main contributions of the second part are:

• DeepBiome software, a Tensorflow- and Keras-based open-source Python

package using GPUs, which has the following features:

– Adam optimization method with phylogenetic tree weight decay reg-

ularizer,

– User-friendly interface for training, testing, and taxa selection with

huge data such as the American Gut Project (AGP) (McDonald

et al., 2018),

– Automated visualization tool that can show the selected taxa on

the phylogenetic tree based on the trained weight to infer the

microbiome-disease path,

• Simulation studies, which demonstrate the ability of the DeepBiome soft-

ware.

1.3 Outline of the thesis

This thesis is organized as follows. Part 1 proposes a representation learning

model for nested data. Chapter 2 introduces Ornstein’s d-bar distance and

development of OAE for stationary and exchangeable processes, respectively.

Chapters 3 and 4 suggest two latent variable models implementing the struc-

tured data. Variational formulations of the OAE and the algorithms derived

from latent variable models are introduced and discussed in both chapters, re-

spectively. Part 2 describes learning a predictive model for capturing a hierar-

chical correlation in the covariates. This part mainly introduces the DeepBiome

method, a DNN-based predictive model for capturing microbiome signals at dif-

ferent phylogenetic depths. DeepBiome software and accompanying the sim-
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ulation studies that demonstrate the ability of the software are described in

Chapter 5.
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Part I

Representation Learning from

Nested Data
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Chapter 2

Ornstein Auto-Encoders

This chapter proposes Ornstein auto-encoder (OAE), a LVM that employs a dis-

tance measure between two stationary random processes. After fixing notations

and a brief review of LVMs, Ornstein’s d-bar distance, an infinite-dimensional

optimal transport distance on which the OAE framework lies, is introduced.

2.1 Notation

The spaces of observable variables and latent variables are denoted as X and Z,

respectively. Both spaces are assumed to be complete, separable metric spaces

in which (regular) conditional distributions are well-defined. The metric associ-

ated with X is denoted d. A Cartesian product space of X is denoted by X n for

n = 1, 2, . . ., with n = ∞ permitted, where X∞ = {(. . . , x−1, x0, x1, . . . ) : xj ∈

X}. With the Boral σ-field and a probability measure on X (resp. Z), event

space and probability measure on any product space, including X∞ ×Z∞, are

well-defined. (Regular) conditional distributions related to random variables
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(processes) defined on these probability spaces are also well-defined. (Event

spaces are omitted unless necessary.) Capital letters (e.g., X) indicate random

variables, and their realizations are noted in lower case letters (e.g., x). Doubly-

infinite random processes and their realizations are denoted by boldfaces: e.g.,

X and x. Superscripts, as in Xi (resp. Xi), are used to indicate an (ith) i.i.d.

copy of X (resp. X). Subscripts are used to represent coordinates of a random

process, e.g., X = (X1, X2, · · · ) ∈ X∞. A finite-length random sequence is de-

noted as X1:n = (X1, · · · , Xn). The probability distribution of random process

X is denoted by PX, etc.; we use Q in place of P if the distribution is subject

to optimization.

2.2 Preliminaries

Generative latent variable models (LVMs) are a family of parametric models

trained to transform samples drawn from an unknown distribution PX on X

to latent variables in a lower-dimensional space Z. In many real-world data,

especially images, we cannot estimate the density of PX , which may not ex-

ist because the distribution is supported by low-dimensional manifolds. To

overcome this problem, LVMs define a latent random variable Z ∈ Z with a

prior distribution PZ such as the standard Gaussian. The latent variable model

PY,Z = QY |ZPZ can be learned by

inf
QY |Z∈G

PY =
∫
Z QY |ZdPZ

D(PX , PY ), (2.1)

Here, G is some set of conditional distributions (decoders) QY |Z , and D is an

objective function which can reduce some divergence measure between the dis-

tributions PX of observations and PY of their reconstruction. Different choices
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of D and regularizer yield different models. This chapter focuses on LVMs with

deterministic decoders. Let Gdet be the set of deterministic decoders QY |Z such

that QY |Z(·|z) is the Dirac measure on g(z) for all z, i.e. Y = g(Z) a.s. for

g ∈ NN where NN is the set of functions g : Z → X that can be parametrized

by a neural network. If we assume G = Gdet, then LVM seeks

inf
g∈NN

D(PX , PY ; g, PZ) (2.2)

where PY =
∫
Z QY |ZdPZ = PZg

−1 is the marginal distribution of Y induced

by g and PZ . There exist several famous works for training generative la-

tent variable models. Generative adversarial networks (GAN, Goodfellow et al.,

2014) has led this field. Recently, Wasserstein generative adversarial networks

(WGAN, Arjovsky et al., 2017) and Wasserstein auto-encoders (WAE, Tol-

stikhin et al., 2018) based on optimal transport (OT) have demonstrated per-

formances surpassing other existing LVMs.

Generative adverserial networks (GAN). Goodfellow et al. (2014) use

DGAN(PX , PY ; g, PZ) ≜ sup
f∈FNN

EPX
log f(X) + EPZ

EQY |Z log(1− f(Y )),

where QY |Z ∈ Gdet. Here, f : X → (0, 1) is the “discriminator”, FNN is the set

of functions f : X → (0, 1) that can be parametrized by a neural network. Thus

problem (2.2) becomes a minimax game between f and g. It is known that

minimizing DGAN is equivalent to minimizing the Jensen-Shannon divergence

(Goodfellow et al., 2014).
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Wasserstein GAN (WGAN). Arjovsky et al. (2017) use

DWGAN(PX , PY ; g, PZ) ≜ sup
f∈FNN,1

EPX
f(X)− EPZ

EQY |Z log(1− f(Y )).

where QY |Z ∈ Gdet and FNN,1 is the set of 1-Lipschitz functions f : X → R

which can be parameterized by a neural network. This objective function is

the dual formulation of the 1-Wasserstein distance between X and Y . The p-

Wasserstein distance is defined as

d̄p(PX , PY ) ≜

(
inf

π∈P(PX ,PY )
Eπd

p(X,Y )

)min(1,1/p)

(2.3)

for some metric d defined on X and p ≥ 0; d0 represents the 0-1 loss. Here,

P(PX , PY ) is the set of all joint distributions of (X,Y ) whose marginals on X

and Y are PX and PY , respectively (Villani, 2008).

Adversarial auto-encoders (AAE). Makhzani et al. (2016) use

DAAE(PX , PY ; g, PZ) = inf
QZ|X∈Q

EPX
EQZ|XEQY |Z∥X − Y ∥22

+DGAN(PZ ,

∫
X
QZ|XdPX), (2.4)

where QY |Z ∈ Gdet. The Q is the set of all conditional distributions QZ|X .

Conditional adversarial autoencoder (CAAE). CAAE minimizes a

class-conditional version of (2.4),

DcAAE(PX|C , PY |C ; g, PZ|C) = inf
QZ|X,C

EPX|CEQZ|X,C
EQY |Z,C

∥X − Y ∥22

+DGAN(PZ|C , QZ|C),
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where QY |Z,C ∈ Gdet and C is a class label. The QC is the set of all conditional

distributions QZ|X,C and PY |C =
∫
Z QY |Z,CdPZ|C .

Wasserstein auto-encoders (WAE). Tolstikhin et al. (2018) directly uti-

lizes the primal formulation (2.3) of the p-Wasserstein distance d̄p through its

pth power

DWAE(PX , PY ) ≜ inf
π∈P(PX ,PY )

Eπd
p(X,Y ). (2.5)

for p ≥ 1. By using Theorem 1 of Bousquet et al. (2017), they reparametrize

(2.5) in terms of the probabilistic encoder QZ|X :

DWAE(PX , PY ; g, PZ) = inf
QZ|X∈QZ

EPX
EQZ|XEQY |Zd

p(X,Y ), (2.6)

where QY |Z is in Gdet, and QZ is the set of all conditional distributions QZ|X

such that QZ ≜
∫
QZ|XdPX equals to the given PZ . In practice, the resulting

constrained optimization problem is relaxed to an unconstrained problem:

inf
g

inf
QZ|X

EPX
EQZ|XEQY |Zd

p(X,Y ) + λDZ(PZ , QZ) (2.7)

for λ > 0 and some optimization function DZ that can minimize the associated

divergence measure. Relaxation (2.7) of WAE is equivalent to the adversar-

ial auto-encoders (AAE) (Makhzani et al., 2016) if p = 2, X is Euclidean,

d(x, y) = ∥x− y∥ is the standard Euclidean norm, and DZ is DGAN. The min-

min formulations of AAE and WAE may lead to more stable training than those

based on a minimax game. The potential of the WAE is reported with results

on a benchmark disentanglement task (Rubenstein et al., 2018a).
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2.3 Ornstein’s d-bar distance

Suppose that X,Y are two stationary processes in X∞. Let

ρ̄n(PX1:n , PY1:n) ≜ inf
π∈P(PX1:n

,PY1:n
)
Eπρn(X1:n,Y1:n)

where P(PX1:n , PY1:n) is the set of all joint distributions of sequences

(X1:n,Y1:n) ∈ X n ×X n having PX1:n and PY1:n as marginals, and

ρn(X1:n,Y1:n) ≜ n−1
n∑

j=1

dp(Xj , Yj)

for some metric d defined on X and p ≥ 0; d0 represents the 0-1 loss. Ornstein’s

d-bar distance for random processes is defined as

d̄p(PX, PY) ≜ ρ̄min(1,1/p)(PX, PY), (2.8)

where

ρ̄(PX, PY) ≜ sup
n

ρ̄n(PX1:n , PY1:n)

(Ornstein, 1973; Gray et al., 1975). The d̄p or d-bar distance for random pro-

cesses was introduced by Ornstein (1973) for the special case of p = 0 and

discrete X , and was extended to p ≥ 0 with complete and separable X by Gray,

Neuhoff, and Shields (1975). Note that this is a random process version of the

p-Wasserstein distance (see, e.g., Bousquet et al., 2017). Gray et al. (1975) show

that the d-bar distance is a true distance for all possible stationary processes

in X∞, and furthermore, the equality

ρ̄(PX, PY) = inf
π∈Ps(PX,PY)

Eπd
p(X0, Y0) (2.9)
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holds, where Ps(PX, PY) is the set of all distributions of jointly stationary

processes (X,Y) ∈ X∞ × X∞ having PX and PY as marginals; X0 (resp. Y0)

is identically distributed to Xj (resp. Yj), j = 1, 2, · · · . It is also shown that

ρ̄1(PX0 , PY0) = inf
π∈P(PX0

,PY0
)
Eπd

p(X0, Y0) ≤ ρ̄(PX, PY), (2.10)

where equality holds if both PX and PY are i.i.d. Here, P(PX0 , PY0) is a set of all

joint distributions on (X0, Y0) ∈ X ×X each having PX0 and PY0 as marginals.

Thus ρ̄1(PX0 , PY0) is equal to (2.3).

2.4 Ornstein auto-encoders

2.4.1 From Ornstein’s d-bar distance to OAE

If Ornstein’s d-bar distance or ρ̄(PX, PY) is employed in place of D(PX , PY ),

then the resulting LVM may be called an Ornstein auto-encoder (OAE). OAE

defines a latent random process Z ∈ Z∞ with prior distribution PZ and learns

a conditional distribution QY|Z of the reconstructed process Y ∈ X∞ given Z

by reducing the d-bar distance under the constraint PY =
∫
QY|ZdPZ. Clearly,

the WAE is a special case of OAE for an i.i.d. sequence.

The optimization problem involved with (2.9) is intractable, however, since

it has to deal with the set of all jointly stationary distributions of infinite-length

random processes. Thus, it is required to restrict the decoder to be a determin-

istic function of Z and reparametrize ρ̄(PX, PY) in terms of probabilistic “en-

coder” QZ|X , in much of the same way as the finite-dimensional counterpart

WAE (Tolstikhin et al., 2018). From the resemblance of equation (2.9) to the

finite-dimensional Wasserstein metric (2.3), a reparametrization similar to (2.6)

can be made:
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Theorem 1. Assume process distributions PX on X∞ and PZ on Z∞ are both

stationary. Also assume that QY|Z(·|z) is the Dirac measure on g(z) for all z,

i.e., Y = g(Z) with a.s. for g : Z∞ → X∞ that maps a stationary sequence to

a stationary sequence and is measurable. Then,

ρ̄(PX, PY;g, PZ) = inf
QZ|X∈QZ|X

EPX
EQZ|XEQY|Zd

p(X0, Y0),

where PY =
∫
QY|ZdPZ = PZg

−1 and QZ|X is the set of encoders QZ|X such

that QZ|XPX is jointly stationary in (X,Z) and QZ ≜
∫
QZ|XdPX is equal to

PZ.

Proof. Recall that process distributions PX and PZ are given. Let QY|Z be

a given conditional distribution such that the joint distribution QY|ZPZ of

the pair process (Y,Z) is stationary. Let PX,Y,Z be the set of all stationary

distributions πX,Y,Z having PX and QY|ZPZ as marginals, satisfying that X

and Y are conditionally independent given Z. Also denote by PX,Y and PX,Z

the sets of marginal distributions on (X,Y) and (X,Z) induced by PX,Y,Z,

respectively. Note that while Ps(PX, PY), PX,Y,Z, and PX,Y depend on the

choice of QY|Z, but PX,Z does not. It follows that PX,Z = Ps(PX, PZ).

We then show that PX,Y = Ps(PX, PY) if QY|Z(·|z) is a Dirac measure

on g(z) for all z. That PX,Y ⊂ Ps(PX, PY) is obvious. To show the opposite

direction, suppose πX,Y ∈ Ps(PX, PY). Let πX,Y,Z be any extension of πX,Y

such that its marginal on (Y,Z) is QY|ZPZ. Such an extension is possible since if

we let g̃ : Z → (Z,g(Z)), then QY|ZPZ = PZg̃
−1, and also PY = PZg

−1. Then

for any event F ∈ σ(Y), we have πY|X,Z(F ) = πY|Z(F ) because Y = g(Z)

a.s. This implies that X and Y are conditionally independent given Z, thus

πX,Y,Z ∈ PX,Y,Z. It follows that πX,Y ∈ PX,Y.
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Finally,

ρ̄(PX, PY;g, PZ) = inf
πX,Y∈Ps(PX,PY)

EπX,Yd
p(X0, Y0)

= inf
πX,Y∈PX,Y

EπX,Yd
p(X0, Y0)

= inf
πX,Y,Z∈PX,Y,Z

EπX,Y,Zd
p(X0, Y0)

= inf
πX,Y,Z∈PX,Y,Z

EπZEπX,Y|Zd
p(X0, g(Z)0)

= inf
πX,Y,Z∈PX,Y,Z

EπZEπX|ZEπY|Zd
p(X0, g(Z)0) (2.11)

= inf
πX,Y,Z∈PX,Y,Z

EπZEπX|Zd
p(X0, g(Z)0)

= inf
πX,Z∈PX,Z

EπX,Zd
p(X0, g(Z)0)

= inf
πX,Z∈Ps(PX,PZ)

EπXEπZ|Xd
p(X0, g(Z)0) (2.12)

= inf
πZ|X:

∫
πZ|XdPX=PZ,

πZ|XPX∈Ps(PX,PZ)

EPX
EπZ|Xd

p(X0, g(Z)0)

= inf
πZ|X∈QZ|X

EPX
EπZ|Xd

p(X0, g(Z)0),

where equation (2.11) is due to the conditional independence. Equation (2.12)

follows from the observed PX,Z = Ps(PX, PY).

Let G∞
det be the set of deterministic decoders QY|Z such that QY|Z(·|z) is the

Dirac measure on g(z) for all z, i.e., Y = g(Z) a.s. for a function g : Z∞ → X∞

that maps a stationary sequence to a stationary sequence. By minimizing the

reparametrization of Theorem 1 over G∞
det, we obtain an OAE model. Similar

to relaxation (2.7), we may solve an unconstrained problem,

inf
QY|Z∈G∞

det

inf
QZ|X∈QZ|X

EPX
EQZ|XEQY|Zd

p(X0, Y0) + λDZ(PZ, QZ). (2.13)
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The additional constraint of QZ|XPX being stationary can be satisfied by re-

stricting QZ|X to be stationary (the latter implies the former).

Despite the apparent similarity to WAE (2.7), problem (2.13) has two prac-

tical issues. First, the decoder g for OAE needs to map an infinite sequence to

another infinite sequence. Learning such a map with infinite memory may face

computational challenges. Second, since PZ and QZ are both process distribu-

tions, computing the divergence DZ may also be difficult.

2.4.2 OAE for exchangeable data

If we can assume that the process X is exchangeable, we can find a tractable

upper bound of ρ̄(X,Y;Z) by bringing the nested structure of the sequence X

down to the latent sequence Z. Recall that a version of De Finetti’s theorem (Ol-

shen, 1974) ensures the existence of a real-valued random variable conditioned

on which the coordinates of X are i.i.d. when the sequence X is exchangeable.

Theorem 2. Assume process distributions PX on X∞ and PZ on Z∞ are both

exchangeable. Also, assume there exists a distribution PB on another complete,

separable metric space B (e.g., B = R) such that its joint distributions PX,B

and PZ,B satisfy PX1:n,B =
[∏n

j=1 PX0|B
]
PB and PZ1:n,B =

[∏n
j=1 PZ0|B

]
PB

for any n, respectively. Then, for any QY|Z ∈ G∞
det,

ρ̄(PX, PY;g, PZ) ≤ inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0),

where PY =
∫
Z∞ QY|ZdPZ = PZg

−1. Here, Q is the set of all conditional

distributions QZ|X,B such that the joint distribution QZ|X,BPX,B of (X,Z, B)

has the marginals
[∏n

j=1QZ0|X0,B

]
PX1:n,B and PZ1:n on (X1:n,Z1:n, B) and

Z1:n for any n, respectively.

Proof. We first need to check if Q is not empty. Consider a distribution QZ0,X0|B
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having marginals PZ0|B and PX0|B. A trivial example of such a conditional dis-

tribution is PZ0|BPX0|B. Then, we can find a conditional distribution QZ0|X0,B

satisfying that QZ0|X0,BPX0|B = QZ0,X0|B, so that
∫
X QZ0|X0,BdPX0|B = PZ0|B.

With this distribution QZ0|X0,B, we can construct a conditional distribution

QZ|X,B such that the joint distribution QZ|X,BPX,B of (X,Z, B) has a marginal[∏n
j=1QZ0|X0,B

]
PX1:n,B on (X1:n,Z1:n, B) for any n. Then, its marginal on Z1:n

is

∫
Xn×B

[ n∏
j=1

QZ0|X0,B

]
dPX1:n,B

=

∫
Xn×B

[ n∏
j=1

QZ0|X0,B

]
d
[
PB

n∏
j=1

PX0|B
]

=

∫
B

n∏
j=1

[ ∫
X
QZ0|X0,BdPX0|B

]
dPB

=

∫
B

[ n∏
j=1

PZ0|B
]
dPB

= PZ1:n ,

for any n. From the Kolmogorov extension theorem, it follows that QZ|X,B ∈ Q.

Thus Q is not empty.

Recall that Ps(PX, PZ) is the set of all jointly stationary distributions of

(X,Z) ∈ X∞ × Z∞ having PX and PZ as marginals. Let PX,Z,B be the set

of all joint distributions QZ|X,BPX,B of (X,Z, B) ∈ X∞ × Z∞ × B for any

QZ|X,B ∈ Q, and PX,Z be the set of marginal distributions on (X,Z) induced

by PX,Z,B. For any πX,Z ∈ PX,Z, there exists πX,Z,B ∈ PX,Z,B such that its

marginal is πX,Z. Since any joint distribution in PX,Z,B has marginals PX and

PZ, it follows that πX,Z has marginals PX and PZ. Also, πX,Z,B has a marginal[∏n
j=1QZ0|X0,B

]
PX1:n,B =

[∏n
j=1 PX0|BQZ0|X0,B

]
PB on X n ×Zn ×B for some
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QZ0|X0,B and for any n. This means that πX,Z is jointly exchangeable i.e.,

{(Xj , Yj)}j=∞
j=−∞ is exchangeable, thus stationary. Then, πX,Z ∈ Ps(X,Z), so

that Ps(X,Z) ⊃ PX,Z. Now starting from (2.12) in the proof of Theorem 1, we

can conclude that,

ρ̄(PX, PY;g, PZ) = inf
πX,Z∈Ps(PX,PZ)

EπXEπZ|Xd
p(X0,g(Z)0)

= inf
πX,Z∈Ps(PX,PZ)

EπX,Zd
p(X0,g(Z)0)

≤ inf
πX,Z∈PX,Z

EπX,Zd
p(X0,g(Z)0)

= inf
πX,Z,B∈PX,Z,B

EπX,Z,B
dp(X0,g(Z)0)

= inf
πZ|X,B∈Q

EPX,B
EπZ|X,B

dp(X0,g(Z)0).

Now, let us define,

DOAE(PX, PY;PZ) = inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0). (2.14)

Then, minimizing (2.14) corresponds to minimizing an upper bound of

ρ̄(PX, PY;PZ).

To handle the complexity of decoder g, which is a map from an infinite

sequence to another infinite sequence, we may restrict the domain of the opti-

mization problem. Let G∗
det be the set of deterministic decoders QY|Z such that

QY|Z(·|z) is the Dirac measure on g(z) for all z, i.e. Y = g(Z) a.s., where the
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ith element of g(Z) is Yi = g(Zi), for g ∈ NN . For such QY|Z ∈ G∗
det, we have

DOAE(PX, PY; g, PZ) = inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0)

= inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

dp(X0, g(Z0))

If we minimize DOAE(PX, PY; g, PZ) over NN :

inf
g∈NN

inf
QZ|X,B∈Q

EPX
EQZ|X,B

dp(X0, g(Z0)), (2.15)

we obtain a reduced OAE model. Since Q is parametrized by QZ0|X0,B, similar

to relaxation (2.7), we may solve an unconstrained problem,

inf
g∈NN

inf
QZ|X,B∈Q

EPX
EQZ|X,B

dp(X0, g(Z0)) + λDZ0(PZ0 ,

∫
X×B

QZ0|X0,BdPX0,B).

(2.16)

A notably unique feature of the OAE is that it can generate samples from

a given observational unit whether or not the unit is present in the training

dataset. Variations of a new given unit can be generated as well as known units,

and even a new unit can be generated from the latent space. This has not been

possible with other existing methods — notably, conditional LVMs.
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Chapter 3

Random-Intercept Ornstein
Auto-Encoders

3.1 Random-intercept OAE

A way of enabling the unique feature of the OAE discussed in the last para-

graph of the previous chapter is to specify PZ through the random intercept

model (1.1), where the latter completely specifies an exchangeable distribution

of the random process Z, and a realized random intercept corresponds to an

observational unit. For distributions PB and PE0 on Z, let

Zi
j = Bi + Ei

j , Bi i.i.d.∼ PB, Ei
j

i.i.d.∼ PE0 , Bi ⊥⊥ Ei
j .

Obviously, Zi
1:n has distribution

∫
Z
[∏n

j=1 PZ0|B
]
dPB, where Z0

d
= Zi

j . Since

each unit is represented by the random intercept Bi, Bi should encode the

“identity” of the observational unit shared among the coordinates of sequence

Zi in unit i. For given Bi, then, Zi
j encodes “within-unit variation” of unit i.

23



This random intercept model can explicitly model exchangeability in the latent

space. Hereafter, we call this approach to OAE the random-intercept OAE. Note

that B should satisfy PX1:n,B =
[∏n

j=1 PX0|B
]
PB for all n by the assumption.

The latter condition well-defines the conditional distributions PB|X such that

PB|X1:n
PX1:n = PX1:n,B for all n. In order to satisfy the assumption on B, we

need to introduce an encoder QB|X that mimics PB|X. Now, the probability

encoder is a pair (QZ0|X0,B, QB|X). Constraining
∫
X QZ0|B,X0

dPX0|B = PZ0|B

and
∫
X∞ QB|XdPX = PB ensures PZ0 =

∫
X QZ0|X0,BdPX0,B. By minimizing

the objective of (2.15) under these new constraints, the random-intercept OAE

solves the following relaxation:

inf
g∈NN

inf
QB|X

inf
QZ0|X0,B

[
EPX

EQB|XEQZ0|B,X0
dp(X0, g(Z0))

+ λ1EPB
D1(PZ0|B,

∫
X
QZ0|B,X0

dPX0) + λ2D2(PB,

∫
X∞

QB|XdPX)
]
.

(3.1)

The penalties relax the constraints,

PZ0|B =

∫
X
QZ0|B,X0

dPX0 =: QZ0|B, PB =

∫
X∞

QB|XdPX =: QB.

For the divergence measures D1 and D2, that utilized by GAN (see Bousquet

et al., 2017)

DGAN(PZ0|B, QZ0|B) = sup
f∈FNN

EPZ0|B
log f(Z0) + EQZ0|B

log(1− f(Z0)),

where FNN is the set of the “discriminator” functions f : X → (0, 1) that can be

parametrized by a neural network, and the maximum mean discrepancy (MMD,
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Gretton et al., 2012)

DMMD,κ(PB, QB) = ∥EPB
κ(·, B)− EQB

κ(·, B)∥H

for a positive definite kernel κ : Z × Z → R that induces a reproducing kernel

Hilbert space H equipped with the norm ∥ · ∥H, are promoted.

In practice, using sample estimates of the terms in (3.1) is convenient

to devise an implementable algorithm. The most difficult part is to sample

from the encoder QB|X, which requires infinite-length data. We take a mean-

field-like approach. Instead of QB|X, we employ QB|X0
, an encoder that takes

only a single coordinate of data as input. For each identity i with mi re-

peated measurements, we sample b̂ij ∼ QB|X0
(·|xij) for each j = 1, . . . ,mi.

We then aggregate b̂ij ’s to obtain b̂i = 1
mi

∑mi
j=1 b̂

i
j to approximate a sample

from QB|X. Sampling from QZ0|X0,B is relatively simple. We sample ẑij inde-

pendently from QZ0|X0,B(·|xij , b̂i) given this b̂i and the observations xij of unit

i, for j = 1, . . . ,mi. We may refer to QB|X0
and QZ0|X0,B as “identity encoder”

and “within-unit variation encoder”, respectively.

The resulting algorithm is summarized in Algorithm 1.
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Algorithm 1 Random-intercept OAE training

Input: Exchangeable sequences (xi1, ..., x
i
ni
) for i = 1, ..., L

Output: Encoder pair (QB|X0
, QZ0|X0,B) and decoder g

Require: PB, PZ0|B, regularization coefficients λ1, λ2, and positive definite

kernel κ

1: Initialize: parameters of (QZ0|X0,B, QB|X0
), g, and discriminator f

2: while QB|X0
, QZ0|X0,B, f , g not converged do

3: Sample observational unit i = 1, . . . , n and sequence (xi1, . . . , x
i
mi

) for

each unit i from the training set

4: Sample bi from PB for i = 1, . . . , n

5: Sample (zi1, . . . , z
i
mi

) from PZ0|B given bi for i = 1, . . . , n

6: Sample b̂ij ∼ QB|X0
(·|xij) for each j = 1, . . . ,mi and aggregate b̂i =

1
mi

∑mi
j=1 b̂

i
j for i = 1, . . . , n.

7: Sample (ẑi1, · · · , ẑimi
) from QZ0|X0,B given b̂i and (xi1, · · · , ximi

) for i =

1, ..., n.

8: Update QZ0|X0,B, QB|X0
, and g by descending:

1
n

n∑
i=1

1
mi

mi∑
j=1

dp(xij , g(ẑ
i
j))−

λ1
n

n∑
i=1

1
mi

mi∑
j=1

log f(ẑij)

+ λ2
n(n−1)

(∑
i ̸=l

κ(bi, bl) +
∑
i ̸=l

κ(b̂i, b̂l)
)
− 2λ2

n2

∑
i,l

κ(bi, b̂l)

9: Update f by ascending:
n∑

i=1

mi∑
j=1

log f(zij) + log(1− f(ẑij))

10: end while
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3.2 Empirical results

The performance of the random-intercept OAE with the proposed training

method is assessed for the identity-preserving generation tasks discussed in

Sect 1.1. Exemplar generation: Given a few observations (xij)
m
j=1 from a new

unit i, sample the “identity variables” (b̂ij)
m
j=1 from QB|X0

(·|xij) to take an av-

erage b̂i = 1
m

∑m
j=1 b̂

i
j . Draw a “within-unit variation” znew

j from PZ0|B(·|b̂i). An

exemplar is the reconstruction g(znew
j ). If m = 1, this task is called one-shot ex-

emplar generation. Style transfer: From observations (xkl )
L
l=1 of another unit

k ̸= i, sample b̂k as in exemplar generation. Draw “within-unit variation” ẑkl

from QZ0|B,X0
(·|b̂k, xkl ). Then sequence (g(ẑkl ))

L
l=1 transfers the style of unit k

to i. If m = 1, this task is called one-shot style transfer.

3.2.1 Implementation

In all the experiments in the following, it was assumed that X and Z are Eu-

clidean spaces with dimensions dX and dZ , respectively; accompanied Euclidean

metric d(x0, x
′
0) = ∥x0−x′0∥2 on X and p = 2 were used. The prior distribution

PZ of the latent variable Z was set as a random intercept model:

Zi
j |{Bi = bi} i.i.d.∼ N (bi, IdZ ), Bi i.i.d.∼ N (0, 100IdZ ). (3.2)

The encoder pair (QB|X0
, QZ|X0,B) was designed to be another random intercept

model:

Zi
j |{Bi = bi, Xi

j = xij}
i.i.d.∼ N (µ(xij) + bi, σ2(xij)IdZ )

Bi|{Xi
j = xij}

i.i.d.∼ N (ν(xij), τ
2IdZ ),

(3.3)
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where the mean functions µ : X → Z, ν : X → Z, and the variance function σ2 :

X → R++ were parameterized by deep neural networks. The hyperparameter τ

was kept small. Although Gaussian encoders are suboptimal to our optimization

problem (3.1) due to the restricted search space, Rubenstein et al. (2018b)

has shown empirically that such a restriction produces better outcomes when

the appropriate number of dimensions for the latent space is not known. The

decoder g was also parameterized by deep neural networks.

In the case where all the observational units are present in the training

data, the quality of samples from the random-intercept OAE was compared

with CAAE, by interpreting each unit as a class. For CAAE, the conditional

Gaussian latent variables are set:

Zi
j |{Ci = k} i.i.d.∼ N (0, IdZ ),

for k = 1, . . . ,K where C is a given class label of X0 and K is the number

of subjects. For each class k = 1, . . . ,K, the encoder QZ0|X0,C of CAAE were

designed to be a Gaussian encoder:

Zi
j |{X0 = xij , C = k} i.i.d.∼ N

(
µk(x

i, ci), σ2
k(x

i, ci)IdZ
)
,

where µk : X ×{1, . . . ,K} → Z, σ2
k : X ×{1, . . . ,K} → R++ are parameterized

by a deep neural network. The decoder g : Z × {1, . . . ,K} → X was also

parameterized by a deep neural network.

The Adam (Kingma and Ba, 2014) optimizer β1 = 0.5 for updating the first

moment estimate and β2 = 0.999 for updating the second moment estimate was

used for optimization. When generating new variations of a given subject from

the test dataset, one image per subject was used. For all convolutional layers, the

batch normalization (Ioffe and Szegedy, 2015), padding, and truncated normal
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initialization were used. Further implementation details are given in Section

3.3.

3.2.2 A toy model

To see if random-intercept OAE can learn a known low dimensional distribution

embeded in a higher dimension, training samples Zi
j = Bi +Ei

j were generated

from the two-dimensional latent space for i = 1, 2, ..., 100, j = 1, 2, ..., 5000 with

Ei
j ∼ N

([
0
0

]
,
[
0.009 0
0 0.007

])
, Bi ∼ N

([
0.2
−0.4

]
,
[
1.018 0.12
0.12 0.745

])
,

and embedded into four-dimensional Euclidean space by Xi
j = AZi

j with

A =

0.027 0.171 0.084 0.290

0.252 0.388 0.248 0.371

T

.

For learning the representation, the two-dimensional latent variable was mis-

specified for i = 1, 2, ..., n, j = 1, 2, ..., ni as

Zi
j ∼ Bi + Ei

j , Ei
j ∼ N

(
0, 0.01I

)
, Bi ∼ N

(
0, I

)
.

Then, the random-intercept OAE model with a simple architecture (4.8k pa-

rameters) was trained. The linear decoder was used to restrict the generated

sample distribution to be normal. The model was trained for 50 epochs with

mini-batch size 3000, λ1 = 10, λ2 = 10 and the learning rates of 0.01 for the

encoder-decoder and 0.005 for the discriminator. After training, samples were

generated through the decoder with n = 100 and ni = 500, and measured the

error between the samples and the true moments. The root-mean squared error

(RMSE) of the mean EBi [E[Y i
j |Bi]] was 0.0233, and the RMSE of the covariance
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matrix EBi [cov[Y i
j |Bi]] was 0.0001. This result shows that the random-intercept

OAE works well on this toy but informative model.

3.2.3 VGGFace2 dataset

Recall that in the VGGFace2 dataset the portraits of each individual are highly

correlated and exchangeable. It is also highly imbalanced, with number of por-

traits per person varying from 30 to 843. The goal of this experiment is to ex-

amine the capability of random-intercept OAE in exemplar generation of both

known and unknown units in the presence of many units (classes) and data

imbalance. As emphasized in the previous chapter, generating images from an

unknown person is impossible with existing (conditional) LVMs, e.g., CAAE.

For known subjects, the sample quality of OAE was compared with that of

CAAE. For an unknown subject, CAAE cannot generate samples, and the qual-

ity of the generated samples was compared with WAE, which ignores the unit

information.

Algorithm parameters. The latent space dimension was chosen as dZ =

128. The encoder-decoder architecture had 13.6M parameters and the discrim-

inator had 12.8M parameters. λ1 = 10, λ2 = 10 were set for OAE, and λ = 10

was set for WAE and CAAE. All models were trained for 100 epochs with mini-

batches of size 200. A constant learning rate was 0.0005 for the encoder and

decoder, and 0.001 for the discriminator.

Training. For pre-processing, the faces were cropped and rescaled to a com-

mon size of 64 by 64. Then, a training set of 146,519 images was constructed

from 500 randomly chosen subjects. Since the number of units far exceeded the

mini-batch size and the dataset is highly imbalanced, importance sampling was

30



Known units (Testset 1) Unknown units (Testset 2)

FID Sharpness FID Sharpness

Random-intercept OAE 151.994 1× 10−4 156.935 1× 10−4

CAAE 152.077 1× 10−4 - -
WAE - - 163.612 1× 10−4

Testset - 4× 10−3 - 3× 10−3

Table 3.1: VGGFace2 performance measures.

used to limit both the number of subjects and the maximum number of varia-

tions per mini-batch in early training epochs. For data augmentation, we either

added white Gaussian noise to or vertically flipped randomly chosen images in

a mini-batch.

Evaluation measures. The quality of generated samples was quantified by

the sharpness using the Laplace filter (Rubenstein et al., 2018b), and the Frechet

inception distance (FID) between the generated images distribution and the

original image distributions (Heusel et al., 2017). Both are commonly used in

the LVM literature. For FID, we picked 100 images from the generated samples

and the test dataset.

One-shot exemplar generation from known units of VGGFace2. A

test dataset (Testset 1) with 11,250 images of 49 people was constructed from

the training dataset. From the random-intercept OAE and CAAE, 100 new

variations for each units were generated. For the random-intercept OAE, only

one image of each person was provided for generating new variations of that

given unit. For CAAE, the label of each person was provided for both the

encoder and decoder. The results, seen in Table 3.1, suggest that the random-

intercept OAE could generate quality variations for known units better than

CAAE.
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One-shot exemplar generation from unknown subjects. Another test

dataset (Testset 2), with 11,250 images of 49 people, was constructed from

randomly chosen 500 units not used for training. From the random-intercept

OAE, 100 new variations for each unit were generated. From WAE, in which unit

information cannot be used, 4,900 images were generated. Table 3.1 shows that

the random-intercept OAE can generate new variations for given but unknown

units with sample quality comparable to WAE, which can only generate units

but are not able to create their systemic variations. Figure 3.1 presents some

one-shot exemplar generations of unknown subjects. Each row corresponds to

a single person (unit). Column 1 shows the randomly chosen images of a unit,

column 2 shows images decoded the identity variable, i.e., the encoded random

intercepts, and each column from column 3 onwards represents a new variation

applied on each estimated identity. Note that each row of Figure 3.1 should

look like the same person.

Style transfer. Figure 3.2 demonstrates style transfer results when both tar-

get and base persons are chosen from an unknown person. The first row shows

the observations of a given base person. Second row shows the reconstructions

of the given observation, and the last row provides the style-transferred images.

Note that the images of the last row of Figure 3.2 should look like the target per-

son while the poses copy the corresponding image above in the first row. Figure

3.2 demonstrate that the random-intercept OAE can generate style-transferred

images in high quality between two unknown persons. This generalizability is

unique to OAE, and suggests that OAE can be a useful data augmentation

tool for many applications such as face recognition in the presence of high data

imbalance.

32



Unit-level disentanglement in representation from VGGFace2. An-

other benefit of our random process modeling is that units can be well-separated

in the representation space. Figure 3.3 shows t-SNE maps (Maaten and Hinton,

2008) of the latent space representation of randomly selected 225 images of 10

people, known and unknown. For random-intercept OAE, t-SNE maps of the

encoded images of known units (panel (a)) and unknown units (panel (b)) are

shown in the Figure 3.3. Panel (c) shows t-SNE map of the encoded images

from WAE. Each color represents a single person. For known units, clustering

by unit is clear. Unknown units are also separated well, judged by visual inspec-

tion and by the ratio of within-group sum of squares (SSW) to between-group

sum of squares (SSB); SSW/SSB is less than 1 for both cases. By design, WAE

is incapable of separating units at all.
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Figure 3.1: One-shot exemplar generation from unknown units of VGGFace2.
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Figure 3.2: One-shot style transfer results for VGGFace2.
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Figure 3.3: t-SNE map of the encoded images from VGGFace2.
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3.2.4 MNIST dataset

The goal of this experiment is to examine the performance of random-intercept

OAE when the number of subjects is given and fixed. With balanced data, con-

ditional methods such as CAAE are expected to perform well. In the presence

of class imbalance, however, random process-based OAE has an advantage due

to its generalizability.

Algorithm parameters. The latent space dimension was chosen as dZ = 8.

The encoder-decoder architecture had 6.1M parameters, and the discriminator

had 265k parameters. λ1 = 10, λ2 = 10, and λ = 10 were set. All models were

trained for 100 epochs with mini-batch size 100, with learning rates of 0.01

for the encoder-decoder and 0.005 for the discriminator which were manually

halved at the 30th and 50th epochs. The network architectures for CAAE and

WAE were kept mostly the same as random-intercept OAE, save the random-

intercept components.

Evaluation measures. Similar to the VGGFace2 experiment, the sharpness

of generated images were measured. To compare the class-conditional gener-

ation quality, class-conditional samples were generated from random-intercept

OAE and CAAE. Then, the classification accuracy of the generated digits, mea-

sured by a pre-trained deep MNIST digit classifier with 99.2% accuracy, was

calculated. Additionally, the diversity of the generated samples per class were

measured and compared via structural similarity (SSIM), which is a perceptual

similarity metric range between 0 and 1 (Wang et al., 2004; Odena et al., 2017).

The mean SSIM score of 50 randomly chosen image pairs conditioned on each

digit was evaluated, and the average of the digit-wise mean SSIM scores was

recorded.
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Balaced training data Imbalanced training data

Accuracy SSIM Sharpness Accuracy SSIM Sharpness

Random-intercept OAE 0.992 0.318 2× 10−2 0.972 0.320 2× 10−2

CAAE 0.877 0.224 4× 10−2 0.839 0.190 4× 10−2

WAE - - 4× 10−2 - - 4× 10−2

Testset 0.999 0.235 1× 10−1 0.999 0.235 1× 10−1

Table 3.2: MNIST performance measures.

Balanced training data. A balanced training dataset with 10 classes of

56,000 images and a balanced test dataset with 10 classes of 1,000 images were

used in this experiment. For comparison, 10 classes of 1,000 images were gener-

ated from CAAE and random-intercept OAE, and 10,000 images were generated

from WAE by ignoring classes. The accuracy shown in Table 3.2 suggests that

random-intercept OAE mostly generated correct digits whereas CAAE some-

times failed. The diversity of generated samples were similar.

Imbalanced training data. An imbalanced dataset was created by dropping

90% of images in randomly chosen three classes (digits of 0, 3, and 4) from the

balanced training set. The resulting set had 10 classes, 40,933 images. Table 3.2

reveals that the accuracy gap between random-intercept OAE and CAAE for

the generated samples widened in the imbalanced setting.

One-shot exemplar generation from imbalanced training of MNIST.

Figure 3.4, panels (a) and (b) illustrate that random-intercept OAE generated

class-conditioned variations successfully even for the minority classes (0, 3, and

4) for which CAAE produced incorrect results. Note that WAE cannot generate

class-conditional distributions, resulting in mixed digits (Figure 3.4 (c)).
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Unit-level disentanglement in representation from MNIST. Figure

3.4 (d) shows the TSNE map of the latent space representation of the test

images obtained from the encoder trained with imbalanced data. The well-

separated digits in the plot explain the high accuracy of the random-intercept

OAE even with imbalanced data; the ratio SSW/SSB is also very small, close

to the ideal value of σ2
0/τ

2
0 = 0.01.
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Figure 3.4: One-shot exemplar generation from imbalanced training of MNIST.
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3.3 Appendix

Implementation details for Section 3.2 are provided in this section.

3.3.1 Architectures

VGGFace2 Table 3.3, 3.4 and 3.5 summarize the details of the random-

intercept OAE architecture trained for the VGGFace2 data. The images were

transformed range from [0,225] to [-1,1]. A hyperbolic tangent activation was

used for the decoder output. Except for the layers related to the random in-

tercept, the CAAE and WAE architectures are mostly the same as random-

intercept OAE; CAAE required additional input for the label information for

both encoder and decoder.
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MNIST For MNIST, Table 3.6, 3.7 and 3.8 provide the details of the random-

intercept OAE architecture. A sigmoid activation was used for the decoder

because the image was transformed range from [0,225] to [0,1].

44



L
ay

er
O

pe
ra

ti
on

F
ilt

er
s

K
er

ne
l

St
ri

de
s

B
at

ch
no

rm
A

ct
iv

at
io

n
L
in

ke
d

la
ye

r

1
C

on
vo

lu
ti

on
64

3x
3

2x
2

Y
es

R
eL

U
In

pu
t

2
C

on
vo

lu
ti

on
12

8
3x

3
2x

2
Y

es
R

eL
U

1
3

C
on

vo
lu

ti
on

25
6

3x
3

2x
2

Y
es

R
eL

U
2

4
C

on
vo

lu
ti

on
51

2
4x

4
4x

4
Y

es
R

eL
U

3
5

C
on

vo
lu

ti
on

10
24

1x
1

1x
1

Y
es

R
eL

U
4

µ
D

en
se

8
-

-
N

o
L
in

ea
r

5
σ
2

D
en

se
8

-
-

N
o

L
in

ea
r

5
ν

D
en

se
8

-
-

N
o

L
in

ea
r

5
O

ut
pu

t
(B

|X
0
)

Sa
m

pl
e
B
|X

0
-

-
-

-
-

ν
O

ut
pu

t
(Z

|B
,X

0
)

Sa
m

pl
e
Z
|B

,X
0

-
-

-
-

-
µ
,σ

2
,B

|X
0

T
ab

le
3.

6:
M

N
IS

T
en

co
de

r
pa

ir
(Q

Z
|B

,X
0
,Q

B
|X

0
);
d
Z
=

8

45



L
ay

er
O

pe
ra

ti
on

F
ilt

er
s

K
er

ne
l

St
ri

de
s

B
at

ch
no

rm
A

ct
iv

at
io

n
L
in

ke
d

la
ye

r

1
D

en
se

7x
7x

51
2

-
-

N
o

R
eL

U
In

pu
t

2
R

es
ha

pe
to

(7
,7

,5
12

)
-

-
-

-
-

1
3

T
ra

ns
po

se
C

on
vo

lu
ti

on
25

6
4x

4
2x

2
Y

es
R

eL
U

2
4

T
ra

ns
po

se
C

on
vo

lu
ti

on
12

8
4x

4
2x

2
Y

es
R

eL
U

3
O

ut
pu

t
C

on
vo

lu
ti

on
1

4x
4

1x
1

N
o

Si
gm

oi
d

4

T
ab

le
3.

7:
M

N
IS

T
de

co
de

r
g

L
ay

er
O

pe
ra

ti
on

F
ilt

er
s

K
er

ne
l

St
ri

de
s

B
at

ch
no

rm
A

ct
iv

at
io

n
L
in

ke
d

la
ye

r

1
D

en
se

25
6

-
-

N
o

R
eL

U
In

pu
t

2
D

en
se

25
6

-
-

N
o

R
eL

U
1

3
D

en
se

25
6

-
-

N
o

R
eL

U
2

4
D

en
se

25
6

-
-

N
o

R
eL

U
3

5
D

en
se

25
6

-
-

N
o

R
eL

U
4

O
ut

pu
t

D
en

se
1

-
-

N
o

Si
gm

oi
d

5

T
ab

le
3.

8:
M

N
IS

T
di

sc
ri

m
in

at
or

f

46



A toy model Table 3.9, 3.10 and 3.11 provide the details of the random-

intercept OAE architecture for the four-dimensional toy model in Section 3.2.

Layer Operation Filters Batch norm Activation Linked layer

1 Dense 32 Yes ReLU Input
2 Dense 32 Yes ReLU 1
3 Dense 32 Yes ReLU 2
µ Dense 2 No Linear 3
σ2 Dense 2 No Linear 3
ν Dense 2 No Linear 3

Output (B|X0) Sample B|X0 - - - ν
Output (Z|B,X0) Sample Z|B,X0 - - - µ, σ2, B|X0

Table 3.9: Toy model encoder pair (QZ|B,X0
, QB|X0

); dZ = 2

Layer Operation Filters Batch norm Activation Linked layer

1 Dense 2 No ReLU Input
Output Dense 4 No Linear 1

Table 3.10: Toy model decoder g

Layer Operation Filters Batch norm Activation Linked layer

1 Dense 30 No ReLU Input
2 Dense 30 No ReLU 1
3 Dense 30 No ReLU 2

Output Dense 1 No Sigmoid 3

Table 3.11: Toy model discriminator f
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Chapter 4

Product-Space Ornstein
Auto-Encoders

4.1 Issues with random-intercept OAE

Despite the advantages of the OAE discussed in Chapter 2, the approach of

the random-intercept OAE in Chapter 3 comes with several problems. First,

the constraints in problem (3.1) do not fully incorporate the assumptions

of the model. First of all, the objective in (3.1) is only an upper bound of

DOAE(PX, PY; g, PZ). Assume a process distribution PX on X∞ is exchangeable

and the random variable B deconvolves X so that PX1:n,B =
[∏n

j=1 PX0|B
]
PB

for any n. For any QY|Z ∈ Q∗
det and PY =

∫
QY|ZdPZ = PZg

−1, the random-

intercept OAE uses

DRIOAE(PX, PY; g, PZ) = inf
QZ|X,B∈QRI

EPX,B
EQZ|X,B

dp(X0, g(Z0)).
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Here, QRI is the set of all conditional distributions QZ|X,B such that the joint

distribution PX,BQZ|X,B of (X,Z, B) has the marginal
[∏n

j=1QZ0|X0,B

]
PX1:n,B

on (X1:n,Z1:n, B) for any n, and
∫
X QZ0|X0,BdPX0|B = PZ0|B. For any QZ|X,B ∈

QRI , its marginal on Z1:n is

∫
Xn×Z

[ n∏
j=1

QZ0|X0,B

]
dPX1:n,B

=

∫
Xn×Z

[ n∏
j=1

QZ0|X0,B

]
d
[
PB

n∏
j=1

PX0|B
]

=

∫
Z

n∏
j=1

[ ∫
X
QZ0|X0,BdPX0|B

]
dPB

=

∫
Z

[ n∏
j=1

PZ0|B
]
dPB

= PZ1:n ,

for any n. Thus, QZ|X,B ∈ Q and Q ⊃ QRI . It follows that

DOAE(PX, PY; g, PZ) ≤ DRIOAE(PX, PY; g, PZ). (4.1)

Furthermore, the independence and additivity assumptions of the random in-

tercept model are not imposed directly. Second, the constraint QZ0|B = PZ0|B

is imposed for all observational units, i.e., for all possible values of B. Because

of this excessive number of constraints, there has to be a sufficient number of

observations with diverse variation for every unit to ensure successful training,

which would be an exceptional feature for real data. Lastly, the formulation (3.1)

does not fully utilize the exchangeable nature of the data. The random-intercept

OAE assumes that there exists a random variable B conditioned on which the

coordinates of X are i.i.d. and imposes the constraint QB|XPX = PX,B. How-
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ever, there is no mechanism in the formulation (3.1) that promotes this. The

penalty D2(PB,
∫
X∞ QB|XdPX) from formulation (3.1), which relaxes the con-

straint PB =
∫
X∞ QB|XdPX, cannot achieve that constraint. This means that

the random-intercept OAE cannot achieve the upper bound DRIOAE in (4.1) by

solving (3.1) even if the relaxation is tight, except when the trained “identity

encoder” QB|X satisfies that QB|XPX = PX,B.

4.2 Product-space model for latent space

The random intercept model (1.1) is not the only way to imposing exchange-

ability to a sequence. More importantly, the additive structure of this model

may limit the expressiveness of the entire generative model. A more flexible

approach is to decompose Z into I ×V. Suppose PB on I and PE0 on V. Now,

specify PZ on Z∞ by

Zi
j = (Bi, Ei

j), Bi i.i.d.∼ PB, Ei
j

i.i.d.∼ PE0 , Bi ⊥⊥ Ei
j . (4.2)

Ideally, Bi encodes the “identity” of the observational unit shared among the

coordinates of sequence Zi, and Ei
j encodes the “within-unit variation” shared

among all observational units. Clearly Zi is exchangeable. Furthermore, the

sequence (g(Bi, Ei
1), g(B

i, Ei
2), . . . ) is exchangeable for any function g : I×V →

X . Additivity, for example, is absorbed into the decoder and can be learned from

data. We call this approach to OAE the product-space OAE.

The key advantage of the product-space OAE over the random-intercept

OAE is that it directly optimizes the upper bound (2.14). To see this, assume

that PX on X∞ is exchangeable, and the random variable B on I deconvolves
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X so that PX1:n,B =
[∏n

j=1 PX0|B
]
PB for any n. Recall formulation (2.14):

DOAE(PX, PY;g, PZ) = inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0).

where PY =
∫
QY|ZdPZ = PZg

−1. Again, Q is the set of all conditional dis-

tributions QZ|X,B such that the joint distribution QZ|X,BPX,B of (X,Z, B) has

marginals
[∏n

j=1QZ0|X0,B

]
PX1:n,B and PZ1:n on (X1:n,Z1:n, B) and Z1:n for any

n, respectively. Note that any QZ0|X0,B fully parameterizes Q and under model

(4.2), QZ0|X0,B = QB,E0|X0,B = QB|X0,BQE0|X0,B , where QB|X0,B(·|x0, b) is the

Dirac measure on b for any b ∈ I. From the construction (4.2), for b ∈ I and

ej ∈ V, j = 1, ..., n,

PZ1:n((b, e1), (b, e2), ..., (b, en)) =
[ n∏
j=1

PE0|B(ej |b)
]
PB(b)

for any n. But from (2.14),
∫ [∏n

j=1QZ0|X0,B

]
dPX1:n,B can be formulated by

PZ1:n((b, e1), (b, e2), ..., (b, en))

=

∫
Xn×I

[ n∏
j=1

QZ0|X0,B((b
′, ej)|xj , b)

]
dPX1:n,B(x1, · · · , xn, b

′)

=

∫
I

∫
Xn

[ n∏
j=1

QZ0|X0,B((b
′, ej)|xj , b)

]
dPX1:n|B(x1, ..., xn|b′) dPB(b

′)

=

∫
I

 n∏
j=1

∫
X
QZ0|X0,B((b

′, ej)|xj , b)dPX0|B(xj |b′)

 dPB(b
′)

=

∫
I

 n∏
j=1

∫
X
QB|X0,B(b

′|xj , b)QE0|X0,B(ej |xj , b)dPX0|B(xj |b′)PX0|B(xj |b′)

 dPB(b
′)

=

 n∏
j=1

∫
X
QE0|X0,B(ej |xj , b)dPX0|B(xj |b)

PB(b)
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for all n, since QB|X0,B is the Dirac measure on b. Thus

∫
X
QE0|X0,BdPX0|B = PE0 a.s. (4.3)

and QE0|X0,B fully parameterizes Q under the constraint (4.3) and that B

satisfies PX1:n,B =
[∏n

j=1 PX0|B
]
PB for all n. The latter condition well-defines

the conditional distributions PB|X such that PB|X1:n
PX1:n = PX1:n,B for all n.

Thus, DOAE(PX, PY;PZ) has the formulation in terms of a pair of encoders

(QE0|X0,B, QB|X):

DOAE(PX, PY;PZ)

= inf
QZ|X,B∈Q

EPX,B
EQZ|X,B

EQY|Zd
p(X0, Y0),

= inf
QE0|X0,B

∈QE0

EPX
EQB|XEQE0|X0,B

dp(X0, g(B,E0)),

where QE0 = {QE0|X0,B :
∫
X QE0|X0,BdPX0|B = PE0}.

To ease computation, we consider further relaxation. From PE0|B = PE0 , we

have

PE0 =

∫
I
PE0dPB

=

∫
I

∫
X
QE0|X0,BdPX0|BdPB

=

∫
X×I

QE0|X0,BdPX0,B.

The resulting version of the product-space OAE is then

inf
g

inf
QB|X

inf
QE0|B,X0

[
EPX

EQB|XEQE0|B,X0
dp(X0, g(B,E0))

+ λ1DB(PB,
∫
X∞ QB|XdPX) + λ2DE0(PE0 ,

∫
X×I QE0|X0,BdPX0,B), (4.4)
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for appropriate choices of the divergence measures DB and DE0 .

4.3 Training product-space OAE

Alternating optimization Empirically, the following alternating optimiza-

tion scheme is effective in training the product-space OAE, especially for chal-

lenging datasets like VGGFace2: 1) Fix the parameters of the “within-unit vari-

ation encoder” QE0|B,X0
, and update the parameters of the “identity encoder”

QB|X and decoder g until the infimand of problem (4.4) no longer changes.

2) Fix the parameters of the identity encoder and update the parameters of

QE0|B,X0
and decoder g until the infimand of problem (4.4) no longer changes. 3)

Repeat steps 1 and 2 until the parameters of the encoder pair (QB|X, QE0|B,X0
)

and decoder g converge.

Similar to the random-intercept OAE in Section 3.1, the product-space OAE

uses the DGAN for DE0 and MMD for DB. The identity encoder QB|X0
takes only

a single coordinate as its input and yields “identity variables” b̂ij ∼ QB|X0
(·|xij)

for each j = 1, . . . ,mi. In order to obtain b̂i ∼ QB|X1:mi
(·|{xij}

mi
j=1), we aggregate

b̂ij ’s so that b̂i = 1
mi

∑mi
j=1 b̂

i
j , as used in Lines 5 of Algorithm 2. We also sample

êij independently from the within-unit variation encoder QE0|B,X0
(·|b̂i, xij) given

this b̂i and the observations xij of unit i, for j = 1, . . . ,mi. This mean-field-like

approximation to QB|X may harm the independence of the encode variables Bi

and Ei
j . It is empirically observed that adding an additional penalty based on

the Hilbert-Schmidt Independence Criterion (HSIC, Gretton et al., 2005; Lopez

et al., 2018) greatly improves the training.

HSICι,ϑ(QB,E0)

=
∥∥∥EQB,E0

([
ι(·, B)− EPB

ι(·, B)
]
⊗
[
ϑ(·, E0)− EPE0

ϑ(·, E0)
])∥∥∥2

HS
,
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for positive definite kernels ι : I × I → R and ϑ : V × V → R that respectively

induce reproducing kernel Hilbert spaces Hι and Hϑ; ⊗ denotes the tensor prod-

uct and ∥C∥2HS is the squared Hilbert-Schmidt norm (the sum of the squared

singular values) of the cross-covariance operator C. This independence crite-

rion is effective in training the product-space OAE, especially when dataset has

a small number of samples per each unit. For example, VGGFace2 has 362.6

number of images per person on average, which is small compared to 10,000

number of images per digit in MNIST.

The resulting training algorithm is summarized as Algorithm 2.

Initialization. In practice, random variable B only deconvolves the output

process Y but not necessarily the input X. Ideally, the latent variable B should

encode the “identity” of the samples of an observational unit and make the

coordinates of input X conditionally i.i.d. Thus, encoder QB|X should be some

smoothed version of a classifier (Olshen, 1974). Any sensible classifier of the

training data can be fit and used as the “initial value” of QB|X. For example,

features from the last hidden layer of the pre-trained ResNet classifier (Cao

et al., 2018) can be employed for VGGFace2.
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Algorithm 2 Product-space OAE training

Input: Exchangeable sequences (xi1, ..., x
i
ni
) for i = 1, ..., L

Output: Encoder pair (QB|X0
, QE0|B,X0

) and decoder g

Require: PB, PE0 , regularization coefficients λ1, λ2 and λ3, positive definite

kernels ι, ϑ

1: while QB|X0
, QE0|B,X0

, f , g not converge do

2: while QB|X0
, g not converged do

3: Sample units i = 1, ..., n and sequence (xi1, ..., x
i
m) for each unit i

4: Sample bi from PB and (ei1, ..., e
i
m) from PE0 for all i = 1, ..., n

5: Sample b̂ij ∼ QB|X0
(·|xij) for each j = 1, ...,m and aggregate b̂i =

1
m

∑m
j=1 b̂

i
j for i = 1, ..., n.

6: Sample (êi1, ..., ê
i
m) from QE0|B,X0

given b̂i and (xi1, ..., x
i
m) for all i =

1, ..., n

7: Update QB|X0
and g by descending:

1

nm

n∑
i=1

m∑
j=1

dp(xi
j , g(b̂

i, êij)) +
λ1

n(n− 1)

∑
i ̸=l

κ(bi, bl) +
λ1

n(n− 1)

∑
i ̸=l

κ(b̂i, b̂l)

−2λ1

n2

∑
i,l

κ(bi, b̂l) +
λ3

(nm)2

n∑
i,j

m∑
q,r

ι(b̂iq, b̂
j
r)ϑ(ê

i
q, ê

j
r)

+
λ3

(nm)4

n∑
i,j,k,l

m∑
q,r,v,w

ι(b̂iq, b̂
j
r)ϑ(ê

k
v , ê

l
w)−

λ3

(nm)3

n∑
i,j,k

m∑
q,r,v

ι(b̂iq, b̂
j
r)ϑ(ê

i
q, ê

k
v)

8: end while

9: while QE0|B,X0
, f , g not converged do

10: Repeat 3 - 6
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11: Update QE0|B,X0
and g by descending:

1

nm

n∑
i=1

m∑
j=1

dp(xi
j , g(b̂

i, êij))−
λ2

nm

n∑
i=1

m∑
j=1

log f(êij)

+
λ3

(nm)2

n∑
i,j

m∑
q,r

ι(b̂iq, b̂
j
r)ϑ(ê

i
q, ê

j
r) +

λ3

(nm)4

n∑
i,j,k,l

m∑
q,r,v,w

ι(b̂iq, b̂
j
r)ϑ(ê

k
v , ê

l
w)

− λ3

(nm)3

n∑
i,j,k

m∑
q,r,v

ι(b̂iq, b̂
j
r)ϑ(ê

i
q, ê

k
v)

12: Update f by ascending:
n∑

i=1

m∑
j=1

log f(eij) + log(1− f(ẽij))

13: end while

14: end while
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4.4 Empirical results

The performance of the product-space OAE with the proposed training method

was assessed for the three tasks discussed in Section 1.1. Exemplar genera-

tion: Given a few observations (xij)
m
j=1 from a new unit i, sample the “identity

variables” (b̂ij)
m
j=1 from QB|X0

(·|xij) to take an average b̂i = 1
m

∑m
j=1 b̂

i
j . Draw a

“within-unit variation” ej from PE0 . An exemplar is the reconstruction g(b̂i, ej).

If m = 1, this task is called one-shot exemplar generation. Style transfer:

From observations (xkl )
L
l=1 of another unit k ̸= i, sample b̂k as in exemplar

generation. Draw “within-unit variation” êkl from QE0|B,X0
(·|b̂k, xkl ). Then se-

quence (g(b̂i, êkl ))
L
l=1 transfers the style of unit k to i. If m = 1, this task is

called one-shot style transfer. Unit generation: In order to generate a new

unit not in the data, sample bnew from PB and sequence (enew
j ) from PE0 i.i.d.

Then pass ((bnew, enew
j )) to the decoder g. In addition, the representation power

of the “identity variables" can be considered by the prototype image: for unit

i, compute b̂i as in exemplar generation. Then g(b̂i, µE0) is the prototype image

of unit i, where µE0 is the mean of E0.

For all the experiments, X = RdX and Z = RdZ with Euclidean metric

d(x, x′) = ||x− x′||2. The prior distribution PZ of the latent variable Z follows

model (4.2). The independent standard normal prior PE0 = N (0, IdV ) and PB =

N (0, IdI ) were set over I = RdI and V = RdV , respectively. The identity encoder

QB|X0
and the within-unit variation encoder QE0|B,X0

were also designed as

Gaussian:

Bi|{X0 = xij}
iid∼ N (µB(x

i
j), σ

2
B(x

i
j)IdI ),

Ei
j |{B = bi, X0 = xij}

iid∼ N (µE(x
i
j , b

i), σ2
E(x

i
j , b

i)IdV ),

with the mean functions µB : X → I, µE : X×I → V and the variance functions
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σ2
B : X → R++, σ2

E : X × I → R++. For the VGGFace2 experiments, µB and

σ2
B were initialized with a pre-trained classifier (Cao et al., 2018). The µE and

σE were designed to share most of the network to prevent overfitting. The

quality of generated sample was compared with WAE, in which observational

units are not preserved. Within-unit sample generations was compared with the

random-intercept OAE proposed in Chapter 3.

If all units are present in training data, the quality of samples were also com-

pared with CAAE, by interpreting each unit as a class. Further implementation

details are given in Section 4.6.

4.4.1 Imbalanced MNIST

For the MNIST data, randomly selected 40,357 images were used for training,

and the rest were used for testing. In order to impose imbalance in the training

data, 90% of the training images of digits of 1, 2, and 6 were removed.

Generated images and t-SNE maps of the within-unit variation in the latent

space are shown in Figure 4.1. As a reference, samples from the prior distri-

bution are plotted in translucent blue dots in panel B. For CAAE and the

random-intercept OAE, the distribution of the encoded within-unit variation

shows non-ideal clustering. In particular, the digit 1 (orange), which is a mi-

nority class, is distinctly clustered. A similar phenomenon can be observed for

the digit 2 (green). This is an indication of training instability of the random-

intercept OAE, leading to the poor quality in the prototype images of digits

2 and 6 in panel A. Because of the class imbalance, CAAE also shows poor

quality in the prototype images of digit 1 and 2. In panel C, for each method,

the first column carries the prototype images from one observation. The rest

of columns correspond to newly generated variations of the prototypes. Dashed

red lines represent the minority classes, i.e., the digits 1, 2, and 6. Product-space
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Accuracy One-shot accuracy SSIM Sharpness

WAE - - - 0.047(±0.003)
CAAE 0.860(±0.008) - 0.244(±0.020) 0.041(±0.007)
Random-intercept OAE 0.919(±0.033) 0.873(±0.059) 0.292(±0.017) 0.025(±0.004)
Product-space OAE 0.939(±0.019) 0.878(±0.029) 0.263(±0.008) 0.032(±0.008)

Testset 0.994(±0.002) - 0.229(±0.009) 0.075(±0.004)

Table 4.1: Imbalanced MNIST performance measures.

OAE shows the best performance in matching the distribution of prior and the

within-unit variation, and quality of within-unit sample generation for minority

class.

Table 4.1 reports several measures of reconstruction quality, averaged over

10 repetitions of 100 exemplar generations.1 (One-shot) accuracy measures the

classification accuracy of an MNIST-trained deep digit classifier for five (one)

generated images per digit. Also, the structural similarity (SSIM) (Wang et al.,

2004; Odena et al., 2017) and sharpness measured by using the Laplace filter

(Tolstikhin et al., 2018) are provided to assess the per-image quality of the gen-

erated digits. Samples from CAAE and both OAEs indicate similar quality to

the unconditionally generated ones from WAE. As for the recognizability of the

generated digits, both OAEs report higher accuracy than CAAE. Noticeably,

the (class-given generation) accuracy of CAAE is even lower than the one-shot

accuracy of OAEs. Between the two OAEs, the product-space OAE outperforms

by all metrics.

1Standard deviations are also provided in the parentheses.
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Figure 4.1: Sample generation from imbalanced MNIST and VGGFace2.
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4.4.2 VGGFace2

For the VGGFace2 dataset, each of the face images was cropped and rescaled

to a common size of 128 by 128 pixels. The training set consisted of 2,513,512

images from 8,631 randomly chosen people. The test set for people used during

training consisted of the 628,378 images from those 8,631 people. Another test

set is comprised of 169,396 images from 500 randomly chosen people not already

included in the training set.

The generated images are given in Figure 4.1. Panel A shows that CAAE

failed to preserve the identity of the people used in training. This is likely be-

cause of the large number of classes (identities) in the data and severe class im-

balance. On the other hand, the product-space OAE successfully preserves the

identities of the input images in the prototypes, regardles of whether or not the

input identity is known to the model. In this task, the random-intercept OAE

was not as good as the product-space OAE. The superior “identity-preservation”

performance of the product-space OAE carries over to the tasks of one-shot ex-

emplar generation (panel B) and one-shot style-transfer (panel C). Note that

each row of panel B should look like the same person, and the last row of panel C

should look like the target person, while copying the poses of the corresponding

image above in the first row. Remarkably, the product-space OAE also suc-

ceeded in generating completely new identities (neither in the training set nor

the test set) with shared pose variation (panel D). The random-intercept OAE

failed, and class-conditional models like CAAE are not capable of this task.

WAE may generate new identities, but are not able to create their systematic

variations.

In Table 4.2, the quality of one-shot exemplar generation is quantified by

the inception score (IS) (Salimans et al., 2016), the sharpness of the generative
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images, and the Frechet inception distance (FID) between the generated images

distribution and the original image distributions (Heusel et al., 2017). These

measures were averaged over 10 repetitions of 30 exemplar generations. For

each unit, 300 samples were generated. All measures favor OAE over WAE

and CAAE. For FID, the product-space OAE shows the best result, which

implies the data generated from the latter is closer to the original data than

the random-intercept OAE.

4.5 Discussion

To learn the correlation structure inherently residing in the exchangeable data,

OAE applies the exchangeable model to the latent space. It is shown that OAE

can provide disentangled representations, i.e., latent variables that are well-

clustered by subjects. OAE has successfully demonstrated high performance in

three types of identity-preserving generation tasks that have been advocated in

assessing the quality of generative models, namely exemplar generation, style

transfer, and unit generation. To the best of author’s knowledge, this is the

only framework to date that can perform all of the three tasks successfully.

Also, OAE is robust to data imbalance compare to other conditional LVMs.

This capability has potential applications in classification and recognition as

well.

A natural next step is to go beyond the exchangeability assumption, in

tasks like generating faces of an individual person with age variation. Exploring

domain generalization would also be a promising future avenue. By considering

the domain as an observational unit, we may be able to disentangle the domain

effect within the latent space.
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4.6 Appendix

This section provides the implementation details and additional experiments.

4.6.1 Implementation details

Conditional adversarial auto-encoders When all of the observational

units were present in the training data, the quality of samples from the product-

space OAE were compared with CAAE, by interpreting each unit as a class.

For the CAAE, the conditional Gaussian latent variables were set:

Zi
j |{Ci = k} iid∼ N (0, IdZ ),

for k = 1, . . . ,K where C is a given class label of X0 and K is the number

of subjects. For each class k = 1, . . . ,K, the encoder QZ0|X0,C of CAAE was

designed to be a Gaussian encoder:

Zi
j |{X0 = xij , C

i = k} ∼ N
(
µk(x

i, ci), σ2
k(x

i, ci)IdZ
)
,

where µk : X ×{1, . . . ,K} → Z, σ2
k : X ×{1, . . . ,K} → R++ are parameterized

by a deep neural network. The decoder g : Z × {1, . . . ,K} → X was also

parameterized by a deep neural network.

Random-intercept OAE The implementations of the random-intercept

OAE followed the recipe in Section 3.2. The prior distribution PZ0 was a random

intercept model with Gaussian noise:

Zi
j |{Bi = bi} iid∼ N (bi, IdZ ), Bi iid∼ N (0, 100IdZ ),
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and the encoder pair (QZ0|B,X0
, QB|X0

) was designed to be a random-intercept

Gaussian encoder pair:

Zi
j |{B = b̃i, X0 = xij}

iid∼ N (µ(xij)+b̃i, σ2(xij)I), B|{X0 = xij}
iid∼ N (ν(xij), τ

2I),

where the mean functions µ : X → Z, ν : X → Z, the variance function

σ2 : X → R++, and the decoder g : Z → X were parameterized by deep neural

networks. The hyperparameter τ was kept small.

4.6.2 Architectures

For every convolutional layer used in the networks, padding and truncated

normal initialization were applied.

Imbalanced MNIST Tables 4.3, 4.4, and 4.5 provide the details of the archi-

tecture of the product-space OAE. “Batch norm” indicates whether there was a

batch normalization layer (Ioffe and Szegedy, 2015) included. A sigmoid activa-

tion was used to decode the image range transformed from [0,225] to [0,1]. The

network architectures for CAAE, WAE, and the random-intercept OAE were

almost the same as the product-space OAE, except for the output layers of the

encoder pair and the input of the decoder; CAAE required additional input for

the one-hot encoding of the label information for both encoder and decoder.

The encoder-decoder architecture had 1M parameters, and the discriminator

architecture had 17k parameters.
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VGGFace2 Tables 4.6 through 4.9 summarize the details of the product-

space OAE architecture trained for the VGGFace2 data. For each image, the

pixel value range was transformed from [0, 225] to [-1,1]. A hyperbolic tangent

activation was used for the decoder output. For product-space OAE, features

from the 2,048 dimensional last hidden layer of a pre-trained VGGFace2 clas-

sifier (Cao et al., 2018) were employed as input to the identity encoder QB|X0

(Table 4.6). This pre-trained VGGFace2 classifier employed a ResNet-50-based

architecture (He et al., 2016) with squeeze-and-excitation (SE) blocks (Hu et al.,

2018). It was trained with a training set comprised of 8631 identities. Except

for the input layer and the last layer, the architectures of the encoders and

decoders from the CAAE, WAE, and the random-intercept OAE were primar-

ily the same as the within-unit encoder and the decoder from product-space

OAE, respectively; CAAE required additional input for the one-hot encoding

of the label information for both the encoder and decoder. Aside from CAAE,

the encoder-decoder architecture had 19M parameters. CAAE had an encoder-

decoder architecture with a larger 24M parameters, mainly due to the added

information pertaining to the 8,631 number of classes. The discriminator archi-

tectures had 855K parameters.
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4.6.3 Training details

The Adam optimizer (Kingma and Ba, 2014) was used to train the model, with

β1 = 0.9 for updating the first moment estimate and β2 = 0.999 for updating

the second moment estimate.

Details of the imbalanced MNIST training All models were trained

for 10,000 iterations with mini-batch of size 600 with no need of alternating

optimization. The models were updated with the learning rates of 0.001 for the

encoder-decoder pair and 0.0005 for the discriminator. Both learning rates were

decayed by multiplying 1/1.0001 after every 100 iterations. λ1 = 1, λ2 = 1, and

λ3 = 1 were set. On average, 100 iterations took 6 seconds.

Details of the VGGFace2 training First, the model was trained with

alternating optimization: 1) Fix the parameters of the within-unit variation

encoder QE0|B,X0
and train the identity encoder QB|X0

and decoder g for 10,000

iterations with λ1 = 100, λ2 = 0, and λ3 = 1000; 2) Fix the parameters of the

identity encoder QB|X0
and train the identity encoder QE0|B,X0

and decoder g

for 10,000 iterations with λ1 = 0, λ2 = 100, and λ3 = 1, 000. Steps 1 and 2

were repeated for 15 times, then the model was fine-tuned without alternating

optimization for 30,000 iterations with λ1 = 100, λ2 = 100, and λ3 = 1, 000.

For a total of 330,000 iterations, the mini-batches with a size of 600 were used

for training. The learning rates were 0.001 for the encoder-decoder and 0.001

for the discriminator. On average, 100 iterations took 151 seconds.

Computing infrastructure For the imbalanced MNIST dataset, a single

model was trained with 5 Intel(R) Xeon(R) CPU Silver 4114 @ 2.20GHz pro-

cessors and one NVIDIA TITAN V GPUs which had 5120 CUDA cores, 640
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tensor cores, and 12GB memory. For the VGGFace2 experiments, we trained a

single model with 18 CPU processes and 4 NVIDIA TITAN V GPUs. All of the

implementations were based on Python 3.6, Tensorflow 1.15.0 and Keras 2.3.1.

4.6.4 Additional figures from the VGGFace2 experiment

This section presents additional figures from the VGGFace2 experiment in Sec-

tion 4.4.2. Figure 4.2 compares the quality of sample generation for people

not used in training. Additional generated samples are shown in panels A and

B. Panels C, D, and E show the t-SNE maps of the latent variables, iden-

tity variable, and the within-unit variation in the representation (latent) space,

respectively. The product-space OAE shows the best quality in separating ob-

servational units in the representation space, while WAE could not provide

meaningful separation in the representation. For the product-space OAE, the

t-SNE map of the encoded identity (panel D, same person is plotted in same

color) shows better clustering power than the random-intercept OAE. In panel

E, the distribution of the encoded within-unit variation of the product-space

OAE matches well with the reference samples from the prior distribution, which

are plotted in translucent blue dots. Figure 4.2 shows additional generated im-

ages and the representations of the people who were used in training. Comparing

Figure 4.2 with Figure 4.3, the quality of the within-unit face generation of the

people not in the training set was similar with that of the people who were

in the training set, which implies that both OAEs were well-generalized. The

product-space OAE shows superior identity-preservation performance for both

known and unknown people. Panel B also shows that CAAE failed to preserve

the identity of the people used in training.
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Figure 4.2: Additional sample generation from VGGFace2 (people not used in
training)
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Figure 4.3: Additional sample generation from VGGFace2 (people used in train-
ing)
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Part II

Predictive Model for
Hierarchically Correlated

Data
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Chapter 5

DeepBiome

For the second part, this thesis includes a study for learning a predictive model

to capture a hierarchical correlation in microbiome taxonomic abundance data.

In this study, the main contributions are developing the DeepBiome software,

and demonstrating the ability of the DeepBiome software with the simulation

studies. Section 5.1 is a brief introduction to the DeepBiome method. The

DeepBiome software is described in Section 5.2. In Section 5.3, the ability of the

developed software is demonstrated by the simulation studies. The DeepBiome

method development and the application to the real-life data are also discussed

in Jing Zhai’s thesis (Zhai, 2019).

Microbiome data structure In the 16S ribosomal ribonucleic acid (RNA)

sequencing, data are grouped into Operational Taxonomic Units (OTUs) ac-

cording to a similarity threshold, e.g., 97%. These OTUs are then clustered

at different phylogenetic depths to build a phylogenetic tree portraying their

evolutionary relationships (Schloss and Handelsman, 2005; Turnbaugh et al.,
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2007). Suppose we have p OTUs from a total of n microbiome samples and a

phylogenetic tree that depicts the evolutionary relationship among microbes.

Each OTU is a tip node on the phylogenetic tree, and each internal node is

a taxonomic unit representing a common ancestor of its descendent taxa. In

this work, we aggregate p OTUs to m genus level taxa as the basic analyz-

ing units. However, the basic analyzing unit can also start at finerlevels. Let

x = (x1, . . . ,xn), where xi = (xi1, . . . , xim)T indicate the abundance of m gen-

era of the ith subject, be the input data and y = (y1, . . . , yn) be the outcome

of interest. Outcome variables can be continuous, binary, or categorical.

5.1 DeepBiome

DeepBiome is a DNN-based predictive model for capturing microbiome signals

at different phylogenetic depths. By leveraging the phylogenetic information,

DeepBiome relieves the heavy burden of tuning for the optimal deep learning

architecture, avoids overfitting, and, more importantly, enables visualizing the

path from microbiome counts to disease. This model is applicable to both re-

gression and classification problems. It takes microbiome taxonomic abundance

data as input.

Phylogeny-informed architecture DeepBiome prespecifies the network

architecture according to the phylogenetic tree. The number of taxonomic lev-

els decides the number of hidden layers, and the number of taxa at each tax-

onomic level decides the number of neurons in the corresponding layer. Figure

5.1 illustrates an example DeepBiome architecture. The input layer receives

microbiome abundances as inputs. The information is then propagated through

multiple layers of the DeepBiome network to the outcome of interest.
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Figure 5.1: DeepBiome architecture
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Phylogeny regularization via weight decay By regularizing the neural

network architecture towards the phylogenetic structure, DeepBiome greatly

reduces the number of parameters. Phylogeny regularization is achieved by

weight decay, a popular technique (Mundie and Massengill, 1991; Krogh and

Hertz, 1992; Gupta and Lam, 1998) to prevent overfitting and boost perfor-

mances of DNNs (Zhang et al., 2019). DeepBiome incorporates the bacteria

evolutionary relationship into a differential weight decay regularization matrix,

thus generating an interpretable effect transfer network in modeling and ana-

lyzing microbiome data.

Suppose the phylogenetic level l = 0, ..., L. If taxa j in level l and k in

level l − 1 have ancestor-descendent relationship, the associations between the

corresponding neurons are stronger, then we assume larger weight value wL
jk.

When taxa j in level l and k in level l−1 do not have this ancestral relationship,

we assume wL
jk to be a small value, i.e., weight decay. Thus, we construct a

weight decay matrix {ωl
jk} to regularize weights {wl

jk} of the neural network

using evolutionary relationship carried by the phylogenetic tree. If nodes j and

k are ancestor-descendent related, ωl
jk = 1; if not, ωl

jk is a small value, e.g.,

0.01.

The predictive model with phylogeny regularization via weight decay

is described in Algorithm 3. Adam optimizer, an adaptive gradient algo-

rithm (Kingma and Ba, 2014), is used to train DeepBiome.

Here, m(l) is the number of taxa in level l. m(L) is 1 for regression, and K for

classification with K categories. ReLU(a) := max(0, a) is the rectified linear

unit (ReLU) activations.
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Algorithm 3 Predictive model with phylogeny regularization via weight decay

Input: Microbiome abundances x0 ∈ Rn × Rm(0)

Output: Clinical outcome y
Require: wl ∈ Rm(l) × Rm(l−1) and bl ∈ Rm(l) for l = 1, ..., L.
1: for l=1,...,L-1 do

xlij = ReLU(
m(l−1)∑
k=1

ωl
jkw

l
jkx

l
ik + blj)

for i = 1, ..., n, j = 1, ...,m(l) where{
ωl
jk = 1 when taxa j of level l and k of level l − 1 have relationship

ωl
jk = 0.01 when taxa j of level l and k of level l − 1 has no relationship

2: end for
3: Predict

ŷi = wLxL
i + bL for regression,

P̂r(yi = c) =
ew

L
c xL

i +bLc∑K
j=1 e

wL
j xL

i +bLj
for classification with K categories
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5.2 Software

DeepBiome is implemented in Python 3.6-based TensorFlow (Abadi et al.,

2015) and Keras (Chollet et al., 2015) frameworks. Both GPUs and CPUs can

be used in this frameworks. It is an open-source tool available at https:

//github.com/Young-won/DeepBiome. It can be built on Python 3.4,

3.5, and 3.6. Comprehensive documentation and tutorials are available at

https://young-won.github.io/deepbiome/. This software has the fol-

lowing features:

• Adam optimization method with phylogeny regularization

• User-friendly interface for training, testing and taxa selection with huge

data such as the the American Gut Project (AGP) (McDonald et al.,

2018)

• Automated visualization tool that can show the selected taxa on the phy-

logenetic tree based on the trained weights to infer the microbiome-disease

path

The software provides a user-friendly interface. From microbiome abun-

dance data and associated phylogenetic tree dictionary, the reader can train

the DeepBiome model with a single line – for example:

from deepbiome.deepbiome import deepbiome_train
test_eval, train_eval, network = deepbiome_train(log,

network_info,
path_info)

The phylogeny-informed architecture is automatically generated from the

inputs, and the model is trained with phylogeny regularization via weight decay.

After training, the test evaluations from k-fold cross validation and the trained
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model is provided. DeepBiome software also provides functions for testing and

taxa selection from the trained model.

Examples of the visualization of the bacteria-to-disease path detected by

DeepBiome is shown in Figure 5.2. This figure is generated by the visualization

tool of the DeepBiome software. The blue and red nodes indicate the negative

and positive weights of the taxa, respectively. The size of the colored nodes

represent the magnitudes of the weights. Black nodes represent non-selected

taxa.

5.3 Simulation studies

The capability of the DeepBiome method and developed software is first

demonstrated by simulation studies. The results show superior performance of

DeepBiome over commonly used tools such as support vector machine (SVM),

regression with ℓ1 (lasso) or ℓ1 + ℓ2 (elastic net) penalties, DNN without tree

regularization, and DNN with ℓ1 penalty.

In real-life data analysis, a DeepBiome model trained using the developed

software shows higher prediction performance and selects the taxa associated

with the disease, matching knowledge from existing clinical research. As an

example, application on the American gut project (AGP) using DeepBione

software is described in Section 5.5.

Performance metrics We employ several statistical metrics to evaluate the

performance of DeepBiome for its prediction, classification, and taxa selec-

tion performances. For a quantitative outcome, the primary metric is the mean

squared error (MSE). Additionally, the Pearson correlation coefficient ρ of pre-

dicted ŷi and true yi are reported. For categorical outcomes, i.e., classification

problems, we measure their performance using sensitivity (true positive rate
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Figure 5.2: DeepBiome visualization tools
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(TPR)), specificity, g-measure, accuracy (ACC), precision (PPV), and the F1

score:

Sensitivity =
TP

TP+FN
,

Specificity =
TN

TN+FP
,

g-Measure = (Sensitivity × Specificity)
1
2 ,

ACC =
TP+TN

TP+TN+FP+FN
,

PPV =
TP

TP+FP
,

F1 score = 2× PPV × TPR
PPV+TPR

=
2TP

2TP+FP+FN
,

where TP is true positive (or recall), TN is true negative, FP is false posi-

tive, and FN is false negative. F1 score is the harmonic mean of precision and

sensitivity. An F1 score reaches its best value at 1 when the prediction has

perfect precision and recall and the worst value at 0. Note that F1 score does

not take the true negative cout into account. We use the g-measure, which is

the geometric mean of sensitivity and specificity, to assess the performance of

a binary classifier. Same as the F1 score, a g-measure reaches its best value at

1 when the sensitivity and specificity are both perfect (1) while the worst at 0

if any of sensitivity and specificity is 0. We also report AUC (area under the

receiver operating characteristics), which indicates the capability of a model to

distinguish between classes. Sensitivity, specificity, g-measure, and ACC across

all hidden layers are used to report the selection accuracies.

Simulation studies Extensive simulation studies are provided to demon-

strate the ability of DeepBiome software. The performance of a DeepBiome

model trained with the developed software is compared it with conven-

tional methods in three different schemes: linear regression, binary, and multi-
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categorical (K ≥ 3) classification design. Throughout the simulation experi-

ments, the sample size is n = 1, 000, and samples are split into a training set

(75%, ntraining = 750) and a test set (25%, ntest = 250). Different proportions of

the data split give qualitatively similar results (not shown). All of the results

were obtained based on 1, 000 replicates. Simulation Scenario 1 covers continu-

ous outcome models; simulation Scenario 2 examines for binary outcome cases;

and simulation Scenario 3 considers the situation when outcome variable is

categorical. Model robustness is evaluated in simulation Scenario 4, examining

performance when tree structure is mis-specified and when sequencing abun-

dances contain measurement errors. Details on the simulation is discussed in

Section 5.5.

Scenario 1: Regression design

In this section, two simulation strategies were used. In strategy (1), microbiome

taxa associated with outcome y are clustered at the phylum level. In strategy

(2), the associated taxa are clustered at phylum and order levels .

We compare DeepBiome to linear regression, as well as penalized regression

with ℓ1 norm (Lasso), ℓ2 norm (ridge), and ℓ1+ ℓ2 norm (elastic net) penalties.

We also compare DeepBiome to conventional DNN and ℓ1-regularized DNN.

DNN and ℓ1-DNN use the same number of hidden layers and neurons on each

layer as DeepBiome without phylogenetics tree regularization.

Five-fold cross-validation is used to choose the tuning parameters for reg-

ularized linear regression models. For the deep learning models (i.e., DNN, ℓ1-

DNN, and DeepBiome), a holdout validation set is used for the early-stopping

approach. Twenty percent of the training data was used for the holdout valida-

tion. Adam optimizer is used for training, with β1 = 0.9, β2 = 0.999, learning

rate lr = 0.01, and mini-batch size of 50. The learning rate decayed for each
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epoch with lrepoch+1 = lrepoch
1

1+0.0001 .

Table 5.1 displays the predictive performance by two metrics, MSE and

Pearson’s correlation ρ, under a case that the outcome associated taxa are only

clustering at one phylogenetic level (i.e., phylum). The outcome y predicted

by DeepBiome has higher Pearson correlation and lower MSE on the test set

than the regression methods and other deep learning models, which shows that

DeepBiome has improved prediction performance. Overall, the penalized linear

regression models, Lasso and elastic net, have slightly larger correlation coeffi-

cients on the test sets compared to linear regression and ridge regression. All

deep learning models perform better than regression models, with lower MSE

and higher ρ. DeepBiome performs the best among the examined deep learn-

ing models. Table 5.3 shows the prediction performance under a more complex

case, where the outcome-associated taxa are clustered at different phylogenetic

levels (phylum and order). It is obvious that all regression schemes perform

poorly in this case; the correlation values ρ are only around 0.6. DeepBiome

has over 80% reduction in MSE compared to regression based methods. The

deep learning models DNN and ℓ1-DNN improve ρ to 0.91 and 0.90 respectively.

However, both models show hint of overfitting with lower testing performance.

DeepBiome consistently achieves the best performances on the test set.

Identifying associated taxa at precise levels is critical for downstream bi-

ological validation. Figure 5.3, Tables 5.2 and 5.4 use the metrics sensitivity,

specificity, g-measure and ACC to compare the selection performance of differ-

ent methods. Regular regression methods do not discriminate associated taxa;

therefore only the results of penalized regressions were included in Tables 5.2

and 5.4. The penalized regression schemes, Lasso and elastic net, can only select

the taxa at one phylogenetic level. Here, we compute the performance metrics

based on their phylogeny relationship. For example, if the genus Prevotella is se-
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Testing Training

Method MSE Correlation MSE Correlation

mean sd mean sd mean sd mean sd

Linear regression 0.104 0.024 0.824 0.049 0.087 0.011 0.851 0.023
Ridge 0.104 0.022 0.824 0.049 0.09 0.012 0.851 0.023
Lasso 0.100 0.023 0.833 0.048 0.092 0.013 0.843 0.025
Elastic net 0.100 0.023 0.833 0.048 0.092 0.012 0.844 0.025
DNN 0.076 0.040 0.874 0.077 0.032 0.034 0.947 0.067
DNN+ℓ1 0.075 0.040 0.875 0.073 0.034 0.039 0.945 0.068
DeepBiome 0.071 0.036 0.882 0.069 0.043 0.034 0.929 0.061

Table 5.1: Prediction performance under Scenario 1, strategy (1)

lected, we assume that its corresponding ancestor, the phylum Bacteroidetes, is

also selected. In contrast, the selection performance of regularized deep learning

models are based on the weights estimated at each hidden layer. DeepBiome

offers outstanding performances not only in terms of sensitivity and specificity,

but also g-measure and ACC (Figure 5.3, first row). Its g-measure ranges from

0.8 to 0.9, while those of Lasso regression (the second best method) ranges from

0.54 to 0.72. Interestingly, despite being the second best method regarding pre-

diction (see Table 5.3), ℓ1-DNN fails to identify the true microbiome taxa across

all phylogenetic levels. Overall DeepBiome is a consistently efficient model un-

der the regression design in both prediction and selection.

Scenario 2: Binary classification

We consider the case that outcome-associated taxa are clustered at a mixture

of phylogenetic levels. For a binary outcome, we suppose

(1) the higher the abundance of blue node taxa, the higher the probability of

y belong to the disease group;

(2) the higher the abundance of red node taxa, the higher the probability of
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Figure 5.3: Taxa selection performance under 4 simulation schemes at each
phylogenetic level
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Testing Training

Method MSE Correlation MSE Correlation

mean sd mean sd mean sd mean sd

Linear regression 1.561 0.146 0.639 0.035 1.337 0.068 0.694 0.018
Lasso 1.479 0.115 0.662 0.034 1.411 0.075 0.678 0.020
Ridge 1.546 0.121 0.639 0.034 1.361 0.075 0.694 0.018
Elastic net 1.481 0.117 0.662 0.034 1.405 0.076 0.680 0.020
DNN 0.457 0.522 0.905 0.118 0.164 0.337 0.964 0.091
DNN+ℓ1 0.456 0.516 0.904 0.122 0.176 0.362 0.963 0.085
DeepBiome 0.423 1.474 0.916 0.139 0.256 0.463 0.944 0.110

Table 5.3: Prediction performance under Scenario 1, strategy (2)

y belong to the healthy control group.

We compare DeepBiome to logistic regression, three penalized logistic re-

gression models, and two conventional deep learning networks. The same learn-

ing rate, stopping criteria, and mini-batch size (100) are used for DeepBiome,

DNN and ℓ1-DNN. In Table 5.5, we present the metrics for evaluating the

classification performance of binary outcome, including sensitivity, specificity,

g-measure, ACC, and AUC. Logistic models have satisfactory sensitivity val-

ues, but other metrics are not competitive compared to DeepBiome. They

tend to have many false positives which lead to poor specificity. In contrast,

DeepBiome achieves the best classification performance with the highest speci-

ficity, g-measure, ACC, and AUC reaching 0.84, 0.87, 0.89 and 0.94, respectively.

Figure 5.3 (second row) and Table 5.6 displays the performance of identifying

the associated taxa. Although Lasso and ℓ1-DNN show good sensitivity at some

phylogenetic levels, g-measure and ACC are much worse compared to elastic

net and DeepBiome. This suggests that Lasso and ℓ1-DNN tend to select more

taxa (false positive). Using the order level as an example, the g-measure value

of DeepBiome is 0.91, while the ℓ1-DNN is 0.15.
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Scenario 3: Multicategory classification

We simulate multi-category outcomes, e.g., the severity of illness, which may

be categorized as “mild”, “moderate”, or “severe”. Consistent with previous sim-

ulations, we assume that the blue node taxa contribute to the “severe” group,

red node taxa contribute to the “mild” group, and part of the gray node taxa

contribute to the neutral “moderate” group.

Table 5.7 presents the evaluation metrics for DeepBiome, DNN, ℓ1-DNN,

and the support vector machine (SVM) with different kernels. For SVM, both

linear and non-linear kernels such as the radial and polynomial kernels are

included. The default parameter setting is used for training the SVMs. The

same learning rate, stopping criteria, and mini-batch size (200) are used for

DeepBiome, DNN and ℓ1-DNN. Among the SVMs, the linear SVM has the

highest accuracy and AUC, while the SVM with radial kernel yields better recall

and F1 score. However, all SVMs exhibited inferior performance compared to

deep learning models: DeepBiome exhibits the highest values on all evaluation

metrics, with an AUC of 0.9; AUCs of DNN and ℓ1-DNN are around 0.86. The

F1 score of DeepBiome is 0.711, which is 14% higher than the second best, ℓ1-

DNN. We find that DeepBiome offers the best and most balanced performance

with precision and recall, which are 0.72 and 0.71, respectively. Since SVM

models cannot perform selection on the microbiome taxa, we only compare

DeepBiome to ℓ1-DNN in (Figure 5.3, fourth row and Table 5.8). DeepBiome

surpasses ℓ1-DNN in all of the evaluation metrics at all phylogenetic levels. For

instance, the g-measure of ℓ1-DNN in selecting genus level taxa is only 0.187

while that of DeepBiome is 0.816.
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Scenario 4: Robustness under tree mis-specification and mea-
surement errors of microbiome abundance

To examine the robustness of DeepBiome, we consider two sources of model

mis-specifications,

(1) Abundance data containing measurement errors at genus levels. We as-

sume that 10% of the associated genus reads are mis-classified to one

randomly selected genus from the same phylum. The microbiome abun-

dance data with measurement errors is then used for training models.

(2) The phylogenetic tree for training models is mis-specified.

• At the class level, the genera that belong to Clostridia and Flavobac-

teria are mis-classified to Bacilli and Bacteroidia.

• At the order level, the genera that belong to Coriobacteriales

and Flavobacteriales are mis-classified to Actinomycetales and Bac-

teroidales.

The same learning rate, stopping criteria, and mini-batch size (100) are used

for DeepBiome, DNN and ℓ1-DNN. Tables 5.9, 5.10, and Figure 5.3 present the

results with measurement errors. Tables 5.11 and 5.12 show the results when us-

ing a mis-specified phylogenetic tree. Like Scenario 1, we compare DeepBiome

to linear regression, penalized regression, conventional DNN, and ℓ1-regularized

DNN. When the model is trained using data with measurement errors (case 1),

performance of DeepBiome and ℓ1-DNN drops, i.e., higher MSE and lower

Pearson’s ρ, compared to Scenario 1 using data without errors (Table 5.9; see

also Table 5.3). DeepBiome has the best prediction performance among all

methods. The average Pearson’s ρ of DeepBiome is 0.95, while those of DNN

and ℓ1-DNN are 0.87 and 0.91, respectively. Table 5.11 displays the predic-
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Testing Training

Method MSE Correlation MSE Correlation

mean sd mean sd mean sd mean sd

Linear Regression 1.569 0.154 0.639 0.036 1.336 0.066 0.694 0.018
Ridge 1.551 0.128 0.639 0.036 1.358 0.073 0.694 0.018
Lasso 1.488 0.119 0.661 0.034 1.408 0.073 0.679 0.020
Elastic-net 1.490 0.121 0.660 0.034 1.402 0.075 0.681 0.019
DNN 0.619 0.682 0.873 0.137 0.188 0.317 0.961 0.068
DNN+ℓ1 0.445 0.351 0.909 0.081 0.129 0.234 0.974 0.050
DeepBiome 0.243 0.400 0.950 0.087 0.117 0.244 0.976 0.052

Table 5.9: Prediction performance under Scenario 4, measurment errors

tive performance under case 2 (mis-specified phylogenetic tree). DeepBiome

outperforms other methods in both MSE and Pearson’s ρ, demonstrating its

robustness to tree mis-specifications. Figure 5.3 (5th and 6th row), Tables 5.10

and 5.12 show the ability of identifying associated microbiome taxa. When the

abundance data contain measurement errors, the sensitivity decreases in both

penalized regression and deep learning methods. For example, the specificity of

DeepBiome at genus level is 0.67 (compared to 0.95 in Table 5.4), leading to

slight decreases of the g-measure from 0.84 to 0.80. DeepBiome tends to select

less associated taxa when input abundance data contain measurement errors.

For the second case, when the phylogenetic tree has taxonomic classification er-

rors, the Lasso, elastic net, and ℓ1-DNN have similar performances compared to

Scenario 1 (Figure 5.3, 6th row). Even if DeepBiome used a wrong tree struc-

ture to guide the model, it still maintains a decent performance with g-measure

of 0.80 at the finest level (Figure 5.3, 6th row).

5.4 Discussion

DeepBiome, a phylogenetic tree-regularized deep learning model, is proposed

for both prediction and classification tasks. The capability of the developed
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Testing Training

Method MSE Correlation MSE Correlation

mean sd mean sd mean sd mean sd

Linear Regression 0.872 0.163 0.683 0.046 0.737 0.074 0.726 0.027
Lasso 0.826 0.144 0.706 0.047 0.780 0.080 0.710 0.030
Ridge 0.866 0.138 0.683 0.046 0.752 0.081 0.726 0.027
Elastic-net 0.826 0.144 0.706 0.047 0.779 0.079 0.711 0.028
DNN 0.437 0.208 0.849 0.077 0.167 0.166 0.944 0.058
DNN+ℓ1 0.434 0.214 0.850 0.080 0.166 0.171 0.944 0.065
DeepBiome 0.316 0.261 0.892 0.094 0.195 0.207 0.933 0.075

Table 5.11: Prediction performance under Scenario 4, mis-specified phylogenetic
tree

DeepBiome software is demonstrated with comprehensive simulation exper-

iments. For regression tasks, the results suggest that, compared to sparse re-

gression and other deep learning models, DeepBiome has a competitive perfor-

mance, particularly when outcome-associated microbiome taxa are clustered at

different phylogenetic levels. DeepBiome also excels in complex classification

tasks with higher accuracy and AUC. More importantly, DeepBiome enables

an intuitive visualization of the microbiome-phenotype association network.

The limitations of DeepBiome include the possibility of violation of the fol-

lowing assumptions: (1) microbiome classified in the same cluster have similar

effects to outcome of interests, and (2) phylogenetic tree structure translates to

effects aggregation structure. Extension of DeepBiome to accomodate longitu-

dinal microbiome data is also needed for many studies with repeated measures

of microbiome.
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5.5 Appendix

5.5.1 Implementation details for Section 5.3

Sample generation Generation of microbiome abundance data was de-

scribed in detail by Zhai et al. (2018, 2019). Briefly, to generate an n × p

OTU count matrix, a dirichlet multinomial (DM) distribution was used with

the mean proportion vector and the dispersion parameter estimated from a real

pulmonary microbiome dataset, which contains p = 2964 OTUs and a phylo-

genetic tree (Twigg III et al., 2016). 2964 OTUs were aggregated as 48 genus.

Based on a real lung microbiome dataset, the microbiome data is summarized

at genus (l = 0), family (l = 1), order (l = 2), class (l = 3), and phylum (l = 4)

level. The number of nodes are m(0) = 48, m(1) = 40, m(2) = 23, m(3) = 17,

and m(4) = 9, respectively.

In order to generate outcome y, a forward propagation approach described

below was used.

1. For level l, construct the weight matrix wl ∈ Rm(l)×m(l−1) to propagate

xl−1 to the lth hidden layer by

hl = wlxl−1 + bl.

The bias vector bl ∈ Rm(l) follows a standard normal distribution N (0, σ2
e)

with σ2
e = 4. Suppose we have node j at the level l and k at the level

l − 1, then

wl
jk ∼


Uniform(−0.5, 1) associated with output

N (0, 0.01) not associated with output.
(5.1)

2. Multiply the wl
jk by a small value ωl

jk = 0.01, if taxa j at the level l is not

a direct ancestor of taxa k at level l − 1; otherwise, wl
jk stays the same.
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3. Activate the neurons using ReLU, xl = ReLU(wlxl−1 + bl.).

4. Repeating step 1 - 3 for l = 1, ..., 4.

5. Repeating step 1 - 2 for l = 5, and simulate the continuous or categorical

output layer y as follow

ŷ = w5x4 + b5

P̂r(yi = c) =
ew

5
cx

5
c+b5c∑K

j=1(e
w5

jx
5
j+b5j )

where K = 2 for binary classification and K ≥ 3 for multicategory classi-

fication.

Computing infrastructure All simulations are performed using a worksta-

tion equipped with Intel(R) Xeon(R) CPU E5-2650 v4 processor with 24 cores

@ 2.20GHz and one NVIDIA GeForce GTX TITAN X GPU with 3072 CUDA

cores @ 1 GHz and 12GB memory. DeepBiome required 290 ± 69 seconds to

fully train the network for one replicate with 1000 samples, 50 mini-batches and

5000 epochs. For the same data, DNN took 282± 67 second and ℓ1-DNN took

282± 67 second. DeepBiome and all other deep learning approaches took less

than 0.004 seconds for prediction.

5.5.2 Real-world data analysis

In real-life data analysis, the developed software shows superior prediction per-

formance and selects the taxa associated with the disease, which matched exist-

ing clinical literature. Analyses of the American gut project (AGP) and a lung

microbiome study using DeepBiome software are discussed in Jing Zhai’s the-

sis (Zhai, 2019). In this section, type 2 diabetes prediction with the American

Gut Project is described as one example of real-world applications.
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Application to the American gut project The American gut project

(AGP), launched in 2012, is an open platform for citizen microbiome research

(McDonald et al., 2018). Microbiome sample in AGP were collected from stools

using dry swabs. For this work, microbiome samples with less than 10,000 se-

quence reads and genera with abundance less than 2% are excluded. Samples

without metadata or missing demographic information, i.e., age, gender, and

ethnicity, were also excluded.

Use of the DeepBiome software can greatly facilitate model training on

enormous datasets like this. In the application of type 2 diabetes prediction,

DeepBiome model trained with the developed software shows higher predic-

tion performance than other deep learning models, and the selected taxa from

DeepBiome also relate to the disease as expected from previous clinical studies.

Type 2 diabetes Type 2 diabetes (T2D) is a metabolic disorder with a com-

bination of risk factors such as family history, lifestyle, and genetic factors. In

the past decade, multiple studies have indicated that the risk of developing T2D

may also involve factors from gut microbiome (Larsen et al., 2010; Musso et al.,

2011; Qin et al., 2012). The performance of DeepBiome is compared with logis-

tic regression, logistic regression with ridge, Lasso, and elastic net penalization,

DNN, and ℓ1-DNN. Subjects who reported T2D diagnosed by medical profes-

sionals (doctor or physician assistant) were included as T2D cases (n = 154).

Randomly select 154 subjects without T2D form a control group. This analysis

used their demographic information, age, gender, and ethnicity, 373 genus level

taxa, and a phylogenetic tree to classify T2D and to also select associated mi-

crobiome taxa. Table 5.13 shows the performance of classifying T2D using on

5-fold cross-validation. Although elastic net and Lasso regression have the high-

est sensitivity, their low specificities suggest that these methods are inclined to
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predict healthy subjects as T2D (false positive). DNN and ℓ1-DNN show signs

of over-training. DeepBiome performs the best among all methods with highest

g-measure, accuracy, and AUC, which are 0.653, 0.641, and 0.655, respectively.

Figure 5.4 summarizes the taxa selected by DeepBiome, using the 85th per-

centile of the weight coefficient estimated at each phylogenetic level averaged

over 5-fold cross validation. This figure is generated with the visualization tool

within the DeepBiome software. The blue and red nodes indicate taxa with

negative and positive weights, respectively. The size of colored nodes represent

the magnitudes of the weights. Black nodes represent non-selected taxa. In to-

tal, DeepBiome selected 56 genera, 15 families, 8 orders, and 6 classes. Among

these taxa, 33 genera, 7 families, 2 orders, and 1 class are positively associated

with T2D, indicating that the higher the abundance of these taxa, the higher

the probability of subjects having T2D. Compared with the analysis carried out

by Qin et al. (2012), DeepBiome also selected T2D enriched genus Alistipes

and Lachnospira, and healthy control enriched genus Haemophilus and family

Erysipelotrichaceae. In an analysis of a Denmark T2D cohort, Larsen et al.

(2010) pointed out that T2D is associated with gut microbiome dysbiosis, e.g.

the proportion of Clostridia in diabetics is significantly lower than that in con-

trols, and class Betaproteobacteria is highly enriched in subjects with diabetes.

However, DeepBiome suggests that class Betaproteobacteria is negatively as-

sociated with T2D and that a group of genera positively associated with T2D

are from class Clostridia, which also disagrees with Larsen et al. (2010). Indeed,

results from Larsen et al. (2010) was not consistent in other cohorts with dif-

ferent ethnicity (Sircana et al., 2018; Qin et al., 2012; Karlsson et al., 2013).

These results suggest that the contribution of gut microbiome to T2D may be

different across ethnicity groups and environmental factors. Besides T2D, the

selected Haemophilus from AGP has been demonstrated to be associated with
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Figure 5.4: T2D associated microbiome taxa from phylum Proteobacteria se-
lected by DeepBiome

106



prediabetes (Zhang et al., 2013).
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Chapter 6

Conclusion

Correlation structures in modern machine learning tasks deserve more atten-

tion. In this dissertation, it is demonstrated via two deep learning models that

frameworks considering the structures possessed in data can alleviate robust-

ness, generalizability and explainability of models. In the first part, a representa-

tion learning model implementing the nested structure of the data is considered

to conduct correlated data generation. In the second part, a DNN-based pre-

dictive model leveraging the phylogenetic information is proposed in order to

analyze the path from microbiome counts to disease.

The nested structure of the first part originates from data collection, in

which grouped observation units exist. The main contribution of this part is to

introduce an optimal transport distance between stationary and correlated ran-

dom processes to seek a latent space representation of the observed sequences.

By viewing the nested data as a collection of i.i.d. observations of exchangeable

random processes, the key attraction of the Ornstein auto-encoders is their abil-

ity to handle an unknown number of observational units and to generate samples
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within a unit with high quality. In exchangeable sequence generation, OAEs

have successfully demonstrated high performance in the three types of tasks

commonly advocated in assessing the quality of generative models, namely: ex-

emplar generation, style transfer, and unit generation. Importantly, OAEs are

robust to data imbalance and can generate new variations of unknown, out-

of-training-set observation units. They have achieved impressive performance

in discriminating individuals from the VGGFace2 data and digits from highly

imbalanced MNIST data in the representation space.

The second part calls for the need of reflecting hierarchical correlation struc-

tures that often arise in biological datasets directly into the model. In the devel-

opment of the software for DeepBiome, a phylogenetic tree-regularized deep

learning model that can be used for both prediction and classification tasks.

The model regularizes the neural network structure towards the phylogenetic

structure inherent in the microbiome data through weight decay. It is shown

that using this approach greatly reduces the number of parameters, avoids over-

fitting, and allows visualization of the pathway from microbiome counts to phe-

notypes. The capabilities of the developed software have been demonstrated

with comprehensive simulation experiments. The DeepBiome model trained

with this software shows better generalizability than other deep learning mod-

els. More importantly, the incorporation of correlation structure enhances the

explainablity of the microbiome-phenotype association network with intuitive

visualization. In real-life data analysis, my software has shown the ability to

train a high-performance model and select disease-related taxa confirmed in

the existing clinical literature.

I hope that this work calls attention to the correlation structure of the data

commonly observed in many real-world learning tasks.
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초록

자료의 구조를 알고 있는 경우, 이 구조를 활용한 프레임워크는 심층 학습에서

마주하는 강건성, 일반화 및 설명가능성 등의 중요한 이슈를 해결하는 데 도움을

줄 수 있다. 본 학위 논문에서는 구조적 자료를 활용한 심층 학습 방법을 두 가지

문제에 대해 다룬다. 첫 번째 문제는 중첩 구조 자료를 생성할 수 있는 표현 학

습 모형의 개발이다. 본 연구에서는 상관성이 있는 자료를 위한 표현 학습 모형

Ornstein auto-encoder (OAE)를 제안한다. 많은 실제 자료는 그룹화된 측정에서

얻어지므로 중첩 구조를 가진다. 예를 들어, VGGFace2 자료는 한 사람당 평균

300개의 이미지로 구성된 자료이다. 이러한 자료는 정상 확률 과정의 i.i.d. 샘플

로 구성된 것으로 볼 수 있다. 이를 통해, 두 정상 확률 과정 사이의 최적 수송

거리 (optimal transport distance, Orstein’s d-bar distance)를 이용하는 OAE

방법을 제안한다. OAE 방법은 훈련에 사용되지 않은 관측 유닛에 대해서도 해당

유닛의 새로운 이미지를 생성할 수 있다는 점에서 기존의 조건부 모형과 구별되

는 고유한 특징을 가진다. 이는 자료의 구조를 활용한 프레임 워크로 심층 신경망

모형의 일반화 성능을 향상시킬 수 있음을 보여준다. 또한, 자료가 교환 가능한

수열 (exchangeable sequence)인경우, OAE는훈련가능한알고리즘을제공한다.

OAE 방법은 생성 모형의 성능을 나타내는 전형 생성(exemplar generation), 스

타일 이전 (style transfer), 관측 유닛 생성 (unit generation) 문제에서 모두 높은

성능을보여준다.또한불균형자료에대해서도소수집단에속하는유닛의이미지

생성에 기존의 조건부 방법보다 강건한 결과를 보여준다.

본학위논문은또한미생물의분류별개수자료 (microbiome taxonomic abun-

dance data)의계층적인상관구조를포착할수있는예측모형개발에대한내용을

담고 있다. 미생물 개수 자료는 많은 질병을 예측할 수 있는 지표이지만, 계통 발

생학 관점에서 계층적인 상관 구조를 가지고 있어 이를 반영한 분석이 필요하다.
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DeepBiome은 심층 학습 기반의 예측 모형으로 계통 발생 정보를 활용해 심층

신경망의 과적합을 막고, 질병과 미생물 개수 자료 간의 관계를 설명한다. 훈련된

모형은일반화및설명가능성면에서기존심층신경망보다좋은성능을보여준다.

본 논문은 이 연구에서 DeepBiome 소프트웨어 개발에 대한 내용을 담고 있다.

개발한 소프트웨어의 성능은 시뮬레이션 실험을 통해 확인한다. 회귀 문제와 분류

문제에서, 예측 성능 및 질병과 관련된 미생물 분류 선택 모두 기존의 희소 회귀

방법과 심층 학습 방법보다 DeepBiome이 우수한 성능을 보이는 것을 확인할 수

있다. 또한 DeepBiome 소프트웨어는 질병과 미생물 개수 자료 간의 관계에 대해

설명 가능한 심층 신경망의 시각화 자료를 제공한다.

주요어: 심층 학습, 표현 학습, 중첩 구조 자료, 얼굴 이미지 생성, 조건부 생성

모형, 미생물군유전체, 계통발생학

학번: 2016-30094
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