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Abstract

Seyoon Ko
Department of Statistics

The Graduate School
Seoul National University

Technological advances in the past decade, hardware and software alike, have
made access to high-performance computing (HPC) easier than ever. In this
dissertation, easily-parallelizable, inversion-free, and variable-separated algo-
rithms and their implementation in statistical computing are discussed. The
first part considers statistical estimation problems under structured sparsity
posed as minimization of a sum of two or three convex functions, one of which
is a composition of non-smooth and linear functions. Examples include graph-
guided sparse fused lasso and overlapping group lasso. Two classes of inversion-
free primal-dual algorithms are considered and unified from a perspective of
monotone operator theory. From this unification, a continuum of preconditioned
forward-backward operator splitting algorithms amenable to parallel and dis-
tributed computing is proposed. The unification is further exploited to intro-
duce a continuum of accelerated algorithms on which the theoretically optimal
asymptotic rate of convergence is obtained. For the second part, easy-to-use
distributed matrix data structures in PyTorch and Julia are presented. They
enable users to write code once and run it anywhere from a laptop to a worksta-
tion with multiple graphics processing units (GPUs) or a supercomputer in a
cloud. With these data structures, various parallelizable statistical applications,
including nonnegative matrix factorization, positron emission tomography, mul-

tidimensional scaling, and #;-regularized Cox regression, are demonstrated. The



examples scale up to an 8-GPU workstation and a 720-CPU-core cluster in a
cloud. As a case in point, the onset of type-2 diabetes from the UK Biobank
with 400,000 subjects and about 500,000 single nucleotide polymorphisms is
analyzed using the HPC /;-regularized Cox regression. Fitting a half-million-
variate model took about 50 minutes, reconfirming known associations. To my
knowledge, the feasibility of a joint genome-wide association analysis of survival

outcomes at this scale is first demonstrated.

Keywords: monotone operator theory, primal-dual algorithms, high-performance

computing, multi-GPU, distributed computing, cloud computing
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Chapter 1

Prologue

1.1 Introduction

Clock speeds of the central processing units (CPUs) on the desktop and laptop
computers hit the physical limit more than a decade ago, and it is likely that
there will be no major breakthrough until quantum computing becomes prac-
tical. Now the increase in computing power is accomplished by using multiple
cores within a processor chip. High-performance computing (HPC) means com-
putations that are so large that their requirement on storage, main memory,
and raw computational speed cannot be met by a single (desktop) computer
(Hager and Wellein, 2010). Modern HPC machines are equipped with more
than one CPU that can work on the same problem (Eijkhout, 2016]). Often,
special-purpose co-processors such as graphical processing units (GPUs) are
attached to the CPU for orders of magnitude of acceleration for some tasks. A
GPU can be thought of a massively parallel matrix-vector multiplier and vector

transformer on a data stream. With the needs of analyzing terabyte- or even



petabyte-scale data common, the success of large-scale statistical computing

heavily relies on how to engage HPC in the statistical practice.

About a decade ago, Zhou et al.| (2010) discussed the potential of GPUs
in statistical computing. In this landmark paper, the authors predicted that
“GPUs will fundamentally alter the landscape of computational statistics.” Yet,
it appears that GPU computing, or HPC in general, has not completely smeared
into the statistical community. Part of the reasons for this may be attributed
to the fear that parallel and distributed code is difficult to program, especially
in R (R Core Team, [2018), “the” programming language of statisticians. On
the other hand, the landscape of scientific computing in general, including so-
called data science (Donoho, |2017), has indeed substantially changed. Many
high-level programming languages, e.g., Python (van Rossum, (1995) and Ju-
lia (Bezanson et al., [2017)), support parallel computing by design or through
standard libraries. Accordingly, many software tools have been developed in
order to ease programming in and managing HPC environments. Last but not
least, cloud computing (Fox|, 2011]) is getting rid of the necessity for purchasing

expensive supercomputers and scales computation as needed.

Concurrently, easily parallelizable algorithms for fitting statistical models
with hundreds of thousand parameters have also seen significant advances. Tra-
ditional Newton-Raphson or quasi-Newton type of algorithms face two major
challenges in contemporary problems: 1) explosion of dimensionality renders
storing and inversion of Hessian matrices prohibitive; 2) regularization of model
complexity is almost essential in high-dimensional settings, which is often real-
ized by nondifferentiable penalties; this leads to high-dimensional, nonsmooth
optimization problems. For these reasons, nonsmooth first-order methods have
been extensively studied during the past decade (Beck, 2017). For relatively
simple, decomposable penalties (Negahban et al., 2012), the proximal gradient



method (Beck and Teboulle), 2009; |(Combettes and Pesquet], [2011}; [Parikh and|

Boyd, 2014; [Polson et al., 2015) produces a family of easily parallelizable algo-

rithms. For the prominent example of the Lasso (Tibshirani, |1996), this method

contrasts to the highly efficient sequential coordinate descent method of

man et al.| (2010) and the smooth approximation approaches, e.g.,
(2005). Decomposability or separability of variables is often the key to par-

allel and distributed algorithms. The popular alternating direction method of
multipliers (ADMM, |Gabay and Mercier} 1976; |Glowinski and Marrocol, [1975;

Boyd et al., [2010) achieves this goal through variable splitting, while often re-

sulting in nontrivial subproblems to solve. As an alternative, the primal-dual
hybrid gradient (PDHG) algorithm (Zhu and Chan, 2008; Esser et al., 2010;
\Chambolle and Pock, 2011; Condat, 2013; 2013) has a very low per-iteration

complexity, useful for complex penalties such as the generalized lasso (Tibshi-

rani and Taylor, 2011)). Another route toward separability is through the MM
principle (Lange et al., 2000; Hunter and Lange, 2004; |Langel [2016), which has

been explored in Zhou et al.| (2010). In fact, the proximal gradient method can

be viewed as a realization of the MM principle. Recent developments in the ap-

plication of this principle include distance majorization (Chi et al. 2014) and

proximal distance algorithms (Keys et al., 2019).

This dissertation reviews the advances in parallel and distributed comput-
ing environments during the last decade, and develops easily parallelizable algo-
rithms for statistical computing. In particular, two classes of easily parallelizable
optimization algorithms suitable to statistical estimation of structually sparse
models are unified, and accelerated to the asymptotic optimum (Chapter [2)).
In addition, software packages are developed to make programming for large-
scale, high-dimensional statistical models easy for statisticians. These packages

scale up to about 400,000 x 500,000 multivariate analysis for Cox regression

A & Tl 8} 3



model regularized by the ¢; penalty on the UK Biobank genomics data, fea-
turing time-to-onset of Type 2 Diabetes (T2D) as outcome and genomic loci
harboring single nucleotide polymorphisms as covariates (Chapter . To my
knowledge, such a large-scale joint genome-wide association analysis with the
Cox model has not been attempted. The dissertation is concluded in Chapter
4l

The rest of this chapter reviews HPC systems and how they have become
easy to use (Section , and modern scalable optimization techniques that
suit well to the HPC environment (Section [1.3).

1.2 Accessible High-Performance Computing Systems
1.2.1 Preliminaries

Since modern HPC relies on parallel computing, in this section several concepts
from parallel computing literature are reviewed at a level minimally necessary
for the subsequent discussions. Further details can be found in Nakano (2012]);

Eijkhout] (2016).

Data parallelism. While parallelism can appear at various levels such as
instruction-level and task-level, what is most relevant to statistical computing
is data-level parallelism or data parallelism. If data can be split into several
chunks that can be processed independently of each other, then we say there is
data parallelism in the problem. Many operations such as scalar multiplication
of a vector, matrix-vector multiplication, and summation of all elements in a

vector can exploit data parallelism using parallel architectures discussed shortly.

Memory models. In any computing system, processors (CPUs or GPUs)

need to access data residing in the memory. While physical computer memory



uses complex hierarchies (L1, L2, and L3 caches; bus- and network-connected,
etc.), systems employ abstraction to provide programmers with an appearance
of transparent memory access. Such logical memory models can be categorized
into the shared memory model and the distributed memory model. In the shared
memory model, all processors share the address space of the system’s memory
even if it is physically distributed. For example, if two processors refer to a
variable x, that means the variable is stored in the same memory address;
if a processor alters the variable, then the other processor is affected by the
changed value. Modern CPUs that have several cores within a processor chip
fall into this category. On the other hand, in the distributed memory model,
the system has memory both physically and logically distributed. Processors
have their own memory address spaces, and cannot see each other’s memory
directly. If two processors refer to a variable x, then there are two separate
memory locations, each of which belongs to each processor under the same
name. Hence the memory does appear distributed to programmers, and the
only way processors can exchange information with each other is by passing
data through some explicit communication mechanism. The advantage at the
cost of this complication is scalability — the number of processors that can work
in a tightly coupled fashion is much greater in distributed memory systems (say
100,000) than shared memory systems (say four). Hybrids of the two memory
models are also possible. A typical computer cluster consists of multiple nodes
interconnected in a variety of network topology. A node is a workstation that can
run standalone, with its main memory shared by several processors installed on
the motherboard. Hence within a node, it is a shared memory system, whereas

across the nodes the cluster is a distributed memory system.



Parallel programming models. For shared-memory systems, programming
models based on threads are the most popular. A thread is a stream of machine
language instructions that can be created and run in parallel during the exe-
cution of a single program. OpenMP is a widely used extension of the C and
Fortran programming languages based on threads. It achieves data parallelism
by letting the compiler know what part of the sequential program is paral-
lelizable by creating multiple threads. Simply put, each processor core can run
a thread operating on a different partition of the data. In distributed-memory
systems, parallelism is difficult to achieve via a simple modification of sequential
code like by using OpenMP. The programmer needs to coordinate communi-
cations between processors not sharing memory. A de facto standard for such
processor-to-processor communication is the message passing interface (MPI).
MPI routines mainly consist of point-to-point communication calls that send
and receive data between two processors, and collective communication calls
that all processors in a group participate in. Typical collective communication

calls include

Scatter: one processor has data as an array, and each other processor

receives a partition of the array;

e Gather: one processor collects data from all the other processors to con-

struct an array;

e Broadcast: one processor sends its data to all the other devices;

e Reduce: one processor gathers data and produces a combined output
based on an associative binary operator, such as sum or maximum of

all the elements.



Parallel architectures. To realize the above models, a computer architec-
ture that allows simultaneous execution of multiple machine language instruc-
tions is required. A single instruction, multiple data (SIMD) architecture has
multiple processors that execute the same instruction on different parts of the
data. The GPU falls into this category of architectures, as its massive num-
ber of cores can run a large number of threads that share memory. A multiple
instruction, multiple data (MIMD), or single program, multiple data (SPMD)
architecture has multiple CPUs that execute independent parts of program in-
structions on their own data partition. Most computer clusters fall into this

category.

1.2.2 Multiple CPU nodes: clusters, supercomputers, and clouds

Computing on multiple nodes can be utilized in many different scales. For mid-
sized data, one may build his/her own cluster with a few nodes. This requires to
determine the topology and to purchase all the required hardware, along with
resources to maintain it. This is certainly not familiar to virtually all statis-
ticians. Another option may be using a well-maintained supercomputer in a
nearby HPC center. A user can take advantage of the facility with up to hun-
dreds of thousands of cores. The computing jobs on these facilities are often
controlled by a job scheduler, such as Sun Grid Engine (Gentzsch, 2001), Slurm
(Yoo et al., [2003), Torque (Staples, [2006)), etc. However, access to supercom-
puters is almost always limited. (Can you name a “nearby” HPC center from
your work? If so, how can you submit your job request? What is the cost?)
Even when the user has access to them, he/she often has to wait in a very long
queue until the requested computation job is started by the scheduler.

In recent years, cloud computing has emerged as a third option. It refers to

both the applications delivered as services over the Internet and the hardware



and systems software in the data centers that provide those services (Armbrust
et al.,2010). Big information technology companies such as Amazon, Microsoft,
and Google lend their practically infinite computing resources to users on de-
mand by wrapping the resources as “virtual machines”, which are charged per
CPU hours and storage. Users basically pay utility bills for using computing re-
sources. An important implication of this infrastructure to end-users is that the
cost of using 1000 virtual machines for one hour is almost the same as that of
using a single virtual machine for 1000 hours. Therefore a user can build his/her
own virtual cluster “on the fly,” increasing the size of the cluster as the size of
the problem to solve grows. A catch here is that a cluster does not necessarily
possess the power of HPC as suggested in Section [[.2.1} a requirement for high
performance is that all the machines should run in tight lockstep when work-
ing on a problem (Fox| 2011). However, early cloud services were more focused
on web applications that did not involve frequent data transmissions between
computing instances, and were less optimized for HPC, yielding discouraging

results (Evangelinos and Hill, 2008} Walker, [2008]).

Eventually, many improvements have been made at hardware and software
levels to make HPC on clouds feasible. At hardware level, cloud service providers
now support CPU instances such as c4, c¢5, and c5n instances of Amazon Web
Services (AWS), with up to 48 physical cores of higher clock speed of up to 3.4
GHz along with support for accelerated SIMD computation. If network band-
width is critical, the user may choose instances with faster networking (such
as c5n instances in AWS), allowing up to 100 Gbps of network bandwidth.
At the software level, these providers support tools that manage resources ef-
ficiently for scientific computing applications, such as ParallelCluster (Amazon
Web Services, 2019) and ElastiCluster (University of Zurich, [2019). These tools

are designed to run programs in clouds in a similar manner to proprietary clus-



ters through a job scheduler. In contrast to a physical cluster in an HPC center,
a virtual cluster on a cloud is exclusively created for the user; there is no need
for waiting in a long queue. Accordingly, over 10 percent of all HPC jobs are
running in clouds, and over 70 percent of HPC centers run some jobs in a
cloud as of June 2019; the latter is up from just 13 percent in 2011 (Hyperion
Research, [2019).

In short, cloud computing is now a cost-effective option for statisticians who

are in demand for high performance, not with such a steep learning curve.

1.2.3 Multi-GPU node

In some cases, HPC is achieved by installing multiple GPUs on a single node.
Over the past two decades, GPUs have gained a sizable amount of popular-
ity among scientists. GPUs were originally designed to aid CPUs in rendering
graphics for video games quickly. A key feature of GPUs is their ability to apply
a mapping to a large array of floating-point numbers simultaneously. The map-
ping (called a kernel) can be programmed by the user. This feature is enabled
by integrating a massive number of simple compute cores in a single proces-
sor chip, realizing the SIMD architecture. While this architecture of GPUs was
created in need of generating a large number of pixels in a limited time due
to the frame rate constraint of high-quality video games, the programmabil-
ity and high throughput soon gained attention from the scientific computing
community. Matrix-vector multiplication and elementwise nonlinear transfor-
mation of a vector can be computed several orders of magnitude faster on GPU
than on CPU. Early applications of general-purpose GPU programming in-
clude physics simulations, signal processing, and geometric computing (Owens
et al., 2007)). Technologically savvy statisticians demonstrated its potential in

Bayesian simulation (Suchard et al. 2010ayb)) and high-dimensional optimiza-



tion (Zhou et al., 2010; Yu et al. [2015)). Over time, the number of cores has
increased from 240 (Nvidia GTX 285, early 2009) to 4608 (Nvidia Titan RTX,
late 2018) and more local memory — separated from CPU’s main memory —
has been added (from 1GB of GTX 285 to 24GB for Titan RTX). GPUs could
only use single-precision for their floating-point operations, but they now sup-
port double- and half-precisions. More sophisticated operations such as tensor
operations are also supported. High-end GPUs are now being designed specifi-
cally for scientific computing purposes, sometimes with fault-tolerance features

such as error correction.

A major drawback of GPUs for statistical computing is that GPUs have a
smaller memory compared to CPU, and it is slow to transfer data between them.
Using multiple GPUs can be a cure: recent GPUs can be installed on a single
node and communicate with each other without the meddling of CPU; this
effectively increases the local memory of a collection of GPUs. (Lee et al.|(2017)
explored this possibility in image-based regression.) It is relatively inexpensive
to construct a node with 4-8 desktop GPUs compared to a cluster of CPU
nodes with a similar computing power (if the main computing tasks are well
suited for the SIMD model), and the gain is much larger for the cost. Linear
algebra operations that frequently occur in high-dimensional optimization are

good examples.

Programming environments for GPU computing have been notoriously hos-
tile to programmers for a long time. The major sophistication is that a pro-
grammer needs to write two suits of code, the host code that runs on a CPU
and kernel functions that run on GPU(s). Data transfer between CPU and
GPU(s) also has to be taken care of. Moreover, kernel functions need to be
written in special extensions of C, C++, or Fortran, e.g., CUDA (Nvidiay, 2007)

or OpenCL (Munshi, 2009). Combinations of these technical barriers made ca-
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sual programmers, e.g., statisticians, keep away from writing GPU code despite
its computational gains. There were efforts to sugar-coat these hostile environ-
ments with a high-level language such as R (Buckner et al. 2009)) or Python
(Tieleman, 2010; Klockner et all [2012; [Lam et al. [2015)), but these attempts
struggled to garner user base big enough to maintain the community in general.

The functionalities were often limited and inherently hard to extend.

Fortunately, GPU programming environments have been revolutionized since
deep learning (LeCun et all |2015) brought sensation in many machine learn-
ing applications. Deep learning is almost synonymous to deep neural networks,
which refer to a repeated (“layered”) application of an affine transformation of
the input followed by identical elementwise transformations through a nonlinear
link function, or “activation function.” Fitting a deep learning model is almost
always conducted via (approximate) minimization of the specified loss function
through a clever application of the chain rule to the gradient descent method,
called “backpropagation” (Rumelhart et al., [1988]). These computational fea-
tures fit well to the SIMD architecture of GPUs, whose use dramatically reduces
the training time of this highly overparameterized family of models with a huge
amount of training data (Raina et al.l 2009). Consequently, many efforts had
been made to ease GPU programming for deep learning, resulting in easy-to-use
software libraries. Since the sizes of neural networks get ever larger, more HPC
capabilities, e.g., support for multiple GPUs and CPU clusters, have been de-
veloped. As reviewed in the next section, programming with those libraries gets
rid of many hassles with GPUs, close to the level of conventional programming.

Readers might ask: why should statisticians care about deep learning soft-
ware? As|Cheng and Titterington| (1994) pointed out 25 years ago, “neural net-
works provide a representational framework for familiar statistical constructs,”

and “statistical techniques are sometimes implementable using neural-network
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technology.” For example, linear regression is just a simple neural network with
a single layer and linear activation functions. Many more sophisticated statis-
tical frameworks can be mapped to that of neural networks and can benefit
from those easy-to-use deep learning libraries for computational performance

boosting.

1.3 Highly Parallelizable Algorithms

In this section, some easily parallelizable optimization algorithms useful for fit-
ing high-dimensional statistical models are discussed, assuming that data are
so large that they have to be stored distributedly. These algorithms can benefit
from the distributed-memory environment by using relatively straightforward
operations, via distributed matrix-vector multiplication and independent up-

date of variables.

1.3.1 MM algorithms

The MM principle (Lange et al.l |2000; Lange, [2016), where “MM” stands for
either majorization-minimization or minorization-maximization, is a useful tool
for constructing parallelizable optimization algorithms. In minimizing an objec-
tive function f(x) iteratively, for each iterate we consider a surrogate function
g(z|x™) satisfying two conditions: the tangency condition f(z") = g(a™|2™)
and the domination condition f(x) < g(z|z") for all x. Updating 2"*! =

arg min, g(x|x™) guarantees that {f(z")} is a nonincreasing sequence:
f@™™h) < g(a"Ha") < g(a"|2") = f(a).

In fact, full minimization of g(x|z™) is not necessary for the descent property

to hold; merely decreasing it is sufficient. The EM algorithm (Dempster et al.,
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1977)) is an instance of the MM principle. In order to maximize the marginal

loglikelihood
0(0) = log/pg(o, z)dz,

where o is the observed data, z is unobserved missing data, and 6 is the param-

eter to estimate, we maximize the surrogate function

QUO16") = Eg x gn llog ps(0, 2)] = / log [pe (0, 2)] pen (2]0)dz

since

00) = log/pg(o, z)dz = log/()|(z|0)p9n(z|o)dz

> /log [W] pon(2]o)dz

— Qolo™) — / log [por (2]0)] pon (2]0)dz

by Jensen’s inequality, and the second term in the last inequality is irrelavent
to 0. (See Wu and Lange (2010) for more details about the relation between
MM and EM.)

MM updates are usually designed to make a nondifferentiable objective
function smooth, linearize the problem, or avoid matrix inversions by a proper
choice of the surrogate function. MM is naturally well-suited for parallel com-
puting environments, as we can choose a separable surrogate function and up-
date variables independently. For example, when maximizing loglikelihoods, a
term involving summation inside the logarithm log(>"F_ u;) often arises. By

Jensen’s inequlity, this term can be minorized and separated as

p n P u™
u’
OSTEDS plunmg< ) > o oo

i=1 i=1 &~Jj=1"] 3 j=1"3
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where u'’s are constants and ¢, is a constant only depending on u'’s. Paral-
lelization of MM algorithms on a single GPU using separable surrogate functions
is extensively discussed in [Zhou et al.| (2010). Separable surrogate functions are

especially important in distributed environments, e.g. multi-GPU systems.

1.3.2 Proximal gradient descent

The proximal gradient descent method is an extension of the gradient descent

method, which deals with minimization of sum of two convex functions, i.e.,

min f(z) + g().

Function f is continuously differentiable, while g is possibly nondifferentiable.

We first define the proximity operator of g:

. 1
prox,\g(y) = argmin {g(x) + ﬁHx — yH%} , A>0

For many functions their proximity operators take closed forms. We say such
functions “proximable”. For example, consider the 0/co indicator function of a

closed convex set C

0, rzeC
dc(z) = -
+oo, z¢C

The corresponding proximity operator is the Fuclidean projection onto C:
Po(y) = argmingec ||y — z||2. The proximity operator of the ¢1-norm A| - ||; is

the soft-thresholding operator:

[Sa()]: == sign(yi)(Jyi| — A+

For many sets, e.g., nonnegative orthant, Pc is simple to compute.
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Now we proceed with the proximal gradient descent for minimization of
F(x) = f(x) + g(x). Assume f is convex and has L-Lipschitz gradients, i.e.,
IVf(x)—Vf(y)lla < L|jz — yl|2 for all x, y in the interior of its domain, and
f is lower-semicontinuous, convex, and proximable. The L-Lipschitz gradients

naturally result in following surrogate function that majorizes h:

Flz) <glx) + f(2") +(Vf("),z —a") + éllx — "3
2

1 1
z—a"+ V") —or IV £ (2")|l3 =: p(ala™).

= g(a) + fa") + &

2

Minimizing p(z|z™) with respect to = results in the update:

1
2 = prox, ,(z" —wmVf(z")), T € (0, L] : (1.1)

This update guarantees a nonincreasing sequence of F(z™) by the MM princi-
ple. Proximal gradient method also has an interpretation of forward-backward
operator splitting, and the step size v, € (0, %) guarantees convergence (Com-
bettes and Pesquet), [2011; |Bauschke and Combettes, 2011; Combettes, 2018). If
g(z) = dc(x), then the corresponding algorithm is called the projected gradi-
ent method. If g(z) = A||z||1, then the corresponding algorithm is the iterative
shrinkage-thresholding algorithm (ISTA, Beck and Teboulle, 2009)). For many
functions g, the update is simple and easily parallelized, thus the algorithm
is suitable for HPC computing. For example, the soft-thresholding operator is
elementwise hence the updates are independent. In addition, if g(z) = —alog z,
then

y+ \/y2—|—47a.

prox, (y) = L VLS (1.2)
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This proximity operator is useful for the example in Section See |Parikh
and Boyd| (2014) for a thorough review and distributed-memory implementa-

tions, and [Polson et al. (2015) for a statistics-oriented review.

1.3.3 Proximal distance algorithm

Proximal distance algorithm (Keys et al., 2019) is a recent addition to the
class of MM algorithms that deserved a separate treatment. This algorithm is
an interplay of the penalty method for constrained minimization and distance
majorization (Chi et al.l2014). Consider the minimization problem for a convex,
closed, and propelﬂ function f in a constraint set C' = ﬂleCi, where C1,...,Cy
are closed. Either convexity of C; or differentiability of f is required. A choice for
the penalty function would be ¢(z) = ﬁ Zle dist(z, C)?, where dist(x,C) =
inf,cc ||z —yl2 so that a minimizer x, of the unconstrained problem min, f(z)+
pq(x) is found. If p is sent to infinity, x, would tend to the solution for the
original constrained optimization. Distance majorization is achieved by |z —
Pg,(z™)||? > dist?(x, C;), hence the surrogate function g, that majorizes f(x)+

pq(x) is defined by

k

golele”™) = fl@) + 2 lla = Poy(a™)|
=1

2

= f(x) + g + const.

k
x — Z Po, (")
1=1

By definition of proximity operator, the minimum of g,(z|z") occurs at 2"+ =

Prox,-1y % Zle P, (:L‘”)} . When C' is convex, P¢ is single-valued and the fol-
lowing holds:
1
Vidist(x, C)? =2 — Po(x).

'For a convex function f : X — R U {#o0}, f is proper if f(x) < oo for some x and
f(z) > —oo for any z € X.
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Since the proximity operator is nonexpansive, the gradient of the function ¢ is
1-Lipschitz. This results in the proximal distance update 2! = Prox,-1 fla” =
Vq(z™)], showing that the proximal distance method is a case of the proxi-
mal gradient method for convex C;’s. Parallel computing can be applied if the
proximity operators involved and projection onto the convex set C;’s are easily

parallelized, e.g., £5 and £, norm balls or nonnegative orthants.

1.3.4 Primal-dual methods

The algorithms discussed so far are primal methods. Primal-dual methods in-
troduce additional dual variables but can deal with a larger class of problems.

Consider the problems of minimizing
Flx) = f(x) + h(Kz), (1.3)

where K is a linear map. We further assume that f and h are lower semicon-
tinuous, convex, and proper functions. Even if A is proximable, the proximity
operator for h(K-) is not easy to compute. Define the convex conjugate of h
as h*(y) = sup,(x,y) — h(x). It is known that A** = h since h is lower semi-
continuous and convex, so h(Kz) = h**(Kr) = sup,(Kz,y) — h*(y). Then
the minimization problem inf, f(z) 4+ h(Kx) is equivalent to the saddle-point
problem

inf Sl;p<K:U, y) + f(x) — h*(y).

Under mild conditions (Theorem 19.1 and Proposition 19.18, |Bauschke and
Combettes|, 2011)), strong duality

inf sup(Kx,y) + f(z) — h*(y) = supinf(z, K y) + f(z) — h*(y)
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holds and the saddle point (&, ) satisfies the optimality conditions
K& —0h*(§) 20 and KT+ 0f(&) 30,

where J¢ denotes the subdifferential of a convex function ¢. The vector y is the

dual variable and the maxmin problem
supinf(z, K'y) + f(x) = h*(y) = sup —h*(y) = f*(-K"y)
y Y

is called the dual of the original (primal) minimization problem.

A widely known method to solve this saddle point problem in the statistical
literature is the ADMM (Xue et al., [2012; Zhul, 2017; Ramdas and Tibshirani,
2016; |(Gu et al., 2018]). The ADMM update is given by:

2" = argmin f(z) + (t/2)|| Kz — 2" + (1/t)y"|)3 (1.4a)
JEH-H — prox(l/t)h(Kx"H + (1/t)yn) (1.4b)
Yt = g 4 (Kt g, (1.4¢)

The update is mot a proximity operator, as the quadratic term is not
spherical. It defines an inner optimization problem that is often nontrivial. In
the simplest case of f being linear or quadratic (which arises in linear regres-
sion), involves solving a linear system. While it is plausible to obtain the
inverse of the involved matrix once and reuse it for future iterations, inverting a
matrix even once quickly becomes intractable in the high-dimensional setting,
as its time complexity is cubic in the number of variables.

The primal-dual hybrid gradient method (PDHG, Zhu and Chan| [2008;
Esser et al., |2010; (Chambolle and Pock, [2011) avoids such inversion via the

following iteration:

n

y"t = prox,,.(y" + o Kz") (1.5a)
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n+1

" = prox, ;(z" — KTyt (1.5b)

T = gt g (1.5¢)

where (1.5a)) and (1.5b)) are dual ascent and primal descent steps, respectively;

o and 7 are step sizes. The last step corresponds to the extrapolation. If
h is proximable, so is h*, since prox.,«(r) = r —yprox. -1 L(712) by Moreau’s
decomposition. This method has been studied using monotone operator theory
(Condat |2013; 'Vul |2013), introduced in Appendix |A] Convergence of iteration
is guaranteed if o7|| K| < 1, where ||M]||2 is the spectral norm of matrix
M . If f has L-Lipschitz gradients, then the proximal step can be replaced

by a gradient step
2 = (V") + KTy,

The PDHG algorithms are also highly parallelizable as long as the involved
proximity operators are easy to compute and separable; no matrix inversion
is involved in iteration ([1.5)) and only matrix-vector multiplications appear. In
Chapter [2| we consider a three-function variant of this problem for application

on statistical estimation problems with structured sparsity.
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Chapter 2

Easily Parallelizable and
Distributable Class of Algorithms
for Structured Sparsity, with
Optimal Acceleration

2.1 Introduction

As discussed in Chapter[l], many statistical learning problems can be formulated

as an optimization problem of the three-function variant of (1.3 discussed in
Section [[.3.4

min f(@) + g(w) + h(Kz), (2.1)

where K € R>™P_and f , g, and h are closed, proper, and convex. In this
chapter, it is assumed that f is differentiable and its gradient V f is Lipschitz
continuous with modulus Ly; g and h are not necessarily smooth. We further

assume that ||K||2 < Lg. As discussed in Section in Chapter (1} (2.1) has

a solution under a mild condition. If (z*,y*) is a solution, then it is a saddle
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point for the saddle point formulation of (2.1)):

i L 2.2
i £ ) .

where L(z,y) = f(z) + g(z) + (Kz,y) — h*(y) is the saddle function. Also the
strong duality holds: x* is a primal solution to (2.1]), and y* is a solution to the
associated dual (Condat, 2013):

max (=(f+9)" (=KTy) — n*(y)) - (2.3)

In the sequel, we assume that (2.2)) has a solution, and seek an algorithm that
finds it. It is shown how to solve (2.1 in a fashion that is easy to parallelize or
distribute on modern high-performance computing environment such as work-

stations equipped with multiple graphics processing units (GPUs).

A pinnacle instance of (2.1)) is high-dimensional penalized regression with

structured sparsity penalty:

; (T )
iy 3 taFa,b) + Al + H(Da). (2.4)

with direct identification f(z) = Y"1, Li(alz;b;), g(y) = M l|z1, k() = H(u),
and K = D, where the set {(a;,b;) : a; € RP,b; € R,i = 1,...,n} consti-
tutes a training sample, I; : R?> — R is the loss function that may depend
on the sample index, D € RY*P is the structure-inducing matrix, and H is
the penalty function, which is typically non-smooth. Loss functions with Lips-
chitz gradients arise in many important problems: in linear regression we have
f(z) = (1/2)||Az — b||% and the gradient Vf(z) = AT(Az —b) is |ATA|o-
Lipschitz, where A = [a1, ..., a,]T denotes the data matrix; in logistic regression
fl@)=—=3>" 1 (bi(alz) +1log(1+ e“iT‘”)) has (1/4)||ATA||2-Lipschitz gradients.

Choosing the ¢1-penalty H(z) = A||z||; for some A\ > 0 yields the generalized
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lasso (Tibshirani and Taylor, 2011)) with sparsity of variables, which includes a
sparse version of fused lasso (Tibshirani et al., [2005) as a special case. For
the group lasso (Yuan and Lin, 2006) with G possibly overlapping groups,
we can choose H(y) = Mllypjllg + -+ + Agllyglle for v = (y, - yig)”
where [g] C {1,2,...,p} is a given set of group indexes and yj, € RGN for
each g = 1,2,...,G; || - ||; denotes the ¢; norm with ¢ > 1. Now set D as a
(I[1]|4---+1[G]|) X p binary matrix with a single one (1) in each row; the 1 cor-
responds to the group membership. Then, H(Dz) = Aq|lzpllq +- -+ Agllzgllq
as desired; D has a column with more than a single nonzero entry if and only if
there is an overlapping group. Judicious choices of f, g, h, and K in allow
more flexibility in solving . In particular, non-smooth loss functions, such
as the hinge loss, can also be handled. More complex penalty functions such as

the latent group lasso (Jacob et all [2009) are also allowed in (2.4)), as shown

below.

More than one penalty. When ([2.4) involves more than one penalty with dif-
ferent linear operators, the problem can be formulated as (2.1) by augmenting

the dual variable. Suppose we solve the following penalized regression problem

n
min 2; li(alz,b;) + M||z||y + Hy(D1x) + Ho(Doz).
.

Then we can set

f)=> Llalz,b), g(x)=Mllzl, h(yr,y2) = Hi(yr) + Ha(ya),
=1

K 'ES
Do Y2
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separability of h. For example, consider the latent group lasso problem (Jacob
et al., 2009)). The latent group lasso selects groups less conservatively than the
original group lasso (Yuan and Lin, 2006]), and allows overlaps. The penalty is

defined as

g
H(z) = u[g]eRl[lg?l,fDTv:x ; Agllvgg llgs
where [g] and D are the group index set and the membership matrix as discussed
in Section [2.1] for the original group lasso. Thus the latent group lasso problem
can be written as

min f(x) + g(x) + h(v) + d(oy(z — DTv),

)

where h(v) = Zig:1 Agllvigllg and ds is the indicator function for set S so

that dg(u) = 0 if u € S and dg(u) = +oo otherwise. Let z = (2T,vT)T,

) = 51 o2, 3) = a([1 0] =) h@rwe) = ) + b0y (), and
0 I

K = . We have an equivalent formulation
I -DT

mzin f(2) + () + h(K2).
It has the form of (2.1). Note that g, h and d;py are all proximable.
Elastic net penalties. The elastic net (Zou and Hastie, |2005) regression uses
a linear combination of ¢; and ¢5 penalties in order to promote both sparsity

of solution and the grouping effect that highly correlated variables are selected

or unselected together. The relevant optimization problem is
. /\2 2
min —=|[z{|3 + A1l[z][1 + I(Az, D), (2.5)
zERP 2

where the data matrix A is the same as in the sparse generalized lasso, and
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b = (b1,...,b,)T. This formulation admits nonsmooth loss function I, e.g.,

[(Az,b) = ||Az — b||2 (Belloni et al., 2011).

Nonsmooth losses: split dual formulation. In fact, more general formula-
tion with nonsmooth loss is possible. When the loss function /; in does not
have Lipschitz gradients yet is closed, proper, and convex, a split-dual formu-
lation (Nesterov, [2005) can be utilized. This includes the case where the loss is
not differentiable (e.g. hinge loss). To cope with this, we exploit the saddle-point
representation of , and dualize the loss function in addition to the
penalty. That is, express Y, l;(al z;b;) = sup,epn (A, w) — SO0 1 (w;; by),

yielding

x Yy, w

minmax (Dx,y) + (Az, w) (Zl wis b;) + H* (y )) (2.6)

In terms of €2), f(x) = 0, K = [DT,AT]T, h*(y,w) = H*(y) + S0, I (wi; b).

Because h* is separable in y and w, we have

ProxX;p« (U, U1y ey Un) = (prOXGH* (u)7 proxo‘lf(-;bl)(vl)v s proxgl;(-;bn)(vn))'

The cost is that the number of dual variables increases by n. For example, in
the linear support vector machine, the proximity operator for the hinge loss
li(+;0;) = max(0,1 — b;-) is given by prox,:(v;) = max(min(v; — ob;,0), —b;).
Thus computation of prox,,- can be conducted in parallel for each element
of v = (v1,...,v,). Note that this formulation is not limited to the separable

losses in ([2.4). For example, in the square-root lasso (Belloni et al., 2011)), we
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solve

mxin |Az — b||2 + H(Dz) = min  max (Dz,y) + (Az,w) — ((b,w) + H*(y)),

T ywifwll2<1

(2.7)

yielding f(z) = 0, K = [DT,AT]T prox,,-(u,v) = (prox,y-(u), Pg,(v —
20b)), where Pg,(-) denotes the projection to the unit f,-ball.

PET image reconstruction. In positron emission tomography (PET), pho-
ton emissions from a radioactive tracer inside the brain are counted and the
location-dependent emission rates are estimated. In this task, the Radon trans-
form (Jain, [1989) is often discretized as matrix A. See Secton for more
details. This results in a regularized nonnegative least squares problem, which
can be written as

1 )
min = [Az = Bl + 64(2) + A Da)s, (2.8)

where z is the unknown emission map (image), b is the vector of counts, and
04+ is the indicator function of the nonnegative orthant defined by d4(xz) = 0
if x1,...,2p, > 0 and 4 (x) = +oo otherwise. The D is a discrete gradient

operator encoding penalty on total variation.

Therefore, ability to solve efficiently provides a versatile tool for many
important statistical learning problems. In spite of its importance, solving
is challenging because the non-separability of the non-smooth part hampers
use of efficient methods. If h = 0, then the proximal gradient method reviewed
in Section [1.3.2] is arguably the method of choice, which provides a simple

gradient-descent-like iteration

a1 = argmin f(a%) + (Vf(2F), 2 — 2*) + 2%”% — *[I3 + g(x)
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— prox,,(a* — tV /("))

for 0 < t < 2/Lys, where (u,v) denotes the standard inner product u”wv.
However, nontrivial h, e.g., group lasso, proximal gradient involves evaluat-
ing prox,;.x(+), which is nontrivial even for tractable cases (Friedman et al.
2007; |Liu et al., 2010b; | Xin et al. [2014; Yu et al., 2015). While approximating h
by a smooth function has been considered (Nesterov, [2005; Chen et al., 2012),
this approach introduces an additional smoothing parameter that is difficult
to choose in practice. As reviewed in Section the popular ADMM can
be applied to solve with g = 0 as well, however, inner minimization sub-
problem is potentially expensive to compute. For example, if f is a loss
function for a generalized linear model, then the corresponding update involves
solving a linear equation of the form (ATWA + tKTK)x = r, W diagonal,
iteratively. While K is structured and known a priori, the data matrix A is
hardly structured. A similar problem arises in medical imaging reconstruction
problems, such as undersampled multi-coil MRI reconstruction (Ramani and
Fessler, 2011) or sparse-view CT reconstruction (Sidky et al., 2012)) using the
total variation penalty (Rudin et al., [1992; |Goldstein and Osher} 2009). In this
case the “measurement matrix” A is large and unstructured. Hence avoiding in-
ner minimization subproblem is crucial in both statistical learning and imaging
problems where the problem dimensions are ever increasing. The PDHG and
linearized alternating directions method (LADM; Lin et al., 2011) add an addi-
tional regularization term to in order to avoid the costly inner minimiza-
tion subproblem. However, these methods often involve evaluating prox(-),

which may lead to another inner minimization subproblem in the presence of

A.

The goal of this chapter is to introduce a class of algorithms that requires
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neither smoothing nor quadratic minimization. This class of algorithms only
involve evaluation of the gradient V f(z), matrix-vector multiplications and
simple proximity operators. Thus it is simple to implement and attractive for
parallel and distributed computation. We begin with introducing two known
algorithms for g = 0. One is due to Loris and Verhoeven (2011)), later studied
by [Chen et al. (2013), and |Drori et al.| (2015)):

=gk — 1 (Vf(xk) + KTyk)

y* T = (1 — pr)y" + pr proxyp. (y* + oK) (Algorithm LV)

1’k+1 — (1 o Pk)ﬂUk + pk(i.k+1 o TKT(yk+l o yk))’
and the other is due to |Condat| (2013) and [V (2013]):

g = gb — 7 (Vf(F) + KTy")

FhH1 _ ookl _ gkt
(Algorithm CV)
xk+1 — (1 _ ,Ok)l'k +pkj.k+1

y* T = (1 = pe)y® + pi Prox . (y* + o K1)

In particular, Algorithm CV is a relaxed version of the PDHG algorithm given in
iteration ([L.5]). Choices of the sequence {p;} and the step size parameters (o, 7)
for convergence of these algorithms are discussed in Section[2:2] As can be seen,
the proximity operator employed by both algorithms depends only on A* but not
K. Thus they are simple to implement and attractive for parallel and distributed
computation as long as either prox-(-) or proxy(-) is proximable. Table
illustrates the proximity operators for popular choices of h. Once the conditions
for convergence is understood, the rate of convergence and acceleration of the
algorithm are the next interest.

In cases of g # 0, many variants of Algorithm LV and CV have been studied.
Algorithm CV in this case falls into the forward-backward operator splitting
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scheme (Bauschke and Combettes|, 2011)), achieving the usual O(1/N)-rate. The
primal-dual fixed-point algorithm (PDFP, Chen et al., 2016) subsumes Algo-

rithm LV for this more general case. Other operator splitting approaches for

g # 0 include the Davis-Yin three-operator splitting (Davis and Yin| 2017, for
K = I), asymmetric forward-backward-adjoint splitting (AFBA,
2017) and primal-dual 3-operator splitting (PD30, 2018). The

latter two include the above forward-backward splitting methods for g = 0 as

special cases, and allow general K. Acceleration by using variable step sizes

and inertia has been studied (Combettes and Vul [2014} Lorenz and Pockl, [2015}
Bot et al., 2015} |Goldstein et al., 2015, |Chambolle and Pock, 2016). Despite

the reduction of the constant, they all remain in the O(1/N) regime or require

strong convexity.

On the other hand, interests in stochastic first-order methods for the primal-
dual formulation in general settings appear to be rather recent. When h =

0, stochastic versions of the proximal gradient method were considered

et al) [2009; [Lin et all [2014; Nitandal, 2014} Rosasco et al., [2014; [Atchadé

2017)). For the two-function problem (K # I but g = 0), mirror-prox
algorithms have been considered (Nemirovski et al., 2009} \Juditsky et al., 2011}

Lanl, 2012). |Ouyang and Gray| (2012) developed a near-optimal algorithm under

a strong convexity assumption on f and smoothing of g.Zhong and Kwok| (2014)

achieved a similar rate to O (% + LWK + ﬁ) under strong convexity. Without

additional assumptions on f or g but assuming K = I, Yurtsever et al. (2016)

introduced a stochastic variant of the Davis-Yin three-operator splitting. For
general K, the stochastic primal-dual algorithm for three-composite convex

minimization method (SPDTCM, |Zhao and Cevher} |2018) is proposed. This

method can be seen as a stochastic version of |Chambolle and Pock! (2016]), and

has the rate of O(L¢/N + Ly /N + x/v/N), which is not optimal.

A & Tl 8} 3
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In this regard, the contributions of this chapter, presented in Ko et al. (2019)
and Ko and Won (2019) are as follows. First, we connect Algorithms LV and
CV from a perspective of monotone operator theory to show that they are es-
sentially the same preconditioned forward-backward splitting algorithm (see,
e.g., (Combettes and Wajs, [2005) sharing a common preconditioner. Second,
from this connection a new, broader family of preconditioners that generates
an entire continuum of forward-backward algorithms is proposed. Third, by a
unified analysis, it is shown that this continuum of algorithms enjoys common
ergodic and non-ergodic rates of convergence over the entire region of conver-
gence. Prior to the connection the rates of the above two algorithms have been
available under much more stringent conditions than those for convergence; we
close this gap. Fourth, we proceed further to accelerate the whole continuum of
algorithms to achieve the theoretically optimal rate of convergence, and gener-
alize it further to the case of g Z 0. Only an optimal acceleration of Algorithm
CV has been known (Chen et al., 2014)), and acceleration of LV has remained
an open problem. Finally, the scalability of the studied algorithms is demon-
strated by implementing them on a distributed computing environment in case

that data do not fit in the memory of a single device.

The rest of this Chapter is organized as follows. In Section 2.2] the relation
between Algorithms LV and CV is shown and they are unified to propose a
broader class of algorithms. The rates of convergence of this class of algorithms
is also analyzed. In Section 2.3 an accelerated variant of the new class of al-
gorithms achieving the optimal rate is developed. Its stochastic counterpart,
also possessing the optimal rate, is discussed in Section Section demon-
strates the convergence behavior and scalability of the new algorithms through
their multi-GPU implementations. Discussion and conclusion follow thereafter

in Section All the proofs of our results can be found in Appendix [B]
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Notation. That a symmetric matrix M is positive (semi)definite is denoted
by M = 0 (M = 0); L = M refers to L — M > 0, etc. For M > 0, we define
its associated inner product and norm by (x,2')y; = (Mz,2’) and ||z|y =
\/m, respectively. For a symmetric matrix M, Apax(M) and Apin(M)

respectively denote the maximum and minimum eigenvalues.

2.2 Unification of Algorithms LV and CV (g =0)

In this section, a unified treatment to Algorithms LV and CV from the perspec-
tive of monotone operator theory is provided. For a brief summary of monotone
operator theory, see Appendix [A] To develop relationship between the two algo-

rithms more straightforwardly, we only consider the case g = 0 for this section.

2.2.1 Relation between Algorithms LV and CV

It can be shown that both Algorithms LV and CV are instances of precondi-

tioned forward-backward splitting. To be specific, note the first-order optimality
condition for (2.1)) is given by

0=Vf*)+ KTy, (2.9a)

y* € Oh(Kz). (2.9b)

where 0h(y) = {w € R': h(y') > h(y)+ (w,y' —y), Yy’ € R} is the subdifferen-
tial of the convex function h at y, which is a set-valued operator. Since h is closed
and proper, condition is equivalent to Kz* € (0h)~!(y*) = Oh*(y*)
(Bertsekas, [2009), thus can be equivalently written as an inclusion prob-

lem

0 Vf KT| |a*
€ =:T(z%), 2= (z",y"). (2.10)
o |-k on| |y
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The set-valued operator T is split into T'= F' + G, where

0 KT Vf 0
F = and G = . (2.11)
—-K Oh* 0 0

The operator F' is maximally monotone and G is 1/L-cocoercive (Bauschke

and Combettes, |2011)). A preconditioned forward-backward splitting for solving

E0) i

F= T+ MYF)H I - MG (2

(2.12)
k+1 _ (

z 1— pr)2" + piz”,

for z¢ = (2F,9%), 2¥ = (3% §%), and M = 0. If the modulus of cocoer-
civity of M~1G is denoted by 7 (cocoercivity of G is preserved; see Davis,
2015), then (2.12) converges if v > 1/2 for a sequence {p;} C [0,6] such
that > 2 pr(d — pr) = oo with § = 2 — 1/(2v). Note pp = 1 is allowed,
which yields a simple iteration zf*! = (I + M~1F)~1(I — M~'G)z*. The in-
verse operator (I +M~'F)~! is single-valued due to maximal monotonicity of
M~'F (Bauschke and Combettes, 2011, Theorems 25.8 and 24.5). (For instance,
(I+0¢)7(2) = argmin_icgn ¢(2') + 52 — 2[5 = prox,(z).) In particular, the
preconditioners for Algorithms LV and CV are respectively given by |(Combettes
et al.| (2014); Condat| (2013); Vu/ (2013):

=

I 1y _KT
M=My:=|" and M= Mcy:=|"

11— 7KK” -K i
Now we are ready to see that Algorithms LV and CV are essentially the

same algorithm. The “LDL” decomposition of Mcy reveals that

I 21 I —7KT .
Mcy = = LMyL". (2.13)
-TK I 17— 7KK" I
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It is clear that both M)y and Mcy are positive definite if and only if 1/(70) >
| K||3. Also it is easy to see that Algorithm CV, i.e., (2.12) with M = Mcy, is

equivalent to
LU = (1= p) L728 + pi(I 4 My F) 71T = My G)(LT25), - (2.14)

where F = LYFL™T and G = L~'GL™T. Letting w = LTz, we see that Algo-
rithm CV is in fact Algorithm LV applied to the linearly transformed variable
w by splitting the similarly transformed operator LYTL™T into F and G. The

cocoercivity constant of Ml__vlé is found by the following proposition.

Proposition 1. MG is (1/7—0||K||3)/L;-cocoercive with respect to || - | a,, -

Thus from the discussion below (2.12)) we have v = (1/7 — o| K |3)/Ls and

o Ly 1 . .
(S =2 - 5 m Then Algorlthm CV converges if
1 Ly 1 Lg\1 9
S oand (22 S s K 2.15
Lo wd (2oL kg 2.15)

With respect to the untransformed sequence {z*}, observe that MC_\}G is also
(1/7 — o||K||3)/L-cocoercive (with respect to || - [|are, ). In light of (2.14)), it
is natural to measure convergence using the metric ||LT - || 5z, and this metric
coincides with | - ||as,- On the other hand, it is easy to see MG is 1/(7Ly)-
cocoercive with respect to || - ||as,, hence Algorithm LV has v = 1/(7Ly) and

0 =2—171Lys/2. It converges if
1/7>Ls/2 and 1/(t0) > ||K|3. (2.16)

Both (2.15)) and (2.16)) recover the known convergence regions in the literature
(Condat, 2013; |Chen et al. 2013).
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2.2.2 Unified algorithm class

The relation between the two algorithms suggests a more general family of

preconditioners, namely

S 17 cT
M =LMyL" = |7 , (2.17)
C ir+rcct - KKT)
where L replaces (2,1) block of L in (2.13) by 7C. In particular, if CKT = KCT,

then (2.12)) yields the following iteration (for simplicity we set px = 1):

Y"1 = prox ;. (0 Ka* + o7(C — K)Vf(z®) + (I + o7 K(C — K)T)y*)
M =2k — (V") = CTyF + (O + K)Ty).
(2.18)

Condition CKT = KCT7 is satisfied if and only if C = USES™'VT+ NVT where
U, V, and ¥ are from the reduced singular value decomposition of K = ULV
so that X is an r x 7 positive diagonal matrix where 7 = rank(K); V is such
that V = [V, V] is orthogonal; S is symmetric, and N is arbitrary. A simple
choice is S = kX2 for some k € R and N = 0, yielding C = kK. Choosing

k = 0 and —1 respectively recovers Algorithms LV and CV; for k = 1, we have

" = prox,,- (0 Ka* + y")

aF = 2b — Y f(aF) - TET 2y — o),

which is the dual version of Algorithm CV (Condat, 2013, Algorithm 3.2).
Another choice is to set S = %2 and N so that NN7 is diagonal. In this case
CCT — KKT reduces to a diagonal matrix, C' = [K, N]V where K is the first
7 columns of KV. If the eigenspace of KK is well-known and multiplication

with V' can be computed fast, e.g., the discrete cosine transform matrix for the
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fused lasso on a regular grid (Lee et al. 2017)), this choice can be useful.

2.2.3 Convergence analysis

Region of convergence

A condition for (2.12)) with general M to converge is

Ly
M= |2 : (2.19)
0

which follows from Theorem [2| and Proposition [3| later in this section. Thus
with M in (2.17)) the following region of convergence is obtained.

Proposition 2. Algorithm (2.18)) converges for (o,7) such that

1L 1 L) (1 rL
~> L and ( — 2f> < — ¢||Ky|§> > LCl3. (2.20)
T T g

Note that (2.20)) reduces to (2.16]) for Algorithm LV and to (2.15) for CV.

In general for C = kK, k € [—1, 1], the region of convergence shrinks gradually

from |k| = 0 (LV) to 1 (CV); see Figure This extends the observation
made in Section regarding convergence conditions (2.16|) and (2.15) to a

continuum of algorithms between LV and CV.

4.4
36
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Figure 2.1: Region of convergence in (1/0,1/7). Boundaries correspond to ||
— 0, 0.25, 0.5, 0.75, 1.
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Remark 1. |Condaf (2015) also considers the case g Z 0. In this case, the sec-
ond term of the first line of Algorithm CV is replaced by prong(a;k—T(Vf(a:k)—F
KTy®)). This algorithm is still a preconditioned forward-backward splitting one
with preconditioner Mcy, where the zero in the (1,1) block of operator F' is re-
placed by Jg, and converges under . For this extended F, generates
a feasible algorithm only when C' = +K.

Rates of convergence

We now analyze the rates of convergence of the preconditioned forward-backward
splitting algorithm for the preconditioner matrices M of . A pre-
duality gap function G(Z, z) := L(Z,y)—L(x,y), where z = (z,y) and 2 = (%, 7),
is used to measure the convergence of the objective value, because the duality
gap G*(2) 1= sup,c4 G(Z,2), Z C R? x R, guarantees that the pair z = (,7)
is a primal-dual solution to if G*(2) < 0. The rate of convergence of
a gap function is typically analyzed in terms of an averaged solution sequence
ZN = Zszo a2t/ Z;LO oy, for some positive sequence {ay }, yielding an ergodic
rate. Ergodic rates are widely studied in the literature (Loris and Verhoeven,
2011} [Chen et al., 2013} Bot and Csetnekl 2015} [Chambolle and Pockl, [2011],
2016)), partly due to ease of analysis. Sometimes the unaveraged (last) solution
sequence {zx} or {Z} is preferred as it tends to preserve the desired structural
properties better than the ergodic counterpart. Analysis based on the unaver-

aged sequence yields the non-ergodic rate (Davis, [2015)).

First we establish an O(1/N) ergodic convergence rate of the pre-duality

gap evaluated for an average of the first N terms of the sequence {(z*, %)}

Theorem 1. In iteration ([2.12)), let u be a constant such that ||(z,0)]]?,_, <
(1/w)||z||3, for all x € RP. Let a = (2u)/(4p — Ly) and denote zF = (a*,y*),
= (ick],vg]k) DeﬁninN = (N, yV) with zV = Z]kV:O orTF/ Zivzo pr and
g = Yo kT Yo pr- Also let p = suppsqpr. If 1 > Lyg/2 and {py}
is chosen so that 0 < pp < 1/a for all k, then the following holds for all
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z=(z,y) € R? x RL:

_ L
G(z",2) < m (HZO — 213 + e 12° — Z*H%w) ;

where z* = (x*,y*) is a solution to (2.2).

The key observation in proving Theorem [1]is the following lemma, also used

in the proof of Theorem

Lemma 1. For p € (0,2), consider a relation 2+ = (I + M~'F)~1(I —
M7'G)2, 2z, = (1 — p)z™ + pz. Write 2, = (z,,9,), 27 = (aT,y"), 27 =
(x7,y7), all in R? x R!. Then,
20G(2%,2) <=7 = 2ll3s = ll2p = 2l13
+ 1 =2/p)llz” = 2ll8s + (Ly/p)lla™ —wpl3, V2= (2.).

Now let F(x) = f(x) + h(Kz) be the primal objective function and F*
be the primal optimal value. For an important class of penalty functions h
including those for the generalized and group lasso, the following rate for primal

suboptimality holds.

Corollary 1. Assume the conditions for Theorem . If dom(h) = R, i.e., h
does not take the value +o00, then there exists a constant C1 independent of N
such that for all N,

0< F@V) = F < Ci/(SN o n).

Thus if {py} is chosen so that inf;>g pr, > 0, we obtain O(1/N) convergence
of the primal suboptimality.

The following theorem establishes the non-ergodic counterpart of Theorem
@
Theorem 2. For some v > L¢/2 and € > 0, suppose M in iteration

satisfies

M - [”I d} (2.21)

37



Let o = 2v/(4v — Ly) and write 2* = (a%,y*), 2F = (3, §%). If {pr} is chosen
so that 0 < p < 1/c for all k and 7 = infy> pr(1—apy) > 0, then the following
holds:

G(2%,2) < |12 = 2" (12° = 2*llne + [12* = 2llan)/(V/7(k + 1),
Vz = (z,y) € R? x R,

and additionally, G(*, 2) = o(1/Vk + 1). Furthermore, if dom(h) = R, then
there exists a constant Cy independent of k such that 0 < F(Z k)

Co/Vk +1 for all k and F(i*) — F* = o(1/Vk +1).

Remark 2. The little-o result suggests that the non-asymptotic upper bound of
the gap function may be conservative and the gap may diminish faster than the
1/vVk + 1 rate. The outcomes of the numerical experiments in Section also
suggest that the bound is not tight.

Closing the gap

Here, how the results close the gap in the literature between the conditions

for convergence and those for the rate is described. The following fact helps

understanding the conditions for Theorems [1] and [2}

Proposition 3. For M ~ 0 and a given Ly > 0, the following are equivalent.
1. For all x € RP, there exists u > Ly /2 such that ||(x,0)]13,-, < (1/p)]|(3.
2. The condition holds.

3. There exist v > Ly /2 and e > 0 such that M > [VI d] .

That is, the conditions for Theorems [1] and |2 are both equivalent to (2.19)).

This implies that the rates of convergence results in this section hold for M in

(2.17)) satisfying (2.20). Thus, for the entire range of (o, T) for which (2.18)) con-
verges, an O(1/N) ergodic and an o(1/vk + 1) non-ergodic convergence rates

for the objective values are established.
For Algorithm LV (M = My), Loris and Verhoeven| (2011) obtain an

O(1/N) ergodic convergence rate for f(z) = 3||Az — b||3. For general f, Chen

A L) ¢
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et al| (2013)) show that Algorithm LV converges under , but the rate is
given only for strongly convex f and full row rank K. This special case is not
very interesting in statistical learning applications in which f is almost always
not strongly convex. To the best of my knowledge, the result for the rates of
convergence for Algorithm LV and its variants (including the optimal acceler-
ated one in the next subsection) without this impractical assumption is novel.
For Algorithm CV (M = Mcy), the result extends the region of parameters for

which ergodic converge rate is known from (1/7 — o||K||?)/Ls > 1 (Chambolle
and Pock, 2016, Theorems 1 and 2) to the full range (1/7 — o||K||*)/L; > 1/2

of (2.15). Therefore the gap between the conditions for convergence and those

for the rate is closed.

Remark 3. An inspection of the proof of Lemma[l] asserts that the results of
this section also holds for the extended F (see Remark. Thus the gap for the
three-function extension of Algorithm CV is closed as well.

Remark 4. Proposition 5.3) analyzes both ergodic and non-
ergodic rates for general F' and G, under the condition M > Al for some

A > 0. When applied to (2.12)), this analysis results in a convergence region

smaller than that is allowed by (2.19)). Here the special structure of G in (12.11])
1s exploited.

2.3 Optimal acceleration

It is well known that first-order methods can be accelerated by introducing

some “inertia” (Nesterov, 2004} Beck and Teboulle, 2009; |Chen et al., [2012).

For the saddle-point problem of the form ({2.2)), i.e., g = 0, the optimal rate of
convergence is known to be O(L;/N%+ Lk /N) in terms of the duality gap G*,

where N is the total number of iterations (Nesterov, 2005; |Chen et al.| [2014)).

A natural question arises regarding whether the same optimal rate can be
attained for the entire continuum (2.18)) of algorithms, for the case of g # 0.

It turns out that this rate is also optimal for this more general case, in the

A= dfsl
39 = A



following sense.

1. The optimal rate of solving min,cx(f(z) + g(z)) by using any first-order
method is O(Ly/N?) (Nesterov, 2004), e.g., by using FISTA (Beck and
Teboulle], 12009)).

2. For sufficiently large p, there exist b € Y ¢ R! and K € R*P such that

h*(y) = (b,y) and the rate of convergence for solving

i Kz,y) — h*(y)) = mi Kz —b
gg;gglg« z,y) —h*(y)) gg;ggleajgd x —b,y)

is Q(Lk/N) (Nemirovsky, 1992; Nemirovski, 2004).

2.3.1 Algorithms

(Chen et al. (2014) devise an accelerated variant of Algorithm CV (for g = 0)

that achieves the theoretically optimal rate of convergence O(Ly/N?+ Lk /N),

where N is the total number of iterations:

e A NN (A L) (2.22a)
by = (1= pp)a® + ppat (2.22b)
gt = Prox,, p« (7 + orKz") (2.22¢)
P =3 - (Vf(ah) + KT (2.22d)
A = (1 = pp)ak + ppattt (2.22¢)
Y= (1= o)yt + ok (2.22f)

Note an extrapolation step (2.22al) with a parameter 0, and a “middle” re-
laxation step ([2.22b)) are introduced. For (2.18)), i.e., g # 0, we consider the

following generalization:

a* = K&k — 0, A(EF — 2771 (2.23a)

A= dfsl

40 o



o = K" + 6y, (' n (K + B)T = BY) (5 = ") (2.23b)
g = (L= pr)a® + pypa® (2.23¢)
A =3 — 7 (K + A) (VS (aa) + ) (223d)
§F = proxg, (7 + o) (2:23¢)
g = KT+ 4 BT (g — %) — 0, BT (5" — g1 (2.23f)
i* ! = prox,,, <5ck — mk(Vf(ahg) + @kH)) (2.23g)
2F L = (1 — pp)a® + ppakt? (2.23h)
Y= (1= pr)y* + g (2231)

Step sizes (o, 7 ) are allowed to depend on the iteration count k. This algorithm
reduces to (hence to Algorithms LV, CV, and in between) if g = 0,
A=-C,B=C,ppr=1,0, =0, 0, = 0, and 7, = 7, and to [Chen et al.
(2014) for g = 0, A = —K, and B = 0. The optimal rate of convergence of
is established in Section In particular, the optimal acceleration of
Algorithm LV and cases g # 0 is novel.

2.3.2 Convergence analysis

We first consider the case in which the bounds for {z*}, {y/*} is known a priori.
In this case we can assume that the search space is Z = X x Y, where X C R?,
Y < R! are both closed and bounded. Under this assumption, we have the

following bound for the duality gap:

Theorem 3. Let {z*} = {(z%,y*)} be the sequence generated by (2.23)). Fix
A=—-K if g#£0. Assume for some Qx, Qy > 0,

sup, arex |7 — 213 < 20%, supy yey ly — '3 < 203, (2.24)
and the parameter sequences {px}, {0}, {7k}, and {ok} satisfy p1 =1 and

Pt — 1= pj, 1, (2.25a)
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1—gq 1
~—— — Lpr — ~||All3ox >0, (2.25b)
Tk r

1—r
Ok

1
— Ty <2\K+AHQ\|K + B2 + qHBH%) >0 (2.25¢)

for some q € (0,1), r € (0,1). Further suppose that
0 < 0 <min(1g_1 /7, 0k—1/0%), max(Tg_1/Tk, op—1/0%) < 1. (2.26)
Then for all k > 1,

Gr (M) < 20% + 203 (2.27)

The duality gap G*(z) is defined in Section [2.2.3] For the following choice

of the algorithm parameters, we obtain the claimed optimal convergence rate.

Corollary 2. Assume ||Bll2 < bLg and | K + Blj2 < dLk for some positive
b and d. If g = 0, further assume ||All2 < aLg and ||K + Alla < c¢Lg for
some positive a and c. Otherwise, put A = —K, a =1, and ¢ = 0. When the
parameters are set to

_ _2 — _ k _ Oy
Pk = L¥1> Ok = k> Tk_zplLf-HfQLKQy/QX’ Uk;—LKQX,’th”e (228)

P = 1%(1 and Py = max {ﬁag, 2 (2cd + b2/q)} ) (2.29)
then
2
G (%) < pops Ly + 2B g > 0, (2.30)

Remark 5. For g = 0, A = —K, B = 0, (2.25)) recovers the condition for
Chen et al.| (2014, Theorem 2.1) by putting r — 1 and ¢ — 0. For A =
—kK = —B, we obtain (1 — |k|q)/7x > L¢pk + |k|L%ox/r and (1 — |&|r) /oy >
L7 (2(1 — &%) + |k|/q). In particular for Algorithm LV (k = 0), we have
1/7x > Lypy and 1/(tpor) > 2L% regardless of q and r; this condition resem-

bles (2.16)).

Now suppose the bounds for {z*}, {y*} are unavailable. In this case the

duality gap sup,c G(Z,2), Z = RP x R!, may be unbounded above. Instead, we

] 2-t) &) 3
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define a perturbed gap function:

G(zZ,v) :==supG(z,z) — (v,Z — 2). (2.31)
2€Z

There always exists a perturbation vector v such that (2.31)) is finite (Monteiro
and Svaiter, [2011). Thus we want to find a sequence of perturbation vectors

{v*} that make G(z*,v") small.

Theorem 4. Suppose that {z*} = {(z*,y*)} are generated by Algorithm (2.23).
Fizr A= —K if g £ 0. If the parameter sequences {px}, {0}, {7x}, and {o}
satisfy (2.25) and

Ok = Th—1/Th = O—1/0k < 1 (2.32)

for some 0 < q < 1,0 <r < 1/2. Then there exists a vector v**1 such that for
any k> 1,
GoFH1 k1) < o (2 + 1L+ M) R? =: ey, and (2.33)

k
Tk 1—-2r

[oF e < (207 = 22 + 25119 - 712
+ (2 (u+ Zv) + 20 (ul|Allz + V]| Bll2)
-+ 2Tkpkl/HK + AHQHK -+ BHQ)R, (234)

where (&,7) is a pair of solutions to problem (2.2), and

R=\/le - B+ 23— 13 n=\t% v=\7% (239

For the following choice of the algorithm parameters, we obtain the claimed

optimal convergence rate.

Corollary 3. Assume ||Bll2 < bLg and | K + Bl|2 < dLk for some positive b
and d. If g = 0, further assume ||A|l2 < aLk and ||K + Al2 < cLg for some
positive a and c. Otherwise, put A= —K, a =1, and ¢ = 0. N is fized, and
the parameters are set to

_ 2 _ k-1 _ k _ k
Pk= g1 0= "5 Tk = P AmNLr: Ok = NLp where  (2:30)

] 2-t) &) 3
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Pl = 1 P2 = maX{ o? 26d+b2/q7 1} ) (237)

1—q’ (1—-q)r> 1—-7r
then
en1 < (U + 2B) 24 1L + THE] B2, and (2.38)
4P L L~ P -
o4l < S (8 = @2 + 3 - 5'l2) + B (0 + 2v)] (2:39)

5 2P (12 = 2+ 19— 502 + R (n+ Zv)) +4R(an + bv) + gt

This result can be interpreted as follows. Theorem 4 and Corollary [3] state
that for every pair of positive scalars (p, €), Algorithm (2.23)) generates (v, ex)
such that |[o™V|| < p and ey < ¢ (see (2.33)), (2.34), (2.38), and (2.39)) for a

sufficiently large N. The associated pair (zV, ") is called a (p, )-saddle point
of the unperturbed saddle point problem (2.2) (Monteiro and Svaiter, [2011,

Definition 3.10). With this notion, the following proposition can be stated.

Proposition 4. Under the assumptions of Theorem [{| and Corollary[3, there

exists a vector w = (w), wlY) such that W € Tv(zN,yN) and |w™] <

p+ V4Le for some constant L > 0, where

_[vf KT
e = [K agh*]'

Here, O-h* is the e-subgradient of h* defined as 0-h*(y) = {g : h*(y') > h*(y) +
(v —y.9) —e. vy €R'}, VyeR.

Proof. The result follows directly from Proposition 3.13, Definition 3.4, Propo-
sition 3.5, and Proposition 3.6 of Monteiro and Svaiter| (2011]). O

The condition w?™ € T, (z"V,y") in Proposition [4| can be written as the

following two inequalities

0> (Vi) + KTy, 2z —a™) + (wl, 2 — V) — ey, Va, (2.40a)

xT

R (y) > B (") + (K2, y —y™) + (w) y — o) —en, Vy. (2.40D)

Comparing with the optimality conditions (2.9) for the unperturbed saddle
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point problem ([2.2)):

0> —~(Vf(e*) + K'y* w0 —a*), Va,

h*(y) > h*(y*) + (K™, y —y*), Vy,

we see that the sum of the last two terms in each right-hand side of and
is the error of the approximate solution (.CCN T ). Indeed, in the unit
ball centered at (z'V, V), each error is bounded by p + V/4Le + ¢, which can be
made arbitrarily small since the choice of (p,¢) is free. In this sense, for large

N, (zV,y") is a “nearly optimal” primal-dual solution.

2.4 Stochastic optimal acceleration

2.4.1 Algorithm

In large-scale (“big data”) applications, it is often the case that even the first-
order information on the objective of or cannot be obtained exactly.
Such settings can be modeled by a stochastic oracle, which provides unbiased
estimators of the first-order information. To be precise, at the k-th iteration
suppose the oracle returns the stochastic gradient (F(&*), K, (2%), K, (%)) in-

dependently from the previous iteration, such that

B = v, B || )| 2 (K

Ky (5*) KTy (2.41)

E[A(ZF)] = AZ*, and E[B(7%)] = BT§*.
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We further assume that the variance of these estimators is uniformly bounded,
ie.,
E[| (&) = VE)IP) < X2,y
E[|[K. (") — K2"|*] < ¥},
B[, (5") - KT3°) < X2 (242)
E[|A(z*) — A1) < x4,

E[|B(#*) — BT < x%.

For notational convenience, we define y, := , /X?c I X% K-

We consider the following stochastic variant of (2.23):

<l

k= Ko (@) — 0pA(ZF — 741
p =Ky + ) 1 B <(T’“ - 1) (" - @’“‘5)

Tk Tk

S|

ik = (1 — pp)ak + ppi®

" =7, — i (Ky + A)(F (@R ) +Ty)
G — prox,, - (7 + o) (2.43)
= Ky @) + BE — 5~ 0u(F — 7))

= prox, , i* - (F(zk ) + o

$k+1 _ (1 o pk)xk +pki,k+1
yF = (1 — pr)y® + prg T,

which can be considered a generalization of the stochastic variant of (2.22)) by
\Chen et al| (2014). The optimal rate of convergence of solving ([2.2)) stochas-

tically is known to be O (% + LTK + %) in terms of the expected duality

gap E[G*(+)] (Chen et al., 2014). In the sequel, we show that Algorithm (2.43])

achieves this rate.
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2.4.2 Convergence analysis

We obtain the following results for Algorithm (2.43) when Z is bounded. Note

part [2.47] of Theorem [7] is strengthened under the tail assumption

E [exp(|Vf(2) = F@)[3/x2,5)] < exp(1)
E [exp(||Kz — Ka(@)[3/x2)| < exp(1)
E |exp(1KTy — Ky )I3/2 k)] < exp(1).

Observe that (2.44)) implies (2.42)) by Jensen’s inequality.

Theorem 5. Fix A = —K if g £ 0. Assume that (2.24]) holds,

(2.44)

for some Qx,

Qy > 0. Also suppose that for all k > 1, the parameters py, Ok, Tk, and oy in

satisfy @25%), @20,

s—4q
Tk

B 2
o <2IIK+AH2||K+BII2+ ”q”?) >0

_prk: >0

- I

_ 1Al3ow
r

t—r
Ok

for some q, r, s, t € (0,1). Then the following holds.
(i) Under ([2.42), we have E[G*(2F*1)] < Qo(k) for all k > 1,

(2.45a)

(2.45b)

where

Qo(k) 1= (220% + 220} ) + £ T8, (S22 08 + 1)

Vi 27k
(2 —t)owyi

1-1¢

G+ %+ TEIE + ABOE +x3)) - (246)

(ii) Suppose A = —K and B = bK, then under the assumption (2.44]), we

have

Pr(G* (") > Q) (k) + AQ1(k)) < 3exp(—A%/3) + 3exp(—N), (2.47)

for all A\ >0 and t > 1, where

29k

2 2 k 2—8)Tivi 2—t)oi
(k) 52@(%5)%(‘*‘%:9%)4‘&21':1(( e TR 1zt7X§/>v

Tk

Ql(l{) = ,'% (ﬂXzQX + XyQY) \/@
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k 2—58)TiVi 2—t)ovi
+ i (( 18—)ZVX92c+( 1579(5)'

Corollary 4. Assume condition (2.24) holds. In Algorithm (2.43), if N > 1 is
given, A = —K, ||B||2 < b||K||2, and the parameters are set to

_ 2 _ k-1 _ Qxk
P =1 0= = 2P1LfQX+P2Lnyk+P3Xxk3/2’ (2.50)
_ Q
Tk = LKQX"‘;ZSXy\/E (2.51)
where Py and Py satisfies
_ 1 1 /g
P1_§7 P2Zmalx{’r‘(sfq)7t—7‘}7 P3>O (252)
the following holds.
(i) Under assumption (2.42)), we have E[G*(2N)] < Co(N), where
8P L2 AL QxQy (Po+1) | 4P3(x2Qx+4xyQy)
Co(k) ktk—{-l)x K XkY 2 4 3(X \);E yly (2 53)
+ V2(2=8)Qx X T V2(2-t)Qy xy '
3(1—s)Vk 3(1-t)Vk

(i) Under assumption ([2.44)), then we have
P(G*(2V) > Co(N) + AC1(N)) < 3exp(—A?/3) + 3exp(—)),  (2.54)

for all A > 0, where

_ V2(2-5) | Qxxo V2(2—s) ) Qvx
k) = (1+5157) B+ (V257 ) e )
Remark 6. |Zhao and Cevher (2018, Remark 3), who achieve the rate O(Ly/N+
Ly /N + x/VN), suggest that the rate for the smooth part f may be improved

to O(Ly/N?). We have shown that this is indeed possible and the resulting rate
s optimal.

When Z is unbounded, we have the following theorem.

Theorem 6. Assume that {z*} = {(zF,y*)} is the sequence generated by
2.43). Further assume that the parameters py, O, Tk, and oy in (2.43)) satisfy
2.254), (2.32), and (2.45)). for all k > 1 and some q, s, t € (0,1), r € (0,1/2).
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If A= —K or g =0, then there is a perturbation vector vFT1 satisfying

50 k1 k+1 4 4(r+1/2) \ p2 5 2 2(r+1/2) \ ¢2
EIG(+, o] < 28 [ (64 1% + 2GR ) B2+ (3 + 22 + 22 2]
(2.56)
for all k > 1. Furthermore,

E[Hvk+1HQ] < 2PkHi;$1||2 + 2Pk||lc?r;ylH2 +V2R2 ¥ 52 {Pk(i:‘#) + <V+ /%1) Pk
(2.57)

+ 2ok (| All2p + 1 Bll2v) + 27mpi | K + All2]| K + BHzV} = €kt1
(2.58)

where (Z,74) is a pair of solutions for (2.2)), R, p, and v are as defined in (2.35)),

and

— o), 2 2 70 (2 x2 172 2(v2 12
S = \/2?21 (2 S)Ti1£>;:2£+XB) 4 Zf:1 @2-t)m z(Xy“’XA"ift”K"‘AHQ(Xx"‘XB))' (259)

Corollary 5. In Algorithm (2.43), if N is given, A = —K, B = bK, and the
parameters are set to

_ 2 _ k-1 _ k
Pr= 1 k=" Te=ok = 2P L+ PoLi (N—1)+ PsNy/N—Ty'’ (2.60)
for some R > 0, where X' is defined by x' = 2osy2 4 %X?/ Then for Py,
P, and Ps satisfying
1 1 b?
P1 =, P2 > max{ y ,1} (261)
s—q r(s—q) q(t—7)
Py =1/R,

for some R >0, q, s, and t € (0,1), r € (0,1/2), ¢ < s, and r < t. Then we
have
AP\ Ly

2P L 2x'/R
en < (wovedy + 25+ )

« <<6+ 14qu " 4(1r/j;£/T2)> R2 1 (g I 12qu " 2(1r/j;£/T2)> R2/3)7

and

4P L PyL 2x'/R
Elllo" 2] < (7riesy + 25k + 208
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x (2R (1+ \/§)+(\/§R+%) (1+n+ (2 +v)))

+ 2L (VaR + R/V3) (1 + bv).
Therefore we obtain the desired order for both ey and E[||vy]|2]-
2.5 Numerical experiments

In this section, the actual convergence behavior of the algorithms generated
by and their accelerated variant is illustrated. In addition, the
scalability of these algorithms by implementing a distributed version of
is demonstrated. The experiment was conducted on a system with two Intel
Xeon CPUs (E5-2680 v2 @2.80GHz) with eight Nvidia GTX 1080 GPUs with
8 GB of RAM each.

2.5.1 Model problems

Overlapping group elastic net. We consider an overlapping group elastic

net problem with a quadratic loss

R
.1 A1
min 6 — Az13 + 3 el + %2 3 /|Gl o
i=1

where A = [a1,--- ,ay]7 is the data matrix, and b = (by,--- ,b,) is the response
vector. A test dataset was generated based on the methods in|Chen et al. (2012).
For the group designation, R groups of S adjacent variables were defined, with
10 overlaps of adjacent groups. i.e., g; = {90(j — 1) + 1,...,905 + 10}, thus
p = R(S—10)+10. The true value of z; was set by x; = (—1)7 exp(—(;j—1)/100)
for 57 = 1,...,p. Each element of A was sampled from the standard normal
distribution, and added Gaussian noise € ~ N(0,1) to Az to generate b =
Az + €. For the convergence experiments, R = 100 and S = 100 were chosen,

so that the dimension is given by p = 9010. For the scalability experiment,
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S =130 and R = 1000, 5000, 8000, 10000 were selected so that the dimensions
are p = 120010, 600010, 960010, 1200010. For all experiments, the number of

data points was chosen as n = 5000.

Graph-guided sparse fused lasso. The graph-guided fused lasso problem

we consider is given by
1 2
min o [|Az = bllz + Arflz]l + el D]ls,

where D is the difference matrix imposed by the network structure. The dataset
for the graph-guided fused lasso experiments was generated following the tran-
scription factor (TF) model of Zhu (2017). This is a simple gene network model
with J fully connected subnetworks of size T', where each subgroup has one TF
with T'— 1 regulatory target genes. Variables corresponding to TFs are sampled
independently from A/ (0, 1). Variables for target genes are sampled so that each
target gene and the corresponding TF has a bivariate normal distribution with
correlation 0.7, and these variables are conditionally independent given the TF.
For j-th subnetwork, the true values of x; were chosen by

(—1)+1 L%J ifj=1,...,J,

T = i=G—-Dr+1,...,4r

0 otherwise
where J, is the number of active groups. Response b; is sampled so that b; =
Az + €;, with ¢; N (0,100%). In addition to the edges comprised of fully-
connected subnetworks, random edges were added between the active variables
and the inactive variables. For each active variable, edges connecting this vari-
able and J — 1 distinct inactive variables were added. For the convergence
experiments, T' = 10, J, = 20, J = 1000 were used so that the dimension
p is 10000. For the scalability experiment, T = 12, and J, = 20. We se-

51



lected J = 10000, 50000, 80000, 100000 were selected to generate the dataset
with p = 120000, 600000, 960000, 1200000, respectively. For all experiments, the

number of samples was chosen by n = 5000.

2.5.2 Convergence behavior

Two-function case (g = 0)

First, the algorithms are applied to the two function cases (¢ = 0) without
acceleration: overlapping group lasso (group elastic net with A\; = 0, Ay =
R/100), graph-guided fused lasso (graph-guided sparse fused lasso with A; = 0,
A2 = 1), and latent group lasso (as discussed in Sectionwith a quadratic loss,
A1 = 0, Ay = R\/|G,]/100). For the forward-backward (FB) splitting (2.18)),

. Ly 1—(1—k> K|)2
C = kK, and |k| < 1 were used, with pp = 0.9 (2 - %#}1%”2) Step
sizes were chosen as 7 = 0.9]% and 0 = 0.9%%, so that (2.20) is

satisfied. For the acceleration (2.23), four cases were tested: Algorithm LV (A =
B =0),CV (A=K, B =K), their “midpoint” (A = —0.5K, B = 0.5K),
and |Chen et al|(2014) (A = —K, B = 0). The number of iterations N is set
to 10000. For bounded (Corollary [2) and unbounded (Corollary [3) cases, (g,7)
are chosen so that they minimize %Lf + %(&H)HK ll2 in and
(4Ij\l,§f + %) (2 + %—q + :7211 i) in , respectively. Those minimizers

were found using sequential least squares programming. As a benchmark, an

inertial version of the forward-backward-forward (FBF) algorithm (Combettes

and Pesquet, [2012) was applied, as described in Bot; and Csetnek (2016):

FEHL gk (vf(mk) i KTyk) + oo (zh — 2P

g = proxg,. (v + TEa* +ai(yt — )

(2.62)
YL = G PR (R k) an(gF — R

karl — ijrl _ TKT(ngrl _ yk) + Oéz(.%’k _ xkfl)'
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With a; = as = 0, resembles Algorithm LV, but requires one more step
per iteration; its convergence rate has not been established.

Figures [2.2fa-b), [2.3(a-b), and [2.4(a-b) show the convergence of the FB
with respect to the averaged sequence {(z",7")}, and the convergence
of the accelerated FB algorithms with respect to {(2V, y™¥)}. The gap be-
tween the primal objective value at zF and the “optimal” objective value versus
iteration count k is plotted. Following Loris and Verhoeven| (2011)), the reference
“optimal” value was computed by running the accelerated LV algorithm with
bounded parameters for 100000 iterations; this obtained the minimal value up
to the point that the machine precision allows. Figures[2.2](a),[2.3(a), and 2.4](a)
used parameters given by , which assumes zF and y* are bounded. This
is true as long as ||z¥|2 < Qx/v2 and ||y*[]2 < Qv /v2; Qx = 12 and Qy = 15
were used for group lasso problems, and 2x = 141.4 and Qy = 305.9 were used
for graph-guided fused lasso. The resulting iterates respected these bounds. Fig-
ures (b), (b), and (b) used parameters given by , which does not
require Qx and Qy. Since the reference optimal value was an order of 10%, the
values in the oscillating region correspond to the 7th or 8th significant decimal
digit of the objective value.

We observe that Theorems [I] and [4] faithfully describe the convergence be-
havior. The convergence rates of the accelerated ones were close to O(1/N?),
because in this experiment Ly > | K||2. On the other hand, the base FB al-
gorithms appear very close to the O(1/N) line. All of the optimal acceleration
settings exhibit very similar convergence behaviors, which suggest that we have
a good degree of freedom in choosing an optimal primal-dual algorithm.

Figures [2.2]c), [2.3(c), 2.4(c) compare the non-ergodic convergence with re-
spect to {(Z*, %)} of the FB and FBF. The FB algorithms behave like O(1/k)

initially, and then converge faster than O(1/k?). This behavior is much faster

] 2-t) &) 3
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than what is predicted by Theorem [2l On the contrary, the FBF algorithm

stalls after a few hundred iterations.

Now actual convergence behaviors of the optimal stochastic algorithm
for the group lasso and graph-guided fused lasso model problems are illustrated.
The estimate F(z*) is computed by V f(Maz*), where M is a diagonal matrix
where each diagonal entry is independently chosen as 1/p with probability ,

and 0 with probability 1 — 7. This strategy meets the assumption (2.41)).

The convergence behavior of the stochastic algorithm is illustrated in Fig-

ure Figures and show the result of (2.43]) with parameters (2.50)

for the group lasso and graph-guided fused lasso problems, respectively. Fig-
ures and show those with parameters given by . Note that for
the assumption to hold, both cases need estimates of 2x and Qy. The
experiment was conducted using 7 = 0.2. For the simplicity of illustration,
x = 3 x 10° was used for the overlapping group lasso, and y = 107 was used for
the graph-guided fused lasso. In , R was set to 10 for overlapping group

lasso and 100 for graph-guided fused lasso. The horizon N was set to 10000 for

all cases. In (2.50) and (2.60)), ¢, r, s, and t were chosen to minimize the error

bounds Cy(N) in Corollary |4| and ]ég\lffifl) + 2P2}|VK||2 + \%f/i in Corollary

respectively, in a similar fashion to the deterministic counterparts. For a com-

parison, cases with parameters chosen for the deterministic setting and
but with stochastic estimation of gradients were included. In Figure
the convergence of the stochastic algorithms is slow initially because the step
sizes 73, and o, are very small for small k& due to the presence of an N3/2 term in
their denominators, but they eventually converge faster than the O(1/k) rate
for both bounded and unbounded parameter selections. (Also note the log-log
scale of the plots.) While Corollaries {4 and [5| guarantee the optimal rate for
A = —K (corresponding to CV if B = K and Chen et al.| (2014) if B = 0),

] 2-t) &) 3
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gap

[ |-©-optimal bdd, Chen
-A-optimal bdd, £ =0 (LV)

[ [-©-optimal unbdd, Chen
-A-optimal unbdd, x = 0 (LV)

~B&-optimal bdd, x = —0.5 —B&-optimal unbdd, k = —0.5
-{-optimal bdd, k = —1 (CV) _,|~©-optimal unbdd, x = —1 (CV)
10 %¢|-7- base, k = 0 (LV) 10 "¢l <7-base, k = 0 (LV)

~Y¢-base, k = —0.1 ~Y¢-base, k = —0.1
~£x-base, k = —1 (CV) ~¥z-base, k = —1 (CV)

n n 10-4 ; ;

10° 10" 102 10° 10* 10° 10t 102 10° 10*
iterations (k) iterations (k)
(a) (b)

gap

~-base, kK =0 (LV)
10 “El-O base, k = —0.1
~-base, kK = —1 (CV)
—5-inertial fbf

. .
10° 10
iterations (k)

()

0 1

10

Figure 2.2: Convergence of the forward-backward (FB) algorithms generated by
and their accelerated variants for a overlapping group lasso model.
(a) optimal acceleration with bounded parameter setting (“optimal”) with er-
godic convergence of the FB algorithm (“base”). (b) optimal acceleration with
unbounded parameter setting (“optimal”) with ergodic convergence of the FB
algorithm (“base”). (c¢) non-ergodic convergence of the FB (“base”) and inertial
FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k?) convergence,
and dashed black lines represent O(1/k) convergence.
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-O-optimal bdd, Chen -O-optimal unbdd, Chen
107 F|-A-optimal bdd, x = 0 (LV) 1 107 f|-A-optimal unbdd, & = 0 (LV)
~B-optimal bdd, k = —0.5 ~B&- optimal unbdd, kK = —0.5
-&-optimal bdd, k = —1 (CV) ~$-optimal unbdd, k = —1 (CV)
10° f|-<7- base, & =0 (LV) 4 10° F|<7-base, k = 0 (LV)
Y- base, kK = —0.5 ¢ base, Kk = —0.5
~£x-base, k = —1 (CV) ~£z-base, k = —1 (CV)
1077 : . ' 1072 . ;
10° 10? 10% 107 10° 10° 10? 107 10° 10"
iterations (k) iterations (k)
(a) (b)

~<Jbase, k =0 (LV)
10%E|-O-base, K = —0.5
-O-base, K = —1 (CV)
—E-inertial fbf

10° 10t 102 10

iterations (k)

()

Figure 2.3: Convergence of the forward-backward (FB) algorithms generated
by and their accelerated variants for a graph-guided fused lasso
model. (a) optimal acceleration with bounded parameter setting (“optimal”)
with ergodic convergence of the FB algorithm (“base”). (b) optimal accelera-
tion with unbounded parameter setting (“optimal”) with ergodic convergence
of the FB algorithm (“base”). (c) non-ergodic convergence of the FB (“base”)
and inertial FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k?)
convergence, and dashed black lines represent O(1/k) convergence.
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Figure 2.4: Convergence of the forward-backward (FB) algorithms generated
by and their accelerated variants for a latent group lasso model.
(a) optimal acceleration with bounded parameter setting (“optimal”) with er-
godic convergence of the FB algorithm (“base”). (b) optimal acceleration with
unbounded parameter setting (“optimal”) with ergodic convergence of the FB
algorithm (“base”). (¢) non-ergodic convergence of the FB (“base”) and inertial
FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k?) convergence,
and dashed black lines represent O(1/k) convergence.
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the choice A = —kK, B = kK with 0 < k < 1 (corresponding to LV and
“in-between”) also exhibited a similar convergence behavior. On the contrary,

for the “deterministic” choice of the parameters the algorithm diverged.
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Figure 2.5: Convergence of optimal rate stochastic algorithm for a group lasso
model (a-b) and a graph-guided fused lasso model (c-d). (a), (c), optimal rate
stochastic algorithm assuming bounded domain (“optimal”) compared to
ergodic convergence of the FB algorithm. (b), (d), optimal rate stochastic algo-
rithm with parameters in . The cases labeled “deterministic” in the legend
denote the deterministic-case parameters given by for bounded case and
for unbounded case. Solid black lines, dashed black lines, and dotted

black lines represent O(1/k?), O(1/k), and O(1/vk) convergence, respectively.

Three-function optimal acceleration (g # 0)

Now, we compare the practical performance of optimal three-function sum ac-

celeration (g # 0 in (2.23) and (2.43)) with the benchmark methods. For the
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Figure 2.6: Convergence of deterministic and stochastic OS3X under various pa-
rameter settings and other methods for a sparse graph-guided fused lasso model.
(a) (2.23) (labeled “OS3X”) with bounded parameter settings with SPDTCM
with deterministic updates, CV, PDFP, AFBA, and PD30. (b) (2.23) (labeled
“OS3X”) with unbounded parameter settings with SPDTCM with determinis-
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bounded and unbounded parameter settings with SPDTCM.
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bounded and unbounded parameter settings with SPDTCM.



deterministic setting, we consider Condat-Vu (CV), PDFP, AFBA, PD30O, and
SPDTCM without noisy gradients. For the stochastic setting, we compare the
accelerated method with SPDTCM with noise. The algorithms were tested with
graph-guided fused lasso and overlapping group elastic net. For all stochastic
experiments, 10 separate runs were averaged. For each experiment, primal gap
versus the number of epochs is shown. An epoch was defined as (cumulative
number of data points used in the estimation of F)/(number of data points in
the dataset). The primal gap is the difference between the objective value at
the epoch and the optimal objective value, approximated by the objective value
after 100000 epochs of deterministic method . Three instances of
and were tested: B =0, B=—0.5K, and B = —K, with A = — K fixed.

In the deterministic setting, from Corollary [3| and Corollary[d, ¢ = 0.3, r =
0.7, and P; = 0.9 were chosen. For stochastic setting, (g, r,s,t) from Corollary
and Corollary |§| were chosen as (0.3,0.3,0.7,0.7). The variance y was set to
1000. For CV, PDFP, AFBA, and PD30, 7 = 1.9/Ly and o = 1/(47) were used.
Finally, for SPDTCM, the constant parameter recipe as provided by [Zhao and
Cevher| (2018) was utilized.

At iteration k, the stochastic gradient F (x*) was obtained from a random
subsample of A. For a random permutation 7, we define a subsample A :=
Ax(1):n(ns),: (in Matlab notation), where ns = |0.2n]. Thus for the quadratic
loss, we have {(xk) = (n/ng)AT(Az — b). A, B, K,, and Iéy are estimated
without artificial noise.

For graph-guided sparse fused lasso, Ay = A2 = 1 were used, with do-
main boundaries estimated as Qx = 200, 0y = 450. All the iterates remained
within these boundaries. For stochastic unbounded parameter settings, we chose
R = 100. The results are shown in Figure The convergence speed gap be-
tween and the other methods is clear (note the log-log scale). Using the
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parameters with known bounds is faster than using the parameters that do not
involve bound assumption, but we still achieve faster convergence compared to
other methods without the bound assumption. There was no noticeable differ-
ence between the choices of B.

For the overlapping group elastic net, Ay = 0.1 and Ay = 0.3 were used with
Qx = 20, Qy = 45. For stochastic case with unbounded parameter setting,
we chose R = 50. The results are shown in Figure All the instances of
deterministic acceleration converged faster than SPDTCM. Stochastic
starts slowly, but it surpasses SPDTCM eventually.

2.5.3 Scalability

To test the scalability of the studied algorithms, we consider the scenario that
the number of features p is so large that, for each sample, the features do
not fit into the memory. In other words, the data matrix A = [All, ... AMI],
where All ¢ RxPi S pi = p, is stored distributedly in M devices. In
this case, it is desirable to also split the vectors x € RP conformally and store
distributedly, i.e., x = [xa}, .. ,x[j;w]]T, z[; € RPi. For many instances of
including the generalized lasso and group lasso, I 2 p, so it is desirable to
partition and store the dual variable y € R! likewise. i.e., y = [ya], - ’y[ﬁ/l}]T?
Ypi) € R, >ty 1 = 1. To compute K Ty and Kz efficiently, it is desirable to also
distribute rows and columns of K across the devices, i.e., KT = [K [:T]’ LK [:g/]]]
and K = (KU, ... KM where K € R%*P and K[ € R™Pi. Duplicating K
does not incur too much cost, as K is typically sparse. Then, we can carry out
computation in a distributed fashion as follows.

Suppose that device i stores Ay, K, K U z[j, and y;). To compute Az,
we compute A[k]x[k] within each device, and aggregate the result in a master

device. The communication cost required is O(n). Computing Kz is more com-
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plicated. Denote the submatrix made of the row 1+ Z;’,_:ll l; through EZ,:l Ly
and the column 1+Z§,_:11 pjr through Z§/:1 pj of K by K[[ZJ]} First, we compute
K [[%]m[j] =: [Kz];;. Then we transfer nonzero values in each [Kx];; to device 4. Fi-
nally, within device i, we aggregate [Kx];; over j. When the number of nonzero
elements in K is O(p), which is the case for both overlapping group lasso and
graph-guided fused lasso, the communication cost is O(Mp) in the worst case.
This type of distribution is especially suitable for multi-GPU platforms. We
solved the model problems using TensorFlow (Abadi et al., 2015) v1.2, which
deals with inter-GPU communications automatically. The code is available at
https://github.com/kose-y/dist-primal-duall

Each experiment was conducted for 1100 iterations with time recorded ev-
ery 100 iterations. This is repeated three times. The result for the first 100
iterations was discarded, as this figure includes the time elapsed to build com-
putation graphs. Average time per 100 iterations and their standard deviations
were computed. Table 2.2 shows that the distributed implementation is highly
scalable across multiple GPUs. The algorithm runs faster with more GPUs in

general; for the data that do not fit in the memory, it only requires more GPUs.
2.6 Discussion

In this chapter, a unified view to Algorithms CV and LV, two classes of primal-
dual algorithms for a convex composite minimization problem based on mono-
tone operator theory has been provided. This unification suggests a continuum
of forward-backward operator splitting algorithms for this important optimiza-
tion problem having many applications in statistics. It is also this unified un-
derstanding that enables us to establish the O(1/N) and o(1/vk) convergence
rates for the full regions of convergence of Algorithms CV and LV (and those in

between) as well as the O(L;/N?+ L /N) optimal asymptotic accelerations of
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these algorithms and their three-function extensions. A practical implication of
this understanding is that we bring these algorithms to the same arena: as they
share the same convergence rate, other factors such as the ability of choosing
wider step sizes can be fairly compared in empirical settings. Thus practition-
ers now possess more degrees of freedom in choosing from a suite of algorithms
with theoretical guarantees.

The simplicity of the algorithms proposed and analyzed here also enables
us to implement their distributed multi-GPU version almost painlessly using
existing packages. This contrasts to the previous works (Yu et al., 2015} Lee
et al., 2017)), which resort to exploiting the structure of the matrix K in .

There remain several avenues of future research. First, in this chapter a
minimal assumption on the convexity of the functions is maintained since the
interest is in the worst-case rates. How the bounds of the algorithm class can be
improved with additional assumptions, e.g., the strong convexity of g (Ghadimi
and Lan, 2012)), would be of interest. Second, in the unbounded settings we
assume the horizon N is fixed in advance. Using step sizes that depend on N at
least dates back to |[Nesterov| (2005)); achieving optimal rates without this infor-
mation is a challenging task (Zhao and Cevher| (2018]) report a factor of log NV
slowdown in the asymptotic rate). However, in many scenarios (e.g., early stop-
ping) the knowledge of N is unavailable, thus horizon-independent convergence
analysis is warranted. Third, techniques for estimating the problem parameters
Ly and Lk, and combining them with algorithm parameter selection will have

an important practical impact.
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Table 2.2: Scalability of the distributed version of for graph-guided fused
lasso and group lasso models. Time was measured in seconds per 100 iterations.
Standard deviations are listed in parentheses. Any cell with missing values
indicates that the experiment failed to run due to lack of memory.

GRAPH-GUIDED FUSED LASSO

#GPUs 1 2 3 4 5 6 7 8

#GROUPS D
10000 120000 4.895 3.801 3.274 2.468 2.081 1.739 1.584 1.518
(0.019) (0.048) (0.027) (0.021) (0.029) (0.025) (0.023) (0.014)

50000 600000 20.631 13.779 11.962 10.124 8568  7.699  6.520
(0.253) (0.309) (0.126) (0.031) (0.058) (0.053) (0.050)

80000 960000 22.695 16.957 13.712 11.559 10.343  10.828
(0.288) (0.302) (0.140) (0.124) (0.133) (0.056)

100000 1200000 20.517 16.190 15.590 11.704  12.498

(0.166)  (0.227) (0.170) (0.148) (0.145)

OVERLAPPING GROUP LASSO

#GPUs 1 2 3 4 5 6 7 8

#GROUPS p
1000 120010 4.828 4.156 2.973 2.465 2.102 1.853 1.591 1.538
(0.015) (0.057) (0.034) (0.014) (0.015) (0.012) (0.014) (0.015)

5000 600010 19.312  13.670 10.164  8.374  7.369  6.727  5.960
(0.075) (0.059) (0.055) (0.029) (0.040) (0.029) (0.038)

8000 960010 22792 17.044 14.722 12,671 10.866  10.103
(0.228) (0.101) (0.107) (0.157) (0.110) (0.080)

10000 1200010 22210 16.658 15.386 14.088  11.689

(0.273) (0.049) (0.098) (0.104) (0.105)

LATENT GROUP LASSO

#GPUs 1 2 3 4 5 6 7 8

#GROUPS P
1000 120010 4.754 3.359 2.524 2.166 1.894 1.649 1.598 1.602
(0.003) (0.024) (0.090) (0.068) (0.017) (0.020) (0.053) (0.050)

5000 600010 19.133  14.378 10.888  9.299  7.883  7.386  7.251
(0.142) (0.083) (0.344) (0.451) (0.042) (0.025) (0.074)

8000 960010 22.023 17.825 14.236 12141 10.964 10.133
(0.132) (0.180) (0.150) (0.145) (0.077) (0.057)

10000 1200010 22.271 17.647 15.045 13.320 12.194

(0.439) (0.476) (0.165) (0.067) (0.070)
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Chapter 3

Towards Unified Programming for
High-Performance Statistical
Computing Environments

3.1 Introduction

As introduced earlier, increasing computing power is often achieved by using
more cores or machines. Supercomputers and local clusters utilize multiple cores
of CPUs over multiple machines with fast communication between the machines.
Also, GPUs are now widely used for accelerating many computing tasks involv-
ing linear algebra and convolution operations. In addition, with maturing of
cloud computing, users can now access virtual clusters through cloud service
providers without need of purchasing and maintaining the machines physically.
With the demand for analysis of terabyte- or petabyte-scale data in diverse dis-
ciplines, the crucial factor for the success of large-scale data analysis is how well
we utilize high-performance computing hardware in the statistical computing

task.
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However, statistical community appears yet to fully embrace the power of
high-performance computing. This is partly because of difficulty of program-
ming in multiple nodes and on GPUs in R, the most popular programming
environment among statisticians. Furthermore, researchers often face the bur-
den of writing separate code for different hardware environments. While there
are a number of packages in high-level languages including R, Python, or Julia
that simplifies GPU programming and multi-node programming separately (re-
viewed in Section , the package choices that enable simplification for both
multi-GPU programming and multi-node programming with the same code
base is limited. This leads to necessity of a tool that merges programming for

multiple hardware environments.

In this chapter, a Python package dist_stat and a Julia (Bezanson et al.,
2017) package DistStat.jl are introduced, which define an easy-to-use dis-
tributed array data structure over distributed CPU and GPU environments in
a Python package PyTorch and the Julia programming language, respectively.
Users can decide underlying array implementation to work on CPU cores or

GPUs only with minor configuration changes.

To make the contrast clear, examples from the landmark paper for GPU
in statistical computing (Zhou et al.l |2010]), nonnegative matrix factorization
(NMF), positron emission tomography (PET), and multidimensional scaling
(MDS) are deliberately chosen and implemented with dist_stat and
DistStat. jl. The difference lies in the scale of the examples: our experiments
deal with data of size at least 10, 000 x 10,000 and as large as 200, 000 x 200, 000
for dense data, and 810,000 x 179,700 for sparse data. This contrasts with the
size of at best 4096 x 2016 of Zhou et al.| (2010). This level of scaling is possible
because the use of multiple GPUs in a distributed fashion has become handy,

as opposed to the single GPU, CUDA C implementation of 2010. Furthermore,

67



using the power of cloud computing and modern deep learning software and
programming language, it is shown that exactly the same code can run on
multiple CPU cores and/or clusters of workstations.Wherever possible, we ap-
ply more recent algorithms in order to cope with the scale of the problems. In
addition, a new example of large-scale proportional hazards regression model
is investigated. We demonstrate the potential of our approach through a sin-
gle multivariate Cox regression model regularized by the ¢1 penalty on the
UK Biobank genomics data (with 400,000 subjects), featuring time-to-onset of
Type 2 Diabetes (T2D) as outcome and 500,000 genomic loci harboring single
nucleotide polymorphisms as covariates. To my knowledge, such a large-scale
joint genome-wide association analysis has not been attempted. The reported
Cox regression model retains a large proportion of bona fide genomic loci associ-
ated with T2D and recovers many loci near genes involved in insulin resistance
and inflammation, which may have been missed in conventional univariate anal-

ysis with moderate statistical significance values.

The rest of this chapter is organized as follows. In Section [3.3] we review
software libraries employing the “write once, run everywhere” principle, and dis-
cuss how they can be employed for fitting high-dimensional statistical models on
the HPC systems of Section [I.2] How to distribute a large matrix over multiple
devices is presented in Section Numerical examples of NMF, PET, MDS,
and ¢1-regularized Cox regression are given in Section [3.5] Finally, we conclude
the chapter in Section [3.6] The code is available at https://github.com/
kose—-y/dist_stat|and https://github.com/kose-y/DistStat. jl1}

and is released under the MIT License.
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3.2 Related Software

3.2.1 Message-passing interface and distributed array interfaces

The de facto standard for inter-node communication in distributed computing
environments is the message passing interface (MPI). The latter defines several
ways to communicating between two processes (point-to-point communication)
or among a group of processes (collective communication). Although MPT is
originally defined in C and Fortran, many other high-level languagues have in-
terfaces to it in the form of a wrapper, for example, Rmpi (Yu, 2009) for R,
mpidpy (Dalcin et all 2011) for Python, and MPI. j1 (JuliaParallel Contrib-
utors, [2020) for Julia.

There have been several attempts to incorporate array and linear algebra
operations through the basic syntax of the base programming language. MAT-
LAB has a distributed array implementation that uses MPI as a backend in
the Parallel Computing Toolbox. In Julia, MPIArrays.jl (Janssens,
2018) defines a matrix-vector multiplication routine that uses MPI as its back-
end. DistributedArrays.jl (JuliaParallel Contributors, [2019) is a more
general attempt to create a distributed array, allowing various communication
modes, including Transmission Control Protocol/Internet Protocol (TCP/IP)
and Secure Shell (SSH), and MPI. In R, a package called ddR (Ma et al., [2016)

supports distributed array operations.
3.2.2 Unified array interfaces for CPU and GPU

For GPU programming, CUDA C for Nvidia GPUs and OpenCL for general
GPUs are by far the most widely used. R package gputools (Buckner et al.|
2010) is one of the earliest efforts to incorporate GPU in R. PyCUDA and
PyOpenCL (Klockner et all [2012)) for Python and CUDAnative.jl and

CUDAdrv.jl (Besard et al., 2018) for Julia allow users to access low-level
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features of the respective interfaces.

For better productivity, an interface to array and linear algebra operations
that works transparently on both CPU and GPU is desirable. In MATLAB,
the Parallel Computing Toolbox includes the data structure gpuArray.
Simply wrapping an ordinary array with the function gpuArray () allows the
users to use predefined functions to exploit the single instruction, multiple data
(SIMD) architecture of Nvidia GPUs. In Python, the recent deep learning (Le-
Cun et al., 2015) boom accelerated development of easy-to-use array inter-
faces and linear algebra operations along with automatic differentiation for
both CPU and GPU. The most popular among them are TensorFlow (Abadi
et al., [2015) and PyTorch (Paszke et al., [2017). It is worth noting that the
Distributions subpackage of TensorFlow (Dillon et al., [2017) allows con-
venient development of GPU computation in Bayesian setting, for example,
stochastic gradient Monte Carlo Markov chain (Baker et al., 2018). In Julia, a
central package named CUDA. j1 (Besard et al., 2019; |JuliaGPU Contributors,
2020) defines many array operations and simple linear algebra routines using

the same syntax as the base CPU arrays.

3.3 Easy-to-use Software Libraries for HPC

3.3.1 Deep learning libraries and HPC

As of writing this dissertation (Summer 2020), the two most popular deep
learning software libraries are TensorFlow (Abadi et al. 2015) and PyTorch
(Paszke et al., 2017). There are two common features of these libraries. One
is the computation graph that automates the evaluation of the loss function
and its differentiation required for backpropagation. The other feature, more
relevant to statistical computing, is an efficient and user-friendly interface to

linear algebra and convolution routines that work on both CPU and GPU in a
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unified fashion. A typical pattern of using these libraries is to specify the model
and describe how to fit the model to the training data in a high-level script-
ing language (mostly Python). To fit a model, the software selects a backend
optimized for the system in which the model runs. If the target system is a
CPU node, then the software can be configured to utilize the OpenBLAS (Xi-
anyi et al.l 2014) or the Intel Math Kernel Library (Wang et al., 2014)), which
are optimized implementations of the Basic Linear Algebra Library (BLAS,
Blackford et al., |2002) for shared-memory systems. If the target system is a
workstation with a GPU, then the same script can employ a pair of host and
kernel code that may make use of cuBLAS (NVIDIA] 2013), a GPU version
of BLAS, and cuSPARSE (NVIDIA| |2018), GPU-oriented sparse linear algebra
routines. Whether to run the model on a CPU or GPU can be controlled by a
slight change in the option for device selection, which is usually a line or two
of the script. From the last paragraph of the previous section, we see that this
“write once, run everywhere” feature of deep learning libraries can make GPU

programming easier for statistical computing as well.

TensorFlow is a successor of Theano (Bergstra et al.l [2011), one of the first
libraries to support symbolic differentiation based on computational graphs.
Unlike Theano that generates GPU code on the fly, TensorFlow is equipped
with pre-compiled GPU code for a large class of pre-defined operations. The
computational graph of TensorFlow is static so that a user has to pre-define
all the operations prior to execution. Unfortunately, such a design does not go
along well with the philosophy of scripting languages that the library should
work with, and makes debugging difficult. To cope with this issue, an “eager
execution” mode, which executes commands without building a computational
graph, is supported.

PyTorch inherits Torch (Collobert et al., 2011), an early machine learning
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library written in a functional programming language called Lua, and Caffe (Jia
et al.,[2014), a Python-based deep learning library. Unlike TensorFlow, PyTorch
uses dynamic computation graphs, so it does not require computational graphs
to be pre-defined. Thanks to this dynamic execution model, the library is more
intuitive and flexible to the user than most of its competitors. PyTorch (and
Torch) can also manage GPU memory efficiently. As a result, it is known to be

faster than other deep learning libraries (Bahrampour et al., [2015)).

Both libraries support multi-GPU and multi-node computing. In Tensor-
flow, multi-GPU computation is supported natively. If data are distributed in
multiple GPUs and one needs data from the other, the GPUs communicate
implicitly and the user does not need to care. Multi-node communication is
more subtle: while remote procedure call is supported natively in the same
manner as multi-GPU communications, it is recommended to use MPI through
the library called Horovod (Sergeev and Del Balsol 2018) for tightly-coupled
HPC environments (more information is given in Section . In PyTorch,
both multi-GPU and multi-node computing are enabled by using the inter-
face torch.distributed. This interface defines MPI-style (but simplified)
communication primitives (see the parallel programming models paragraph in
Section , whose specific implementation is called a backend. Possible com-
munication backends include the MPI, Nvidia Collective Communications Li-
brary (NCCL), and Gloo (Solo.io} 2019). NCCL is useful for a multi-GPU node;
(CUDA-aware) MPI maps multi-GPU communications to the MPI standard as
well as traditional multi-node communications; Gloo is useful in cloud environ-

ments.

This feature of unified interfaces for various HPC environments is supported
through operator overloading or polymorphism in modern programming lan-

guages, but achieving this seamlessly with a single library, along with multi-
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device support, is remarkable. This is partially because of injection of capital
in pursuit of commercial promises of deep learning (TensorFlow is being de-
veloped by Google, and PyTorch by Facebook). There are other deep learning
software libraries with similar HPC supports: Apache MxNet (Chen et al., [2015)
supports multi-node computation via Horovod; multi-GPU computing is also
supported at the interface level. Microsoft Cognitive Toolkit (CNTK, |Seide and

Agarwal, [2016) supports parallel stochastic gradient algorithms through MPI.

3.3.2 Case study: PyTorch versus TensorFlow

In this section, we illustrate how simple it is to write a statistical computing
code on multi-device HPC environments using a modern deep learning libraries.
We compare PyTorch and TensorFlow code written in Python, which computes
a Monte Carlo estimate of the constant w. The emphasis is on readability and
flexibility, i.e., how small a modification is needed to run the code written for
a single-CPU node on a multi-GPU node and a multi-node system.

Listing [3.1] shows the Monte Carlo 7 estimation code for PyTorch. Even for
those who are not familiar with Python, the code should be quite readable. The
main workhorse is function mc_pi () (Lines 14-21), which generates a sample
of size n from the uniform distribution on [0, 1]> and computes the proportion
of the points that fall inside the quarter circle of unit radius centered at the
origin. Listing|3.1}is a fully executable program. It uses torch.distributed
interface with an MPI backend (Line 3). An instance of the program of Listing
is attached to a device and is executed as a “process”. Each process is
given its identifier (rank), which is retrieved in Line 5. The total number of
processes is known to each process via Line 6. After the proportion of the
points in the quarter-circle is computed in Line 17, each process gathers the

sum of the means computed from all the processes in Line 18 (this is called the
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all-reduce operation; see Section [1.2.1)). Line 19 divides the sum by the number
of processes, yielding a Monte Carlo estimate of m based on the sample size of

n x (number of processes).

We have been deliberately ambiguous about the “devices.” Here, a CPU core
or a GPU is referred to as a device. Listing [3.1] assumes the environment is a
workstation with one or more GPUs, and the backend MPI is CUDA-aware. A
CUDA-aware MPI, e.g., OpenMPI (Gabriel et al., 2004), allows data to be sent
directly from a GPU to another GPU through the MPI protocols. Lines 9-10
specify that the devices to be used in the program are GPUs. If the environment
is a cluster with multiple CPU nodes (or even a single node), then all we need
to do is changing Line 9 to device = ’cpu’. The resulting code runs on a

cluster seamlessly.

In TensorFlow, however, a separate treatment to multi-GPU and cluster
settings is almost necessary. The code for multi-GPU setting is similar to List-
ing hence given in Appendix In a cluster setting, unfortunately, it is
extremely difficult to reuse the multi-GPU code. If direct access to individ-
ual compute nodes is available, that information can be used to run the code
distributedly, albeit not being much intuitive. However, in HPC environments
where computing jobs are managed by job schedulers, we often do not have
direct access to the compute nodes. The National Energy Research Scientific
Computing Center (NERSC), the home of the 13th most powerful supercomput-
ers in the world (as of November 2019), advises that gRPC, the default inter-
node communication method of TensorFlow, is very slow on tightly-coupled
nodes, thus recommends a direct use of MPI (NERSC, 2019)). Using MPI with
TensorFlow requires an external library called Horovod and a substantial mod-
ification of the code, as shown in Listing This is a sharp contrast to Listing
where essentially the same PyTorch code can be used in both multi-GPU
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Listing 3.1 Distributed Monte Carlo estimation of 7 for PyTorch

import torch.distributed as dist
import torch

dist.init_process_group ('mpi’)
rank = dist.get_rank ()
size = dist.get_world_size()

# select device
device = "cuda:{}’.format (rank)

# or simply 'cpu’ for CPU computing
if device.startswith(’cuda’) :

def mc_pi(n):

# this code is executed on each

x = torch.rand((n), dtype=torch.
device)

y = torch.rand((n), dtype=torch.
device)

# compute local estimate of pi

r = 4 % torch.mean ((x**2 + y**2

torch.floato4))
# sum of 'r’s in each device is

dist.all reduce(r)
return r / size
if _ name_ == '_ main__ ':
n = 10000
mc_pi (n)
if rank

print(r.item())

r

torch.

# initialize MPI

# device id
# total number of devices

cuda.set_device (rank)

device.

float64, device=

float64, device=

<1l) .to (dtype=

stored in ’'r’

and multi-node settings.

Therefore we employ PyTorch in the sequel to implement the highly paral-

lelizable algorithms of Section[1.3|in a multi-GPU node and a cluster on a cloud,
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Listing 3.2 Monte Carlo estimation of 7 for TensorFlow on a workstation with
multiple GPUs

import tensorflow as tf

Enforce graph computation. With eager execution,
the code runs sequentially w.r.t. GPUs. e.g.,
computation for ’/gpu:l’ would not

# start until the computation for ’/gpu:0’ finishes.
@tf.function

def mc_pi(n, devices):

estim = []

H H= H

for d in devices:

# use device d in this block

with tf.device (d):
x = tf.random.uniform((n,), dtype=tf.floatc4)
y tf.random.uniform((n,), dtype=tf.floaté64)
# compute local estimate of pi
#
e

and save it as an element of ’estim’.
stim.append (tf.reduce_mean(tf.cast(x *x 2 +
y x% 2 < 1, tf.float6d)) x 4)
return tf.add_n(estim)/len (devices)

if _ name_ == '_ main__ ’:
n = 10000
devices = [’ /gpu:0’', '/gpu:l’, ' /gpu:2’', ’"/gpu:3’]
r = mc_pi(n, devices)

print (r.numpy ())

as it allows simpler code that runs on various HPC environments with a mini-
mal modification. (In fact this modification can be made automatic through a

command line argument.)

3.3.3 A brief introduction to PyTorch

In this section, we introduce simple operations on PyTorch. Note that Python

uses 0-based, row-major ordering, like C and C++ (R is 1-based, column-major
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ordering). First we import the PyTorch library. This is equvalent to 1ibrary ()
in R.

import torch
Tensor creation

The following is equivalent to set.seed () in R.

torch.manual_seed(100)

One may create an uninitialized tensor. This creates a 3 x 4 tensor (matrix).

torch.empty (3, 4) # uninitialized tensor

tensor ([[-393462160144990208.0000, 0.0000,
—-393462160144990208.0000, 0.00001,
[ 0.0000, 0.0000,
0.0000, 0.00001,
[ 0.0000, 0.0000,
0.0000, 0.000011)

This generates a tensor initialized with random values from (0,1).
y = torch.rand (3, 4) # from Unif (0, 1)

tensor ([[0.1117, 0.8158, 0.2626, 0.4839],
[0.6765, 0.7539, 0.2627, 0.0428],
[0.2080, 0.1180, 0.1217, 0.735611)

We can also generate a tensor filled with zeros or ones.
z = torch.ones (3, 4) # torch.zeros (3, 4)

tensor([[1., 1., 1., 1.],
(1., 1., 1., 1.7,
(1., 1., 1., 1.11)

A tensor can be created from standard Python data.
w = torch.tensor ([3, 4, 5, 6])

tensor ([3, 4, 5, 6])
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Indexing
The following are standard method of indexing tensors.

y[2, 3] # indexing: zero-based,
# returns a 0O-dimensional tensor

tensor (0.7356)
The indexing always returns a (sub)tensor, even for scalars (treated as zero-

dimensional tensors). A standard Python number can be returned by using

.ltem().
y[2, 3].item() # A standard Python floating-point number
0.7355988621711731

To get a column from a tensor, we use the indexing as below. The syntax is
similar but slightly different from R.

y[:, 3] # 3rd column. The leftmost column is Oth.
# cf. y[, 4] in R

tensor ([0.4839, 0.0428, 0.7356])

The following is for taking a row.
y[2, :] # 2nd row. The top row is Oth. cf. y[3, ] in R

tensor ([0.2080, 0.1180, 0.1217, 0.7356])
Simple operations

Here we provide an example of simple operations on PyTorch. Addition using

the operator ‘4’ acts just like anyone can expect:

x =y + z # a simple addition.

3 A=t et
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tensor ([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428],
[1.2080, 1.1180, 1.1217, 1.7356]11)

Here is another form of addition.

x = torch.add(y, z) # another syntax for addition

The operators ending with an underscore (_) change the value of the tensor
in-place.
y.add_(z) # in-place addition

tensor ([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428]
[1.2080, 1.1180, 1.1217, 1.7356]

o~

)

Concatenation

We can concatenate the tensors using the function cat (), which resembles c (),
cbind (), and rbind () in R. The second argument indicates the dimension
that the tesors are concatenated along: zero means by concatenation rows, and
one means by columns.

torch.cat ((y, z), 0) # along the rows

tensor ([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428],
[1.2080, 1.1180, 1.1217, 1.7356],
[1.0000, 1.0000, 1.0000, 1.000017,
(1.0000, 1.0000, 1.0000, 1.000017,
[1.0000, 1.0000, 1.0000, 1.000011)

torch.cat ((y, z), 1) # along the columns

tensor ([[1.1117, 1.8158, 1.2626, 1.4839,
1.0000, 1.0000, 1.0000, 1.00001,

[1.6765, 1.7539, 1.2627, 1.0428,
1.0000, 1.0000, 1.0000, 1.00001,

[1.2080, 1.1180, 1.1217, 1.7356,
1.0000, 1.0000, 1.0000, 1.000011)
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Reshaping

One can reshape a tensor, like changing the attribute dim in R.
y.view(1l2) # I-dimensional array

tensor([1.1117, 1.8158, 1.2626, 1.4839,
1.6765, 1.7539, 1.2627, 1.0428,
1.2080, 1.1180, 1.1217, 1.7356])

Up to one of the arguments of view () can be —1. The size of the reshaped

tensor is inferred from the other dimensions.

# reshape into (6)-by—-2 tensor;
# (6) 1s inferred from the other dimension
y.view (=1, 2)

tensor ([[1.1117, 1.8158],
[1.2626, 1.4839],
[1.6765, 1.75391],
[1.2627, 1.0428],
[1.2080, 1.11801,
[1.1217, 1.735611])

3.3.4 A brief introduction to Julia

Julia is a high-level programming language that has a flavor of scripting lan-
guage such as R and Python, but compiles for efficient execution via LLVM
(Lattner and Adve, [2004)). Its syntax is similar to those of MATLAB and R,
leading to easy-to-read code that can run on various hardware with only minor
changes, including CPUs and GPUs. In this section, we review the basic syntax
of Julia. Our description regarding Julia is based on the version 1.4. For more

details, see the official documentation (Julia Contributors| 2020]).
3.3.5 Methods and multiple dispatch

In Julia, a function is “an object that maps a tuple of argument values to a return

value.” A function can have different specific implementations, depending on the

S el
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types of input arguments. This feature is called multiple dispatch, and each
specific implementation is called a method. Many core functions in Julia have
several methods attached to each of them. A user can also define additional
methods to existing functions. For example, a method for function £ can be
defined as follows:

julia> f(x, y) = "foo"
f (generic function with 1 method)

Each argument can be constrained to certain type, for example:

julia> f(x::Float6d4, y::Float6d) = x x y
f (generic function with 2 methods)

julia> f(x::String, y::String) = x * y
f (generic function with 3 methods)

Float64 is the data type for a double-precision (64-bit) floating point number.
An asterisk (x) between two String objects means string concatenation in
Julia. At runtime, the most specific method is used for the given combination
of input arguments.

julia> f("Candy", 3.0)
"fooll

Julia> f("test", "me")
"testme"

julia> £(2.0, 3.0)
6.0

Methods and types may have parameters, enclosed by curly braces ({}). A

parametric method is defined as follows:

Il
b

julia> g(x::T, y::T) where {T <: Real}
g (generic function with 1 method)

*y
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The function g () performs multiplication of the two arguments if the two
arguments are the same subtype of Real (a type for real numbers, for example,
Float64, Int32 (32-bit integer), etc.) and they are of the same type.
julia> g (2.0, 3.0)

6.0

julia> g(2, 3)
6

julia> g (2.0, 3)
ERROR: MethodError: no method matching g(::Floaté64,
::Into64)

Closest candidates are:

g(::T<:Real, ::T<:Real) where T<:Real at REPL[17]:1
Stacktrace:

[1] top-level scope at REPL[28]:1
The third command throws an error, because the two arguments have different
types. Such an error can be avoided by defining a more general method:
julia> g(x::Real, y::Real) = x % y
g (generic function with 2 methods)

Here, the exact type of x and y may be different. An example of parametric

types, AbstractArray, is discussed in Section [3.3.6
3.3.6 Multidimensional arrays

An array in Julia is defined as “a collection of objects stored in a multi-
dimensional grid”. Each object should be of a specific type for optimized per-
formance, such as Float 64, Int32, or String

The top-level abstract type for a multidimensional array is
AbstractArray{T,N}, where parameter T is the type of element (such as
Float64, Int32), and N is the number of dimensions. AbstractVector{T}

and AbstractMatrix{T} are aliases for AbstractArray{T, 1} and

] 2-t) &) 3
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AbstractArray{T, 2}, respectively. Operations for AbstractArrays are
provided as fallback methods which would generally work correctly in many
cases, but are often slow.

The type DenseArray is a subtype of AbstractArray representing an
array stored in contiguous CPU memory. The most frequently used instance
of DenseArray is Array, a type for basic CPU array with a grid structure.
Vector{T} and Matrix{T} are aliases for Array{T, 1} and Array{T,
2}, respectively. Another subtype of DenseArray is CuArray, defined in
CUDA. j1, a contiguous array data type on a CUDA GPU. Many of array oper-
ations for CuArray are provided using the same syntax as Arrays.

A Matrix (or aninstance of Array{T, 2})is easily created using a MAT-

LAB-like syntax such as:

julia> A = [1 2; 3 4]
2x2 Array{Inté64,2}:

1 2

3 4

An Array can be allocated with undefined values using:

julia> B = Array{Float64} (undef, 2, 3)
2x3 Array{Float64,2}:
6.90922e-310 6.90922e-310 6.90922e-310
6.90922e-310 6.90922e-310 6.90921e-310
There are predefined basic functions for array operations, such as size (4)

that returns a tuple of dimensions of A, eltype (A) that returns the type of

elements in A, and ndims (2), that shows the number of dimensions of A.
3.3.7 Matrix multiplication

Linear algebra operations in Julia are defined in the basic package LinearAlge-
bra. The functions in LinearAlgebra can be loaded to the workspace with the

keyword using:
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julia> using LinearAlgebra

Matrix multiplication in Julia is defined in the function

LinearAlgebra.mul! (C, A, B)EyThmfhncﬁon(nnqnmesthe[xsnnuhr

plication of matrix B to matrix A, and stores the result in matrix C. The most

general definition of LinearAlgebra.mul! () is:

LinearAlgebra.mul! (C::AbstractMatrix, A::AbstractVecOrMat,
B::AbstractVecOrMat)

which implements a naive algorithm for matrix multiplication. For a Matrix

stored in the CPU memory, the call to LinearAlgebra.mul! () with argu-

ments

LinearAlgebra.mul! (C::Matrix, A::Matrix, B::Matrix)

invokes the gemm (general matrix multiplication) routine of the BLAS, or the
basic linear algebra subprograms (Blackford et al., 2002)), e.g.,

Julia> A= [1. 2.; 3. 4.]
2x2 Array{Float64,2}:
1.0 2.0
3.0 4.0

julia> B = [3. 4.; 5. 6.]
2x2 Array{Float64,2}:

3.0 4.0

5.0 6.0

julia> C = Array{Float64, 2} (undef, 2, 2)
2x2 Array{Floaté64,2}:

6.90922e-310 6.90921e-310

6.90922e-310 6.90922e-310

julia> mul! (C, A, B)
2x2 Array{Float64,2}:

Tt is a convention in Julia to end the name of a function that changes the value of its
arguments with an exclamation mark (!).
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julia> C
2x2 Array{Floaté64,2}:
13.0 16.0

29.0 36.0

On the other hand, for matrices on GPU, a call to

LinearAlgebra.mul! (C::CuMatrix, A::CuMatrix, B::CuMatrix)

results in operations using cuBLAS (NVIDIAL[2013)), a high-level linear algebra
subroutines for CUDA, e.g.,

julia> using CUDA

julia> A_d = cu(A)

2x2 CuArray{Float32,2,Nothing}:
1.0 2.0

3.0 4.0

julia> B_d = cu(B)

2%x2 CuArray{Float32,2,Nothing}:
3.0 4.0

5.0 6.0

julia> C_d = cu(C)

2x2 CuArray{Float32,2,Nothing}:
0.0 0.0
0.0 0.0

julia> mul! (C_d, A_d, B_d)
2x2 CuArray{Float32,2,Nothing}:
13.0 16.0

29.0 36.0

The function cu () transforms an Array{T, N} into a CuArray{Float32,

N}.
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3.3.8 Dot syntax for vectorization

Julia has a special “dot” syntax for vectorization. The dot syntax is invoked
by prepending a dot to an operator (e.g., .+) or postpending a dot to a func-
tion name (e.g., soft_threshold. () ). Unlike many other programming lan-
guages, vectorization in Julia can be applied to any function without a need
to deliberately tailor the corresponding method. Julia’s JIT compiler automat-
ically matches singleton dimensions of array arguments to the dimensions of

other array arguments. For example,

julia> a = [1, 2]
2—-element Array{Int64,1}:
1

2

Julia> b = [3 4; 5 6]
2x2 Array{Inté64,2}:

3 4

5 6

julia> a .+ b
2x2 Array{Int64d,2}:
4 5
7 8
Note that a is a column vector and b is a matrix.

The dot syntax can be extended by defining the method broadcast ()
for each array interface, allowing its generalization to any underlying hardware
architecture. In addition, multiple dots on the same line of code fuse into one
call to the function broadcast (), resulting in a single vectorized loop (for
CPU) or a single generated kernel (for GPU) for that line.

While broadcasting is one of the simplest way to represent generalized ele-

mentwise operations, it may not be the fastest option. Broadcasting often al-

locates excessive memory, thus well-optimized compiled loops without memory
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allocation may be faster in many cases.

3.4 Distributed matrix data structure

For the forthcoming examples and potential future uses in statistical computing,
simple distributed data structures are proposed. For dist_stat, the struc-
ture is named distmat. For DistStat. jl, it is named MPIArray. In these
structures, each process, enumerated by its rank, holds a contiguous block of
the full data matrix by rows or columns. The data may be a sparse matrix
in distmat. If GPUs are involved, each process controls a GPU whose index
matches the process rank. For notational simplicity, the dimension to split is
denoted by a pair of square brackets. If a [100] x 100 matrix is split over four
processes, the process with rank 0 keeps the first 25 rows of the matrix, and
the rank 3 process takes the last 25 rows. For dist_stat, it is assumed that
the size along the split dimension is divided by the number of processes. Such
constraint is lifted for DistStat.jl. The code along with the examples in
Section is available at https://github.com/kose-y/dist_stat and

https://github.com/kose-y/DistStat. jl.

3.4.1 Distributed matrices in PyTorch: distmat

In distmat, unary elementwise operations such as exponentiation, square root,
absolute value, and logarithm of matrix entries were implemented in an obvious
way. Binary elementwise operations such as addition, subtraction, multiplica-
tion, division were implemented in a similar manner to R’s vector recycling.
For example, if two matrices of different dimensions are to be added together,
say one is three-by-four and the other is three-by-one, the latter matrix is ex-
panded to a three-by-four matrix with the column repeated four times. Another

example is adding a one-by-three matrix and a four-by-one matrix. The former
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matrix is expanded to a four-by-three matrix by repeating the row four times,
and the latter to a four-by-three matrix by repeating the column three times.
Application of this concept is natural using the broadcast semantics of PyTorch.
Reduction operations, such as row-wise (column-wise, and matrix-wise) sum-

mation, (maximum, and minimum) were also implemented in a similar fashion.

Matrix multiplications are more subtle. Six different scenarios of matrix-
matrix multiplications, each representing a different configuration of the split
dimension of two input matrices and the output matrix, were considered and
implemented. These scenarios are listed in Table [3.1] Note that “broadcasting”
and “reduction” in this subsection and the upcoming subsection are defined
over a matrix dimension (rows or columns), unlike in the other parts of this
dissertation where they are defined over multiple processes or ranks. The im-
plementation of each case is carried out using the collective communication
directives introduced in Section Matrix multiplication scenarios are auto-
matically selected based on the shapes of the input matrices A and B, except for
the Scenarios 1 and 3 sharing the same input structure. Those two are further
distinguished by the shape of output, AB. The nonnegative matrix factorization
example of Section which utilizes distmat most heavily among others,
involves Scenarios 1 to 5. Scenario 6 is for matrix-vector multiplications, where

broadcasting small vectors is almost always efficient.

In Listing we demonstrate an example usage of distmat. We assume
that this program is run with 4 processes (size in Line 5 is 4). Line 11 generates
a [4] x4 double-precision matrix on CPU sampled from the uniform distribution.
The function distgen_uniform has an optional argument TType that allows
users to choose the data type and location of the matrix: Line 10 specifies
the matrix to be a double-precision matrix on CPU. The user may change it

to torch.cuda.FloatTensor to create this matrix on a GPU with single-
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precision. Line 13 multiplies the two matrices A and B to form a distributed
matrix of size [4] x 2. The matrix multiplication routine internally chooses to
utilize Scenario 2 in Table In order to compute log(1 + AB) elementwise,
all that is needed to do is to write (1 + AB) .log() as in Line 17. Here,
1+ AB is computed elementwise first, then its logarithms are computed. The
local block of data can be accessed by appending .chunk to the name of the

distributed matrix, as in Lines 16 and 20.
3.4.2 Distributed arrays in Julia: MPIArray

DistStat.jl implements a distributed MPI-based array data structure

MPIArray as the core data structure for implementations of AbstractArrays.

It uses MPI. j1 as a backend. It has been tested for basic Arrays and CuArrays.

The standard vectorized “dot” operations can be used for convenient element-by-
element operations as well as broadcasting operations on MPIArrays. Further-
more, simple distributed matrix operations for MPIMat rix, or two-dimensional
MPIArrays, are also implemented. Reduction and accumulation operations are
supported for MPIArrays of any dimension. The package can be loaded by:

using DistStat

If GPUs are available, one that is to be used is automatically selected in a round-
robin fashion upon loading the package. The rank, or the “ID” of a process, and
the size, or the total number of the processes, can be accessed by:
DistStat.Rank ()
DistStat.Size()
Ranks are indexed 0-based, following the MPT standard.

In DistStat. jl1, a distributed array data type MPIArray{T,N,AT} is
defined. Here, parameter T is the type of each element of an array, e.g., Float 64

or Float32. Parameter N is the dimension of the array, 1 for vector and 2 for
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matrix, etc. Parameter AT is the implementation of AbstractArray used for
base operations: Array for the basic CPU array, and CuArray for the arrays
on Nvidia GPUs (requires CUDA. j1). If there are multiple CUDA devices, a
device is assigned to a process automatically by the rank of the process mod-
ulo the size. This assignment scheme extends to the setting in which there are
multiple GPU devices in multiple CPU nodes. The type MPTArray{T, N, AT}
is a subtype of AbstractArray{T, N}.InMPIArray{T,N,AT}, each rank
holds a contiguous block of the full data in AT{T, N} split by the N-th dimen-

sion, or the last dimension of an MPIArray.

In the special case of a two-dimensional array, aliased by MPIMatrix{T, AT},

the data are column-major ordered and column-split. The transpose of this ma-

trix has type of

Transpose{T,MPIMatrix{T,AT}}

which is row-major ordered and row-splitted. There also is an alias for one-

dimensional array MPTIArray{T, 1, A}, which is MPIVector{T,A}.

Creation

The syntax MPIArray{T,N,2A} (undef, m, ...) creates an uninitialized

MPIArray. For example,

a = MPIArray{Float64, 2, Array} (undef, 3, 4)

creates an uninitialized 3x4 distributed array based on local Arrays of double
precision floating-point numbers. The size of this array, the type of each element,
and the number of dimensions can be accessed using the usual functions in Julia:
size(a), eltype (a), and ndims (a). Local data held by each process can

be accessed by appending .localarray to the name of the array, e.g.,

a.localarray
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Matrices are split as evenly as possible. For example, if the number of processes
is 4 and the size(a) == (3, 7), processes of ranks 0 through 2 hold the
local data of size (3, 2) and the rank-3 process holds the local data of size (3,
1).

An MPIArray can also be created by distributing an array residing in a

single process. For example, in the following code:

if DistStat.Rank () == 0

dat = [1, 2, 3, 4]
else

dat = Array{Int64} (undef, 0)
end

d = distribute (dat)

the data are defined in the rank-0 process, and each other process has an empty
instance of Array{Int64}. Using the function distribute, the
MPIArray{Int64, 1, Array} of the data [1, 2, 3, 4], equally dis-

tributed over four processes, is created.
Filling an array

An MPIArray a can be filled with a number x using the usual syntax of the

function £i11! (a, x). For example, a can be filled with zero:

fill! (a, 0)
Random number generation

An array can also be filled with random values, extending Random.rand! ()
for the standard uniform distribution and Random.randn! () for the stan-
dard normal distribution. The following code fills a with uniform(0, 1) random

numbers:

using Random
rand! (a)
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In cases such as unit testing, generating identical data for any configuration is

important. For this purpose, the following interface is defined:

function rand! (a::MPIArray{T,N,A}; seed=nothing,
common_init=false, root=0) where {T,N,A}

If the keyword argument common_init=true is set, the data are gener-

ated from the process with rank root. The seed can also be configured. If

common_init == false and seed == k, the seed for each process is set

to k plus the rank.

The “dot” broadcasting feature of DistStat. j1 follows the standard Julia
syntax. This syntax provides a convenient way to operate on both multi-node
clusters and multi-GPU workstations with the same code. For example, the
soft-thresholding operator, which commonly appears in sparse regression can
be defined in the element level:

function soft_threshold(x::T, lambda::T)::T where {T
<: AbstractFloat}

x > lambda && return (x - lambda)

x < —lambda && return (x + lambda)

return zero(T)
end
This function can be applied to each element of an MPIArray using the dot
broadcasting, as follows. When the dot operation is used for an
MPIArray{T,N,AT}, it is naturally passed to inner array implementation AT.

Consider the following arrays filled with random numbers from the standard

normal distribution:

a = MPIArray{Float64, 2, Array} (undef, 2, 4) |> randn!
b MPIArray{Float64, 2, Array} (undef, 2, 4) |> randn!

The function soft_threshold () is applied elementwisely as the following:

a .= soft_threshold.(a .+ 2 .*x b, 0.5)
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The three dot operations, .=, .+, and . , are fused into a single loop (in CPU)
or a single kernel (in GPU) internally.

A singleton non-last dimension is treated as if the array is repeated along
that dimension, just like Array operations. For example,
c = MPIArray{Float64, 2, Array} (undef, 1, 4) |> rand!
a .= soft_threshold.(a .+ 2 . c, 0.5)
works as if ¢ were a 2 X 4 array, with its content repeated twice. It is a little
bit subtle with the last dimension, as the MPIArray{T, N, AT}s are split along
that dimension. It works if the broadcast array has the type AT and holds the
same data across the processes. For example,
d = Array{Float64} (undef, 2, 1); £fill!(d, -0.1)
a .= soft_threshold.(a .+ 2 .*x d, 0.5)
As with any dot operation in Julia, the dot operations for DistStat. jl are
convenient but usually not the fastest option. Its implementations can be further
optimized by specializing in specific array types. An example of this is given in
Section [3.5.41

Reduction operations, such as sum (), prod (), maximum (), minimum(),
and accumulation operations, such as cumsum (), cumsum! (), cumprod (),
cumprod! (), are implemented just like their base counterparts, computing
cumulative sums and products. Example usages of sum () and sum! () are:

sum(a)

sum (abs2, a)
sum(a, dims=1)

sum (a, dims=2)
sum(a, dims=(1,2))
sum! (c, a)

sum! (d, a)

The first line computes the elementwise sum of a. The second line computes

the sum of squared absolute values (abs2 () is the method that computes the
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squared absolute values). The third and fourth lines compute the column sums
and row sums, respectively. Similar to the dot operations, the third line reduces
along the distributed dimensions, and returns a broadcast local Array. The
fifth line returns the sum of all elements, but the data typeisa 1x1MPIArray.
The syntax sum! (p, q) selects which dimension to reduce based on the shape
of p, the first argument. The sixth line computes the columnwise sum and saves
it to c, because c is a 1 x 4 MPIArray. The seventh line computes rowwise
sum, because d is a 2 x 1 local Array.

Given below are examples for cumsum () and cumsum! ():

cumsum (a; dims=1)

cumsum (a; dims=2)

cumsum! (b, a; dims=1)

cumsum! (b, a; dims=2)

The first line computes the columnwise cumulative sum, and the second line
computes the rowwise cumulative sum. So do the third and fourth lines, but

save the results in b, which has the same size as a.

Distributed linear algebra operations are implemented as follows.

Dot product

The method LinearAlgebra.dot () for MPTArrays is defined just like the
base LinearAlgebra.dot (), which sums all the elements after an element-

wise multiplication of the two argument arrays:

using LinearAlgebra
dot (a, b)

Operations on the diagonal

The “getter” method for the diagonal, diag! (d, a), and the “setter” method

for the diagonal, £i11_diag! (), are also available. The former obtains the
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main diagonal of the MPIMatrix a and is stored in d. If d is an MPIMatrix
with a single row, the result is obtained in a distributed form. On the other
hand, if d is a local AbstractArray, all elements of the main diagonal is
copied to all processes as a broadcast AbstractArray:

M = MPIMatrix{Float64, Array} (undef, 4, 4) |> rand!
v_dist = MPIMatrix{Float64, Array} (undef, 1, 4)

v = Array{Float64} (undef, 4)

diag! (v_dist, M)

diag! (v, M)

Matrix multiplication

The method LinearAlgebra.mul! (C, A, B) is implemented for

MPIMatrixes, in which the multiplication of A and B is stored in C. Matrix
multiplications for 17 different combinations of types for A, B, and C, including
matrix-vector multiplications, are included in the package. It is worth noting
that transpose of an MPIMatrix is a row-major ordered, row-split matrix.
While the base syntax of mul! (C, A, B) is always available, any tempo-
rary memory to save intermediate results can also be provided as a keyword
argument in order to avoid repetitive allocations in iterative algorithms, as in
mul! (C, A, B; tmp=Array (undef, 3, 4). The user should determine
which shape of C minimizes communication and suits better for their appli-
cation. MPIColVector{T, AT} is defined as Union{MPIVector{T, AT},
Transpose{T, MPIMatrix{T,AT}}} to include transposed
MPIMatrix with a single row. The 17 possible combinations of arguments

available are listed in Table 3.2
Operator norms

The method opnorm () either evaluates (¢; and f+,) or approximates (¢2) ma-

trix operator norms, defined for a matrix A € R™*™ as ||A|| = sup{||Az|| : z €
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R™ with ||z|| = 1} for each respective vector norm.

opnorm(a, 1)

opnorm(a, 2)

opnorm(a, Inf)

The ¢3-norm is estimated via the power iteration (Golub and Van Loan, 2013),
and can be further configured for convergence and the number of iterations.
There also is an implementation based on the inequality ||All2 < [|A|l1]]4]lco

(method="quick"), which overestimates the ¢y-norm.

opnorm(a, 2; method="power", tol=le-6, maxiter=1000,
seed=953706)
opnorm(a, 2; method="quick")

3.5 Examples

In this section, we compare the performance of the optimization algorithms on
four statistical computing examples: nonnegative matrix factorization (NMF),
positron emission tomography (PET), multidimensional scaling (MDS), and ¢;-
regularized Cox model for survival analysis. Single-device codes are provided to
show the simplicity of the programming and distribute it over a cluster com-
posed of multiple AWS EC2 instances or a local multi-GPU workstation. For
NMF and PET, we compare two algorithms, one more classical, and the other
based on recent development. We evaluate the objective function once per 100
iterations. For the comparison of execution time, the iteration is run for a fixed
number of iterations, regardless of convergence. For comparison of different al-
gorithms regarding the same problem, we iterate until W < 107°.
Table shows the setting of our HPC systems used for the experiments.
For virtual cluster experiments, we utilized 1 to 20 of AWS c5.18xlarge

instances with 36 physical cores with AVX-512 (512-bit advanced vector exten-

sion to the x86 instruction set) enabled in each instance through CfnCluster.

98



Network bandwidth of each c5.18x1large instance was 25GB/s. A separate
c5.18xlarge instance served as the “master” instance. This instance does not
participate in computation by itself but manages the computing jobs over the
1 to 20 “worker” instances. Data and software for the experiments were stored
in an Amazon Elastic Block Store (EBS) volume attached to this instance and
shared among the worker instances via the network file system. Further de-
tails are given in Appendix [C] For GPU experiments, a local machine with two
CPUs (10 cores per CPU) and eight Nvidia GTX 1080 GPUs was used. These
are desktop GPUs, not optimized for double-precision. All the experiments were
conducted using PyTorch version 0.4 built on the MKL; the released code works
for the versions up to 1.4, the most recent stable version as of June 2020.

For all of the experiments, the single-precision computation results on GPU
were almost the same as the double-precision results up to six significant dig-
its, except for ¢i-regularized Cox regression, the necessary cumulative sum
operation implemented in PyTorch caused by numerical instability in some
cases with small penalties. Therefore the computations for Cox regression with
dist_stat were performed in double-precision. Extra efforts for writing a
multi-device code were modest using dist_stat and DistStat. j1, less than
100 lines for each application.

As can be verified in the sequel, computing on GPUs was effective on mid-
sized (around 10,000 x 10,000) datasets, but stalled on larger (around 100,000
x 100,000) datasets due to memory limitation. In contrast, the virtual clusters
were not very effective on mid-sized data, and may even slow down due to
communication burden. They were effective and scaled well on larger (around
100,000 x 100,000) datasets.

In general, multi-GPU implementation results of DistStat. j1 are largely

comparable to those of dist_stat with more GPUs. In large-scale AWS
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Table 3.3: Configuration of experiments

local node AWS c5.18xlarge
CPU GPU CPU
1. Intel Xeon
Model Intel Xeon E5-2680 v2 Nvidia GTX 1080 Platinum 8124M
# of cores 10 2560 18
Clock 2.8 GHz 1.6 GHz 3.0GHz

2 (per instance)

7# of entities 2 8 x 1-20 (instances)
Total memory 256 GB 64 GB 144 GB x 4-20
Total cores 20 20,480 (CUDA) 36 x 4-20

EC2 experiments, DistStat. j1 achieved faster computation thanks to in-
creased flexibility in process configuration. When communication is heavy, we
can use the configuration with less jobs, with each job using more threads.
When communication is a little bit of a problem, we can use the configuration
with more jobs, with each job using a single thread. This is nearly impossi-
ble with dist_stat, because due to the limitation of torch.distributed
subpackage of PyTorch, each process has to hold the same size of data. In
addition, the MP I wrappers in PyTorch forces copy of data before and after the

data communication, while MPI. j1 does not.

3.5.1 Nonnegative matrix factorization

NMTF is a procedure that approximates a nonnegative data matrix X € R™*P
by a product of two low-rank nonnegative matrices, V€ R"™*" and W € R"*P.
It is widely used in image processing, bioinformatics, and recommender systems
(Wang and Zhang, |2013|) where the data have only nonnegative values. One of
the first effective algorithms was the multiplicative algorithm introduced by [Lee

and Seung (1999, 2001)). In a simple setting, NMF minimizes

FV,W) =X - VW,
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where || - || denotes the Frobenius norm.
The multiplicative algorithm written using PyTorch for a single device is
given as:

# initialize X, W, V in a single device: a CPU or a GPU.
for 1 in range (max_iter):

# Update V
XWt = torch.mm(X, W.t()) # compute XW"T
WWt = torch.mm(W, W.t()) # compute WW"T

VWWt = torch.mm(V, WWt) # compute VWW"T
# V=V x XW'T / VWW"T elementwise in-place.
V = V.mul_ (XWt) .div_ (VWWt + eps)

# Update W
VtX = torch.mm(V.t (), X)
VtV = torch.mm(V.t (), V)

VtVW torch.mm(Vtv, W)
W = W.mul_ (VtX) .div_(VtVW + eps)

This algorithm can be interpreted as a case of MM algorithm with a surrogate

function of f based on Jensen’s inequality:
kwk] Zk/ Uﬁg/wz/j ?
sy =Y 2y = =y |
ik Dk Vi W Uik W

The update rule is:

vt = vro x(wh o v wrwm ]

Wn+1 Wn [(Vn+1)TX] % [(Vn-i-l)TVn—i-an]’

where ® and © denote elementwise multiplication and division, respectively.
The simple-looking code can fully utilize the shared-memory parallelism: if
the matrices are stored on the CPU memory, it runs parallelly, fully utilizing
OpenMP and MKL/OpenBLAS (depending on installation). If the data are
stored on a single GPU, the code runs parallely utilizing GPU cores through
the CUDA libraries. Distributing this algorithm on a large scale machine is
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straightforward (Liu et al) |2010a). An implementation of the multiplicative

algorithm of NMF in native Julia is given by:

for i in l:iter
(WXt, W, transpose (X))
mul! (WWNt, W, transpose (W))
(WWtVvt, Wwt, Vt)
=Vt .*x WXt ./ (WWtVt .+ eps)

mul! (VtX, Vt, X)

mul! (VtV, Vt, transpose(Vt))

mul! (VEVW, VtV, W)

W .= W . VEX ./ (VEVW .+ eps)
end

A very small number (eps) is added to the denominator for numerical stability.
Exactly the same code can run on various HPC environments including mul-
tiple CPU nodes and multi-GPU workstations in a distributed fashion. In the
numerical experiments, X, W, Vt, WXt, WWtVt, VtX, and VtVWW were defined as
column-distributed MPIMatrixs using DistStat. j1, and further optimiza-
tion for memory efficiency was conducted.

Figure shows an example of NMF on a publicly available hyperspectral
image. It was acquired by the reflective optics system imaging spectrometer sen-
sor in a flight campaign over Pavia University in Italy. The image is essentially
a 610 (height) x 340 (width) x 103 (bands) hyperspectral cube. It is interpreted
as a 207,400 (pixels) x 103 (bands) matrix and then analyzed using NMF. The
rank r was set to 20. In the resulting 207,400 x 20 matrix V, each column can
be interpreted as a composite channel from the original 103 bands. Three of
these channels showing distinct features chosen by hand are shown in Figure
B.1

A problem with the multiplicative algorithm is the potential to generate

subnormal numbers, significantly slowing down the algorithm. A subnormal
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Figure 3.1: Three selected bands from the NMF of the Pavia University hyper-
spectral image with r = 20

number or denormal number is a number smaller (in magnitude) than the
smallest positive number that can be represented by the floating-point num-
ber system. Subnormal numbers are generated by the multiplicative algorithm
if values smaller than 1 are multiplied repeatedly. Indeed, when the NMF code
was run on a CPU with a small synthetic data of size 100 x 100, a significant
slowdown was observed. The IEEE floating-point standard is to deal with sub-

normal numbers properly with a special hardware or software implementation

(IEEE Standards Committee, [2008). In many CPUs, the treatment of subnor-

mal numbers relies on software and hence is very slow. Forcing such value to zero
is potentially dangerous depending on applications because it becomes prone to
division-by-zero error. In our experiments, division-by-zero error did not occur
when flushing the subnormal numbers to zero. In contrast, Nvidia GPUs sup-
port subnormal numbers at a hardware level since the Fermi architecture, and
simple arithmetic operations do not slow down by subnormal numbers
lhead and Fit-Florea, 2011]).
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Subnormal numbers can be completely avoided (especially in CPUs) by
using a different algorithm. The alternating projected gradient (APG) method
(Lin), 2007) is such an algorithm, and it is also easy to introduce regularization

terms.With ridge penalties the objective function
€ €
FV. W50 = IX = VIR + SIVIE + SIw
is minimized. The corresponding APG update is given by

VP = P (1= one)V" — o (VW (W™)T = X(W™M)T))

W = Py (1= )W = (V)TVIHIT - (VHTY))

where P, denotes the projection onto the nonnegative orthant; o, and 7, are
the step sizes. This update rule can be interpreted as an MM algorithm, due to
the nature of projected gradient. Convergence of APG is guaranteed if ¢ > 0,
on < 1/2Wr(W™T +el||2), and 7, < 1/(2[|(V)TV™ + €l||3).

For the distributed implementation, X is assumed to be an [m| x p ma-
trix. The resulting matrix V is distributed as an [m] x r matrix, and W is
distributed as an r x [p] matrix. The distributed code is equivalent to replacing
torch.mm with distmat .mm in the dist_stat code provided, with an addi-
tional optional argument out_sizes=W.sizes on the tenth line. As discussed
in Section [3.4] distributed matrix multiplication algorithms are automatically
selected from Table based on the arguments.

Table compares the performance of the two NMF algorithms on the
multi-GPU setting in Table with 10,000 x 10,000 data for 10,000 itera-
tions. The data are row-distributed in dist_stat and column-distributed in
DistStat. jl. It can be seen that the performances are comparable between

the two algorithms, with APG being slightly slower with fixed number of iter-
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Table 3.4: Runtime (in seconds) of NMF algorithms on 10,000 x 10,000 simu-
lated data on GPUs

dist_stat DistStat.jl
GPUs r=20 r=40 r =060 r=20 r=40 r =060
Multiplicative
1 62 71 75 62 72 83
2 43 55 63 42 60 72
3 38 57 71
4 37 51 63 34 54 68
5 39 54 66 38 56 75
6 36 56 80
7 37 58 81
8 40 60 75 37 59 83
APG
1 68 76 82 61 80 85
2 49 61 69 43 60 79
3 38 59 74
4 44 58 70 36 54 72
5 46 60 73 37 59 78
6 37 56 75
7 38 61 88
8 47 68 83 39 59 82

ations. This is because APG has slightly more operations involved. With more
than 4 GPUs, the communication burden outweighs the speedup from using
more GPU cores, and the algorithm becomes slower. The execution time be-
tween the dist_stat and DistStat.jl implementations are also largely
comparable, with DistStat. jl1 version being faster in r = 20 cases. Exper-
iments with 3, 6, or 7 GPUs were impossible with 10,000 x 10,000 data with
dist_stat, because the size of dataset was not divisible by 3, 6, and 7.
Additional experiments were conducted to see how the value of e affects
the convergence. The results are shown in Table Convergence was faster for
higher values of €. The number of iterations to convergence in the multiplicative
algorithm was higher than the APG with € = 10 for higher-rank decompositions

(r = 40 and 60) due to heavier communication burden.
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Table 3.5: Runtime (in seconds) of NMF algorithms on 200, 000 x 200, 000 sim-
ulated data on multiple AWS EC2 instances

dist_stat DistStat.jl

Instances r=20 r=40 r =060 r=20 r=40 r =060
Multiplicative

4 1419 1748 2276 1392 1576 2057

5 1076 1455 1698 1187 1383 1847

8 859 966 1347 851 936 1430

10 651 881 1115 708 856 1065

16 549 700 959 553 694 907

20 501 686 869 554 672 832
APG

4 1333 1756 2082 1412 1711 2023

5 1088 1467 1720 1215 1372 1775

8 766 994 1396 849 916 1388

10 677 870 1165 673 799 1014

16 539 733 936 547 684 867

20 506 730 919 538 727 836

Table compares the algorithms and implementations using 200,000 x
200,000 data on multiple AWS EC2 instances for 1000 iterations. For
DistStat. jl implementation, two processes per instance were used to avoid
the communication burden. Once again, elapsed time was largely similar be-
tween the two algorithms. APG is faster than the multiplicative algorithms in
more cases compared to GPU, because the multiplicative algorithm on CPU of-
ten suffers from the slowdown due to creation of denormal numbers. The cluster
in a cloud was scalable on larger datasets, running faster with more instances,
up to 2.83x-speedup on 20-instance cluster over a four-instance cluster. Between
the two implementations, the DistStat. j1 implementation was faster in 24

out of 30 cases.
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Table 3.6: Runtime (in seconds) comparisons for NMF on the simulated
[10,000] x 10,000 data

10,000 iterations

method r CPU 1GPU 2GPUs 4 GPUs 8 GPUs
Multiplicative 20 655 160 93 62 50
40 978 165 102 73 72
60 1355 168 109 85 86
APG 20 504 164 97 66 o7
(e=0) 40 783 168 106 78 7
60 1062 174 113 90 92

method

r 10,000 iterations

100,000 iterations

Multiplicative

20
40
60

8.270667E-+06
8.210266E+06
8.155084E+06

8.270009E+06
8.208682E-+06
8.152358E-+06

20
40
60

8.271248E+06
8.210835E+06
8.155841E+06

8.270005E-+06
8.208452E+06
8.151794E-+06
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Table 3.8: Convergence time comparisons for different values of € in APG and the multiplicative method

r =20, 8 GPUs r =40, 8 GPUs r =60, 4 GPUs
Method iterations time (s) function iterations time (s) function iterations time (s) function
Multiplicative 21200 110 8.270530E+-06 36600 269 8.209031E+06 50000 446  8.152769E+06
APGe=0 31500 198  8.270202E+-06 37400 310 8.208875E+06 55500 536 8.152228E-+06
APG e=0.1 30700 191 8.274285E+-06 36700 302 8.210324E+06 55500 537 8.153890E-+06
APGe=1 30500 190 8.282346E+-06 37300 307 8.223108E-+06 47800 460 8.168503E+06
APG e=10 28000 178  8.389818E+-06 31000 257  8.347859E+06 46400 448  8.308998E+06
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3.5.2 Positron emission tomography

Positron emission tomography (PET) is one of the earliest applications of the
EM algorihtm in computed tomography (Lange and Carson, [1984; |Vardi et al.,
1985). In this scenario, we consider a two-dimensional imaging consisting of
p pixels obtained from the circular geometry of ¢ photon detectors. We esti-
mate Poisson emission intensities A = (A1, -+, Ap), which is proportional to the
concentration of radioactively labeled isotopes injected to biomolecules. Such
an isotope emits a positron, which collides with a nearby electron, forming two
gamma-ray photons flying in almost opposite directions. These two photons are
detected by a pair of photon detectors corresponding to the line of flight. The
coincidence counts (y,...,yq) are observed. Detector pairs are enumerated by
1,2, ..., d = q(q — 1)/2. The likelihood of detection for a detector pair i is
modeled by Poisson distribution with mean Z§:1 eij\j, where e;; is the prob-
ability that a pair of photons is detected by the detector pair ¢ given that a
positron is emitted in the pixel location j. The matrix E = (e;;) € R¥*? can
be precomputed based on the geometry of the detectors. The corresponding

loglikelihood to maximize is given by

d

p p
L) =) |yilog [ D ehi | = e
j=1 Jj=1

i=1
Without a spatial regularization term, the reconstructed intensity map is grainy.
One remedy is adding a ridge-type penalty of —(u/2)||D)||3, where D is the
finite difference matrix on the pixel grid; each row of D has one +1 and one
—1. The MM iteration based on separation of the penalty function by the

minorization
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where n; = >, g and a;j = —2un; are precomputed. Matrix G = (g;i)
is the adjacency matrix corresponding to the grid. See Section 3.2 of [Zhou
et al.| (2010) for the detailed derivation. The sparse structure of G and FE is
exploited for software implementation in dist_stat. Implementation with
DistStat. jl is omitted, since the package does not support sparse matrices
yet. By using matrix notations and broadcasting semantics, the PyTorch code
can be succinctly written as:

G: adjacency matrix, sparse p-by-p

mu: roughness penalty parameter

E: detection probability matrix, d-by-p

lambd: poisson intensity, p-by-1, randomly initialized
y: observed data, d-by-1

eps: a small positive number for numerical stability

= torch.mm (G, torch.ones(G.shape[l], 1))

= -2 % mu * N

VW Z o H W o3 3 o

for 1 in range (max_iter):
el = torch.mm(E, lambd)
gl = torch.mm(G, lambd)
z =E x y * lambd.t () / (el + eps)
b =mu » (N » lambd + gl) -1

c = z.sum(dim=0) .t ()
# update lambda
if mu !'= 0:
lambd = (b - (b**2-4%ax*c).sqrt())/ (2xateps)
else:
lambd = -c/ (b+self.eps)
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Figure shows the results with a p = 64 x 64 Roland-Varadhan-Frangakis
(RVF) phantom (Roland et al., [2007) with d = 2016 with various values of
u, and Figure [3.4] shows the results with a 128 x 128 extended cardiac-torso
(XCAT) phantom (Lim et al.| 2018; Ryu et al., [2020) with d = 8128. Images
get smooth as the value of u increases, but the edges are blurry.

To promote sharp contrast, the total variation (TV) penalty (Rudin et al.,
1992)) can be employed. Adding an anisotropic TV penlty yields minimizing

d

—L(A) + pl DAl =D [(EX): — yilog((EA):)] + pl DA,
=1

which is equivalent to the formulation in Section 2.1} We can use the PDHG al-
gorithm  discussed in  Section |1.3.4 Put K = [ET, D11,
f(z,w) = 3, (—yilog z;) + pllw|1, and g(A) = 1TEX + §4()), where 1 is the
all-one vector of conforming shape and 0 is the 0/c0 indicator function for the
nonnegative orthant. Since f(z,w) is separable in z and w, applying iteration

(1.5) using the proximity operator ([1.2)), we obtain the following update rule:

A = P (A" — 7(ET2 + DTw + ET1))

Xn—i—l _ 2)\71—&-1 —\"

1 - -
M= 5 <(z” + o BN — \/(z” + oEA )2 + 40y>
w”“ = P[—p,p] (w” + UD:\”H),

where P_,  is elementwise projection to the interval [—p, p]. Convergence is

guaranteed if o7 < 1/||[ED]|3. An implementation is given by:

tau, sig: predetermined
E: d-by-p
D: 1-by-p

y: d-by-1, observed count
rho: penalty parameter

H H FH H= H
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Table 3.9: Convergence time comparisons for TV-penalized PET with different
values of p. Problem dimension is p = 10,000 and d = 16,110. Eight GPUs
were used.

p iterations time (s) function

0 6400 20.6 -2.417200E4-05
0.01 4900 15.8 -2.412787E+05
0.1 5000 16.1 -2.390336E+05
1 2800 9.5 -2.212579E+05

# lambd: p-by-1, randomly initialized
# z: d-by-1, initialized to -1
# w: l-by-1, initiailzed to O

Etl = torch.mm(E.t (), torch.ones (E.shape[0], 1))
for 1 in range (max_iter):

lambd_prev = lambd

Etz = torch.mm(E.t (), 2z)

Dtw = torch.mm(D.t (), w)

lambd = torch.clamp(lambd - tau * (Etz + Dtw + Etl),
min=0.0)
lambd_tilde = 2 x lambd - lambd_prev

el = torch.mm(E, lambd_tilde)

z_step = z + sig x el

z = 0.5 % (z_step - torch.sqgrt(z_step »x 2 +
4 * sig * y))

dl = torch.mm (D, lambd_tilde)
w_step = w + sig x dl
w = torch.clamp(w, max=rho, min=-rho)

Figures [3.3] and [3.5] are the TV-reconstructed versions of Figures [3.2] and
[3-4] respectively. Compare the edge contrast.
Table shows the convergence with different values of penalty parameters.

Observe that the algorithm converges faster for large values of p. Scalability

] 2-t) &) 3
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experiments were carried out with large RVF-like phantoms using grid sizes
p = 300 x 300, 400 x 400, and 900 x 900, with the number of detectors ¢ = 600
(d =179,700). The matrix E is distributed as a d x [p] matrix, and the matrix
D is distributed as an [ X [p] matrix. The symmetric adjacency matrix G is
distributed as a [p] x p matrix. The sparse structure of these matrices is exploited
using the sparse tensor data structure of PyTorch. Timing per 1000 iterations
is reported in Table For reference, the data used in Zhou et al.| (2010]) were
for 64 x 64 grid with ¢ = 64, or d = 2016. Time per iterations of the PDHG
method for the TV penalty is noticeably shorter as each iteration is much
simpler than the MM counterpart for the ridge penalty, with no intermediate
matrix created. The total elapsed time gets shorter with more GPUs. Although
the speedup when adding more devices is somewhat mitigated in this case due
to using sparse structure, resulting in 1.25x-speedup for 8 GPUs over 2 GPUs
with p = 160, 000, we can still take advantage of the scalability of memory with

more devices.

3.5.3 Multidimensional scaling

Multidimensional scaling is one of the earliest applications of the MM principle
(de Leeuw, |1977; de Leeuw and Heiser, [1977)). In this example, we reduce the
dimensionality of m data points by mapping them into 6 = (64, ... ,Qm)T S
RI™*4 in g-dimensional Euclidean space in a way that keeps the dissimilarity
measure y;; between the data points x; and x; as close as possible to that in
the original manifold. In other words, we minimize the stress function

q

FO) =" wij(yis — [10: = 0l2)°
i=1 ji
q

)

> [=2wijyij|10: — 0512 + wi;l|6; — 6;]3] + const.,
1 j#i
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Table 3.10: Runtime (in seconds) comparison of 1,000 iterations of absolute-
value penalized PET. Sparse structures of E and D were exploited. The number
of detector pairs d was fixed at 179,700.

configuration p = 90,000 p = 160,000 p = 810,000

GPUs
1 X X X
2 21 35 X
4 19 31 X
8 18 28 X
AWS EC2 c5.18xlarge instances
1 63 108 530
2 46 84 381
4 36 49 210
5 36 45 188
8 33 39 178
10 38 37 153
20 26 28 131

where the w;; are the weights. We adopt the following surrogate function that

majorizes f:

g(0]0™) = Ez:z [ww

The corresponding update equation obtained from setting the gradient of g(6|6™)

1 2
5(@ +07) .

wijyij (0:)" (6 — 07)
107 — 07|

to zero is

o — 0%,
n+1 __ ik Jk n n
Qik = ; [ym Hgn QnH + (031, + _]k)

/25w
i
fori=1,...,nand k=1,...,q. See Zhou et al.|(2010) for the detailed deriva-

tion. In PyTorch syntax, this can be parallely computed by the code:

# initialize theta from Unif (-1, 1)
for 1 in range (max_iter):

# compute Z_{ij} = y_{ij} /

# \[\theta”i - \theta”j\|_2"2
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d = torch.mm(self.theta, self.theta.t())
# to broadcast the below
TtT_diag = torch.diag(d) .view (-1, 1)

d = d.mul_(-2.0)

d.add_(TtT_diag)
d.add_(TtT_diag.t ())

# directly modify the diagonal
d_diag = d.view(-1) [:: (self.g+l)]
d_diag.fill_ (inf)

Z = torch.div(self.y, d)

# the below is length-g vector
Z_sums = Z.sum(dim=1, keepdim=True)

# Compute \theta”T (W - Z_n), where

# W=1 - diag(1,1,...1)

weight_minus_Z = 1.0 - Z

weight_minus_7_diag = WmZ.view(-1) [:: (self.qg+l)]
weight_minus_Z_diag.fill_ (0)

# # directly modify the diagonal

# where the weight is zero

TWmZ = torch.mm(self.theta.t (), weight_minus_Z)

theta = (self.theta * (self.w_sums + Z_sums) +
TWmZ.t ())/ (self.w_sums = 2.0)

The code below is a simple implementation of MDS in DistStat. jl.

W_sums = sum(W; dims=2)

for i in l:iter
mul! (theta_distances, transpose(theta), theta)
diag! (d_dist, theta_distances)
diag! (d_local, theta_distances)

theta_distances .= —-2theta_distances .+ d_dist .+
d_local

fill_diag! (theta_distances, Inf)

Z .=y ./ theta_distances

Z_sums .= sum(Z; dims=1) # Z sums, length m.

WmZ .= W .- Z

mul! (theta_WmZ, theta, WmZ)

theta .= (theta .* (Z_sums .+ W_sums) .+ theta WmZ) ./
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Table 3.11: Runtime (in seconds) of MDS on 10,000 x 10,000 simulated data
on multiple GPUs

dist_stat DistStat.jl
GPUs q=20 g=40 ¢=60 q=20 g=40 ¢=060
1 292 301 307 402 415 423
2 146 151 154 267 275 279
3 210 212 216
4 81 84 88 89 93 97
5 74 78 80 77 83 85
6 64 70 72
7 58 64 69
8 52 58 64 53 60 65
2W_sums
end

This code can also run for local array only with minor modifications involving
the matrix diagonals.

For numerical experiments, a [10,000] x 10,000 and a [100,000] x 1,000
dataset was sampled from the standard normal distribution. For reference, the
dataset used in Zhou et al.| (2010) was 401 x 401. The pairwise Euclidean dis-
tances between data points were computed distributedly (Li et al. 2010): in
each stage, data on one of the processors are broadcast and each processor
computes pairwise distances between the data residing on its memory and the
broadcast data. This is repeated until all the processors broadcast its data.

Table compares the performance of DistStat.jl and dist_stat
on multiple GPUs with 10,000 x 10,000 dataset. While dist_stat is faster
with fewer GPUs employed, the gap between the two implementations vanishes
dramatically as more GPUs are used.

For the AWS experiments, 36 processes per instance were used for

DistStat. jl1, because the step that mainly causes inter-instance communi-
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Table 3.12: Runtime (in seconds) of MDS on 100, 000 x 1000 simulated data on
multiple AWS EC2 instances

dist_stat DistStat.jl

Instances q=20 ¢g=40 ¢q=260 q=20 ¢g=40 ¢q=060
4 2875 3097 3089 2093 2007 2188

5 2315 2378 2526 1625 1704 1746

8 1531 1580 1719 1073 1105 1215

10 1250 1344 1479 909 980 1022

16 821 914 1031 630 714 736

20 701 823 903 531 663 701

cation is the matrix-vector multiplication, and its communication cost is much
less than NMF'. Note that this setting is impossible with the dist_stat im-
plementation, because 36 does not divide 100,000. For dist_stat, the job was
run with two processes with 18 threads each per instance. Table shows the
runtime of each experiment for 1000 iterations on 100,000 x 1000 dataset. It

can be seen that DistStat. j1 implementation is significantly faster.

3.5.4 [/i-regularized Cox regression

Finally, we apply the proximal gradient descent to ¢1-regularized Cox regression
(Cox, [1972)). In this problem, we are given a covariate matrix X € R™*P and a
possibly right-censored survival time y = (y1,...,¥ym) as data. Each element of
y is defined by y; = min{t;, ¢; }, where ¢; is time to event and ¢; is right-censoring
time for that sample. §; = Iy, <.,y indicates if the sample i is censored or not.

We put § = (01,...,0,)7. The log partial likelihood of the Cox model is then

L) =36 |8z —tog [ 3 exp(87a;)
=1

i JYi 2Yi
Coordinate descent-type approaches for this type of analyses are proposed by
Suchard et al.| (2013)) and |Mittal et al. (2014]).
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To obtain a proximal gradient update, we need the gradient VL(/3) and its

Lipschitz constant. The gradient of the log partial likelihood is
VL(B) = XT(I - P)s,

where we define w; = exp(z! ), W; = Zz’:ypyj w;, and the matrix P = (m;;)
whose elements are

mij = 1(yi > yj)wi/Wj.

Each row of P is normalized to sum to one. A Lipschitz constant of VL(3)
can be found by finding an upper bound of ||V2L(B)|2, where V2L(f) is the
Hessian of L(f):

V2L(B) = XT(Pdiag(6)PT — diag(P$))X

Note || P||2 < 1, since the sum of each row of P is 1. It follows that || V2L(3)]|2 <
2|| X3, and || X ||2 can be quickly computed by using the power iteration (Golub
and Van Loan, 2013)).

We introduce an ¢1-penalty to the log partial likelihood in order to enforce
sparsity in the regression coefficients and use the proximal gradient descent to

estimate 3 by putting g(8) = —L(8), f(8) = A||8]|1- Then the update rule is:

wn+1 _ exp( T/B Wn+1 Z wn+1
i yz>y]

An—O—l _ XT(I— Pn—&-l)(s’ where Pn+1 _ (ﬂ.anJrl)

Bn—&-l — S}\(ﬁn —{—O‘An+1),

If the data are sorted in the nonincreasing order of y;, W can be computed

using the cumulative sum function. While this is not so obvious to implement
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in a parallel environment, a CUDA device kernel function for this operation
is readily provided with PyTorch. We can write a simple proximal gradient

descent update for the Cox regression as:
X: data matrix, m-by-p
delta: censoring indicator, m-by-1

#

#

# y: right-censored survival time

# X is assumed to be sorted in decreasing order of y_i
#

lambd: penalty parameter

soft_threshold = torch.nn.Softshrink (lambd)
L = 2 % power (X) #*x 2

# power (X): power iteration to compute

# the spectral norm of X

sigma = 1/L

# mask: pi_ind[i, 7]
pi_ind = (y - y.t() >

(y[i]l >= yI[3])
0) .to(dtype=tf.float64)

for i in range (max_iter):
Xbeta = torch.mm (X, beta)
w = torch.exp (Xbeta)
W w.cumsum (0)
pi = (w / W.t()) * pi_ind
grad = torch.mm(X.t (), delta - torch.mm(pi, delta))
beta = soft_threshold(beta + grad * sigma)

assuming no ties in y;’s for simplicity. The soft-thresholding operator Sy(x)
is also implemented in PyTorch. We compute the full w;/W; first with w /
W.t () then multiply it to the indicator I(y; > y;) precomputed. A simple
implementation of this algorithm in Julia, assuming no ties in y; can be written
by:

y_dist = distribute (reshape(y, 1, :))
fill! (pi_ind, one(T))
pi_ind .= ((pi_ind .* y_dist) .- vy) .<= 0
for i in 1l:iter

mul! (Xbeta, X, beta)
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w .= exp. (Xbeta)
cumsum! (W, w)

W_dist .= distribute(reshape (W, 1, :))

pi .= pi_ind .» w ./ W_dist

mul! (pi_delta, pi, delta)

dmpd .= delta .- pi_delta

mul! (gradient, transpose (X), dmpd)

beta .= soft_threshold. (beta .+ sigma .x gradient,
lambda)

end

For simulation, the data matrix X € R™*[P]_ distributed along the columns,
is sampled from the standard normal distribution. The algorithm is designed
to keep a copy of the estimand 3 in every device.

For performance optimization, note that in addition to the memory for X, an
intermediate storage for two m x m matrices are needed. This can be avoided
by environment-specific implementation. For example, the CPU function to
compute F;,41)d can be written using LoopVectorization. j1 (Elrod,2020)
for efficient single instruction, multiple data parallelization using the Advanced
Vector Extensions (AVX). These environment-specific implementations not only
use less memory, but also result in some speedup. On the local node used, the
device-specific CPU implementation with four processes with each process using
a single core took almost half the time compared to the dot broadcasting-based
implementation. The GPU implementation with four GPUs was 5-10% faster.
Code for accelerating computation of P, )6 is avialable in Appendix E

Table [3.13] demonstrates the scalability of the proximal gradient algorithm
for ¢1-regularized Cox regression on multiple GPUs. While the dist_stat was
faster with double precision arithmetics in many cases, the DistStat.jl im-
plementation was faster in some cases. Unfortunately, the underlying algorithm
for the cumsum () method in PyTorch is known to be numerically unstable,

and it could not be used for very small values of A. On the other hand, the
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Table 3.13: Runtime (in seconds) of ¢;-regularized Cox regression on 10,000 x
[10,000] simulated data on multiple GPUs with A = 1078.

GPUs dist_stat (Float64) DistStat.jl (Float64) DistStat.jl (Float32)

1 382 447 292
2 205 196 113
3 160 91
4 115 136 80
5 98 121 5
6 113 71
7 106 69
8 124 86 67

Table 3.14: Runtime (in seconds) of ¢;-regularized Cox regression on 100, 000 x
[200,000] simulated data on multiple AWS EC2 instances with A = 1075,

Nodes dist_stat DistStat.]jl

4 1455 918
) 1169 819
8 809 558
10 618 447
16 389 290
20 318 245

cumsum () function from CuArrays. jl is numerically stable for small values
of A. Using single-precision, the users can get the results more quickly.

For the AWS experiments on DistStat. j1, 36 processes per instance were
used once again. Table shows the runtime of the algorithm for 1000 iter-
ations with a simulated 100,000 x [200,000] dataset. Thanks to the flexibility
of the Julia implementation, the speedup of DistStat. jl over dist_stat

is obvious.

3.5.5 Genome-wide survival analysis of the UK Biobank dataset

Now, let us see real-world application of /1-regularized Cox regression to genome-
wide survival analysis for Type 2 Diabetes (T2D). The UK Biobank dataset

(Sudlow et all 2015) was used, which contains information on approximately
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800,000 single nucleotide polymorphisms (SNPs) of 500,000 individual subjects
recruited from the United Kingdom. After filtering SNPs for quality control
and subjects for the exclusion of Type 1 Diabetes patients, 402,297 subjects in-
cluding 17,994 T2D patients and 470,189 SNPs remained. For the analysis with
dist_stat, the information of 200,000 randomly sampled subjects including
8,995 T2D patients were used. Any missing genotype was imputed with the col-
umn mean. Along with the SNPs, sex and top ten principal components were
included as unpenalized covariates to adjust for population-specific variations.

The resulting dataset was 701 GB with double-precision.

The analysis for this large-scale genome-wide dataset was conducted as fol-
lows. Incidence of T2D was used as the event (§; = 1) and the age of onset
was used as survival time y;. For non-T2D subjects (§; = 0), age at the last
visit was used as y;. Breslow’s method (Breslow, 1972) was applied for any
tie in 7;. 63 different values of the regularization parameter A in the range
[0.7 x 1079, 1.6 x 1078] were used, with which 0 to 111 SNPs were selected. For
each value of A, the ¢1-regularized Cox regression model of Section [3.5.4] was
fitted. Every run converged after at most 2080 iterations that took less than

2800 seconds using 20 c5.18xlarge instances from AWS EC2.

The SNPs are ranked based on the largest value of A for which each SNP is
selected. (No variables were removed once selected within the range of A\ used.
The regularization path and the full list of the selected SNPs are available in
Appendix) Among the 111 SNPs selected, three of the top four selections are
located on TCF7L2, whose association with T2D is well-known (Scott et al.,
2007; 'The Wellcome Trust Case Control Consortium, 2007)). Also prominently
selected are SNPs from genes SLC45A2 and HERC2, whose variants are known
to be associated with skin, eye, and hair pigmentation (Cook et al., [2009). This
is possibly due to the dominantly European population in the UK Biobank
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Table 3.15: SNPs with p-values of less than 0.01 on unpenalized Cox regression with variables
selected by ¢1-penalized Cox regression

SNP ID Chr. Location A1% A2B MAFC Mapped Gene Coefficient p-value

154506565 10 114756041 A T 0.238 TCFT7L2 2.810e-1 <2e-16
1512243326 10 114788815 € T 0.249 TCFT7L2 1.963e-1  0.003467
rs8042680 15 91521337 A C 0.277 PRC1 2.667e-1  0.005052
15343092 12 66250940 T G 0463 HMGA2 —7.204e-2  0.000400
rs7899137 10 76668462 A C  0.289 KAT6B —4.776e-2  0.002166
rs8180897 8 121699907 A G 0.445 SNTBI1 6.361e-2  0.000149
rs10416717 19 13521528 A G 0470 CACNAlA 5.965e-2  0.009474
15231354 11 2706351 C T 0.329 KCNQI 4.861e-2  0.001604
159268644 6 32408044 C A 0.282 HLA-DRA 6.589%¢-2 2.11e-5

A Minor allele, B Major allele,
€ Minor allele frequency. The boldface indicates the risk allele determined by the reference
allele and the sign of the regression coefficient.

study. Mapped genes for 24 SNPs out of the selected 111 were also reported in
Mahajan et al.| (2018), a meta-analysis of 32 genome-wide association studies
(GWAS) for about 898,130 individuals of European ancestry; see Tables
and [E.2) for details. Then, an unpenalized Cox regression analysis using the 111
selected SNPs was conducted. The nine SNPs with the p-values less than 0.01
are listed in Table The locations in Table are with respect to the
reference genome GRCh37 (Church et al. 2011)), and mapped genes were pre-
dicted by the Ensembl Variant Effect Predictor (McLaren et al., 2016]). Among
these nine SNPs, three of them were directly shown to be associated with T2D
(The Wellcome Trust Case Control Consortium| (2007)) and Dupuis et al.| (2010)
for rs4506565, Voight et al.| (2010)) for rs8042680, |[Ng et al.| (2014) for rs343092).
Three other SNPs have mapped genes reported to be associated with T2D
in [Mahajan et al.| (2018): rs12243326 on TCF7L2, rs343092 on HMGAZ2, and
rs231354 on KCNQ1.

With DistStat. j1, the entire dataset for this experiment was used, thanks
to memory efficiency. 43 different values of ) in range [6.0x107%,1.5x 1078] were

used, where 0 to 320 SNPs were selected. For the analysis, 20 c5.18xlarge
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instances were used. It took less than 2050 iteration until convergence, where

[f(Bny)=f(Bn-10))l _5
f FBon) 4T < 107°. For each A,

convergence is determined by testing i

the experiment took 3180 to 3720 seconds.

The SNPs were ranked based on the largest of A for which each SNP has
nonzero coefficient, then breaking any tie based on the absolute values of the
coefficients. The set of top nine selections is identical to that of the analysis
with 200,000 subjects with dist_stat with slightly different order, as listed
in Table[3.16] As before, significance test using unpenalized Cox regression with
only selected SNPs, gender, and top 10 principal components is carried out.
SNPs with p-values less than 0.01/333 were selected using Bonferroni correction
to control family-wise error rate less than 0.01. Table lists the 9 selected
SNPs.

Table 3.16: Top nine SNPs selected by ¢;-penalized Cox regression

Rank SNP ID Chr Location A1% A2B MAFC® Mapped Gene Sign
1 rs4506565 10 114756041 A T 0.314 TCFT7L2 +
2 rs16891982 5 33951693 G C 0.073 SLC45A2 —
3 1s12243326 10 114788815 T C 0.281 TCFT7L2 +
4 1s12255372 10 1148088902 G T 0.285 TCFT7L2 +
5 rs28777 5 33958959 A C 0.062 SLC45A2 —
6 1s35397 5 33951116 T G 0.096 SLC45A2 —
7 1s1129038 15 28356859 T C 0.261 HERC2 —
8 1s12913832 15 28365618 G A 0.259 HERC2 —
9 rsl0787472 10 114781297 A C 0.470 TCF7L2 +

AMajor allele, BMinor allele, © Minor allele frequency. The boldface indicates the risk
allele determined by the reference allele and the sign of the regression coefficient.

Six of the SNPs, including the SNPs with five lowest p-values are previously
reported to have direct association with T2D (rs1801212 from WFS1 (Fawcett
et al. [2010), rs4506565 from TCF7L2 (The Wellcome Trust Case Control Con-
sortium, 2007; Dupuis et al., 2010), rs2943640 from IRS1 (Langenberg et al.,
2014)), rs10830962 from MTNR1B (Klimentidis et al., 2014; |Salman et al., [2015),
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rs343092 from HMGA2 (Ng et al., [2014)), and rs231362 from KCNQ1 (Riobello
et al., [2016)). In addition, rs1351394 is from HMGAZ2, known to be associated
with T2D. This seems to be an improvement over the dist_stat result in
which three of the top nine selections were found to be directly associated with

T2D and three others were on the known T2D-associated genes.

Table 3.17: SNPs with significant coefficients with significance level 0.01 after
Bonferroni correction

SNP ID Chr  Location A1% A2B MAFC Mapped Gene Coefficient  p-value

rs1801212 4 6302519 A G 0270 WFS1 0.1123  <2E-16
rs4506565 10 114756041 A T 0.314 TCFT7L2 0.2665  <2E-16
152943640 2 227093585 C A 0.336 IRS1 0.0891 1.57E-14
1510830962 11 92698427 C G 0.402 MTNRIB 0.0731 1.46E-11
rs343092 12 66250940 G T 0.166 HMGA2 -0.0746  2.26E-07
rs1351394 12 66351826 C T 0.478 HMGA2 0.0518 1.70E-06
152540917 2 60608759 T C 0.389 RNUI1-32P -0.0476  2.18E-05
151254207 1 236368227 C T 0.395 GPR137B 0.0458 2.84E-05
15231362 11 2691471 G A 0461 KCNQl1 0.0607 2.87E-05

AMajor allele, B Minor allele,
€ Minor allele frequency. The boldface indicates the risk allele determined by the reference allele
and the sign of the regression coefficient.

Although the interpretation of the results requires additional sub-analysis,
the result shows the promise of joint association analysis using multiple regres-
sion models. In GWAS it is customary to analyze the data on SNP-by-SNP ba-
sis. The mapped genes harboring the SNPs selected by the half-million-variate
regression analysis include CPLX3 and CACNAT1A associated with regulation
of insulin secretion, and SEMA7A and HLA-DRA involved with inflammatory
responses (based on DAVID (Huang et al., 2009alb))). These genes might have
been missed in conventional univariate analysis of T2D due to moderate sta-
tistical significance values. Joint GWAS may overcome such a limitation, and
be possible by combining the computing power of modern HPC and scalable

algorithms.
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3.6 Discussion

Packages dist_stat and DistStat. jl provide first steps to provide a uni-
fied development environment for multiple nodes with multiple GPUs. The
packages supply distributed array data structure based on any type of under-
lying array. In particular, DistStat. j1 can be used with any array type on
any hardware provided that the array interface is implemented in Julia with
MPI support.

Statistical applications including NMF, MDS, PET, and ¢;-regularized Cox
regularization are considered, and scalability is shown on a 8-GPU workstation
and a virtual cluster on AWS cloud with up to 20 instances. Performance of
DistStat.jl was equivalent to or better than its dist_stat counterpart.
With the newly-developed packages, the biological dataset of size 400,000 x
500, 000 could be analyzed.
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Listing 3.3 Monte Carlo estimation of 7 for TensorFlow on multiple nodes
using Horovod

import tensorflow as tf
import horovod.tensorflow as hvd
# initialize horovod
hvd.init ()
rank = hvd.rank ()
# without this block, all the processes try to allocate
# all the memory from each device, causing out of memory
# error.
devices = tf.config.experimental.list_physical_devices(
"GPU")
if len(devices) > 0:
for d in devices:
tf.config.experimental.set_memory_growth (d, True)
# select device
tf.device ("device:gpu:{}".format (rank))
# tf.device ("device:cpu:0") for CPU
# function runs in parallel with (graph computation/
# lazy-evaluation)
# or without (eager execution) the line below
@tf.function
def mc_pi(n):
# this code is executed on each device
x = tf.random.uniform((n,), dtype=tf.float64)
y = tf.random.uniform((n,), dtype=tf.float6c4)
# compute local estimate for pi
# and save it as ’'estim’.
estim = tf.reduce_mean (tf.cast (
X*x*%2 + y *x 2 <1, tf.float64d)) x4
# compute the mean of ’'estim’ over all the devices

estim = hvd.allreduce (estim)
return estim

if _ name_ == '_ main_ ’:
n = 10000

estim = mc_pi(n)
# print the result on rank zero
if rank ==

print (estim.numpy () )
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Listing 3.4 An example usage of the module distmat.

import torch, distmat

import torch.distributed as dist
dist.init_process_group (‘mpi’)
rank = dist.get_rank ()

size = dist.get_world_size()

device = "cuda:{}’.format (rank)
# or simply 'cpu’ for CPU computing
if device.startswith(’cuda’): torch.cuda.set_device (rank)

tensortype = torch.DoubleTensor
# torch.cuda.FloatTensor for
# a single-precision matrix on a GPU
A distmat.distgen_uniform (4, 4, TType=tensortype)
B distmat.distgen_uniform(4, 2, TType=tensortype)
AB = distmat.mm(A, B) # A x B
if rank == 0: # to print this only once
print ("AB = ")
print (rank, AB.chunk) # print the rank’s protion of AB.
C = (1 + AB) .1log() # elementwise logarithm

if rank ==
print ("log(l + AB) = ")
print (rank, C.chunk) # print the rank’s portition of C.
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Figure 3.2: Reconstructed images of the RVF phantom with a ridge penalty.
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Figure 3.3: Reconstructed images of the RVF phantom with a TV penalty.
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Figure 3.4: Reconstructed images of the XCAT phantom with a ridge penalty.
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Figure 3.5: Reconstructed images of the XCAT phantom with a TV penalty.
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Chapter 4

Conclusion

In this dissertation, highly parallelizable algorithms for statistical computing
are reviewed, and a class among them, namely, a variant of primal-dual hy-
brid gradient (PDHG) for three-function sum is accelerated to its asymptotic
optimum. Then, easy-to-use software packages to implement various statistical
algorithms, including the former, are developed.

Abstraction of highly complex computing operations have rapidly evolved
over the last decade. In this dissertation, how statisticians can benefit from this
evolution is explored. It is also shown that many useful tools to incorporate
computing clusters and accelerators have been created outside of the statistical
community. Unfortunately, such developments have been mainly made in lan-
guages other than R, particularly in Python and Julia, with which statisticians
might not be familiar. Although there are libraries that deal with simple parallel
computation in R, common issues with these libraries are that it is difficult for
them to incorporate GPUs which might significantly speed up the computation

and that it is hard to write more full-fledged parallel programs without directly
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writing code in C or C++. This two-language problem calls for statisticians
to take a second look at Python and Julia. Fortunately, these languages are
not hard to learn. A remedy from the R side may be either developing more
user-friendly interfaces for the distributed-memory environment, with help from
those who are engaged in computer engineering, or R community writing a good
wrapper for the important Python and libraries. A good starting point may be
a Python or Julia interface to R. The R package reticulate (Ushey et al.,
2019) and JuliaCall (Li,[2019) might be good candidates. For example, there

is an interface to TensorFlow based on reticulate (RStudio, [2019).

The methods discussed in this dissertation can be applied efficiently even
when the dataset is larger than several gigabytes by using multiple CPU ma-
chines or using multiple GPUs. The advantages of using multiple CPU ma-
chines and multiple GPUs are two-fold. First, we can take advantage of data
parallelism with more computing cores, accelerating the computation. Second,
we can push the upper limit of the size of the dataset to analyze. As cloud
providers now support virtual clusters better suited for HPC, statisticians can
deal with bigger problems utilizing such services, using up to several thousand

cores easily.

A major weakness of the current approach is that its effectiveness can be
degraded by the communication cost between the nodes and devices. One way
to avoid this issue is by using high-speed interconnection between the nodes
and devices. With multi-CPU machines, it can be covered by a high-speed
interconnection technology such as InfiniBand. Even when such kind of envi-
ronment is not affordable, we may still use relatively high-speed connection
equipped with instances from a cloud. The network bandwidth of 25 Gbps
supported for c¢5.18xlarge instances of AWS was quite effective in our ex-

periments. Another way to alleviate the communication issue is employing
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communication-avoiding algorithms (Van De Geijn and Watts|, [1997; Ballard

et al., |2011; Koanantakool et al,, 2016) to minimize the amount of communi-

cation between computing units. This approach has been utilized for statis-

tical inference (Jordan et al. 2019) and sparse inverse covariance estimation

(Koanantakool et al., [2018).

Loss of accuracy due to the single-precision of the GPU, prominent in
our Cox regression example, can be solved by purchasing scientifically-oriented
GPUs with better double-precision supports, which costs money. Another op-
tion is to go to clouds: for example, P2 and P3 instances in AWS support
scientific GPUs. Nevertheless, even with that double-precision floating-point op-
eration speed is 1/32 compared to single-precision, desktop GPUs with double-

precision could achieve more than 10-fold speedup over CPU.

5 2T 8
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Appendix A

Monotone Operator Theory

Here we briefly state necessary results from monotone operator theory for the
proofs in the subsequent section. For more details, see [Bauschke and Combettes

(2011)).

Set-valued operators. A set-valued operator T : R® — 28" maps a vector
z € R™ to a set T'(z) C R™. The graph of T is denoted by graTl = {(z,w) €
R" x R™ : w € T(z)}. When T'(z) is single-valued, i.e., T(z) = {w}, T is a
function, and we write simply as T'(z) = w. We use I to denote the identity
operator, i.e, I(z) = z. When no confusion incurs, we also use Tz to mean
T(z). In particular, when 7T is a single-valued linear operator, Tz is identified
with a multiplication of the corresponding matrix 7' € R™*™ by a vector z.
The set of zeros of T' is defined as zerT' = {z € R" : 0 € Tz}. The inverse
of Tis T7!' : R® — 2R" such that T-'(w) = {# € R” : w € Tz}, hence
graT ! = {(w,2) € R" x R" : w € Tz}. The resolvent of T is Ry = (I +T)~L.
Scaling of an operator T' by ¢ € R is defined by (tT)(z) = tT(z). Composition
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of two set-valued operators 71 : R — 28" and Ty : R® — 2R" is defined by

Tz = Uwele Thw.

Fized points. An operator T : R" — 2R" is called nonexpansive if ||u—u/'||s <
|lz—2'||2 for allu € T'(2),u’ € T'(2') € R™; it is called contractive if the inequality
is strict. Any nonexpansive operator is single-valued. The set of fixed points of
a single-valued operator T is denoted by Fix T, i.e., FixT = {z: z = T'z}. For
a contractive operator T, the fixed point iteration z*t! = Tz* converges to a

point in Fix T, if Fix T # ().

Averaged operators. An operator T is called a-averaged, 0 < a < 1, if
T = (1 — a)] + aR for some nonexpansive operator R. Usually R is defined
implicitly. Note that T itself is nonexpansive, and FixT = Fix R. If T} is
aj-averaged and Ty is ag-averaged, then 7175 is a-averaged where a = (a1 +
ag — 2a109) /(1 — ajae). An a-averaged operator T' is nonexpansive but not

k+1 — T2k above may

necessarily contractive, hence the fixed point it