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Abstract

Seyoon Ko
Department of Statistics

The Graduate School
Seoul National University

Technological advances in the past decade, hardware and software alike, have

made access to high-performance computing (HPC) easier than ever. In this

dissertation, easily-parallelizable, inversion-free, and variable-separated algo-

rithms and their implementation in statistical computing are discussed. The

first part considers statistical estimation problems under structured sparsity

posed as minimization of a sum of two or three convex functions, one of which

is a composition of non-smooth and linear functions. Examples include graph-

guided sparse fused lasso and overlapping group lasso. Two classes of inversion-

free primal-dual algorithms are considered and unified from a perspective of

monotone operator theory. From this unification, a continuum of preconditioned

forward-backward operator splitting algorithms amenable to parallel and dis-

tributed computing is proposed. The unification is further exploited to intro-

duce a continuum of accelerated algorithms on which the theoretically optimal

asymptotic rate of convergence is obtained. For the second part, easy-to-use

distributed matrix data structures in PyTorch and Julia are presented. They

enable users to write code once and run it anywhere from a laptop to a worksta-

tion with multiple graphics processing units (GPUs) or a supercomputer in a

cloud. With these data structures, various parallelizable statistical applications,

including nonnegative matrix factorization, positron emission tomography, mul-

tidimensional scaling, and ℓ1-regularized Cox regression, are demonstrated. The
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examples scale up to an 8-GPU workstation and a 720-CPU-core cluster in a

cloud. As a case in point, the onset of type-2 diabetes from the UK Biobank

with 400,000 subjects and about 500,000 single nucleotide polymorphisms is

analyzed using the HPC ℓ1-regularized Cox regression. Fitting a half-million-

variate model took about 50 minutes, reconfirming known associations. To my

knowledge, the feasibility of a joint genome-wide association analysis of survival

outcomes at this scale is first demonstrated.

Keywords: monotone operator theory, primal-dual algorithms, high-performance

computing, multi-GPU, distributed computing, cloud computing

Student Number: 2014-30997
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Chapter 1

Prologue

1.1 Introduction

Clock speeds of the central processing units (CPUs) on the desktop and laptop

computers hit the physical limit more than a decade ago, and it is likely that

there will be no major breakthrough until quantum computing becomes prac-

tical. Now the increase in computing power is accomplished by using multiple

cores within a processor chip. High-performance computing (HPC) means com-

putations that are so large that their requirement on storage, main memory,

and raw computational speed cannot be met by a single (desktop) computer

(Hager and Wellein, 2010). Modern HPC machines are equipped with more

than one CPU that can work on the same problem (Eijkhout, 2016). Often,

special-purpose co-processors such as graphical processing units (GPUs) are

attached to the CPU for orders of magnitude of acceleration for some tasks. A

GPU can be thought of a massively parallel matrix-vector multiplier and vector

transformer on a data stream. With the needs of analyzing terabyte- or even
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petabyte-scale data common, the success of large-scale statistical computing

heavily relies on how to engage HPC in the statistical practice.

About a decade ago, Zhou et al. (2010) discussed the potential of GPUs

in statistical computing. In this landmark paper, the authors predicted that

“GPUs will fundamentally alter the landscape of computational statistics.” Yet,

it appears that GPU computing, or HPC in general, has not completely smeared

into the statistical community. Part of the reasons for this may be attributed

to the fear that parallel and distributed code is difficult to program, especially

in R (R Core Team, 2018), “the” programming language of statisticians. On

the other hand, the landscape of scientific computing in general, including so-

called data science (Donoho, 2017), has indeed substantially changed. Many

high-level programming languages, e.g., Python (van Rossum, 1995) and Ju-

lia (Bezanson et al., 2017), support parallel computing by design or through

standard libraries. Accordingly, many software tools have been developed in

order to ease programming in and managing HPC environments. Last but not

least, cloud computing (Fox, 2011) is getting rid of the necessity for purchasing

expensive supercomputers and scales computation as needed.

Concurrently, easily parallelizable algorithms for fitting statistical models

with hundreds of thousand parameters have also seen significant advances. Tra-

ditional Newton-Raphson or quasi-Newton type of algorithms face two major

challenges in contemporary problems: 1) explosion of dimensionality renders

storing and inversion of Hessian matrices prohibitive; 2) regularization of model

complexity is almost essential in high-dimensional settings, which is often real-

ized by nondifferentiable penalties; this leads to high-dimensional, nonsmooth

optimization problems. For these reasons, nonsmooth first-order methods have

been extensively studied during the past decade (Beck, 2017). For relatively

simple, decomposable penalties (Negahban et al., 2012), the proximal gradient
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method (Beck and Teboulle, 2009; Combettes and Pesquet, 2011; Parikh and

Boyd, 2014; Polson et al., 2015) produces a family of easily parallelizable algo-

rithms. For the prominent example of the Lasso (Tibshirani, 1996), this method

contrasts to the highly efficient sequential coordinate descent method of Fried-

man et al. (2010) and the smooth approximation approaches, e.g., Hunter and

Li (2005). Decomposability or separability of variables is often the key to par-

allel and distributed algorithms. The popular alternating direction method of

multipliers (ADMM, Gabay and Mercier, 1976; Glowinski and Marroco, 1975;

Boyd et al., 2010) achieves this goal through variable splitting, while often re-

sulting in nontrivial subproblems to solve. As an alternative, the primal-dual

hybrid gradient (PDHG) algorithm (Zhu and Chan, 2008; Esser et al., 2010;

Chambolle and Pock, 2011; Condat, 2013; Vũ, 2013) has a very low per-iteration

complexity, useful for complex penalties such as the generalized lasso (Tibshi-

rani and Taylor, 2011). Another route toward separability is through the MM

principle (Lange et al., 2000; Hunter and Lange, 2004; Lange, 2016), which has

been explored in Zhou et al. (2010). In fact, the proximal gradient method can

be viewed as a realization of the MM principle. Recent developments in the ap-

plication of this principle include distance majorization (Chi et al., 2014) and

proximal distance algorithms (Keys et al., 2019).

This dissertation reviews the advances in parallel and distributed comput-

ing environments during the last decade, and develops easily parallelizable algo-

rithms for statistical computing. In particular, two classes of easily parallelizable

optimization algorithms suitable to statistical estimation of structually sparse

models are unified, and accelerated to the asymptotic optimum (Chapter 2).

In addition, software packages are developed to make programming for large-

scale, high-dimensional statistical models easy for statisticians. These packages

scale up to about 400, 000 × 500, 000 multivariate analysis for Cox regression

3



model regularized by the ℓ1 penalty on the UK Biobank genomics data, fea-

turing time-to-onset of Type 2 Diabetes (T2D) as outcome and genomic loci

harboring single nucleotide polymorphisms as covariates (Chapter 3). To my

knowledge, such a large-scale joint genome-wide association analysis with the

Cox model has not been attempted. The dissertation is concluded in Chapter

4.

The rest of this chapter reviews HPC systems and how they have become

easy to use (Section 1.2), and modern scalable optimization techniques that

suit well to the HPC environment (Section 1.3).

1.2 Accessible High-Performance Computing Systems

1.2.1 Preliminaries

Since modern HPC relies on parallel computing, in this section several concepts

from parallel computing literature are reviewed at a level minimally necessary

for the subsequent discussions. Further details can be found in Nakano (2012);

Eijkhout (2016).

Data parallelism. While parallelism can appear at various levels such as

instruction-level and task-level, what is most relevant to statistical computing

is data-level parallelism or data parallelism. If data can be split into several

chunks that can be processed independently of each other, then we say there is

data parallelism in the problem. Many operations such as scalar multiplication

of a vector, matrix-vector multiplication, and summation of all elements in a

vector can exploit data parallelism using parallel architectures discussed shortly.

Memory models. In any computing system, processors (CPUs or GPUs)

need to access data residing in the memory. While physical computer memory
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uses complex hierarchies (L1, L2, and L3 caches; bus- and network-connected,

etc.), systems employ abstraction to provide programmers with an appearance

of transparent memory access. Such logical memory models can be categorized

into the shared memory model and the distributed memory model. In the shared

memory model, all processors share the address space of the system’s memory

even if it is physically distributed. For example, if two processors refer to a

variable x, that means the variable is stored in the same memory address;

if a processor alters the variable, then the other processor is affected by the

changed value. Modern CPUs that have several cores within a processor chip

fall into this category. On the other hand, in the distributed memory model,

the system has memory both physically and logically distributed. Processors

have their own memory address spaces, and cannot see each other’s memory

directly. If two processors refer to a variable x, then there are two separate

memory locations, each of which belongs to each processor under the same

name. Hence the memory does appear distributed to programmers, and the

only way processors can exchange information with each other is by passing

data through some explicit communication mechanism. The advantage at the

cost of this complication is scalability — the number of processors that can work

in a tightly coupled fashion is much greater in distributed memory systems (say

100,000) than shared memory systems (say four). Hybrids of the two memory

models are also possible. A typical computer cluster consists of multiple nodes

interconnected in a variety of network topology. A node is a workstation that can

run standalone, with its main memory shared by several processors installed on

the motherboard. Hence within a node, it is a shared memory system, whereas

across the nodes the cluster is a distributed memory system.
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Parallel programming models. For shared-memory systems, programming

models based on threads are the most popular. A thread is a stream of machine

language instructions that can be created and run in parallel during the exe-

cution of a single program. OpenMP is a widely used extension of the C and

Fortran programming languages based on threads. It achieves data parallelism

by letting the compiler know what part of the sequential program is paral-

lelizable by creating multiple threads. Simply put, each processor core can run

a thread operating on a different partition of the data. In distributed-memory

systems, parallelism is difficult to achieve via a simple modification of sequential

code like by using OpenMP. The programmer needs to coordinate communi-

cations between processors not sharing memory. A de facto standard for such

processor-to-processor communication is the message passing interface (MPI).

MPI routines mainly consist of point-to-point communication calls that send

and receive data between two processors, and collective communication calls

that all processors in a group participate in. Typical collective communication

calls include

• Scatter: one processor has data as an array, and each other processor

receives a partition of the array;

• Gather: one processor collects data from all the other processors to con-

struct an array;

• Broadcast: one processor sends its data to all the other devices;

• Reduce: one processor gathers data and produces a combined output

based on an associative binary operator, such as sum or maximum of

all the elements.
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Parallel architectures. To realize the above models, a computer architec-

ture that allows simultaneous execution of multiple machine language instruc-

tions is required. A single instruction, multiple data (SIMD) architecture has

multiple processors that execute the same instruction on different parts of the

data. The GPU falls into this category of architectures, as its massive num-

ber of cores can run a large number of threads that share memory. A multiple

instruction, multiple data (MIMD), or single program, multiple data (SPMD)

architecture has multiple CPUs that execute independent parts of program in-

structions on their own data partition. Most computer clusters fall into this

category.

1.2.2 Multiple CPU nodes: clusters, supercomputers, and clouds

Computing on multiple nodes can be utilized in many different scales. For mid-

sized data, one may build his/her own cluster with a few nodes. This requires to

determine the topology and to purchase all the required hardware, along with

resources to maintain it. This is certainly not familiar to virtually all statis-

ticians. Another option may be using a well-maintained supercomputer in a

nearby HPC center. A user can take advantage of the facility with up to hun-

dreds of thousands of cores. The computing jobs on these facilities are often

controlled by a job scheduler, such as Sun Grid Engine (Gentzsch, 2001), Slurm

(Yoo et al., 2003), Torque (Staples, 2006), etc. However, access to supercom-

puters is almost always limited. (Can you name a “nearby” HPC center from

your work? If so, how can you submit your job request? What is the cost?)

Even when the user has access to them, he/she often has to wait in a very long

queue until the requested computation job is started by the scheduler.

In recent years, cloud computing has emerged as a third option. It refers to

both the applications delivered as services over the Internet and the hardware
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and systems software in the data centers that provide those services (Armbrust

et al., 2010). Big information technology companies such as Amazon, Microsoft,

and Google lend their practically infinite computing resources to users on de-

mand by wrapping the resources as “virtual machines”, which are charged per

CPU hours and storage. Users basically pay utility bills for using computing re-

sources. An important implication of this infrastructure to end-users is that the

cost of using 1000 virtual machines for one hour is almost the same as that of

using a single virtual machine for 1000 hours. Therefore a user can build his/her

own virtual cluster “on the fly,” increasing the size of the cluster as the size of

the problem to solve grows. A catch here is that a cluster does not necessarily

possess the power of HPC as suggested in Section 1.2.1: a requirement for high

performance is that all the machines should run in tight lockstep when work-

ing on a problem (Fox, 2011). However, early cloud services were more focused

on web applications that did not involve frequent data transmissions between

computing instances, and were less optimized for HPC, yielding discouraging

results (Evangelinos and Hill, 2008; Walker, 2008).

Eventually, many improvements have been made at hardware and software

levels to make HPC on clouds feasible. At hardware level, cloud service providers

now support CPU instances such as c4, c5, and c5n instances of Amazon Web

Services (AWS), with up to 48 physical cores of higher clock speed of up to 3.4

GHz along with support for accelerated SIMD computation. If network band-

width is critical, the user may choose instances with faster networking (such

as c5n instances in AWS), allowing up to 100 Gbps of network bandwidth.

At the software level, these providers support tools that manage resources ef-

ficiently for scientific computing applications, such as ParallelCluster (Amazon

Web Services, 2019) and ElastiCluster (University of Zurich, 2019). These tools

are designed to run programs in clouds in a similar manner to proprietary clus-
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ters through a job scheduler. In contrast to a physical cluster in an HPC center,

a virtual cluster on a cloud is exclusively created for the user; there is no need

for waiting in a long queue. Accordingly, over 10 percent of all HPC jobs are

running in clouds, and over 70 percent of HPC centers run some jobs in a

cloud as of June 2019; the latter is up from just 13 percent in 2011 (Hyperion

Research, 2019).

In short, cloud computing is now a cost-effective option for statisticians who

are in demand for high performance, not with such a steep learning curve.

1.2.3 Multi-GPU node

In some cases, HPC is achieved by installing multiple GPUs on a single node.

Over the past two decades, GPUs have gained a sizable amount of popular-

ity among scientists. GPUs were originally designed to aid CPUs in rendering

graphics for video games quickly. A key feature of GPUs is their ability to apply

a mapping to a large array of floating-point numbers simultaneously. The map-

ping (called a kernel) can be programmed by the user. This feature is enabled

by integrating a massive number of simple compute cores in a single proces-

sor chip, realizing the SIMD architecture. While this architecture of GPUs was

created in need of generating a large number of pixels in a limited time due

to the frame rate constraint of high-quality video games, the programmabil-

ity and high throughput soon gained attention from the scientific computing

community. Matrix-vector multiplication and elementwise nonlinear transfor-

mation of a vector can be computed several orders of magnitude faster on GPU

than on CPU. Early applications of general-purpose GPU programming in-

clude physics simulations, signal processing, and geometric computing (Owens

et al., 2007). Technologically savvy statisticians demonstrated its potential in

Bayesian simulation (Suchard et al., 2010a,b) and high-dimensional optimiza-
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tion (Zhou et al., 2010; Yu et al., 2015). Over time, the number of cores has

increased from 240 (Nvidia GTX 285, early 2009) to 4608 (Nvidia Titan RTX,

late 2018) and more local memory — separated from CPU’s main memory —

has been added (from 1GB of GTX 285 to 24GB for Titan RTX). GPUs could

only use single-precision for their floating-point operations, but they now sup-

port double- and half-precisions. More sophisticated operations such as tensor

operations are also supported. High-end GPUs are now being designed specifi-

cally for scientific computing purposes, sometimes with fault-tolerance features

such as error correction.

A major drawback of GPUs for statistical computing is that GPUs have a

smaller memory compared to CPU, and it is slow to transfer data between them.

Using multiple GPUs can be a cure: recent GPUs can be installed on a single

node and communicate with each other without the meddling of CPU; this

effectively increases the local memory of a collection of GPUs. (Lee et al. (2017)

explored this possibility in image-based regression.) It is relatively inexpensive

to construct a node with 4–8 desktop GPUs compared to a cluster of CPU

nodes with a similar computing power (if the main computing tasks are well

suited for the SIMD model), and the gain is much larger for the cost. Linear

algebra operations that frequently occur in high-dimensional optimization are

good examples.

Programming environments for GPU computing have been notoriously hos-

tile to programmers for a long time. The major sophistication is that a pro-

grammer needs to write two suits of code, the host code that runs on a CPU

and kernel functions that run on GPU(s). Data transfer between CPU and

GPU(s) also has to be taken care of. Moreover, kernel functions need to be

written in special extensions of C, C++, or Fortran, e.g., CUDA (Nvidia, 2007)

or OpenCL (Munshi, 2009). Combinations of these technical barriers made ca-
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sual programmers, e.g., statisticians, keep away from writing GPU code despite

its computational gains. There were efforts to sugar-coat these hostile environ-

ments with a high-level language such as R (Buckner et al., 2009) or Python

(Tieleman, 2010; Klöckner et al., 2012; Lam et al., 2015), but these attempts

struggled to garner user base big enough to maintain the community in general.

The functionalities were often limited and inherently hard to extend.

Fortunately, GPU programming environments have been revolutionized since

deep learning (LeCun et al., 2015) brought sensation in many machine learn-

ing applications. Deep learning is almost synonymous to deep neural networks,

which refer to a repeated (“layered”) application of an affine transformation of

the input followed by identical elementwise transformations through a nonlinear

link function, or “activation function.” Fitting a deep learning model is almost

always conducted via (approximate) minimization of the specified loss function

through a clever application of the chain rule to the gradient descent method,

called “backpropagation” (Rumelhart et al., 1988). These computational fea-

tures fit well to the SIMD architecture of GPUs, whose use dramatically reduces

the training time of this highly overparameterized family of models with a huge

amount of training data (Raina et al., 2009). Consequently, many efforts had

been made to ease GPU programming for deep learning, resulting in easy-to-use

software libraries. Since the sizes of neural networks get ever larger, more HPC

capabilities, e.g., support for multiple GPUs and CPU clusters, have been de-

veloped. As reviewed in the next section, programming with those libraries gets

rid of many hassles with GPUs, close to the level of conventional programming.

Readers might ask: why should statisticians care about deep learning soft-

ware? As Cheng and Titterington (1994) pointed out 25 years ago, “neural net-

works provide a representational framework for familiar statistical constructs,”

and “statistical techniques are sometimes implementable using neural-network
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technology.” For example, linear regression is just a simple neural network with

a single layer and linear activation functions. Many more sophisticated statis-

tical frameworks can be mapped to that of neural networks and can benefit

from those easy-to-use deep learning libraries for computational performance

boosting.

1.3 Highly Parallelizable Algorithms

In this section, some easily parallelizable optimization algorithms useful for fit-

ing high-dimensional statistical models are discussed, assuming that data are

so large that they have to be stored distributedly. These algorithms can benefit

from the distributed-memory environment by using relatively straightforward

operations, via distributed matrix-vector multiplication and independent up-

date of variables.

1.3.1 MM algorithms

The MM principle (Lange et al., 2000; Lange, 2016), where “MM” stands for

either majorization-minimization or minorization-maximization, is a useful tool

for constructing parallelizable optimization algorithms. In minimizing an objec-

tive function f(x) iteratively, for each iterate we consider a surrogate function

g(x|xn) satisfying two conditions: the tangency condition f(xn) = g(xn|xn)

and the domination condition f(x) ≤ g(x|xn) for all x. Updating xn+1 =

argminx g(x|xn) guarantees that {f(xn)} is a nonincreasing sequence:

f(xn+1) ≤ g(xn+1|xn) ≤ g(xn|xn) = f(xn).

In fact, full minimization of g(x|xn) is not necessary for the descent property

to hold; merely decreasing it is sufficient. The EM algorithm (Dempster et al.,
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1977) is an instance of the MM principle. In order to maximize the marginal

loglikelihood

ℓ(θ) = log

∫
pθ(o, z)dz,

where o is the observed data, z is unobserved missing data, and θ is the param-

eter to estimate, we maximize the surrogate function

Q(θ|θn) = EZ|X,θn [log pθ(o, z)] =

∫
log [pθ(o, z)] pθn(z|o)dz,

since

ℓ(θ) = log

∫
pθ(o, z)dz = log

∫
pθ(o)pθ(z|o)
pθn(z|o)

pθn(z|o)dz

≥
∫

log

[
pθ(o)pθ(z|o)
pθn(z|o)

]
pθn(z|o)dz

= Q(θ|θn)−
∫

log [pθn(z|o)] pθn(z|o)dz

by Jensen’s inequality, and the second term in the last inequality is irrelavent

to θ. (See Wu and Lange (2010) for more details about the relation between

MM and EM.)

MM updates are usually designed to make a nondifferentiable objective

function smooth, linearize the problem, or avoid matrix inversions by a proper

choice of the surrogate function. MM is naturally well-suited for parallel com-

puting environments, as we can choose a separable surrogate function and up-

date variables independently. For example, when maximizing loglikelihoods, a

term involving summation inside the logarithm log(
∑p

i=1 ui) often arises. By

Jensen’s inequlity, this term can be minorized and separated as

log(

p∑
i=1

ui) ≥
p∑

i=1

uni∑p
j=1 u

n
j

log

(∑p
j=1 u

n
j

uni
ui

)
=

p∑
i=1

uni∑p
j=1 u

n
j

log ui + cn,
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where uni ’s are constants and cn is a constant only depending on uni ’s. Paral-

lelization of MM algorithms on a single GPU using separable surrogate functions

is extensively discussed in Zhou et al. (2010). Separable surrogate functions are

especially important in distributed environments, e.g. multi-GPU systems.

1.3.2 Proximal gradient descent

The proximal gradient descent method is an extension of the gradient descent

method, which deals with minimization of sum of two convex functions, i.e.,

min
x

f(x) + g(x).

Function f is continuously differentiable, while g is possibly nondifferentiable.

We first define the proximity operator of g:

proxλg(y) = argmin
x

{
g(x) +

1

2λ
∥x− y∥22

}
, λ > 0

For many functions their proximity operators take closed forms. We say such

functions “proximable”. For example, consider the 0/∞ indicator function of a

closed convex set C

δC(x) =


0, x ∈ C

+∞, x /∈ C

.

The corresponding proximity operator is the Euclidean projection onto C:

PC(y) = argminx∈C ∥y − x∥2. The proximity operator of the ℓ1-norm λ∥ · ∥1 is

the soft-thresholding operator:

[Sλ(y)]i := sign(yi)(|yi| − λ)+

For many sets, e.g., nonnegative orthant, PC is simple to compute.
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Now we proceed with the proximal gradient descent for minimization of

F(x) = f(x) + g(x). Assume f is convex and has L-Lipschitz gradients, i.e.,

∥∇f(x) − ∇f(y)∥2 ≤ L∥x − y∥2 for all x, y in the interior of its domain, and

f is lower-semicontinuous, convex, and proximable. The L-Lipschitz gradients

naturally result in following surrogate function that majorizes h:

F(x) ≤ g(x) + f(xn) + ⟨∇f(xn), x− xn⟩+ L

2
∥x− xn∥22

= g(x) + f(xn) +
L

2

∥∥∥∥x− xn +
1

L
∇f(xn)

∥∥∥∥2
2

− 1

2L
∥∇f(xn)∥22 =: p(x|xn).

Minimizing p(x|xn) with respect to x results in the update:

xn+1 = proxγng (x
n − γn∇f(xn)) , γn ∈

(
0,

1

L

]
. (1.1)

This update guarantees a nonincreasing sequence of F(xn) by the MM princi-

ple. Proximal gradient method also has an interpretation of forward-backward

operator splitting, and the step size γn ∈
(
0, 2

L

)
guarantees convergence (Com-

bettes and Pesquet, 2011; Bauschke and Combettes, 2011; Combettes, 2018). If

g(x) = δC(x), then the corresponding algorithm is called the projected gradi-

ent method. If g(x) = λ∥x∥1, then the corresponding algorithm is the iterative

shrinkage-thresholding algorithm (ISTA, Beck and Teboulle, 2009). For many

functions g, the update (1.1) is simple and easily parallelized, thus the algorithm

is suitable for HPC computing. For example, the soft-thresholding operator is

elementwise hence the updates are independent. In addition, if g(x) = −a log x,

then

proxγg(y) =
y +

√
y2 + 4γa

2
. (1.2)
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This proximity operator is useful for the example in Section 3.5.2. See Parikh

and Boyd (2014) for a thorough review and distributed-memory implementa-

tions, and Polson et al. (2015) for a statistics-oriented review.

1.3.3 Proximal distance algorithm

Proximal distance algorithm (Keys et al., 2019) is a recent addition to the

class of MM algorithms that deserved a separate treatment. This algorithm is

an interplay of the penalty method for constrained minimization and distance

majorization (Chi et al., 2014). Consider the minimization problem for a convex,

closed, and proper1 function f in a constraint set C = ∩k
i=1Ci, where C1, . . . , Ck

are closed. Either convexity of Ci or differentiability of f is required. A choice for

the penalty function would be q(x) = 1
2k

∑k
i=1 dist(x,C)2, where dist(x,C) =

infy∈C ∥x−y∥2 so that a minimizer xρ of the unconstrained problem minx f(x)+

ρq(x) is found. If ρ is sent to infinity, xρ would tend to the solution for the

original constrained optimization. Distance majorization is achieved by ∥x −

PCi(x
n)∥2 ≥ dist2(x,Ci), hence the surrogate function gρ that majorizes f(x)+

ρq(x) is defined by

gρ(x|xn) = f(x) +
ρ

2k

k∑
i=1

∥x− PCi(x
n)∥2

= f(x) +
ρ

2

∥∥∥∥∥x−
k∑

i=1

PCi(x
n)

∥∥∥∥∥
2

+ const.

By definition of proximity operator, the minimum of gρ(x|xn) occurs at xn+1 =

proxρ−1f

[
1
k

∑k
i=1 PCi(x

n)
]
. When C is convex, PC is single-valued and the fol-

lowing holds:

∇1

2
dist(x,C)2 = x− PC(x).

1For a convex function f : X → R ∪ {±∞}, f is proper if f(x) < ∞ for some x and
f(x) > −∞ for any x ∈ X.
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Since the proximity operator is nonexpansive, the gradient of the function q is

1-Lipschitz. This results in the proximal distance update xn+1 = proxρ−1f [x
n−

∇q(xn)], showing that the proximal distance method is a case of the proxi-

mal gradient method for convex Ci’s. Parallel computing can be applied if the

proximity operators involved and projection onto the convex set Ci’s are easily

parallelized, e.g., ℓ2 and ℓ∞ norm balls or nonnegative orthants.

1.3.4 Primal-dual methods

The algorithms discussed so far are primal methods. Primal-dual methods in-

troduce additional dual variables but can deal with a larger class of problems.

Consider the problems of minimizing

F(x) = f(x) + h(Kx), (1.3)

where K is a linear map. We further assume that f and h are lower semicon-

tinuous, convex, and proper functions. Even if h is proximable, the proximity

operator for h(K·) is not easy to compute. Define the convex conjugate of h

as h∗(y) = supx⟨x, y⟩ − h(x). It is known that h∗∗ = h since h is lower semi-

continuous and convex, so h(Kx) = h∗∗(Kx) = supy⟨Kx, y⟩ − h∗(y). Then

the minimization problem infx f(x) + h(Kx) is equivalent to the saddle-point

problem

inf
x
sup
y
⟨Kx, y⟩+ f(x)− h∗(y).

Under mild conditions (Theorem 19.1 and Proposition 19.18, Bauschke and

Combettes, 2011), strong duality

inf
x
sup
y
⟨Kx, y⟩+ f(x)− h∗(y) = sup

y
inf
x
⟨x,KT y⟩+ f(x)− h∗(y)
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holds and the saddle point (x̂, ŷ) satisfies the optimality conditions

Kx̂− ∂h∗(ŷ) ∋ 0 and KT ŷ + ∂f(x̂) ∋ 0,

where ∂ϕ denotes the subdifferential of a convex function ϕ. The vector y is the

dual variable and the maxmin problem

sup
y

inf
x
⟨x,KT y⟩+ f(x)− h∗(y) = sup

y
−h∗(y)− f∗(−KT y)

is called the dual of the original (primal) minimization problem.

A widely known method to solve this saddle point problem in the statistical

literature is the ADMM (Xue et al., 2012; Zhu, 2017; Ramdas and Tibshirani,

2016; Gu et al., 2018). The ADMM update is given by:

xn+1 = argmin
x

f(x) + (t/2)∥Kx− x̃n + (1/t)yn∥22 (1.4a)

x̃n+1 = prox(1/t)h(Kxn+1 + (1/t)yn) (1.4b)

yn+1 = yn + t(Kxn+1 − x̃n+1). (1.4c)

The update (1.4a) is not a proximity operator, as the quadratic term is not

spherical. It defines an inner optimization problem that is often nontrivial. In

the simplest case of f being linear or quadratic (which arises in linear regres-

sion), (1.4a) involves solving a linear system. While it is plausible to obtain the

inverse of the involved matrix once and reuse it for future iterations, inverting a

matrix even once quickly becomes intractable in the high-dimensional setting,

as its time complexity is cubic in the number of variables.

The primal-dual hybrid gradient method (PDHG, Zhu and Chan, 2008;

Esser et al., 2010; Chambolle and Pock, 2011) avoids such inversion via the

following iteration:

yn+1 = proxσh∗(yn + σKx̄n) (1.5a)
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xn+1 = proxτf (x
n − τKT yn+1) (1.5b)

x̄n+1 = 2xn+1 − xn, (1.5c)

where (1.5a) and (1.5b) are dual ascent and primal descent steps, respectively;

σ and τ are step sizes. The last step (1.5c) corresponds to the extrapolation. If

h is proximable, so is h∗, since proxγh∗(x) = x−γproxγ−1h(γ
−1x) by Moreau’s

decomposition. This method has been studied using monotone operator theory

(Condat, 2013; Vũ, 2013), introduced in Appendix A. Convergence of iteration

(1.5) is guaranteed if στ∥K∥22 < 1, where ∥M∥2 is the spectral norm of matrix

M . If f has L-Lipschitz gradients, then the proximal step (1.5b) can be replaced

by a gradient step

xn+1 = xn − τ(∇f(xn) +KT yn+1).

The PDHG algorithms are also highly parallelizable as long as the involved

proximity operators are easy to compute and separable; no matrix inversion

is involved in iteration (1.5) and only matrix-vector multiplications appear. In

Chapter 2, we consider a three-function variant of this problem for application

on statistical estimation problems with structured sparsity.
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Chapter 2

Easily Parallelizable and
Distributable Class of Algorithms
for Structured Sparsity, with
Optimal Acceleration

2.1 Introduction

As discussed in Chapter 1, many statistical learning problems can be formulated

as an optimization problem of the three-function variant of (1.3) discussed in

Section 1.3.4:

min
x∈Rp

f(x) + g(x) + h(Kx), (2.1)

where K ∈ Rl×p, and f , g, and h are closed, proper, and convex. In this

chapter, it is assumed that f is differentiable and its gradient ∇f is Lipschitz

continuous with modulus Lf ; g and h are not necessarily smooth. We further

assume that ∥K∥2 ≤ LK . As discussed in Section 1.3.4 in Chapter 1, (2.1) has

a solution under a mild condition. If (x⋆, y⋆) is a solution, then it is a saddle
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point for the saddle point formulation of (2.1):

min
x∈Rp

max
y∈Rl

L(x, y) (2.2)

where L(x, y) = f(x) + g(x) + ⟨Kx, y⟩ − h∗(y) is the saddle function. Also the

strong duality holds: x⋆ is a primal solution to (2.1), and y⋆ is a solution to the

associated dual (Condat, 2013):

max
y∈Y

(
−(f + g)∗(−KT y)− h∗(y)

)
. (2.3)

In the sequel, we assume that (2.2) has a solution, and seek an algorithm that

finds it. It is shown how to solve (2.1) in a fashion that is easy to parallelize or

distribute on modern high-performance computing environment such as work-

stations equipped with multiple graphics processing units (GPUs).

A pinnacle instance of (2.1) is high-dimensional penalized regression with

structured sparsity penalty:

min
x∈Rp

n∑
i=1

li(a
T
i x, bi) + λ1∥x∥1 +H(Dx), (2.4)

with direct identification f(x) =
∑n

i=1 li(a
T
i x; bi), g(y) = λ1∥x∥1, h(u) = H(u),

and K = D, where the set {(ai, bi) : ai ∈ Rp, bi ∈ R, i = 1, . . . , n} consti-

tutes a training sample, li : R2 → R is the loss function that may depend

on the sample index, D ∈ Rl×p is the structure-inducing matrix, and H is

the penalty function, which is typically non-smooth. Loss functions with Lips-

chitz gradients arise in many important problems: in linear regression we have

f(x) = (1/2)∥Ax − b∥22 and the gradient ∇f(x) = AT (Ax − b) is ∥ATA∥2-

Lipschitz, where A = [a1, . . . , an]
T denotes the data matrix; in logistic regression

f(x) = −
∑n

i=1

(
bi(a

T
i x) + log(1 + ea

T
i x)
)

has (1/4)∥ATA∥2-Lipschitz gradients.

Choosing the ℓ1-penalty H(z) = λ∥z∥1 for some λ > 0 yields the generalized
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lasso (Tibshirani and Taylor, 2011) with sparsity of variables, which includes a

sparse version of fused lasso (Tibshirani et al., 2005) as a special case. For

the group lasso (Yuan and Lin, 2006) with G possibly overlapping groups,

we can choose H(y) = λ1∥y[1]∥q + · · · + λG∥y[G]∥q for y = (yT[1], . . . , y
T
[G])

T ,

where [g] ⊂ {1, 2, . . . , p} is a given set of group indexes and y[g] ∈ R|[g]| for

each g = 1, 2, . . . ,G; ∥ · ∥q denotes the ℓq norm with q > 1. Now set D as a

(|[1]|+ · · ·+ |[G]|)×p binary matrix with a single one (1 ) in each row; the 1 cor-

responds to the group membership. Then, H(Dx) = λ1∥x[1]∥q + · · ·+λG∥x[G]∥q

as desired; D has a column with more than a single nonzero entry if and only if

there is an overlapping group. Judicious choices of f , g, h, and K in (2.1) allow

more flexibility in solving (2.4). In particular, non-smooth loss functions, such

as the hinge loss, can also be handled. More complex penalty functions such as

the latent group lasso (Jacob et al., 2009) are also allowed in (2.4), as shown

below.

More than one penalty. When (2.4) involves more than one penalty with dif-

ferent linear operators, the problem can be formulated as (2.1) by augmenting

the dual variable. Suppose we solve the following penalized regression problem

min
x∈Rp

n∑
i=1

li(a
T
i x, bi) + λ1∥x∥1 +H1(D1x) +H2(D2x).

Then we can set

f(x) =
n∑

i=1

li(a
T
i x, bi), g(x) = λ1∥x∥1, h(y1, y2) = H1(y1) +H2(y2),

K =

D1

D2

 , y =

y1
y2

 .

It is easy to verify that proxh(v1, v2) = (proxH1
(v1),proxH2

(v2))
T due to
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separability of h. For example, consider the latent group lasso problem (Jacob

et al., 2009). The latent group lasso selects groups less conservatively than the

original group lasso (Yuan and Lin, 2006), and allows overlaps. The penalty is

defined as

H(x) = inf
v[g]∈R|[g]|,DT v=x

G∑
g=1

λg∥v[g]∥q,

where [g] and D are the group index set and the membership matrix as discussed

in Section 2.1 for the original group lasso. Thus the latent group lasso problem

can be written as

min
x,v

f(x) + g(x) + h(v) + δ{0}(x−DT v),

where h(v) =
∑G

i=1 λg∥v[g]∥q and δS is the indicator function for set S so

that δS(u) = 0 if u ∈ S and δS(u) = +∞ otherwise. Let z = (xT , vT )T ,

f̃(z) = f(
[
I 0

]
z), g̃(z) = g(

[
I 0

]
z), h̃(y1, y2) = h(y1) + δ{0}(y2), and

K =

0 I

I −DT

. We have an equivalent formulation

min
z

f̃(z) + g̃(z) + h̃(Kz).

It has the form of (2.1). Note that g, h and δ{0} are all proximable.

Elastic net penalties. The elastic net (Zou and Hastie, 2005) regression uses

a linear combination of ℓ1 and ℓ2 penalties in order to promote both sparsity

of solution and the grouping effect that highly correlated variables are selected

or unselected together. The relevant optimization problem is

min
x∈Rp

λ2

2
∥x∥22 + λ1∥x∥1 + l(Ax, b), (2.5)

where the data matrix A is the same as in the sparse generalized lasso, and
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b = (b1, . . . , bn)
T . This formulation admits nonsmooth loss function l, e.g.,

l(Ax, b) = ∥Ax− b∥2 (Belloni et al., 2011).

Nonsmooth losses: split dual formulation. In fact, more general formula-

tion with nonsmooth loss is possible. When the loss function li in (2.4) does not

have Lipschitz gradients yet is closed, proper, and convex, a split-dual formu-

lation (Nesterov, 2005) can be utilized. This includes the case where the loss is

not differentiable (e.g. hinge loss). To cope with this, we exploit the saddle-point

representation (2.2) of (2.1), and dualize the loss function in addition to the

penalty. That is, express
∑n

i=1 li(a
T
i x; bi) = supw∈Rn⟨Ax,w⟩ −

∑n
i=1 l

∗
i (wi; bi),

yielding

min
x

max
y,w

⟨Dx, y⟩+ ⟨Ax,w⟩ −

(
n∑

i=1

l∗i (wi; bi) +H∗(y)

)
. (2.6)

In terms of (2.2), f(x) ≡ 0, K = [DT ,AT ]T , h∗(y, w) = H∗(y)+
∑n

i=1 l
∗
i (wi; bi).

Because h∗ is separable in y and w, we have

proxσh∗(u, v1, . . . , vn) = (proxσH∗(u),proxσl∗1(·;b1)(v1), . . . ,proxσl∗n(·;bn)(vn)).

The cost is that the number of dual variables increases by n. For example, in

the linear support vector machine, the proximity operator for the hinge loss

li(·; bi) = max(0, 1 − bi·) is given by proxσl∗i
(vi) = max(min(vi − σbi, 0),−bi).

Thus computation of proxσh∗ can be conducted in parallel for each element

of v = (v1, . . . , vn). Note that this formulation is not limited to the separable

losses in (2.4). For example, in the square-root lasso (Belloni et al., 2011), we
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solve

min
x

∥Ax− b∥2 +H(Dx) = min
x

max
y,w:∥w∥2≤1

⟨Dx, y⟩+ ⟨Ax,w⟩ − (⟨b, w⟩+H∗(y)) ,

(2.7)

yielding f(x) ≡ 0, K = [DT ,AT ]T , proxσh∗(u, v) =
(
proxσH∗(u), PB2(v −

2σb)
)
, where PB2(·) denotes the projection to the unit ℓ2-ball.

PET image reconstruction. In positron emission tomography (PET), pho-

ton emissions from a radioactive tracer inside the brain are counted and the

location-dependent emission rates are estimated. In this task, the Radon trans-

form (Jain, 1989) is often discretized as matrix A. See Secton 3.5.2 for more

details. This results in a regularized nonnegative least squares problem, which

can be written as

min
x∈Rp

1

2
∥Ax− b∥22 + δ+(x) + λ∥Dx∥1, (2.8)

where x is the unknown emission map (image), b is the vector of counts, and

δ+ is the indicator function of the nonnegative orthant defined by δ+(x) = 0

if x1, . . . , xp ≥ 0 and δ+(x) = +∞ otherwise. The D is a discrete gradient

operator encoding penalty on total variation.

Therefore, ability to solve (2.1) efficiently provides a versatile tool for many

important statistical learning problems. In spite of its importance, solving (2.1)

is challenging because the non-separability of the non-smooth part hampers

use of efficient methods. If h ≡ 0, then the proximal gradient method reviewed

in Section 1.3.2 is arguably the method of choice, which provides a simple

gradient-descent-like iteration

xk+1 = argmin
x

f(xk) + ⟨∇f(xk), x− xk⟩+ 1

2t
∥x− xk∥22 + g(x)
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= proxtg(x
k − t∇f(xk))

for 0 < t < 2/Lf , where ⟨u, v⟩ denotes the standard inner product uT v.

However, nontrivial h, e.g., group lasso, proximal gradient involves evaluat-

ing proxth◦K(·), which is nontrivial even for tractable cases (Friedman et al.,

2007; Liu et al., 2010b; Xin et al., 2014; Yu et al., 2015). While approximating h

by a smooth function has been considered (Nesterov, 2005; Chen et al., 2012),

this approach introduces an additional smoothing parameter that is difficult

to choose in practice. As reviewed in Section 1.3.4, the popular ADMM can

be applied to solve (2.1) with g ≡ 0 as well, however, inner minimization sub-

problem (1.4a) is potentially expensive to compute. For example, if f is a loss

function for a generalized linear model, then the corresponding update involves

solving a linear equation of the form (ATWA + tKTK)x = r, W diagonal,

iteratively. While K is structured and known a priori, the data matrix A is

hardly structured. A similar problem arises in medical imaging reconstruction

problems, such as undersampled multi-coil MRI reconstruction (Ramani and

Fessler, 2011) or sparse-view CT reconstruction (Sidky et al., 2012) using the

total variation penalty (Rudin et al., 1992; Goldstein and Osher, 2009). In this

case the “measurement matrix” A is large and unstructured. Hence avoiding in-

ner minimization subproblem is crucial in both statistical learning and imaging

problems where the problem dimensions are ever increasing. The PDHG and

linearized alternating directions method (LADM; Lin et al., 2011) add an addi-

tional regularization term to (1.4a) in order to avoid the costly inner minimiza-

tion subproblem. However, these methods often involve evaluating proxf (·),

which may lead to another inner minimization subproblem in the presence of

A.

The goal of this chapter is to introduce a class of algorithms that requires
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neither smoothing nor quadratic minimization. This class of algorithms only

involve evaluation of the gradient ∇f(x), matrix-vector multiplications and

simple proximity operators. Thus it is simple to implement and attractive for

parallel and distributed computation. We begin with introducing two known

algorithms for g ≡ 0. One is due to Loris and Verhoeven (2011), later studied

by Chen et al. (2013), and Drori et al. (2015):

x̃k+1 = xk − τ
(
∇f(xk) +KT yk

)
yk+1 = (1− ρk)y

k + ρk proxσh∗(yk + σKx̃k+1)

xk+1 = (1− ρk)x
k + ρk(x̃

k+1 − τKT (yk+1 − yk)),

(Algorithm LV)

and the other is due to Condat (2013) and Vũ (2013):

x̄k+1 = xk − τ(∇f(xk) +KT yk)

x̃k+1 = 2xk+1 − x̄k+1

xk+1 = (1− ρk)x
k + ρkx̄

k+1

yk+1 = (1− ρk)y
k + ρk proxσh∗(yk + σKx̃k+1)

(Algorithm CV)

In particular, Algorithm CV is a relaxed version of the PDHG algorithm given in

iteration (1.5). Choices of the sequence {ρk} and the step size parameters (σ, τ)

for convergence of these algorithms are discussed in Section 2.2. As can be seen,

the proximity operator employed by both algorithms depends only on h∗ but not

K. Thus they are simple to implement and attractive for parallel and distributed

computation as long as either proxh∗(·) or proxh(·) is proximable. Table 2.1

illustrates the proximity operators for popular choices of h. Once the conditions

for convergence is understood, the rate of convergence and acceleration of the

algorithm are the next interest.

In cases of g ̸≡ 0, many variants of Algorithm LV and CV have been studied.

Algorithm CV in this case falls into the forward-backward operator splitting
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scheme (Bauschke and Combettes, 2011), achieving the usual O(1/N)-rate. The

primal-dual fixed-point algorithm (PDFP, Chen et al., 2016) subsumes Algo-

rithm LV for this more general case. Other operator splitting approaches for

g ̸≡ 0 include the Davis-Yin three-operator splitting (Davis and Yin, 2017, for

K = I), asymmetric forward-backward-adjoint splitting (AFBA, Latafat and

Patrinos, 2017) and primal-dual 3-operator splitting (PD3O, Yan, 2018). The

latter two include the above forward-backward splitting methods for g ≡ 0 as

special cases, and allow general K. Acceleration by using variable step sizes

and inertia has been studied (Combettes and Vũ, 2014; Lorenz and Pock, 2015;

Boţ et al., 2015; Goldstein et al., 2015; Chambolle and Pock, 2016). Despite

the reduction of the constant, they all remain in the O(1/N) regime or require

strong convexity.

On the other hand, interests in stochastic first-order methods for the primal-

dual formulation in general settings appear to be rather recent. When h ≡

0, stochastic versions of the proximal gradient method were considered (Hu

et al., 2009; Lin et al., 2014; Nitanda, 2014; Rosasco et al., 2014; Atchadé

et al., 2017). For the two-function problem (K ̸= I but g ≡ 0), mirror-prox

algorithms have been considered (Nemirovski et al., 2009; Juditsky et al., 2011;

Lan, 2012). Ouyang and Gray (2012) developed a near-optimal algorithm under

a strong convexity assumption on f and smoothing of g. Zhong and Kwok (2014)

achieved a similar rate to O
(

Lf

N2 + LK
N + χ√

N

)
under strong convexity. Without

additional assumptions on f or g but assuming K = I, Yurtsever et al. (2016)

introduced a stochastic variant of the Davis-Yin three-operator splitting. For

general K, the stochastic primal-dual algorithm for three-composite convex

minimization method (SPDTCM, Zhao and Cevher, 2018) is proposed. This

method can be seen as a stochastic version of Chambolle and Pock (2016), and

has the rate of O(Lf/N + LK/N + χ/
√
N), which is not optimal.
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In this regard, the contributions of this chapter, presented in Ko et al. (2019)

and Ko and Won (2019) are as follows. First, we connect Algorithms LV and

CV from a perspective of monotone operator theory to show that they are es-

sentially the same preconditioned forward-backward splitting algorithm (see,

e.g., Combettes and Wajs, 2005) sharing a common preconditioner. Second,

from this connection a new, broader family of preconditioners that generates

an entire continuum of forward-backward algorithms is proposed. Third, by a

unified analysis, it is shown that this continuum of algorithms enjoys common

ergodic and non-ergodic rates of convergence over the entire region of conver-

gence. Prior to the connection the rates of the above two algorithms have been

available under much more stringent conditions than those for convergence; we

close this gap. Fourth, we proceed further to accelerate the whole continuum of

algorithms to achieve the theoretically optimal rate of convergence, and gener-

alize it further to the case of g ̸≡ 0. Only an optimal acceleration of Algorithm

CV has been known (Chen et al., 2014), and acceleration of LV has remained

an open problem. Finally, the scalability of the studied algorithms is demon-

strated by implementing them on a distributed computing environment in case

that data do not fit in the memory of a single device.

The rest of this Chapter is organized as follows. In Section 2.2, the relation

between Algorithms LV and CV is shown and they are unified to propose a

broader class of algorithms. The rates of convergence of this class of algorithms

is also analyzed. In Section 2.3, an accelerated variant of the new class of al-

gorithms achieving the optimal rate is developed. Its stochastic counterpart,

also possessing the optimal rate, is discussed in Section 2.4. Section 2.5 demon-

strates the convergence behavior and scalability of the new algorithms through

their multi-GPU implementations. Discussion and conclusion follow thereafter

in Section 2.6. All the proofs of our results can be found in Appendix B.
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Notation. That a symmetric matrix M is positive (semi)definite is denoted

by M ≻ 0 (M ⪰ 0); L ≻ M refers to L − M ≻ 0, etc. For M ≻ 0, we define

its associated inner product and norm by ⟨x, x′⟩M = ⟨Mx, x′⟩ and ∥x∥M =√
⟨x, x⟩M , respectively. For a symmetric matrix M , λmax(M) and λmin(M)

respectively denote the maximum and minimum eigenvalues.

2.2 Unification of Algorithms LV and CV (g ≡ 0)

In this section, a unified treatment to Algorithms LV and CV from the perspec-

tive of monotone operator theory is provided. For a brief summary of monotone

operator theory, see Appendix A. To develop relationship between the two algo-

rithms more straightforwardly, we only consider the case g ≡ 0 for this section.

2.2.1 Relation between Algorithms LV and CV

It can be shown that both Algorithms LV and CV are instances of precondi-

tioned forward-backward splitting. To be specific, note the first-order optimality

condition for (2.1) is given by

0 = ∇f(x⋆) +KT y⋆, (2.9a)

y⋆ ∈ ∂h(Kx⋆). (2.9b)

where ∂h(y) = {w ∈ Rl : h(y′) ≥ h(y)+⟨w, y′−y⟩, ∀y′ ∈ Rl} is the subdifferen-

tial of the convex function h at y, which is a set-valued operator. Since h is closed

and proper, condition (2.9b) is equivalent to Kx⋆ ∈ (∂h)−1(y⋆) = ∂h∗(y⋆)

(Bertsekas, 2009), thus (2.9) can be equivalently written as an inclusion prob-

lem 0
0

 ∈

∇f KT

−K ∂h∗

x⋆
y⋆

 =: T (z⋆), z⋆ = (x⋆, y⋆). (2.10)

30



T
ab

le
2.

1:
C

on
ve

x
co

nj
ug

at
es

an
d

pr
ox

im
it
y

op
er

at
or

s
fo

r
se

le
ct

ed
ch

oi
ce

s
of

h
.F

un
ct

io
n
δ S

de
no

te
s

th
e

in
di

ca
to

r
fu

nc
ti

on
fo

r
se

t
S

so
th

at
δ S

(u
)
=

0
if
u
∈

S
an

d
δ S

(u
)
=

+
∞

ot
he

rw
is

e;
P
S

de
no

te
s

th
e

pr
oj

ec
ti

on
on

to
se

t
S

,
w

hi
ch

is
un

iq
ue

if
S

is
cl

os
ed

an
d

co
nv

ex
;σ

j
(M

)
de

no
te

s
th

e
jt

h
la

rg
es

t
si

ng
ul

ar
va

lu
e

of
m

at
ri

x
M

.A
ll
m
in

,m
ax

op
er

at
io

ns
ar

e
el

em
en

tw
is

e.
In

ℓ 1
,q
-n

or
m

,1
/
q
+
1
/s

=
1.

N
am

e
h
(y
)

h
∗ (
z
)

p
ro

x
h
∗
(z
)

ℓ 1
-n

or
m

λ
∥y

∥ 1
δ B

∞
(z
),
B ∞

=
{z

:
∥z

∥ ∞
≤

λ
}

m
in
{m

ax
{z

,−
λ
},
λ
}

ℓ 2
-n

or
m

λ
∥y

∥ 2
δ B

2
(z
),
B 2

=
{z

:
∥z

∥ 2
≤

λ
}

P
B
2
(z
)

ℓ ∞
-n

or
m

λ
∥y

∥ ∞
δ B

1
(z
),
B 1

=
{z

:
∥z

∥ 1
≤

λ
}

P
B
1
(z
)

ℓ 1
,q
-n

or
m

∑ G g
=
1
λ
g
∥y

[g
]∥

q
δ B

1 s
×
···
×
B
G s
(z
),
B
g s
=

{z
:
∥z

[g
]∥

s
≤

λ
g
}

( P B1 s
(z

[1
])
,.
..
,P

B
G s
(z

[G
])
)

nu
cl

ea
r

no
rm

λ
∑ ran

k(
Y
)

i=
1

σ
i(
Y
)

δ B
∗
(Z

),
B ∗

=
{Z

:
∥Z

∥ 2
≤

λ
}

U
m
in
{Σ

,λ
I
}V

T
,Z

=
U
Σ
V

T

hi
ng

e
lo

ss
∑ l i=

1
m
a
x
{1

−
y i
,0
}

∑ l i=
1

( z i−
δ [
0
,1
](
−
z i
))

m
in
{z

+
1
,m

ax
{z

,1
}}

31



The set-valued operator T is split into T = F +G, where

F =

 0 KT

−K ∂h∗

 and G =

∇f 0

0 0

 . (2.11)

The operator F is maximally monotone and G is 1/Lf -cocoercive (Bauschke

and Combettes, 2011). A preconditioned forward-backward splitting for solving

(2.10) is

z̃k = (I +M−1F )−1(I −M−1G)(zk)

zk+1 = (1− ρk)z
k + ρkz̃

k,
(2.12)

for zk = (xk, yk), z̃k = (x̃k, ỹk), and M ≻ 0. If the modulus of cocoer-

civity of M−1G is denoted by γ (cocoercivity of G is preserved; see Davis,

2015), then (2.12) converges if γ > 1/2 for a sequence {ρk} ⊂ [0, δ] such

that
∑∞

k=0 ρk(δ − ρk) = ∞ with δ = 2 − 1/(2γ). Note ρk ≡ 1 is allowed,

which yields a simple iteration zk+1 = (I + M−1F )−1(I − M−1G)zk. The in-

verse operator (I +M−1F )−1 is single-valued due to maximal monotonicity of

M−1F (Bauschke and Combettes, 2011, Theorems 25.8 and 24.5). (For instance,

(I +∂ϕ)−1(z) = argminz′∈Rn ϕ(z′)+ 1
2∥z

′− z∥22 = proxϕ(z).) In particular, the

preconditioners for Algorithms LV and CV are respectively given by Combettes

et al. (2014); Condat (2013); Vũ (2013):

M = MLV :=

 1
τ I

1
σ I − τKKT

 and M = MCV :=

 1
τ I −KT

−K 1
σ I

 .

Now we are ready to see that Algorithms LV and CV are essentially the

same algorithm. The “LDL” decomposition of MCV reveals that

MCV =

 I

−τK I

 1
τ I

1
σ I − τKKT

I −τKT

I

 = LMLVL
T . (2.13)
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It is clear that both MLV and MCV are positive definite if and only if 1/(τσ) >

∥K∥22. Also it is easy to see that Algorithm CV, i.e., (2.12) with M = MCV, is

equivalent to

LT zk+1 = (1− ρk)L
T zk + ρk(I +M−1

LV F̃ )−1(I −M−1
LV G̃)(LT zk), (2.14)

where F̃ = L−1FL−T and G̃ = L−1GL−T . Letting w = LT z, we see that Algo-

rithm CV is in fact Algorithm LV applied to the linearly transformed variable

w by splitting the similarly transformed operator L−1TL−T into F̃ and G̃. The

cocoercivity constant of M−1
LV G̃ is found by the following proposition.

Proposition 1. M−1
LV G̃ is (1/τ−σ∥K∥22)/Lf -cocoercive with respect to ∥·∥MLV

.

Thus from the discussion below (2.12) we have γ = (1/τ − σ∥K∥22)/Lf and

δ = 2− Lf

2 · 1
1/τ−σ∥K∥22

. Then Algorithm CV converges if

1

τ
>

Lf

2
and

(
1

τ
−

Lf

2

)
1

σ
> ∥K∥22 (2.15)

With respect to the untransformed sequence {zk}, observe that M−1
CVG is also

(1/τ − σ∥K∥22)/Lf -cocoercive (with respect to ∥ · ∥MCV
). In light of (2.14), it

is natural to measure convergence using the metric ∥LT · ∥MLV
, and this metric

coincides with ∥ · ∥MCV
. On the other hand, it is easy to see M−1

LV G is 1/(τLf )-

cocoercive with respect to ∥ · ∥MLV
, hence Algorithm LV has γ = 1/(τLf ) and

δ = 2− τLf/2. It converges if

1/τ > Lf/2 and 1/(τσ) > ∥K∥22. (2.16)

Both (2.15) and (2.16) recover the known convergence regions in the literature

(Condat, 2013; Chen et al., 2013).
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2.2.2 Unified algorithm class

The relation between the two algorithms suggests a more general family of

preconditioners, namely

M = L̃MLVL̃
T =

 1
τ I CT

C 1
σ I + τ(CCT −KKT )

 , (2.17)

where L̃ replaces (2, 1) block of L in (2.13) by τC. In particular, if CKT = KCT ,

then (2.12) yields the following iteration (for simplicity we set ρk ≡ 1):

yk+1 = proxσh∗(σKxk + στ(C −K)∇f(xk) + (I + στK(C −K)T )yk)

xk+1 = xk − τ(∇f(xk)− CT yk + (C +K)T yk+1).

(2.18)

Condition CKT = KCT is satisfied if and only if C = USΣ−1V T +NV̄ T , where

U , V , and Σ are from the reduced singular value decomposition of K = UΣV T

so that Σ is an r × r positive diagonal matrix where r = rank(K); V̄ is such

that Ṽ = [V, V̄ ] is orthogonal; S is symmetric, and N is arbitrary. A simple

choice is S = κΣ2 for some κ ∈ R and N = 0, yielding C = κK. Choosing

κ = 0 and −1 respectively recovers Algorithms LV and CV; for κ = 1, we have

yk+1 = proxσh∗(σKxk + yk)

xk+1 = xk − τ∇f(xk)− τKT (2yk+1 − yk),

which is the dual version of Algorithm CV (Condat, 2013, Algorithm 3.2).

Another choice is to set S = ±Σ2 and N so that NNT is diagonal. In this case

CCT −KKT reduces to a diagonal matrix, C = [K̄,N ]Ṽ where K̄ is the first

r columns of KṼ . If the eigenspace of KTK is well-known and multiplication

with V̄ can be computed fast, e.g., the discrete cosine transform matrix for the
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fused lasso on a regular grid (Lee et al., 2017), this choice can be useful.

2.2.3 Convergence analysis

Region of convergence

A condition for (2.12) with general M to converge is

M ≻

Lf

2 I

0

 , (2.19)

which follows from Theorem 2 and Proposition 3 later in this section. Thus

with M in (2.17) the following region of convergence is obtained.

Proposition 2. Algorithm (2.18) converges for (σ, τ) such that

1

τ
>

Lf

2
and

(
1

τ
−

Lf

2

)(
1

σ
− τ∥K∥22

)
>

τLf

2
∥C∥22. (2.20)

Note that (2.20) reduces to (2.16) for Algorithm LV and to (2.15) for CV.

In general for C = κK, κ ∈ [−1, 1], the region of convergence shrinks gradually

from |κ| = 0 (LV) to 1 (CV); see Figure 2.1. This extends the observation

made in Section 2.2.1 regarding convergence conditions (2.16) and (2.15) to a

continuum of algorithms between LV and CV.

Figure 2.1: Region of convergence in (1/σ, 1/τ). Boundaries correspond to |κ|
= 0, 0.25, 0.5, 0.75, 1.
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Remark 1. Condat (2013) also considers the case g ̸≡ 0. In this case, the sec-
ond term of the first line of Algorithm CV is replaced by proxτg(x

k−τ(∇f(xk)+

KT yk)). This algorithm is still a preconditioned forward-backward splitting one
with preconditioner MCV, where the zero in the (1,1) block of operator F is re-
placed by ∂g, and converges under (2.15). For this extended F , (2.18) generates
a feasible algorithm only when C = ±K.

Rates of convergence

We now analyze the rates of convergence of the preconditioned forward-backward

splitting algorithm (2.12) for the preconditioner matrices M of (2.17). A pre-

duality gap function G(z̃, z) := L(x̃, y)−L(x, ỹ), where z = (x, y) and z̃ = (x̃, ỹ),

is used to measure the convergence of the objective value, because the duality

gap G⋆(z̃) := supz∈Z G(z̃, z), Z ⊂ Rp × Rl, guarantees that the pair z̃ = (x̃, ỹ)

is a primal-dual solution to (2.2) if G⋆(z̃) ≤ 0. The rate of convergence of

a gap function is typically analyzed in terms of an averaged solution sequence

z̄N =
∑N

k=0 αkz
k/
∑N

k=0 αk for some positive sequence {αk}, yielding an ergodic

rate. Ergodic rates are widely studied in the literature (Loris and Verhoeven,

2011; Chen et al., 2013; Boţ and Csetnek, 2015; Chambolle and Pock, 2011,

2016), partly due to ease of analysis. Sometimes the unaveraged (last) solution

sequence {zk} or {z̃k} is preferred as it tends to preserve the desired structural

properties better than the ergodic counterpart. Analysis based on the unaver-

aged sequence yields the non-ergodic rate (Davis, 2015).

First we establish an O(1/N) ergodic convergence rate of the pre-duality

gap evaluated for an average of the first N terms of the sequence {(x̃k, ỹk)}:

Theorem 1. In iteration (2.12), let µ be a constant such that ∥(x, 0)∥2M−1 ≤
(1/µ)∥x∥22, for all x ∈ Rp. Let α = (2µ)/(4µ − Lf ) and denote zk = (xk, yk),
z̃k = (x̃k, ỹk). Define z̄N = (x̄N , ȳN ) with x̄N =

∑N
k=0 ρkx̃

k/
∑N

k=0 ρk and
ȳN =

∑N
k=0 ρkỹ

k/
∑N

k=0 ρk. Also let ρ̄ = supk≥0 ρk. If µ > Lf/2 and {ρk}
is chosen so that 0 < ρk < 1/α for all k, then the following holds for all
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z = (x, y) ∈ Rp × Rl:

G(z̄N , z) ≤ 1
2
∑N

k=0 ρk

(
∥z0 − z∥2M +

αLf

(1−αρ̄)λmin(M)∥z
0 − z⋆∥2M

)
,

where z⋆ = (x⋆, y⋆) is a solution to (2.2).

The key observation in proving Theorem 1 is the following lemma, also used

in the proof of Theorem 2.

Lemma 1. For ρ ∈ (0, 2), consider a relation z+ = (I + M−1F )−1(I −
M−1G)z−, zρ = (1 − ρ)z− + ρz+. Write zρ = (xρ, yρ), z+ = (x+, y+), z− =
(x−, y−), all in Rp × Rl. Then,

2ρ G(z+, z) ≤ ∥z− − z∥2M − ∥zρ − z∥2M
+ (1− 2/ρ)∥z− − zρ∥2M + (Lf/ρ)∥x− − xρ∥22, ∀z = (x, y).

Now let F(x) = f(x) + h(Kx) be the primal objective function and F⋆

be the primal optimal value. For an important class of penalty functions h

including those for the generalized and group lasso, the following rate for primal

suboptimality holds.

Corollary 1. Assume the conditions for Theorem 1. If dom(h) = Rl, i.e., h
does not take the value +∞, then there exists a constant C1 independent of N
such that for all N ,

0 ≤ F(x̄N )−F⋆ ≤ C1/(
∑N

k=0 ρk).

Thus if {ρk} is chosen so that infk≥0 ρk > 0, we obtain O(1/N) convergence

of the primal suboptimality.

The following theorem establishes the non-ergodic counterpart of Theorem

1.

Theorem 2. For some ν > Lf/2 and ϵ > 0, suppose M in iteration (2.12)
satisfies

M ⪰
[
νI

ϵI

]
(2.21)
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Let α = 2ν/(4ν − Lf ) and write zk = (xk, yk), z̃k = (x̃k, ỹk). If {ρk} is chosen
so that 0 < ρk < 1/α for all k and τ = infk≥0 ρk(1−αρk) > 0, then the following
holds:

G(z̃k, z) ≤ ∥z0 − z⋆∥M (∥z0 − z⋆∥M + ∥z⋆ − z∥M )/(
√

τ(k + 1)),

∀z = (x, y) ∈ Rp × Rl,

and additionally, G(z̃k, z) = o(1/
√
k + 1). Furthermore, if dom(h) = Rl, then

there exists a constant C2 independent of k such that 0 ≤ F(x̃k) − F⋆ ≤
C2/

√
k + 1 for all k and F(x̃k)−F⋆ = o(1/

√
k + 1).

Remark 2. The little-o result suggests that the non-asymptotic upper bound of
the gap function may be conservative and the gap may diminish faster than the
1/

√
k + 1 rate. The outcomes of the numerical experiments in Section 2.5 also

suggest that the bound is not tight.

Closing the gap

Here, how the results close the gap in the literature between the conditions

for convergence and those for the rate is described. The following fact helps

understanding the conditions for Theorems 1 and 2:

Proposition 3. For M ≻ 0 and a given Lf > 0, the following are equivalent.

1. For all x ∈ Rp, there exists µ > Lf/2 such that ∥(x, 0)∥2M−1 ≤ (1/µ)∥x∥22.

2. The condition (2.19) holds.

3. There exist ν > Lf/2 and ϵ > 0 such that M ⪰
[
νI

ϵI

]
.

That is, the conditions for Theorems 1 and 2 are both equivalent to (2.19).

This implies that the rates of convergence results in this section hold for M in

(2.17) satisfying (2.20). Thus, for the entire range of (σ, τ) for which (2.18) con-

verges, an O(1/N) ergodic and an o(1/
√
k + 1) non-ergodic convergence rates

for the objective values are established.

For Algorithm LV (M = MLV), Loris and Verhoeven (2011) obtain an

O(1/N) ergodic convergence rate for f(x) = 1
2∥Ax − b∥22. For general f , Chen
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et al. (2013) show that Algorithm LV converges under (2.16), but the rate is

given only for strongly convex f and full row rank K. This special case is not

very interesting in statistical learning applications in which f is almost always

not strongly convex. To the best of my knowledge, the result for the rates of

convergence for Algorithm LV and its variants (including the optimal acceler-

ated one in the next subsection) without this impractical assumption is novel.

For Algorithm CV (M = MCV), the result extends the region of parameters for

which ergodic converge rate is known from (1/τ − σ∥K∥2)/Lf ≥ 1 (Chambolle

and Pock, 2016, Theorems 1 and 2) to the full range (1/τ − σ∥K∥2)/Lf ≥ 1/2

of (2.15). Therefore the gap between the conditions for convergence and those

for the rate is closed.

Remark 3. An inspection of the proof of Lemma 1 asserts that the results of
this section also holds for the extended F (see Remark 1). Thus the gap for the
three-function extension of Algorithm CV is closed as well.

Remark 4. Davis (2015, Proposition 5.3) analyzes both ergodic and non-
ergodic rates for general F and G, under the condition M ⪰ λI for some
λ > 0. When applied to (2.12), this analysis results in a convergence region
smaller than that is allowed by (2.19). Here the special structure of G in (2.11)
is exploited.

2.3 Optimal acceleration

It is well known that first-order methods can be accelerated by introducing

some “inertia” (Nesterov, 2004; Beck and Teboulle, 2009; Chen et al., 2012).

For the saddle-point problem of the form (2.2), i.e., g ≡ 0, the optimal rate of

convergence is known to be O(Lf/N
2 +LK/N) in terms of the duality gap G⋆,

where N is the total number of iterations (Nesterov, 2005; Chen et al., 2014).

A natural question arises regarding whether the same optimal rate can be

attained for the entire continuum (2.18) of algorithms, for the case of g ̸≡ 0.

It turns out that this rate is also optimal for this more general case, in the
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following sense.

1. The optimal rate of solving minx∈X (f(x) + g(x)) by using any first-order

method is O(Lf/N
2) (Nesterov, 2004), e.g., by using FISTA (Beck and

Teboulle, 2009).

2. For sufficiently large p, there exist b ∈ Y ⊂ Rl and K ∈ Rl×p such that

h∗(y) = ⟨b, y⟩ and the rate of convergence for solving

min
x∈X

max
y∈Y

(⟨Kx, y⟩ − h∗(y)) = min
x∈X

max
y∈Y

⟨Kx− b, y⟩

is Ω(LK/N) (Nemirovsky, 1992; Nemirovski, 2004).

2.3.1 Algorithms

Chen et al. (2014) devise an accelerated variant of Algorithm CV (for g ≡ 0)

that achieves the theoretically optimal rate of convergence O(Lf/N
2+LK/N),

where N is the total number of iterations:

x̄k = x̃k + θk(x̃
k − x̃k−1) (2.22a)

xkmd = (1− ρk)x
k + ρkx̃

k (2.22b)

ỹk+1 = proxσkh∗(ỹ + σkKx̄k) (2.22c)

x̃k+1 = x̃k − τk(∇f(xkmd) +KT ỹk+1) (2.22d)

xk+1 = (1− ρk)x
k + ρkx̃

k+1 (2.22e)

yk+1 = (1− ρk)y
k + ρkỹ

k+1. (2.22f)

Note an extrapolation step (2.22a) with a parameter θk, and a “middle” re-

laxation step (2.22b) are introduced. For (2.18), i.e., g ̸≡ 0, we consider the

following generalization:

ūk = Kx̃k − θkA(x̃
k − x̃k−1) (2.23a)
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v̄k = KT ỹk + θk
(
τ−1
k τk−1(K +B)T −BT

)
(ỹk − ỹk−1) (2.23b)

xkmd = (1− ρk)x
k + ρkx̃

k (2.23c)

ũk+1 = ūk − τk(K +A)(∇f(xkmd) + v̄k) (2.23d)

ỹk+1 = proxσkh∗(ỹk + σkũ
k+1) (2.23e)

ṽk+1 = KT ỹk+1 +BT (ỹk+1 − ỹk)− θkB
T (ỹk − ỹk−1) (2.23f)

x̃k+1 = proxτkg

(
x̃k − τk(∇f(xkmd) + ṽk+1)

)
(2.23g)

xk+1 = (1− ρk)x
k + ρkx̃

k+1 (2.23h)

yk+1 = (1− ρk)y
k + ρkỹ

k+1. (2.23i)

Step sizes (σk, τk) are allowed to depend on the iteration count k. This algorithm

reduces to (2.18) (hence to Algorithms LV, CV, and in between) if g ≡ 0,

A = −C, B = C, ρk ≡ 1, θk ≡ 0, σk ≡ σ, and τk ≡ τ , and to Chen et al.

(2014) for g ≡ 0, A = −K, and B = 0. The optimal rate of convergence of

(2.23) is established in Section 2.3.2. In particular, the optimal acceleration of

Algorithm LV and cases g ̸≡ 0 is novel.

2.3.2 Convergence analysis

We first consider the case in which the bounds for {xk}, {yk} is known a priori.

In this case we can assume that the search space is Z = X×Y , where X ⊂ Rp,

Y ⊂ Rl are both closed and bounded. Under this assumption, we have the

following bound for the duality gap:

Theorem 3. Let {zk} = {(xk, yk)} be the sequence generated by (2.23). Fix
A = −K if g ̸≡ 0. Assume for some ΩX , ΩY > 0,

supx,x′∈X ∥x− x′∥22 ≤ 2Ω2
X , supy,y′∈Y ∥y − y′∥22 ≤ 2Ω2

Y , (2.24)

and the parameter sequences {ρk}, {θk}, {τk}, and {σk} satisfy ρ1 = 1 and

ρ−1
k+1 − 1 = ρ−1

k θk+1, (2.25a)

41



1− q

τk
− Lfρk −

1

r
∥A∥22σk ≥ 0, (2.25b)

1− r

σk
− τk

(
2∥K +A∥2∥K +B∥2 +

1

q
∥B∥22

)
≥ 0 (2.25c)

for some q ∈ (0, 1), r ∈ (0, 1). Further suppose that

0 < θk ≤ min(τk−1/τk, σk−1/σk),max(τk−1/τk, σk−1/σk) ≤ 1. (2.26)

Then for all k ≥ 1,

G⋆(zk+1) ≤ ρk
τk
Ω2
X + ρk

σk
Ω2
Y . (2.27)

The duality gap G⋆(z) is defined in Section 2.2.3. For the following choice

of the algorithm parameters, we obtain the claimed optimal convergence rate.

Corollary 2. Assume ∥B∥2 ≤ bLK and ∥K + B∥2 ≤ dLK for some positive
b and d. If g ≡ 0, further assume ∥A∥2 ≤ aLK and ∥K + A∥2 ≤ cLK for
some positive a and c. Otherwise, put A = −K, a = 1, and c = 0. When the
parameters are set to

ρk = 2
k+1 , θk = k−1

k , τk = k
2P1Lf+kQLKΩY /ΩX

, σk = ΩY
LKΩX

,where (2.28)

P1 =
1

1−q and P2 = max
{

1
(1−q)ra

2, 1
1−r (2cd+ b2/q)

}
, (2.29)

then

G⋆(zk) ≤ 4P1Ω2
X

k(k−1)Lf + 2ΩXΩY (P2+1)
k LK , ∀k ≥ 2. (2.30)

Remark 5. For g ≡ 0, A = −K, B = 0, (2.25) recovers the condition for
Chen et al. (2014, Theorem 2.1) by putting r → 1 and q → 0. For A =
−κK = −B, we obtain (1− |κ|q)/τk ≥ Lfρk + |κ|L2

Kσk/r and (1− |κ|r)/σk ≥
L2
Kτk

(
2(1− κ2) + |κ|/q

)
. In particular for Algorithm LV (κ = 0), we have

1/τk ≥ Lfρk and 1/(τkσk) ≥ 2L2
K regardless of q and r; this condition resem-

bles (2.16).

Now suppose the bounds for {xk}, {yk} are unavailable. In this case the

duality gap supz∈Z G(z̃, z), Z = Rp×Rl, may be unbounded above. Instead, we
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define a perturbed gap function:

G̃(z̃, v) := sup
z∈Z

G(z̃, z)− ⟨v, z̃ − z⟩. (2.31)

There always exists a perturbation vector v such that (2.31) is finite (Monteiro

and Svaiter, 2011). Thus we want to find a sequence of perturbation vectors

{vk} that make G̃(z̃k, vk) small.

Theorem 4. Suppose that {zk} = {(xk, yk)} are generated by Algorithm (2.23).
Fix A = −K if g ̸≡ 0. If the parameter sequences {ρk}, {θk}, {τk}, and {σk}
satisfy (2.25) and

θk = τk−1/τk = σk−1/σk ≤ 1 (2.32)

for some 0 < q < 1, 0 < r < 1/2. Then there exists a vector vk+1 such that for
any k ≥ 1,

G̃(zk+1, vk+1) ≤ ρk
τk

(
2 + q

1−q +
2r+1
1−2r

)
R2 =: ϵk+1, and (2.33)

∥vk+1∥2 ≤
(
ρk
τk
∥x̂− x̃1∥2 + ρk

σk
∥ŷ − ỹ1∥2

)
+
(ρk
τk
(µ+ τ1

σ1
ν) + 2ρk(µ∥A∥2 + ν∥B∥2)

+ 2τkρkν∥K +A∥2∥K +B∥2
)
R, (2.34)

where (x̂, ŷ) is a pair of solutions to problem (2.2), and

R =
√
∥x̂− x̃1∥22 +

τ1
σ1
∥ŷ − ỹ1∥22, µ =

√
1

1−q , ν =
√

2σ1
τ1(1−2r) . (2.35)

For the following choice of the algorithm parameters, we obtain the claimed

optimal convergence rate.

Corollary 3. Assume ∥B∥2 ≤ bLK and ∥K + B∥2 ≤ dLK for some positive b
and d. If g ≡ 0, further assume ∥A∥2 ≤ aLK and ∥K + A∥2 ≤ cLK for some
positive a and c. Otherwise, put A = −K, a = 1, and c = 0. N is fixed, and
the parameters are set to

ρk = 2
k+1 , θk = k−1

k , τk = k
2P1Lf+P2NLK

, σk = k
NLK

, where (2.36)
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P1 =
1

1−q , P2 = max
{

a2

(1−q)r ,
2cd+b2/q

1−r , 1
}
, (2.37)

then

ϵN+1 ≤
(
4P1Lf

N2 + 2P2LK
N

) [
2 + q

1−q +
r+1/2
1/2−r

]
R2, and (2.38)

∥vN+1∥2 ≤
4P1Lf

N2

[(
∥x̂− x̃1∥2 + ∥ŷ − ỹ1∥2

)
+R

(
µ+ τ1

σ1
ν
)]

(2.39)

+ LK
N

[
2P2

((
∥x̂− x̃1∥2 + ∥ŷ − ỹ1∥2

)
+R

(
µ+ τ1

σ1
ν
))

+ 4R(aµ+ bν) + 4Rcdν
P2

]
.

This result can be interpreted as follows. Theorem 4 and Corollary 3 state

that for every pair of positive scalars (ρ, ε), Algorithm (2.23) generates (vN , ϵN )

such that ∥vN∥ ≤ ρ and ϵN ≤ ε (see (2.33), (2.34), (2.38), and (2.39)) for a

sufficiently large N . The associated pair (xN , yN ) is called a (ρ, ε)-saddle point

of the unperturbed saddle point problem (2.2) (Monteiro and Svaiter, 2011,

Definition 3.10). With this notion, the following proposition can be stated.

Proposition 4. Under the assumptions of Theorem 4 and Corollary 3, there
exists a vector wN = (wN

x , wN
y ) such that wN ∈ TϵN (x

N , yN ) and ∥wN∥ ≤
ρ+

√
4Lε for some constant L > 0, where

Tε =

[
∇f KT

−K ∂εh
∗

]
.

Here, ∂εh∗ is the ε-subgradient of h∗ defined as ∂εh
∗(y) = {g : h∗(y′) ≥ h∗(y)+

⟨y′ − y, g⟩ − ε,∀y′ ∈ Rl}, ∀y ∈ Rl.

Proof. The result follows directly from Proposition 3.13, Definition 3.4, Propo-
sition 3.5, and Proposition 3.6 of Monteiro and Svaiter (2011).

The condition wN ∈ TϵN (x
N , yN ) in Proposition 4 can be written as the

following two inequalities

0 ≥ −⟨∇f(xN ) +KT yN , x− xN ⟩+ ⟨wN
x , x− xN ⟩ − ϵN , ∀x, (2.40a)

h∗(y) ≥ h∗(yN ) + ⟨KxN , y − yN ⟩+ ⟨wN
y , y − yN ⟩ − ϵN , ∀y. (2.40b)

Comparing with the optimality conditions (2.9) for the unperturbed saddle
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point problem (2.2):

0 ≥ −⟨∇f(x⋆) +KT y⋆, x− x⋆⟩, ∀x,

h∗(y) ≥ h∗(y⋆) + ⟨Kx⋆, y − y⋆⟩, ∀y,

we see that the sum of the last two terms in each right-hand side of (2.40a) and

(2.40b) is the error of the approximate solution (xN , yN ). Indeed, in the unit

ball centered at (xN , yN ), each error is bounded by ρ+
√
4Lε+ ε, which can be

made arbitrarily small since the choice of (ρ, ε) is free. In this sense, for large

N , (xN , yN ) is a “nearly optimal” primal-dual solution.

2.4 Stochastic optimal acceleration

2.4.1 Algorithm

In large-scale (“big data”) applications, it is often the case that even the first-

order information on the objective of (2.1) or (2.2) cannot be obtained exactly.

Such settings can be modeled by a stochastic oracle, which provides unbiased

estimators of the first-order information. To be precise, at the k-th iteration

suppose the oracle returns the stochastic gradient (F̂(x̃k), K̂x(x̃
k), K̂y(ỹ

k)) in-

dependently from the previous iteration, such that

E[F̂(x̃k)] = ∇f(x̃k), E

−K̂x(x̃
k)

K̂y(ỹ
k)

 =

−Kx̃k

KT ỹk

 ,

E[Â(x̃k)] = Ax̃k, and E[B̂(ỹk)] = BT ỹk.

(2.41)
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We further assume that the variance of these estimators is uniformly bounded,

i.e.,

E[∥F̂(x̃k)−∇f(x̃k)∥2] ≤ χ2
x,f ,

E[∥K̂x(x̃
k)−Kx̃k∥2] ≤ χ2

y,

E[∥K̂y(ỹ
k)−KT ỹk∥2] ≤ χ2

x,K ,

E[∥Â(x̃k)−Ax̃k∥2] ≤ χ2
A,

E[∥B̂(ỹk)−BT ỹk∥2] ≤ χ2
B.

(2.42)

For notational convenience, we define χx :=
√

χ2
x,f + χ2

x,K .

We consider the following stochastic variant of (2.23):

uk = K̂x(x̃
k)− θkÂ(x̃k − x̃k−1)

vk = K̂y(ỹ
k +

θkτk−1

τk
) + B̂

((
τk−1

τk
− 1

)
(ỹk − ỹk−1)

)
x̃kmd = (1− ρk)x

k + ρkx̃
k

ũk+1 = uk − τk(K̂x + Â)(F̂(x̃kmd) + vk)

ỹk+1 = proxσkh∗(ỹk + σkũ
k+1)

ṽk+1 = K̂y(ỹ
k+1) + B̂(ỹk+1 − ỹk − θk(ỹ

k − ỹk−1))

x̃k+1 = proxτkg
x̃k − τk(F̂(x̃kmd) + ṽk+1)

xk+1 = (1− ρk)x
k + ρkx̃

k+1

yk+1 = (1− ρk)y
k + ρkỹ

k+1,

(2.43)

which can be considered a generalization of the stochastic variant of (2.22) by

Chen et al. (2014). The optimal rate of convergence of solving (2.2) stochas-

tically is known to be O
(

Lf

N2 + LK
N +

χx+χy√
N

)
in terms of the expected duality

gap E[G⋆(·)] (Chen et al., 2014). In the sequel, we show that Algorithm (2.43)

achieves this rate.
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2.4.2 Convergence analysis

We obtain the following results for Algorithm (2.43) when Z is bounded. Note

part 2.47 of Theorem 5 is strengthened under the tail assumption

E
[
exp(∥∇f(x)− F̂(x)∥22/χ2

x,f )
]
≤ exp(1)

E
[
exp(∥Kx− K̂x(x)∥22/χ2

y)
]
≤ exp(1)

E
[
exp(∥KT y − K̂y(y)∥22/χ2

x,K)
]
≤ exp(1).

(2.44)

Observe that (2.44) implies (2.42) by Jensen’s inequality.

Theorem 5. Fix A = −K if g ̸≡ 0. Assume that (2.24) holds, for some ΩX ,
ΩY > 0. Also suppose that for all k ≥ 1, the parameters ρk, θk, τk, and σk in
(2.43) satisfy (2.25a), (2.26),

s− q

τk
− Lfρk −

∥A∥22σk
r

≥ 0, (2.45a)

t− r

σk
− τk

(
2∥K +A∥2∥K +B∥2 +

∥B∥22
q

)
≥ 0 (2.45b)

for some q, r, s, t ∈ (0, 1). Then the following holds.

(i) Under (2.42), we have E[G⋆(zk+1)] ≤ Q0(k) for all k ≥ 1, where

Q0(k) :=
ρk
γk

(
2γk
τk

Ω2
X + 2γk

σk
Ω2
Y

)
+ ρk

2γk

∑k
i=1

(
(2−s)τiγi

1−s (χ2
x + χ2

B)

+
(2− t)σiγi

1− t
(χ2

y + χ2
A + τ2k∥K +A∥22(χ2

x + χ2
B))
)

(2.46)

(ii) Suppose A = −K and B = bK, then under the assumption (2.44), we
have

Pr(G⋆(zk+1) > Q′
0(k) + λQ1(k)) ≤ 3 exp(−λ2/3) + 3 exp(−λ), (2.47)

for all λ > 0 and t ≥ 1, where

Q′
0(k) :=

ρk
γk

(
2γk
τk

Ω2
X + 2γk

σk
Ω2
Y

)
+ ρk

2γk

∑k
i=1

(
(2−s)τiγi

1−s χ2
x +

(2−t)σiγi
1−t χ2

y

)
,

(2.48)

Q1(k) :=
ρk
γk

(√
2χxΩX + χyΩY

)√
2
∑k

i=1 γ
2
i (2.49)
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+ ρk
2γk

∑k
i=1

(
(2−s)τiγi

1−s χ2
x +

(2−t)σiγi
1−t χ2

y

)
.

Corollary 4. Assume condition (2.24) holds. In Algorithm (2.43), if N ≥ 1 is
given, A = −K, ∥B∥2 ≤ b∥K∥2, and the parameters are set to

ρk = 2
k+1 , θk = k−1

k , τk = ΩXk
2P1LfΩX+P2LkΩY k+P3χxk3/2

, (2.50)

σk = ΩY

LKΩX+P3χy

√
k

(2.51)

where P1 and P2 satisfies

P1 =
1

s−q , P2 ≥ max
{

1
r(s−q) ,

b2/q
t−r

}
, P3 > 0 (2.52)

the following holds.

(i) Under assumption (2.42), we have E[G⋆(zN )] ≤ C0(N), where

C0(k) =
8P1LfΩ

2
X

k(k+1) + 4LKΩXΩY (P2+1)
k +

4P3(χxΩX+4χyΩY )√
k

+
√
2(2−s)ΩXχx

3(1−s)
√
k

+
√
2(2−t)ΩY χy

3(1−t)
√
k

.
(2.53)

(ii) Under assumption (2.44), then we have

P (G⋆(zN ) > C0(N) + λC1(N)) ≤ 3 exp(−λ2/3) + 3 exp(−λ), (2.54)

for all λ > 0, where

C1(k) =
(
4 +

√
2(2−s)
3(1−s)

)
ΩXχx√

k
+
(
2
√
2 +

√
2(2−s)
3(1−s)

)
ΩY χy√

k
. (2.55)

Remark 6. Zhao and Cevher (2018, Remark 3), who achieve the rate O(Lf/N+
LK/N + χ/

√
N), suggest that the rate for the smooth part f may be improved

to O(Lf/N
2). We have shown that this is indeed possible and the resulting rate

is optimal.

When Z is unbounded, we have the following theorem.

Theorem 6. Assume that {zk} = {(xk, yk)} is the sequence generated by
(2.43). Further assume that the parameters ρk, θk, τk, and σk in (2.43) satisfy
(2.25a), (2.32), and (2.45). for all k ≥ 1 and some q, s, t ∈ (0, 1), r ∈ (0, 1/2).
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If A = −K or g ≡ 0, then there is a perturbation vector vk+1 satisfying

E[G̃(zk+1, vk+1)] ≤ ρk
τk

[(
6 + 4q

1−q +
4(r+1/2)
1/2−r

)
R2 +

(
5
2 + 2q

1−q +
2(r+1/2)
1/2−r

)
S2
]

(2.56)

for all k ≥ 1. Furthermore,

E[∥vk+1∥2] ≤ 2ρk∥x̂−x1∥2
τk

+ 2ρk∥ŷ−y1∥2
σk

+
√
2R2 + S2

[
ρk(1+µ)

τk
+
(
ν +

√
σ1
τ1

)
ρk
σk

(2.57)

+ 2ρk(∥A∥2µ+ ∥B∥2ν) + 2τkρk∥K +A∥2∥K +B∥2ν
]
=: ϵk+1

(2.58)

where (x̂, ŷ) is a pair of solutions for (2.2), R, µ, and ν are as defined in (2.35),
and

S :=

√∑k
i=1

(2−s)τ2i (χ
2
x+χ2

B)
1−s +

∑k
i=1

(2−t)τiσi(χ2
y+χ2

A+τ2k∥K+A∥22(χ2
x+χ2

B))

1−t . (2.59)

Corollary 5. In Algorithm (2.43), if N is given, A = −K, B = bK, and the
parameters are set to

ρk = 2
k+1 , θk = k−1

k , τk = σk = k
2P1Lf+P2LK(N−1)+P3N

√
N−1χ′ , (2.60)

for some R̃ > 0, where χ′ is defined by χ′ =
√

2−s
1−sχ

2
x +

2−t
1−tχ

2
y. Then for P1,

P2, and P3 satisfying

P1 =
1

s− q
, P2 ≥ max

{
1

r(s− q)
,

b2

q(t− r)
, 1

}
(2.61)

P3 = 1/R̃,

for some R̃ > 0, q, s, and t ∈ (0, 1), r ∈ (0, 1/2), q < s, and r < t. Then we
have

ϵN ≤
(

4P1Lf

N(N−1) +
2P2LK

N + 2χ′/R̃√
N−1

)
×
((

6 + 4q
1−q +

4(r+1/2)
1/2−r

)
R2 +

(
5
2 + 2q

1−q +
2(r+1/2)
1/2−r

)
R̃2
/
3
)
,

and

E[∥vN∥2] ≤
(

4P1Lf

N(N−1) +
2P2LK

N + 2χ′/R̃√
N−1

)

49



×
(
2R
(
1 +

√
σ1
τ1

)
+
(√

2R+ R̃√
3

)(
1 + µ+

(√
σ1
τ1

+ ν
)))

+ 4LK
N (

√
2R+ R̃/

√
3)(µ+ bν).

Therefore we obtain the desired order for both ϵN and E[∥vN∥2].

2.5 Numerical experiments

In this section, the actual convergence behavior of the algorithms generated

by (2.18) and their accelerated variant (2.23) is illustrated. In addition, the

scalability of these algorithms by implementing a distributed version of (2.18)

is demonstrated. The experiment was conducted on a system with two Intel

Xeon CPUs (E5-2680 v2 @2.80GHz) with eight Nvidia GTX 1080 GPUs with

8 GB of RAM each.

2.5.1 Model problems

Overlapping group elastic net. We consider an overlapping group elastic

net problem with a quadratic loss

min
x

1

2
∥b−Ax∥22 +

λ1

2
∥x∥22 + λ2

R∑
j=1

√
|Gj |∥xGj∥2.

where A = [a1, · · · , an]T is the data matrix, and b = (b1, · · · , bn) is the response

vector. A test dataset was generated based on the methods in Chen et al. (2012).

For the group designation, R groups of S adjacent variables were defined, with

10 overlaps of adjacent groups. i.e., gj = {90(j − 1) + 1, . . . , 90j + 10}, thus

p = R(S−10)+10. The true value of xj was set by xj = (−1)j exp(−(j−1)/100)

for j = 1, . . . , p. Each element of A was sampled from the standard normal

distribution, and added Gaussian noise ϵ ∼ N (0, 1) to Ax to generate b =

Ax + ϵ. For the convergence experiments, R = 100 and S = 100 were chosen,

so that the dimension is given by p = 9010. For the scalability experiment,
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S = 130 and R = 1000, 5000, 8000, 10000 were selected so that the dimensions

are p = 120010, 600010, 960010, 1200010. For all experiments, the number of

data points was chosen as n = 5000.

Graph-guided sparse fused lasso. The graph-guided fused lasso problem

we consider is given by

min
x

1

2
∥Ax− b∥22 + λ1∥x∥1 + λ2∥Dx∥1,

where D is the difference matrix imposed by the network structure. The dataset

for the graph-guided fused lasso experiments was generated following the tran-

scription factor (TF) model of Zhu (2017). This is a simple gene network model

with J fully connected subnetworks of size T , where each subgroup has one TF

with T −1 regulatory target genes. Variables corresponding to TFs are sampled

independently from N (0, 1). Variables for target genes are sampled so that each

target gene and the corresponding TF has a bivariate normal distribution with

correlation 0.7, and these variables are conditionally independent given the TF.

For j-th subnetwork, the true values of xi were chosen by

xi =


(−1)j+1

⌊
j+1
2

⌋
if j = 1, . . . , Ja

0 otherwise
, i = (j − 1)r + 1, . . . , jr,

where Ja is the number of active groups. Response bi is sampled so that bi =

Ax + ϵi, with ϵi
i.i.d.∼ N (0, 1002). In addition to the edges comprised of fully-

connected subnetworks, random edges were added between the active variables

and the inactive variables. For each active variable, edges connecting this vari-

able and J − 1 distinct inactive variables were added. For the convergence

experiments, T = 10, Ja = 20, J = 1000 were used so that the dimension

p is 10000. For the scalability experiment, T = 12, and Ja = 20. We se-
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lected J = 10000, 50000, 80000, 100000 were selected to generate the dataset

with p = 120000, 600000, 960000, 1200000, respectively. For all experiments, the

number of samples was chosen by n = 5000.

2.5.2 Convergence behavior

Two-function case (g ≡ 0)

First, the algorithms are applied to the two function cases (g ≡ 0) without

acceleration: overlapping group lasso (group elastic net with λ1 = 0, λ2 =

R/100), graph-guided fused lasso (graph-guided sparse fused lasso with λ1 = 0,

λ2 = 1), and latent group lasso (as discussed in Section 2.1 with a quadratic loss,

λ1 = 0, λg = R
√
|Gj |/100). For the forward-backward (FB) splitting (2.18),

C = κK, and |κ| ≤ 1 were used, with ρk = 0.9
(
2− τLf

2
1−(1−κ2)τσ∥K∥22

1−τσ∥K∥22

)
. Step

sizes were chosen as τ = 0.9 2
Lf

and σ = 0.9 1
τ

1−τLf/2

1−(1−κ2)τLf/2
, so that (2.20) is

satisfied. For the acceleration (2.23), four cases were tested: Algorithm LV (A =

B = 0), CV (A = −K, B = K), their “midpoint” (A = −0.5K, B = 0.5K),

and Chen et al. (2014) (A = −K, B = 0). The number of iterations N is set

to 10000. For bounded (Corollary 2) and unbounded (Corollary 3) cases, (q, r)

are chosen so that they minimize 4P1Ω2
X

k(k−1)Lf + 2ΩXΩY (P2+1)
N ∥K∥2 in (2.30) and(

4P1Lf

N2 + 2P2LK
N

)(
2 + q

1−q +
r+1/2
1/2−r

)
in (2.38), respectively. Those minimizers

were found using sequential least squares programming. As a benchmark, an

inertial version of the forward-backward-forward (FBF) algorithm (Combettes

and Pesquet, 2012) was applied, as described in Boţ and Csetnek (2016):

x̃k+1 = xk − τ
(
∇f(xk) +KT yk

)
+ α1(x

k − xk−1)

ỹk+1 = proxτh∗(yk + τKxk + α1(y
k − yk−1)

yk+1 = ỹk+1 + τK(x̃k+1 − xk) + α2(y
k − yk−1)

xk+1 = x̃k+1 − τKT (ỹk+1 − yk) + α2(x
k − xk−1).

(2.62)
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With α1 = α2 = 0, (2.62) resembles Algorithm LV, but requires one more step

per iteration; its convergence rate has not been established.

Figures 2.2(a-b), 2.3(a-b), and 2.4(a-b) show the convergence of the FB

(2.18) with respect to the averaged sequence {(x̄N , ȳN )}, and the convergence

of the accelerated FB algorithms (2.23) with respect to {(xN , yN )}. The gap be-

tween the primal objective value at xk and the “optimal” objective value versus

iteration count k is plotted. Following Loris and Verhoeven (2011), the reference

“optimal” value was computed by running the accelerated LV algorithm with

bounded parameters for 100000 iterations; this obtained the minimal value up

to the point that the machine precision allows. Figures 2.2(a), 2.3(a), and 2.4(a)

used parameters given by (2.28), which assumes xk and yk are bounded. This

is true as long as ∥xk∥2 < ΩX/
√
2 and ∥yk∥2 < ΩY /

√
2; ΩX = 12 and ΩY = 15

were used for group lasso problems, and ΩX = 141.4 and ΩY = 305.9 were used

for graph-guided fused lasso. The resulting iterates respected these bounds. Fig-

ures 2.2(b), 2.3(b), and 2.4(b) used parameters given by (2.36), which does not

require ΩX and ΩY . Since the reference optimal value was an order of 104, the

values in the oscillating region correspond to the 7th or 8th significant decimal

digit of the objective value.

We observe that Theorems 1 and 4 faithfully describe the convergence be-

havior. The convergence rates of the accelerated ones were close to O(1/N2),

because in this experiment Lf ≫ ∥K∥2. On the other hand, the base FB al-

gorithms appear very close to the O(1/N) line. All of the optimal acceleration

settings exhibit very similar convergence behaviors, which suggest that we have

a good degree of freedom in choosing an optimal primal-dual algorithm.

Figures 2.2(c), 2.3(c), 2.4(c) compare the non-ergodic convergence with re-

spect to {(x̃k, ỹk)} of the FB and FBF. The FB algorithms behave like O(1/k)

initially, and then converge faster than O(1/k2). This behavior is much faster
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than what is predicted by Theorem 2. On the contrary, the FBF algorithm

stalls after a few hundred iterations.

Now actual convergence behaviors of the optimal stochastic algorithm (2.43)

for the group lasso and graph-guided fused lasso model problems are illustrated.

The estimate F̂(xk) is computed by ∇f(Mxk), where M is a diagonal matrix

where each diagonal entry is independently chosen as 1/p with probability π,

and 0 with probability 1− π. This strategy meets the assumption (2.41).

The convergence behavior of the stochastic algorithm is illustrated in Fig-

ure 2.5. Figures 2.5a and 2.5c show the result of (2.43) with parameters (2.50)

for the group lasso and graph-guided fused lasso problems, respectively. Fig-

ures 2.5b and 2.5d show those with parameters given by (2.60). Note that for

the assumption (2.42) to hold, both cases need estimates of ΩX and ΩY . The

experiment was conducted using π = 0.2. For the simplicity of illustration,

χ = 3× 105 was used for the overlapping group lasso, and χ = 107 was used for

the graph-guided fused lasso. In (2.60), R̃ was set to 10 for overlapping group

lasso and 100 for graph-guided fused lasso. The horizon N was set to 10000 for

all cases. In (2.50) and (2.60), q, r, s, and t were chosen to minimize the error

bounds C0(N) in Corollary 4 and 4P1Lf

N(N−1) +
2P2∥K∥2

N + 2χ/R̃√
N−1

in Corollary 5,

respectively, in a similar fashion to the deterministic counterparts. For a com-

parison, cases with parameters chosen for the deterministic setting (2.28) and

(2.36) but with stochastic estimation of gradients were included. In Figure 2.5,

the convergence of the stochastic algorithms is slow initially because the step

sizes τk and σk are very small for small k due to the presence of an N3/2 term in

their denominators, but they eventually converge faster than the O(1/k) rate

for both bounded and unbounded parameter selections. (Also note the log-log

scale of the plots.) While Corollaries 4 and 5 guarantee the optimal rate for

A = −K (corresponding to CV if B = K and Chen et al. (2014) if B = 0),
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Figure 2.2: Convergence of the forward-backward (FB) algorithms generated by
(2.18) and their accelerated variants (2.23) for a overlapping group lasso model.
(a) optimal acceleration with bounded parameter setting (“optimal”) with er-
godic convergence of the FB algorithm (“base”). (b) optimal acceleration with
unbounded parameter setting (“optimal”) with ergodic convergence of the FB
algorithm (“base”). (c) non-ergodic convergence of the FB (“base”) and inertial
FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k2) convergence,
and dashed black lines represent O(1/k) convergence.
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Figure 2.3: Convergence of the forward-backward (FB) algorithms generated
by (2.18) and their accelerated variants (2.23) for a graph-guided fused lasso
model. (a) optimal acceleration with bounded parameter setting (“optimal”)
with ergodic convergence of the FB algorithm (“base”). (b) optimal accelera-
tion with unbounded parameter setting (“optimal”) with ergodic convergence
of the FB algorithm (“base”). (c) non-ergodic convergence of the FB (“base”)
and inertial FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k2)
convergence, and dashed black lines represent O(1/k) convergence.
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Figure 2.4: Convergence of the forward-backward (FB) algorithms generated
by (2.18) and their accelerated variants (2.23) for a latent group lasso model.
(a) optimal acceleration with bounded parameter setting (“optimal”) with er-
godic convergence of the FB algorithm (“base”). (b) optimal acceleration with
unbounded parameter setting (“optimal”) with ergodic convergence of the FB
algorithm (“base”). (c) non-ergodic convergence of the FB (“base”) and inertial
FBF (“inertial fbf”) algorithms. Solid black lines represent O(1/k2) convergence,
and dashed black lines represent O(1/k) convergence.
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the choice A = −κK, B = κK with 0 ≤ κ < 1 (corresponding to LV and

“in-between”) also exhibited a similar convergence behavior. On the contrary,

for the “deterministic” choice of the parameters the algorithm diverged.
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Figure 2.5: Convergence of optimal rate stochastic algorithm for a group lasso
model (a-b) and a graph-guided fused lasso model (c-d). (a), (c), optimal rate
stochastic algorithm assuming bounded domain (2.50) (“optimal”) compared to
ergodic convergence of the FB algorithm. (b), (d), optimal rate stochastic algo-
rithm with parameters in (2.60). The cases labeled “deterministic” in the legend
denote the deterministic-case parameters given by (2.28) for bounded case and
(2.36) for unbounded case. Solid black lines, dashed black lines, and dotted
black lines represent O(1/k2), O(1/k), and O(1/

√
k) convergence, respectively.

Three-function optimal acceleration (g ̸≡ 0)

Now, we compare the practical performance of optimal three-function sum ac-

celeration (g ̸≡ 0 in (2.23) and (2.43)) with the benchmark methods. For the
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Figure 2.6: Convergence of deterministic and stochastic OS3X under various pa-
rameter settings and other methods for a sparse graph-guided fused lasso model.
(a) (2.23) (labeled “OS3X”) with bounded parameter settings with SPDTCM
with deterministic updates, CV, PDFP, AFBA, and PD3O. (b) (2.23) (labeled
“OS3X”) with unbounded parameter settings with SPDTCM with determinis-
tic updates, CV, PDFP, AFBA, and PD3O. (c) (2.43) (labeled “OS3X”) with
bounded and unbounded parameter settings with SPDTCM.
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Figure 2.7: Convergence of deterministic and stochastic OS3X under various pa-
rameter settings and other methods for a overlapping group elastic net model.
(a) (2.23) (labeled “OS3X”) with bounded parameter settings with SPDTCM
with deterministic updates, CV, PDFP, AFBA, and PD3O. (b) (2.23) (labeled
“OS3X”) with unbounded parameter settings with SPDTCM with determinis-
tic updates, CV, PDFP, AFBA, and PD3O. (c) (2.43) (labeled “OS3X”) with
bounded and unbounded parameter settings with SPDTCM.
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deterministic setting, we consider Condat-Vũ (CV), PDFP, AFBA, PD3O, and

SPDTCM without noisy gradients. For the stochastic setting, we compare the

accelerated method with SPDTCM with noise. The algorithms were tested with

graph-guided fused lasso and overlapping group elastic net. For all stochastic

experiments, 10 separate runs were averaged. For each experiment, primal gap

versus the number of epochs is shown. An epoch was defined as (cumulative

number of data points used in the estimation of F̂)/(number of data points in

the dataset). The primal gap is the difference between the objective value at

the epoch and the optimal objective value, approximated by the objective value

after 100000 epochs of deterministic method (2.23). Three instances of (2.23)

and (2.43) were tested: B = 0, B = −0.5K, and B = −K, with A = −K fixed.

In the deterministic setting, from Corollary 3 and Corollary 4, q = 0.3, r =

0.7, and P1 = 0.9 were chosen. For stochastic setting, (q, r, s, t) from Corollary

5 and Corollary 6 were chosen as (0.3, 0.3, 0.7, 0.7). The variance χ was set to

1000. For CV, PDFP, AFBA, and PD3O, τ = 1.9/Lf and σ = 1/(4τ) were used.

Finally, for SPDTCM, the constant parameter recipe as provided by Zhao and

Cevher (2018) was utilized.

At iteration k, the stochastic gradient F̂(xk) was obtained from a random

subsample of A. For a random permutation π, we define a subsample Ã :=

Aπ(1):π(ns),: (in Matlab notation), where ns = ⌊0.2n⌋. Thus for the quadratic

loss, we have {̂(xk) = (n/ns)Ã
T (Ãx − b). Â, B̂, K̂x, and K̂y are estimated

without artificial noise.

For graph-guided sparse fused lasso, λ1 = λ2 = 1 were used, with do-

main boundaries estimated as ΩX = 200, ΩY = 450. All the iterates remained

within these boundaries. For stochastic unbounded parameter settings, we chose

R̃ = 100. The results are shown in Figure 2.6. The convergence speed gap be-

tween (2.23) and the other methods is clear (note the log-log scale). Using the
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parameters with known bounds is faster than using the parameters that do not

involve bound assumption, but we still achieve faster convergence compared to

other methods without the bound assumption. There was no noticeable differ-

ence between the choices of B.

For the overlapping group elastic net, λ1 = 0.1 and λ2 = 0.3 were used with

ΩX = 20, ΩY = 45. For stochastic case with unbounded parameter setting,

we chose R̃ = 50. The results are shown in Figure 2.7. All the instances of

deterministic acceleration (2.23) converged faster than SPDTCM. Stochastic

(2.43) starts slowly, but it surpasses SPDTCM eventually.

2.5.3 Scalability

To test the scalability of the studied algorithms, we consider the scenario that

the number of features p is so large that, for each sample, the features do

not fit into the memory. In other words, the data matrix A = [A[1], . . . ,A[M ]],

where A[i] ∈ Rn×pi ,
∑m

i=1 pi = p, is stored distributedly in M devices. In

this case, it is desirable to also split the vectors x ∈ Rp conformally and store

distributedly, i.e., x = [xT[1], . . . , x
T
[M ]]

T , x[i] ∈ Rpi . For many instances of (2.1)

including the generalized lasso and group lasso, l ≳ p, so it is desirable to

partition and store the dual variable y ∈ Rl likewise. i.e., y = [yT[1], . . . , y
T
[M ]]

T ,

y[i] ∈ Rli ,
∑m

i=1 li = l. To compute KT y and Kx efficiently, it is desirable to also

distribute rows and columns of K across the devices, i.e., KT = [KT
[1], . . . ,K

T
[M ]]

and K = [K [1], . . . ,K [M ]], where K[i] ∈ Rli×p and K [i] ∈ Rl×pi . Duplicating K

does not incur too much cost, as K is typically sparse. Then, we can carry out

computation in a distributed fashion as follows.

Suppose that device i stores A[i], K[i], K [i], x[i], and y[i]. To compute Ax,

we compute A[k]x[k] within each device, and aggregate the result in a master

device. The communication cost required is O(n). Computing Kx is more com-

62



plicated. Denote the submatrix made of the row 1 +
∑i−1

i′=1 li′ through
∑i

i′=1 li′

and the column 1+
∑j−1

j′=1 pj′ through
∑j

j′=1 pj′ of K by K
[j]
[i] . First, we compute

K
[j]
[i] x[j] =: [Kx]ij . Then we transfer nonzero values in each [Kx]ij to device i. Fi-

nally, within device i, we aggregate [Kx]ij over j. When the number of nonzero

elements in K is O(p), which is the case for both overlapping group lasso and

graph-guided fused lasso, the communication cost is O(Mp) in the worst case.

This type of distribution is especially suitable for multi-GPU platforms. We

solved the model problems using TensorFlow (Abadi et al., 2015) v1.2, which

deals with inter-GPU communications automatically. The code is available at

https://github.com/kose-y/dist-primal-dual.

Each experiment was conducted for 1100 iterations with time recorded ev-

ery 100 iterations. This is repeated three times. The result for the first 100

iterations was discarded, as this figure includes the time elapsed to build com-

putation graphs. Average time per 100 iterations and their standard deviations

were computed. Table 2.2 shows that the distributed implementation is highly

scalable across multiple GPUs. The algorithm runs faster with more GPUs in

general; for the data that do not fit in the memory, it only requires more GPUs.

2.6 Discussion

In this chapter, a unified view to Algorithms CV and LV, two classes of primal-

dual algorithms for a convex composite minimization problem based on mono-

tone operator theory has been provided. This unification suggests a continuum

of forward-backward operator splitting algorithms for this important optimiza-

tion problem having many applications in statistics. It is also this unified un-

derstanding that enables us to establish the O(1/N) and o(1/
√
k) convergence

rates for the full regions of convergence of Algorithms CV and LV (and those in

between) as well as the O(Lf/N
2+LK/N) optimal asymptotic accelerations of
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these algorithms and their three-function extensions. A practical implication of

this understanding is that we bring these algorithms to the same arena: as they

share the same convergence rate, other factors such as the ability of choosing

wider step sizes can be fairly compared in empirical settings. Thus practition-

ers now possess more degrees of freedom in choosing from a suite of algorithms

with theoretical guarantees.

The simplicity of the algorithms proposed and analyzed here also enables

us to implement their distributed multi-GPU version almost painlessly using

existing packages. This contrasts to the previous works (Yu et al., 2015; Lee

et al., 2017), which resort to exploiting the structure of the matrix K in (2.1).

There remain several avenues of future research. First, in this chapter a

minimal assumption on the convexity of the functions is maintained since the

interest is in the worst-case rates. How the bounds of the algorithm class can be

improved with additional assumptions, e.g., the strong convexity of g (Ghadimi

and Lan, 2012), would be of interest. Second, in the unbounded settings we

assume the horizon N is fixed in advance. Using step sizes that depend on N at

least dates back to Nesterov (2005); achieving optimal rates without this infor-

mation is a challenging task (Zhao and Cevher (2018) report a factor of logN

slowdown in the asymptotic rate). However, in many scenarios (e.g., early stop-

ping) the knowledge of N is unavailable, thus horizon-independent convergence

analysis is warranted. Third, techniques for estimating the problem parameters

Lf and LK , and combining them with algorithm parameter selection will have

an important practical impact.
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Table 2.2: Scalability of the distributed version of (2.18) for graph-guided fused
lasso and group lasso models. Time was measured in seconds per 100 iterations.
Standard deviations are listed in parentheses. Any cell with missing values
indicates that the experiment failed to run due to lack of memory.

Graph-guided fused lasso

#GPUs 1 2 3 4 5 6 7 8
#groups p

10000 120000 4.895 3.801 3.274 2.468 2.081 1.739 1.584 1.518
(0.019) (0.048) (0.027) (0.021) (0.029) (0.025) (0.023) (0.014)

50000 600000 20.631 13.779 11.962 10.124 8.568 7.699 6.520
(0.253) (0.309) (0.126) (0.031) (0.058) (0.053) (0.050)

80000 960000 22.695 16.957 13.712 11.559 10.343 10.828
(0.288) (0.302) (0.140) (0.124) (0.133) (0.056)

100000 1200000 20.517 16.190 15.590 11.704 12.498
(0.166) (0.227) (0.170) (0.148) (0.145)

Overlapping group lasso

#GPUs 1 2 3 4 5 6 7 8
#groups p

1000 120010 4.828 4.156 2.973 2.465 2.102 1.853 1.591 1.538
(0.015) (0.057) (0.034) (0.014) (0.015) (0.012) (0.014) (0.015)

5000 600010 19.312 13.670 10.164 8.374 7.369 6.727 5.960
(0.075) (0.059) (0.055) (0.029) (0.040) (0.029) (0.038)

8000 960010 22.792 17.044 14.722 12.671 10.866 10.103
(0.228) (0.101) (0.107) (0.157) (0.110) (0.080)

10000 1200010 22.210 16.658 15.386 14.088 11.689
(0.273) (0.049) (0.098) (0.104) (0.105)

Latent group lasso

#GPUs 1 2 3 4 5 6 7 8
#groups p

1000 120010 4.754 3.359 2.524 2.166 1.894 1.649 1.598 1.602
(0.003) (0.024) (0.090) (0.068) (0.017) (0.020) (0.053) (0.050)

5000 600010 19.133 14.378 10.888 9.299 7.883 7.386 7.251
(0.142) (0.083) (0.344) (0.451) (0.042) (0.025) (0.074)

8000 960010 22.023 17.825 14.236 12.141 10.964 10.133
(0.132) (0.180) (0.150) (0.145) (0.077) (0.057)

10000 1200010 22.271 17.647 15.045 13.320 12.194
(0.439) (0.476) (0.165) (0.067) (0.070)
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Chapter 3

Towards Unified Programming for
High-Performance Statistical
Computing Environments

3.1 Introduction

As introduced earlier, increasing computing power is often achieved by using

more cores or machines. Supercomputers and local clusters utilize multiple cores

of CPUs over multiple machines with fast communication between the machines.

Also, GPUs are now widely used for accelerating many computing tasks involv-

ing linear algebra and convolution operations. In addition, with maturing of

cloud computing, users can now access virtual clusters through cloud service

providers without need of purchasing and maintaining the machines physically.

With the demand for analysis of terabyte- or petabyte-scale data in diverse dis-

ciplines, the crucial factor for the success of large-scale data analysis is how well

we utilize high-performance computing hardware in the statistical computing

task.
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However, statistical community appears yet to fully embrace the power of

high-performance computing. This is partly because of difficulty of program-

ming in multiple nodes and on GPUs in R, the most popular programming

environment among statisticians. Furthermore, researchers often face the bur-

den of writing separate code for different hardware environments. While there

are a number of packages in high-level languages including R, Python, or Julia

that simplifies GPU programming and multi-node programming separately (re-

viewed in Section 3.2), the package choices that enable simplification for both

multi-GPU programming and multi-node programming with the same code

base is limited. This leads to necessity of a tool that merges programming for

multiple hardware environments.

In this chapter, a Python package dist_stat and a Julia (Bezanson et al.,

2017) package DistStat.jl are introduced, which define an easy-to-use dis-

tributed array data structure over distributed CPU and GPU environments in

a Python package PyTorch and the Julia programming language, respectively.

Users can decide underlying array implementation to work on CPU cores or

GPUs only with minor configuration changes.

To make the contrast clear, examples from the landmark paper for GPU

in statistical computing (Zhou et al., 2010), nonnegative matrix factorization

(NMF), positron emission tomography (PET), and multidimensional scaling

(MDS) are deliberately chosen and implemented with dist_stat and

DistStat.jl. The difference lies in the scale of the examples: our experiments

deal with data of size at least 10, 000×10, 000 and as large as 200, 000×200, 000

for dense data, and 810, 000× 179, 700 for sparse data. This contrasts with the

size of at best 4096×2016 of Zhou et al. (2010). This level of scaling is possible

because the use of multiple GPUs in a distributed fashion has become handy,

as opposed to the single GPU, CUDA C implementation of 2010. Furthermore,
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using the power of cloud computing and modern deep learning software and

programming language, it is shown that exactly the same code can run on

multiple CPU cores and/or clusters of workstations.Wherever possible, we ap-

ply more recent algorithms in order to cope with the scale of the problems. In

addition, a new example of large-scale proportional hazards regression model

is investigated. We demonstrate the potential of our approach through a sin-

gle multivariate Cox regression model regularized by the ℓ1 penalty on the

UK Biobank genomics data (with 400,000 subjects), featuring time-to-onset of

Type 2 Diabetes (T2D) as outcome and 500,000 genomic loci harboring single

nucleotide polymorphisms as covariates. To my knowledge, such a large-scale

joint genome-wide association analysis has not been attempted. The reported

Cox regression model retains a large proportion of bona fide genomic loci associ-

ated with T2D and recovers many loci near genes involved in insulin resistance

and inflammation, which may have been missed in conventional univariate anal-

ysis with moderate statistical significance values.

The rest of this chapter is organized as follows. In Section 3.3, we review

software libraries employing the “write once, run everywhere” principle, and dis-

cuss how they can be employed for fitting high-dimensional statistical models on

the HPC systems of Section 1.2. How to distribute a large matrix over multiple

devices is presented in Section 3.4. Numerical examples of NMF, PET, MDS,

and ℓ1-regularized Cox regression are given in Section 3.5. Finally, we conclude

the chapter in Section 3.6. The code is available at https://github.com/

kose-y/dist_stat and https://github.com/kose-y/DistStat.jl,

and is released under the MIT License.
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3.2 Related Software

3.2.1 Message-passing interface and distributed array interfaces

The de facto standard for inter-node communication in distributed computing

environments is the message passing interface (MPI). The latter defines several

ways to communicating between two processes (point-to-point communication)

or among a group of processes (collective communication). Although MPI is

originally defined in C and Fortran, many other high-level languagues have in-

terfaces to it in the form of a wrapper, for example, Rmpi (Yu, 2009) for R,

mpi4py (Dalcin et al., 2011) for Python, and MPI.jl (JuliaParallel Contrib-

utors, 2020) for Julia.

There have been several attempts to incorporate array and linear algebra

operations through the basic syntax of the base programming language. MAT-

LAB has a distributed array implementation that uses MPI as a backend in

the Parallel Computing Toolbox. In Julia, MPIArrays.jl (Janssens,

2018) defines a matrix-vector multiplication routine that uses MPI as its back-

end. DistributedArrays.jl (JuliaParallel Contributors, 2019) is a more

general attempt to create a distributed array, allowing various communication

modes, including Transmission Control Protocol/Internet Protocol (TCP/IP)

and Secure Shell (SSH), and MPI. In R, a package called ddR (Ma et al., 2016)

supports distributed array operations.

3.2.2 Unified array interfaces for CPU and GPU

For GPU programming, CUDA C for Nvidia GPUs and OpenCL for general

GPUs are by far the most widely used. R package gputools (Buckner et al.,

2010) is one of the earliest efforts to incorporate GPU in R. PyCUDA and

PyOpenCL (Klöckner et al., 2012) for Python and CUDAnative.jl and

CUDAdrv.jl (Besard et al., 2018) for Julia allow users to access low-level
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features of the respective interfaces.

For better productivity, an interface to array and linear algebra operations

that works transparently on both CPU and GPU is desirable. In MATLAB,

the Parallel Computing Toolbox includes the data structure gpuArray.

Simply wrapping an ordinary array with the function gpuArray() allows the

users to use predefined functions to exploit the single instruction, multiple data

(SIMD) architecture of Nvidia GPUs. In Python, the recent deep learning (Le-

Cun et al., 2015) boom accelerated development of easy-to-use array inter-

faces and linear algebra operations along with automatic differentiation for

both CPU and GPU. The most popular among them are TensorFlow (Abadi

et al., 2015) and PyTorch (Paszke et al., 2017). It is worth noting that the

Distributions subpackage of TensorFlow (Dillon et al., 2017) allows con-

venient development of GPU computation in Bayesian setting, for example,

stochastic gradient Monte Carlo Markov chain (Baker et al., 2018). In Julia, a

central package named CUDA.jl (Besard et al., 2019; JuliaGPU Contributors,

2020) defines many array operations and simple linear algebra routines using

the same syntax as the base CPU arrays.

3.3 Easy-to-use Software Libraries for HPC

3.3.1 Deep learning libraries and HPC

As of writing this dissertation (Summer 2020), the two most popular deep

learning software libraries are TensorFlow (Abadi et al., 2015) and PyTorch

(Paszke et al., 2017). There are two common features of these libraries. One

is the computation graph that automates the evaluation of the loss function

and its differentiation required for backpropagation. The other feature, more

relevant to statistical computing, is an efficient and user-friendly interface to

linear algebra and convolution routines that work on both CPU and GPU in a
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unified fashion. A typical pattern of using these libraries is to specify the model

and describe how to fit the model to the training data in a high-level script-

ing language (mostly Python). To fit a model, the software selects a backend

optimized for the system in which the model runs. If the target system is a

CPU node, then the software can be configured to utilize the OpenBLAS (Xi-

anyi et al., 2014) or the Intel Math Kernel Library (Wang et al., 2014), which

are optimized implementations of the Basic Linear Algebra Library (BLAS,

Blackford et al., 2002) for shared-memory systems. If the target system is a

workstation with a GPU, then the same script can employ a pair of host and

kernel code that may make use of cuBLAS (NVIDIA, 2013), a GPU version

of BLAS, and cuSPARSE (NVIDIA, 2018), GPU-oriented sparse linear algebra

routines. Whether to run the model on a CPU or GPU can be controlled by a

slight change in the option for device selection, which is usually a line or two

of the script. From the last paragraph of the previous section, we see that this

“write once, run everywhere” feature of deep learning libraries can make GPU

programming easier for statistical computing as well.

TensorFlow is a successor of Theano (Bergstra et al., 2011), one of the first

libraries to support symbolic differentiation based on computational graphs.

Unlike Theano that generates GPU code on the fly, TensorFlow is equipped

with pre-compiled GPU code for a large class of pre-defined operations. The

computational graph of TensorFlow is static so that a user has to pre-define

all the operations prior to execution. Unfortunately, such a design does not go

along well with the philosophy of scripting languages that the library should

work with, and makes debugging difficult. To cope with this issue, an “eager

execution” mode, which executes commands without building a computational

graph, is supported.

PyTorch inherits Torch (Collobert et al., 2011), an early machine learning
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library written in a functional programming language called Lua, and Caffe (Jia

et al., 2014), a Python-based deep learning library. Unlike TensorFlow, PyTorch

uses dynamic computation graphs, so it does not require computational graphs

to be pre-defined. Thanks to this dynamic execution model, the library is more

intuitive and flexible to the user than most of its competitors. PyTorch (and

Torch) can also manage GPU memory efficiently. As a result, it is known to be

faster than other deep learning libraries (Bahrampour et al., 2015).

Both libraries support multi-GPU and multi-node computing. In Tensor-

flow, multi-GPU computation is supported natively. If data are distributed in

multiple GPUs and one needs data from the other, the GPUs communicate

implicitly and the user does not need to care. Multi-node communication is

more subtle: while remote procedure call is supported natively in the same

manner as multi-GPU communications, it is recommended to use MPI through

the library called Horovod (Sergeev and Del Balso, 2018) for tightly-coupled

HPC environments (more information is given in Section 3.3.2). In PyTorch,

both multi-GPU and multi-node computing are enabled by using the inter-

face torch.distributed. This interface defines MPI-style (but simplified)

communication primitives (see the parallel programming models paragraph in

Section 1.2.1), whose specific implementation is called a backend. Possible com-

munication backends include the MPI, Nvidia Collective Communications Li-

brary (NCCL), and Gloo (Solo.io, 2019). NCCL is useful for a multi-GPU node;

(CUDA-aware) MPI maps multi-GPU communications to the MPI standard as

well as traditional multi-node communications; Gloo is useful in cloud environ-

ments.

This feature of unified interfaces for various HPC environments is supported

through operator overloading or polymorphism in modern programming lan-

guages, but achieving this seamlessly with a single library, along with multi-
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device support, is remarkable. This is partially because of injection of capital

in pursuit of commercial promises of deep learning (TensorFlow is being de-

veloped by Google, and PyTorch by Facebook). There are other deep learning

software libraries with similar HPC supports: Apache MxNet (Chen et al., 2015)

supports multi-node computation via Horovod; multi-GPU computing is also

supported at the interface level. Microsoft Cognitive Toolkit (CNTK, Seide and

Agarwal, 2016) supports parallel stochastic gradient algorithms through MPI.

3.3.2 Case study: PyTorch versus TensorFlow

In this section, we illustrate how simple it is to write a statistical computing

code on multi-device HPC environments using a modern deep learning libraries.

We compare PyTorch and TensorFlow code written in Python, which computes

a Monte Carlo estimate of the constant π. The emphasis is on readability and

flexibility, i.e., how small a modification is needed to run the code written for

a single-CPU node on a multi-GPU node and a multi-node system.

Listing 3.1 shows the Monte Carlo π estimation code for PyTorch. Even for

those who are not familiar with Python, the code should be quite readable. The

main workhorse is function mc_pi() (Lines 14–21), which generates a sample

of size n from the uniform distribution on [0, 1]2 and computes the proportion

of the points that fall inside the quarter circle of unit radius centered at the

origin. Listing 3.1 is a fully executable program. It uses torch.distributed

interface with an MPI backend (Line 3). An instance of the program of Listing

3.1 is attached to a device and is executed as a “process”. Each process is

given its identifier (rank), which is retrieved in Line 5. The total number of

processes is known to each process via Line 6. After the proportion of the

points in the quarter-circle is computed in Line 17, each process gathers the

sum of the means computed from all the processes in Line 18 (this is called the
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all-reduce operation; see Section 1.2.1). Line 19 divides the sum by the number

of processes, yielding a Monte Carlo estimate of π based on the sample size of

n× (number of processes).

We have been deliberately ambiguous about the “devices.” Here, a CPU core

or a GPU is referred to as a device. Listing 3.1 assumes the environment is a

workstation with one or more GPUs, and the backend MPI is CUDA-aware. A

CUDA-aware MPI, e.g., OpenMPI (Gabriel et al., 2004), allows data to be sent

directly from a GPU to another GPU through the MPI protocols. Lines 9–10

specify that the devices to be used in the program are GPUs. If the environment

is a cluster with multiple CPU nodes (or even a single node), then all we need

to do is changing Line 9 to device = ’cpu’. The resulting code runs on a

cluster seamlessly.

In TensorFlow, however, a separate treatment to multi-GPU and cluster

settings is almost necessary. The code for multi-GPU setting is similar to List-

ing 3.1 hence given in Appendix 3.2. In a cluster setting, unfortunately, it is

extremely difficult to reuse the multi-GPU code. If direct access to individ-

ual compute nodes is available, that information can be used to run the code

distributedly, albeit not being much intuitive. However, in HPC environments

where computing jobs are managed by job schedulers, we often do not have

direct access to the compute nodes. The National Energy Research Scientific

Computing Center (NERSC), the home of the 13th most powerful supercomput-

ers in the world (as of November 2019), advises that gRPC, the default inter-

node communication method of TensorFlow, is very slow on tightly-coupled

nodes, thus recommends a direct use of MPI (NERSC, 2019). Using MPI with

TensorFlow requires an external library called Horovod and a substantial mod-

ification of the code, as shown in Listing 3.3. This is a sharp contrast to Listing

3.1, where essentially the same PyTorch code can be used in both multi-GPU
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Listing 3.1 Distributed Monte Carlo estimation of π for PyTorch
import torch.distributed as dist
import torch
dist.init_process_group(’mpi’) # initialize MPI

rank = dist.get_rank() # device id
size = dist.get_world_size() # total number of devices

# select device
device = ’cuda:{}’.format(rank)
# or simply ’cpu’ for CPU computing
if device.startswith(’cuda’): torch.cuda.set_device(rank)

def mc_pi(n):
# this code is executed on each device.
x = torch.rand((n), dtype=torch.float64, device=

device)
y = torch.rand((n), dtype=torch.float64, device=

device)
# compute local estimate of pi
r = 4 * torch.mean((x**2 + y**2 <1).to(dtype=

torch.float64))
# sum of ’r’s in each device is stored in ’r’
dist.all_reduce(r)
return r / size

if __name__ == ’__main__’:
n = 10000
r = mc_pi(n)
if rank == 0:

print(r.item())

and multi-node settings.

Therefore we employ PyTorch in the sequel to implement the highly paral-

lelizable algorithms of Section 1.3 in a multi-GPU node and a cluster on a cloud,
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Listing 3.2 Monte Carlo estimation of π for TensorFlow on a workstation with
multiple GPUs
import tensorflow as tf

# Enforce graph computation. With eager execution,
# the code runs sequentially w.r.t. GPUs. e.g.,
# computation for ’/gpu:1’ would not
# start until the computation for ’/gpu:0’ finishes.
@tf.function
def mc_pi(n, devices):

estim = []
for d in devices:

# use device d in this block
with tf.device(d):

x = tf.random.uniform((n,), dtype=tf.float64)
y = tf.random.uniform((n,), dtype=tf.float64)
# compute local estimate of pi
# and save it as an element of ’estim’.
estim.append(tf.reduce_mean(tf.cast(x ** 2 +

y ** 2 < 1, tf.float64)) * 4)
return tf.add_n(estim)/len(devices)

if __name__ == ’__main__’:
n = 10000
devices = [’/gpu:0’, ’/gpu:1’, ’/gpu:2’, ’/gpu:3’]
r = mc_pi(n, devices)
print(r.numpy())

as it allows simpler code that runs on various HPC environments with a mini-

mal modification. (In fact this modification can be made automatic through a

command line argument.)

3.3.3 A brief introduction to PyTorch

In this section, we introduce simple operations on PyTorch. Note that Python

uses 0-based, row-major ordering, like C and C++ (R is 1-based, column-major
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ordering). First we import the PyTorch library. This is equvalent to library()

in R.

import torch

Tensor creation

The following is equivalent to set.seed() in R.

torch.manual_seed(100)

One may create an uninitialized tensor. This creates a 3×4 tensor (matrix).

torch.empty(3, 4) # uninitialized tensor

tensor([[-393462160144990208.0000, 0.0000,
-393462160144990208.0000, 0.0000],
[ 0.0000, 0.0000,

0.0000, 0.0000],
[ 0.0000, 0.0000,

0.0000, 0.0000]])

This generates a tensor initialized with random values from (0, 1).

y = torch.rand(3, 4) # from Unif(0, 1)

tensor([[0.1117, 0.8158, 0.2626, 0.4839],
[0.6765, 0.7539, 0.2627, 0.0428],
[0.2080, 0.1180, 0.1217, 0.7356]])

We can also generate a tensor filled with zeros or ones.

z = torch.ones(3, 4) # torch.zeros(3, 4)

tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])

A tensor can be created from standard Python data.

w = torch.tensor([3, 4, 5, 6])

tensor([3, 4, 5, 6])
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Indexing

The following are standard method of indexing tensors.

y[2, 3] # indexing: zero-based,
# returns a 0-dimensional tensor

tensor(0.7356)

The indexing always returns a (sub)tensor, even for scalars (treated as zero-

dimensional tensors). A standard Python number can be returned by using

.item().

y[2, 3].item() # A standard Python floating-point number

0.7355988621711731

To get a column from a tensor, we use the indexing as below. The syntax is

similar but slightly different from R.

y[:, 3] # 3rd column. The leftmost column is 0th.
# cf. y[, 4] in R

tensor([0.4839, 0.0428, 0.7356])

The following is for taking a row.

y[2, :] # 2nd row. The top row is 0th. cf. y[3, ] in R

tensor([0.2080, 0.1180, 0.1217, 0.7356])

Simple operations

Here we provide an example of simple operations on PyTorch. Addition using

the operator ‘+’ acts just like anyone can expect:

x = y + z # a simple addition.
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tensor([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428],
[1.2080, 1.1180, 1.1217, 1.7356]])

Here is another form of addition.

x = torch.add(y, z) # another syntax for addition

The operators ending with an underscore (_) change the value of the tensor

in-place.

y.add_(z) # in-place addition

tensor([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428],
[1.2080, 1.1180, 1.1217, 1.7356]])

Concatenation

We can concatenate the tensors using the function cat(), which resembles c(),

cbind(), and rbind() in R. The second argument indicates the dimension

that the tesors are concatenated along: zero means by concatenation rows, and

one means by columns.

torch.cat((y, z), 0) # along the rows

tensor([[1.1117, 1.8158, 1.2626, 1.4839],
[1.6765, 1.7539, 1.2627, 1.0428],
[1.2080, 1.1180, 1.1217, 1.7356],
[1.0000, 1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 1.0000, 1.0000],
[1.0000, 1.0000, 1.0000, 1.0000]])

torch.cat((y, z), 1) # along the columns

tensor([[1.1117, 1.8158, 1.2626, 1.4839,
1.0000, 1.0000, 1.0000, 1.0000],

[1.6765, 1.7539, 1.2627, 1.0428,
1.0000, 1.0000, 1.0000, 1.0000],

[1.2080, 1.1180, 1.1217, 1.7356,
1.0000, 1.0000, 1.0000, 1.0000]])
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Reshaping

One can reshape a tensor, like changing the attribute dim in R.

y.view(12) # 1-dimensional array

tensor([1.1117, 1.8158, 1.2626, 1.4839,
1.6765, 1.7539, 1.2627, 1.0428,
1.2080, 1.1180, 1.1217, 1.7356])

Up to one of the arguments of view() can be −1. The size of the reshaped

tensor is inferred from the other dimensions.

# reshape into (6)-by-2 tensor;
# (6) is inferred from the other dimension
y.view(-1, 2)

tensor([[1.1117, 1.8158],
[1.2626, 1.4839],
[1.6765, 1.7539],
[1.2627, 1.0428],
[1.2080, 1.1180],
[1.1217, 1.7356]])

3.3.4 A brief introduction to Julia

Julia is a high-level programming language that has a flavor of scripting lan-

guage such as R and Python, but compiles for efficient execution via LLVM

(Lattner and Adve, 2004). Its syntax is similar to those of MATLAB and R,

leading to easy-to-read code that can run on various hardware with only minor

changes, including CPUs and GPUs. In this section, we review the basic syntax

of Julia. Our description regarding Julia is based on the version 1.4. For more

details, see the official documentation (Julia Contributors, 2020).

3.3.5 Methods and multiple dispatch

In Julia, a function is “an object that maps a tuple of argument values to a return

value.” A function can have different specific implementations, depending on the
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types of input arguments. This feature is called multiple dispatch, and each

specific implementation is called a method. Many core functions in Julia have

several methods attached to each of them. A user can also define additional

methods to existing functions. For example, a method for function f can be

defined as follows:

julia> f(x, y) = "foo"
f (generic function with 1 method)

Each argument can be constrained to certain type, for example:

julia> f(x::Float64, y::Float64) = x * y
f (generic function with 2 methods)

julia> f(x::String, y::String) = x * y
f (generic function with 3 methods)

Float64 is the data type for a double-precision (64-bit) floating point number.

An asterisk (*) between two String objects means string concatenation in

Julia. At runtime, the most specific method is used for the given combination

of input arguments.

julia> f("Candy", 3.0)
"foo"

julia> f("test", "me")
"testme"

julia> f(2.0, 3.0)
6.0

Methods and types may have parameters, enclosed by curly braces ({}). A

parametric method is defined as follows:

julia> g(x::T, y::T) where {T <: Real} = x * y
g (generic function with 1 method)
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The function g() performs multiplication of the two arguments if the two

arguments are the same subtype of Real (a type for real numbers, for example,

Float64, Int32 (32-bit integer), etc.) and they are of the same type.

julia> g(2.0, 3.0)
6.0

julia> g(2, 3)
6

julia> g(2.0, 3)
ERROR: MethodError: no method matching g(::Float64,

::Int64)
Closest candidates are:
g(::T<:Real, ::T<:Real) where T<:Real at REPL[17]:1

Stacktrace:
[1] top-level scope at REPL[28]:1

The third command throws an error, because the two arguments have different

types. Such an error can be avoided by defining a more general method:

julia> g(x::Real, y::Real) = x * y
g (generic function with 2 methods)

Here, the exact type of x and y may be different. An example of parametric

types, AbstractArray, is discussed in Section 3.3.6.

3.3.6 Multidimensional arrays

An array in Julia is defined as “a collection of objects stored in a multi-

dimensional grid”. Each object should be of a specific type for optimized per-

formance, such as Float64, Int32, or String.

The top-level abstract type for a multidimensional array is

AbstractArray{T,N}, where parameter T is the type of element (such as

Float64, Int32), and N is the number of dimensions. AbstractVector{T}

and AbstractMatrix{T} are aliases for AbstractArray{T, 1} and
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AbstractArray{T, 2}, respectively. Operations for AbstractArrays are

provided as fallback methods which would generally work correctly in many

cases, but are often slow.

The type DenseArray is a subtype of AbstractArray representing an

array stored in contiguous CPU memory. The most frequently used instance

of DenseArray is Array, a type for basic CPU array with a grid structure.

Vector{T} and Matrix{T} are aliases for Array{T, 1} and Array{T,

2}, respectively. Another subtype of DenseArray is CuArray, defined in

CUDA.jl, a contiguous array data type on a CUDA GPU. Many of array oper-

ations for CuArray are provided using the same syntax as Arrays.

A Matrix (or an instance of Array{T, 2}) is easily created using a MAT-

LAB-like syntax such as:

julia> A = [1 2; 3 4]
2×2 Array{Int64,2}:
1 2
3 4

An Array can be allocated with undefined values using:

julia> B = Array{Float64}(undef, 2, 3)
2×3 Array{Float64,2}:
6.90922e-310 6.90922e-310 6.90922e-310
6.90922e-310 6.90922e-310 6.90921e-310

There are predefined basic functions for array operations, such as size(A)

that returns a tuple of dimensions of A, eltype(A) that returns the type of

elements in A, and ndims(A), that shows the number of dimensions of A.

3.3.7 Matrix multiplication

Linear algebra operations in Julia are defined in the basic package LinearAlge-

bra. The functions in LinearAlgebra can be loaded to the workspace with the

keyword using:
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julia> using LinearAlgebra

Matrix multiplication in Julia is defined in the function

LinearAlgebra.mul!(C, A, B).1 This function computes the postmulti-

plication of matrix B to matrix A, and stores the result in matrix C. The most

general definition of LinearAlgebra.mul!() is:

LinearAlgebra.mul!(C::AbstractMatrix, A::AbstractVecOrMat,
B::AbstractVecOrMat)

which implements a naive algorithm for matrix multiplication. For a Matrix

stored in the CPU memory, the call to LinearAlgebra.mul!() with argu-

ments

LinearAlgebra.mul!(C::Matrix, A::Matrix, B::Matrix)

invokes the gemm (general matrix multiplication) routine of the BLAS, or the

basic linear algebra subprograms (Blackford et al., 2002), e.g.,

julia> A= [1. 2.; 3. 4.]
2×2 Array{Float64,2}:
1.0 2.0
3.0 4.0

julia> B = [3. 4.; 5. 6.]
2×2 Array{Float64,2}:
3.0 4.0
5.0 6.0

julia> C = Array{Float64, 2}(undef, 2, 2)
2×2 Array{Float64,2}:
6.90922e-310 6.90921e-310
6.90922e-310 6.90922e-310

julia> mul!(C, A, B)
2×2 Array{Float64,2}:

1It is a convention in Julia to end the name of a function that changes the value of its
arguments with an exclamation mark (!).
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13.0 16.0
29.0 36.0

julia> C
2×2 Array{Float64,2}:
13.0 16.0
29.0 36.0

On the other hand, for matrices on GPU, a call to

LinearAlgebra.mul!(C::CuMatrix, A::CuMatrix, B::CuMatrix)

results in operations using cuBLAS (NVIDIA, 2013), a high-level linear algebra

subroutines for CUDA, e.g.,

julia> using CUDA

julia> A_d = cu(A)
2×2 CuArray{Float32,2,Nothing}:
1.0 2.0
3.0 4.0

julia> B_d = cu(B)
2×2 CuArray{Float32,2,Nothing}:
3.0 4.0
5.0 6.0

julia> C_d = cu(C)
2×2 CuArray{Float32,2,Nothing}:
0.0 0.0
0.0 0.0

julia> mul!(C_d, A_d, B_d)
2×2 CuArray{Float32,2,Nothing}:
13.0 16.0
29.0 36.0

The function cu() transforms an Array{T, N} into a CuArray{Float32,

N}.
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3.3.8 Dot syntax for vectorization

Julia has a special “dot” syntax for vectorization. The dot syntax is invoked

by prepending a dot to an operator (e.g., .+) or postpending a dot to a func-

tion name (e.g., soft_threshold.()). Unlike many other programming lan-

guages, vectorization in Julia can be applied to any function without a need

to deliberately tailor the corresponding method. Julia’s JIT compiler automat-

ically matches singleton dimensions of array arguments to the dimensions of

other array arguments. For example,

julia> a = [1, 2]
2-element Array{Int64,1}:
1
2

julia> b = [3 4; 5 6]
2×2 Array{Int64,2}:
3 4
5 6

julia> a .+ b
2×2 Array{Int64,2}:
4 5
7 8

Note that a is a column vector and b is a matrix.

The dot syntax can be extended by defining the method broadcast()

for each array interface, allowing its generalization to any underlying hardware

architecture. In addition, multiple dots on the same line of code fuse into one

call to the function broadcast(), resulting in a single vectorized loop (for

CPU) or a single generated kernel (for GPU) for that line.

While broadcasting is one of the simplest way to represent generalized ele-

mentwise operations, it may not be the fastest option. Broadcasting often al-

locates excessive memory, thus well-optimized compiled loops without memory
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allocation may be faster in many cases.

3.4 Distributed matrix data structure

For the forthcoming examples and potential future uses in statistical computing,

simple distributed data structures are proposed. For dist_stat, the struc-

ture is named distmat. For DistStat.jl, it is named MPIArray. In these

structures, each process, enumerated by its rank, holds a contiguous block of

the full data matrix by rows or columns. The data may be a sparse matrix

in distmat. If GPUs are involved, each process controls a GPU whose index

matches the process rank. For notational simplicity, the dimension to split is

denoted by a pair of square brackets. If a [100] × 100 matrix is split over four

processes, the process with rank 0 keeps the first 25 rows of the matrix, and

the rank 3 process takes the last 25 rows. For dist_stat, it is assumed that

the size along the split dimension is divided by the number of processes. Such

constraint is lifted for DistStat.jl. The code along with the examples in

Section 3.5 is available at https://github.com/kose-y/dist_stat and

https://github.com/kose-y/DistStat.jl.

3.4.1 Distributed matrices in PyTorch: distmat

In distmat, unary elementwise operations such as exponentiation, square root,

absolute value, and logarithm of matrix entries were implemented in an obvious

way. Binary elementwise operations such as addition, subtraction, multiplica-

tion, division were implemented in a similar manner to R’s vector recycling.

For example, if two matrices of different dimensions are to be added together,

say one is three-by-four and the other is three-by-one, the latter matrix is ex-

panded to a three-by-four matrix with the column repeated four times. Another

example is adding a one-by-three matrix and a four-by-one matrix. The former
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matrix is expanded to a four-by-three matrix by repeating the row four times,

and the latter to a four-by-three matrix by repeating the column three times.

Application of this concept is natural using the broadcast semantics of PyTorch.

Reduction operations, such as row-wise (column-wise, and matrix-wise) sum-

mation, (maximum, and minimum) were also implemented in a similar fashion.

Matrix multiplications are more subtle. Six different scenarios of matrix-

matrix multiplications, each representing a different configuration of the split

dimension of two input matrices and the output matrix, were considered and

implemented. These scenarios are listed in Table 3.1. Note that “broadcasting”

and “reduction” in this subsection and the upcoming subsection are defined

over a matrix dimension (rows or columns), unlike in the other parts of this

dissertation where they are defined over multiple processes or ranks. The im-

plementation of each case is carried out using the collective communication

directives introduced in Section 1.2.1. Matrix multiplication scenarios are auto-

matically selected based on the shapes of the input matrices A and B, except for

the Scenarios 1 and 3 sharing the same input structure. Those two are further

distinguished by the shape of output, AB. The nonnegative matrix factorization

example of Section 3.5.1, which utilizes distmat most heavily among others,

involves Scenarios 1 to 5. Scenario 6 is for matrix-vector multiplications, where

broadcasting small vectors is almost always efficient.

In Listing 3.4, we demonstrate an example usage of distmat. We assume

that this program is run with 4 processes (size in Line 5 is 4). Line 11 generates

a [4]×4 double-precision matrix on CPU sampled from the uniform distribution.

The function distgen_uniform has an optional argument TType that allows

users to choose the data type and location of the matrix: Line 10 specifies

the matrix to be a double-precision matrix on CPU. The user may change it

to torch.cuda.FloatTensor to create this matrix on a GPU with single-
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precision. Line 13 multiplies the two matrices A and B to form a distributed

matrix of size [4] × 2. The matrix multiplication routine internally chooses to

utilize Scenario 2 in Table 3.1. In order to compute log(1 + AB) elementwise,

all that is needed to do is to write (1 + AB).log() as in Line 17. Here,

1 + AB is computed elementwise first, then its logarithms are computed. The

local block of data can be accessed by appending .chunk to the name of the

distributed matrix, as in Lines 16 and 20.

3.4.2 Distributed arrays in Julia: MPIArray

DistStat.jl implements a distributed MPI-based array data structure

MPIArray as the core data structure for implementations of AbstractArrays.

It uses MPI.jl as a backend. It has been tested for basic Arrays and CuArrays.

The standard vectorized “dot” operations can be used for convenient element-by-

element operations as well as broadcasting operations on MPIArrays. Further-

more, simple distributed matrix operations for MPIMatrix, or two-dimensional

MPIArrays, are also implemented. Reduction and accumulation operations are

supported for MPIArrays of any dimension. The package can be loaded by:

using DistStat

If GPUs are available, one that is to be used is automatically selected in a round-

robin fashion upon loading the package. The rank, or the “ID” of a process, and

the size, or the total number of the processes, can be accessed by:

DistStat.Rank()
DistStat.Size()

Ranks are indexed 0-based, following the MPI standard.

In DistStat.jl, a distributed array data type MPIArray{T,N,AT} is

defined. Here, parameter T is the type of each element of an array, e.g., Float64

or Float32. Parameter N is the dimension of the array, 1 for vector and 2 for
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matrix, etc. Parameter AT is the implementation of AbstractArray used for

base operations: Array for the basic CPU array, and CuArray for the arrays

on Nvidia GPUs (requires CUDA.jl). If there are multiple CUDA devices, a

device is assigned to a process automatically by the rank of the process mod-

ulo the size. This assignment scheme extends to the setting in which there are

multiple GPU devices in multiple CPU nodes. The type MPIArray{T,N,AT}

is a subtype of AbstractArray{T, N}. In MPIArray{T,N,AT}, each rank

holds a contiguous block of the full data in AT{T,N} split by the N-th dimen-

sion, or the last dimension of an MPIArray.

In the special case of a two-dimensional array, aliased by MPIMatrix{T,AT},

the data are column-major ordered and column-split. The transpose of this ma-

trix has type of

Transpose{T,MPIMatrix{T,AT}}

which is row-major ordered and row-splitted. There also is an alias for one-

dimensional array MPIArray{T,1,A}, which is MPIVector{T,A}.

Creation

The syntax MPIArray{T,N,A}(undef, m, ...) creates an uninitialized

MPIArray. For example,

a = MPIArray{Float64, 2, Array}(undef, 3, 4)

creates an uninitialized 3×4 distributed array based on local Arrays of double

precision floating-point numbers. The size of this array, the type of each element,

and the number of dimensions can be accessed using the usual functions in Julia:

size(a), eltype(a), and ndims(a). Local data held by each process can

be accessed by appending .localarray to the name of the array, e.g.,

a.localarray
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Matrices are split as evenly as possible. For example, if the number of processes

is 4 and the size(a) == (3, 7), processes of ranks 0 through 2 hold the

local data of size (3, 2) and the rank-3 process holds the local data of size (3,

1).

An MPIArray can also be created by distributing an array residing in a

single process. For example, in the following code:

if DistStat.Rank() == 0
dat = [1, 2, 3, 4]

else
dat = Array{Int64}(undef, 0)

end
d = distribute(dat)

the data are defined in the rank-0 process, and each other process has an empty

instance of Array{Int64}. Using the function distribute, the

MPIArray{Int64, 1, Array} of the data [1, 2, 3, 4], equally dis-

tributed over four processes, is created.

Filling an array

An MPIArray a can be filled with a number x using the usual syntax of the

function fill!(a, x). For example, a can be filled with zero:

fill!(a, 0)

Random number generation

An array can also be filled with random values, extending Random.rand!()

for the standard uniform distribution and Random.randn!() for the stan-

dard normal distribution. The following code fills a with uniform(0, 1) random

numbers:

using Random
rand!(a)
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In cases such as unit testing, generating identical data for any configuration is

important. For this purpose, the following interface is defined:

function rand!(a::MPIArray{T,N,A}; seed=nothing,
common_init=false, root=0) where {T,N,A}

If the keyword argument common_init=true is set, the data are gener-

ated from the process with rank root. The seed can also be configured. If

common_init == false and seed == k, the seed for each process is set

to k plus the rank.

The “dot” broadcasting feature of DistStat.jl follows the standard Julia

syntax. This syntax provides a convenient way to operate on both multi-node

clusters and multi-GPU workstations with the same code. For example, the

soft-thresholding operator, which commonly appears in sparse regression can

be defined in the element level:

function soft_threshold(x::T, lambda::T)::T where {T
<: AbstractFloat}

x > lambda && return (x - lambda)
x < -lambda && return (x + lambda)
return zero(T)

end

This function can be applied to each element of an MPIArray using the dot

broadcasting, as follows. When the dot operation is used for an

MPIArray{T,N,AT}, it is naturally passed to inner array implementation AT.

Consider the following arrays filled with random numbers from the standard

normal distribution:

a = MPIArray{Float64, 2, Array}(undef, 2, 4) |> randn!
b = MPIArray{Float64, 2, Array}(undef, 2, 4) |> randn!

The function soft_threshold() is applied elementwisely as the following:

a .= soft_threshold.(a .+ 2 .* b, 0.5)
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The three dot operations, .=, .+, and .*, are fused into a single loop (in CPU)

or a single kernel (in GPU) internally.

A singleton non-last dimension is treated as if the array is repeated along

that dimension, just like Array operations. For example,

c = MPIArray{Float64, 2, Array}(undef, 1, 4) |> rand!
a .= soft_threshold.(a .+ 2 .* c, 0.5)

works as if c were a 2 × 4 array, with its content repeated twice. It is a little

bit subtle with the last dimension, as the MPIArray{T,N,AT}s are split along

that dimension. It works if the broadcast array has the type AT and holds the

same data across the processes. For example,

d = Array{Float64}(undef, 2, 1); fill!(d, -0.1)
a .= soft_threshold.(a .+ 2 .* d, 0.5)

As with any dot operation in Julia, the dot operations for DistStat.jl are

convenient but usually not the fastest option. Its implementations can be further

optimized by specializing in specific array types. An example of this is given in

Section 3.5.4.

Reduction operations, such as sum(), prod(), maximum(), minimum(),

and accumulation operations, such as cumsum(), cumsum!(), cumprod(),

cumprod!(), are implemented just like their base counterparts, computing

cumulative sums and products. Example usages of sum() and sum!() are:

sum(a)
sum(abs2, a)
sum(a, dims=1)
sum(a, dims=2)
sum(a, dims=(1,2))
sum!(c, a)
sum!(d, a)

The first line computes the elementwise sum of a. The second line computes

the sum of squared absolute values (abs2() is the method that computes the
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squared absolute values). The third and fourth lines compute the column sums

and row sums, respectively. Similar to the dot operations, the third line reduces

along the distributed dimensions, and returns a broadcast local Array. The

fifth line returns the sum of all elements, but the data type is a 1×1 MPIArray.

The syntax sum!(p, q) selects which dimension to reduce based on the shape

of p, the first argument. The sixth line computes the columnwise sum and saves

it to c, because c is a 1 × 4 MPIArray. The seventh line computes rowwise

sum, because d is a 2× 1 local Array.

Given below are examples for cumsum() and cumsum!():

cumsum(a; dims=1)
cumsum(a; dims=2)
cumsum!(b, a; dims=1)
cumsum!(b, a; dims=2)

The first line computes the columnwise cumulative sum, and the second line

computes the rowwise cumulative sum. So do the third and fourth lines, but

save the results in b, which has the same size as a.

Distributed linear algebra operations are implemented as follows.

Dot product

The method LinearAlgebra.dot() for MPIArrays is defined just like the

base LinearAlgebra.dot(), which sums all the elements after an element-

wise multiplication of the two argument arrays:

using LinearAlgebra
dot(a, b)

Operations on the diagonal

The “getter” method for the diagonal, diag!(d, a), and the “setter” method

for the diagonal, fill_diag!(), are also available. The former obtains the
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main diagonal of the MPIMatrix a and is stored in d. If d is an MPIMatrix

with a single row, the result is obtained in a distributed form. On the other

hand, if d is a local AbstractArray, all elements of the main diagonal is

copied to all processes as a broadcast AbstractArray:

M = MPIMatrix{Float64, Array}(undef, 4, 4) |> rand!
v_dist = MPIMatrix{Float64, Array}(undef, 1, 4)
v = Array{Float64}(undef, 4)
diag!(v_dist, M)
diag!(v, M)

Matrix multiplication

The method LinearAlgebra.mul!(C, A, B) is implemented for

MPIMatrixes, in which the multiplication of A and B is stored in C. Matrix

multiplications for 17 different combinations of types for A, B, and C, including

matrix-vector multiplications, are included in the package. It is worth noting

that transpose of an MPIMatrix is a row-major ordered, row-split matrix.

While the base syntax of mul!(C, A, B) is always available, any tempo-

rary memory to save intermediate results can also be provided as a keyword

argument in order to avoid repetitive allocations in iterative algorithms, as in

mul!(C, A, B; tmp=Array(undef, 3, 4). The user should determine

which shape of C minimizes communication and suits better for their appli-

cation. MPIColVector{T, AT} is defined as Union{MPIVector{T,AT},

Transpose{T, MPIMatrix{T,AT}}} to include transposed

MPIMatrix with a single row. The 17 possible combinations of arguments

available are listed in Table 3.2.

Operator norms

The method opnorm() either evaluates (ℓ1 and ℓ∞) or approximates (ℓ2) ma-

trix operator norms, defined for a matrix A ∈ Rm×n as ∥A∥ = sup{∥Ax∥ : x ∈
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Rn with ∥x∥ = 1} for each respective vector norm.

opnorm(a, 1)
opnorm(a, 2)
opnorm(a, Inf)

The ℓ2-norm is estimated via the power iteration (Golub and Van Loan, 2013),

and can be further configured for convergence and the number of iterations.

There also is an implementation based on the inequality ∥A∥2 ≤ ∥A∥1∥A∥∞

(method="quick"), which overestimates the ℓ2-norm.

opnorm(a, 2; method="power", tol=1e-6, maxiter=1000,
seed=95376)

opnorm(a, 2; method="quick")

3.5 Examples

In this section, we compare the performance of the optimization algorithms on

four statistical computing examples: nonnegative matrix factorization (NMF),

positron emission tomography (PET), multidimensional scaling (MDS), and ℓ1-

regularized Cox model for survival analysis. Single-device codes are provided to

show the simplicity of the programming and distribute it over a cluster com-

posed of multiple AWS EC2 instances or a local multi-GPU workstation. For

NMF and PET, we compare two algorithms, one more classical, and the other

based on recent development. We evaluate the objective function once per 100

iterations. For the comparison of execution time, the iteration is run for a fixed

number of iterations, regardless of convergence. For comparison of different al-

gorithms regarding the same problem, we iterate until |f(θn)−f(θn−100)|
(|f(θn)|+1) < 10−5.

Table 3.3 shows the setting of our HPC systems used for the experiments.

For virtual cluster experiments, we utilized 1 to 20 of AWS c5.18xlarge

instances with 36 physical cores with AVX-512 (512-bit advanced vector exten-

sion to the x86 instruction set) enabled in each instance through CfnCluster.
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Network bandwidth of each c5.18xlarge instance was 25GB/s. A separate

c5.18xlarge instance served as the “master” instance. This instance does not

participate in computation by itself but manages the computing jobs over the

1 to 20 “worker” instances. Data and software for the experiments were stored

in an Amazon Elastic Block Store (EBS) volume attached to this instance and

shared among the worker instances via the network file system. Further de-

tails are given in Appendix C. For GPU experiments, a local machine with two

CPUs (10 cores per CPU) and eight Nvidia GTX 1080 GPUs was used. These

are desktop GPUs, not optimized for double-precision. All the experiments were

conducted using PyTorch version 0.4 built on the MKL; the released code works

for the versions up to 1.4, the most recent stable version as of June 2020.

For all of the experiments, the single-precision computation results on GPU

were almost the same as the double-precision results up to six significant dig-

its, except for ℓ1-regularized Cox regression, the necessary cumulative sum

operation implemented in PyTorch caused by numerical instability in some

cases with small penalties. Therefore the computations for Cox regression with

dist_stat were performed in double-precision. Extra efforts for writing a

multi-device code were modest using dist_stat and DistStat.jl, less than

100 lines for each application.

As can be verified in the sequel, computing on GPUs was effective on mid-

sized (around 10,000 × 10,000) datasets, but stalled on larger (around 100,000

× 100,000) datasets due to memory limitation. In contrast, the virtual clusters

were not very effective on mid-sized data, and may even slow down due to

communication burden. They were effective and scaled well on larger (around

100,000 × 100,000) datasets.

In general, multi-GPU implementation results of DistStat.jl are largely

comparable to those of dist_stat with more GPUs. In large-scale AWS
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Table 3.3: Configuration of experiments

local node AWS c5.18xlarge
CPU GPU CPU

Model Intel Xeon E5-2680 v2 Nvidia GTX 1080 Intel Xeon
Platinum 8124M

# of cores 10 2560 18
Clock 2.8 GHz 1.6 GHz 3.0GHz

# of entities 2 8 2 (per instance)
× 1-20 (instances)

Total memory 256 GB 64 GB 144 GB × 4–20
Total cores 20 20,480 (CUDA) 36 × 4–20

EC2 experiments, DistStat.jl achieved faster computation thanks to in-

creased flexibility in process configuration. When communication is heavy, we

can use the configuration with less jobs, with each job using more threads.

When communication is a little bit of a problem, we can use the configuration

with more jobs, with each job using a single thread. This is nearly impossi-

ble with dist_stat, because due to the limitation of torch.distributed

subpackage of PyTorch, each process has to hold the same size of data. In

addition, the MPI wrappers in PyTorch forces copy of data before and after the

data communication, while MPI.jl does not.

3.5.1 Nonnegative matrix factorization

NMF is a procedure that approximates a nonnegative data matrix X ∈ Rm×p

by a product of two low-rank nonnegative matrices, V ∈ Rm×r and W ∈ Rr×p.

It is widely used in image processing, bioinformatics, and recommender systems

(Wang and Zhang, 2013) where the data have only nonnegative values. One of

the first effective algorithms was the multiplicative algorithm introduced by Lee

and Seung (1999, 2001). In a simple setting, NMF minimizes

f(V,W ) = ∥X − VW∥2F,
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where ∥ · ∥F denotes the Frobenius norm.

The multiplicative algorithm written using PyTorch for a single device is

given as:

# initialize X, W, V in a single device: a CPU or a GPU.
for i in range(max_iter):

# Update V
XWt = torch.mm(X, W.t()) # compute XW^T
WWt = torch.mm(W, W.t()) # compute WW^T
VWWt = torch.mm(V, WWt) # compute VWW^T
# V = V * XW^T / VWW^T elementwise in-place.
V = V.mul_(XWt).div_(VWWt + eps)
# Update W
VtX = torch.mm(V.t(), X)
VtV = torch.mm(V.t(), V)
VtVW = torch.mm(VtV, W)
W = W.mul_(VtX).div_(VtVW + eps)

This algorithm can be interpreted as a case of MM algorithm with a surrogate

function of f based on Jensen’s inequality:

g(V,W |V n,Wn) =
∑
i,j,k

vnikw
n
kj∑

k′ v
n
ik′w

n
k′j

(
xij −

∑
k′ v

n
ik′w

n
k′j

vnikw
n
kj

vikwkj

)2

.

The update rule is:

V n+1 = V n ⊙ [X(Wn)T ]⊘ [V nWn(Wn)T ]

Wn+1 = Wn ⊙ [(V n+1)TX]⊘ [(V n+1)TV n+1Wn],

where ⊙ and ⊘ denote elementwise multiplication and division, respectively.

The simple-looking code can fully utilize the shared-memory parallelism: if

the matrices are stored on the CPU memory, it runs parallelly, fully utilizing

OpenMP and MKL/OpenBLAS (depending on installation). If the data are

stored on a single GPU, the code runs parallely utilizing GPU cores through

the CUDA libraries. Distributing this algorithm on a large scale machine is
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straightforward (Liu et al., 2010a). An implementation of the multiplicative

algorithm of NMF in native Julia is given by:

for i in 1:iter
mul!(WXt, W, transpose(X))
mul!(WWt, W, transpose(W))
mul!(WWtVt, WWt, Vt)
Vt .= Vt .* WXt ./ (WWtVt .+ eps)

mul!(VtX, Vt, X)
mul!(VtV, Vt, transpose(Vt))
mul!(VtVW, VtV, W)
W .= W .* VtX ./ (VtVW .+ eps)

end

A very small number (eps) is added to the denominator for numerical stability.

Exactly the same code can run on various HPC environments including mul-

tiple CPU nodes and multi-GPU workstations in a distributed fashion. In the

numerical experiments, X, W, Vt, WXt, WWtVt, VtX, and VtVW were defined as

column-distributed MPIMatrixs using DistStat.jl, and further optimiza-

tion for memory efficiency was conducted.

Figure 3.1 shows an example of NMF on a publicly available hyperspectral

image. It was acquired by the reflective optics system imaging spectrometer sen-

sor in a flight campaign over Pavia University in Italy. The image is essentially

a 610 (height)×340 (width)×103 (bands) hyperspectral cube. It is interpreted

as a 207, 400 (pixels)× 103 (bands) matrix and then analyzed using NMF. The

rank r was set to 20. In the resulting 207, 400× 20 matrix V , each column can

be interpreted as a composite channel from the original 103 bands. Three of

these channels showing distinct features chosen by hand are shown in Figure

3.1.

A problem with the multiplicative algorithm is the potential to generate

subnormal numbers, significantly slowing down the algorithm. A subnormal
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Figure 3.1: Three selected bands from the NMF of the Pavia University hyper-
spectral image with r = 20

number or denormal number is a number smaller (in magnitude) than the

smallest positive number that can be represented by the floating-point num-

ber system. Subnormal numbers are generated by the multiplicative algorithm

if values smaller than 1 are multiplied repeatedly. Indeed, when the NMF code

was run on a CPU with a small synthetic data of size 100 × 100, a significant

slowdown was observed. The IEEE floating-point standard is to deal with sub-

normal numbers properly with a special hardware or software implementation

(IEEE Standards Committee, 2008). In many CPUs, the treatment of subnor-

mal numbers relies on software and hence is very slow. Forcing such value to zero

is potentially dangerous depending on applications because it becomes prone to

division-by-zero error. In our experiments, division-by-zero error did not occur

when flushing the subnormal numbers to zero. In contrast, Nvidia GPUs sup-

port subnormal numbers at a hardware level since the Fermi architecture, and

simple arithmetic operations do not slow down by subnormal numbers (White-

head and Fit-Florea, 2011).
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Subnormal numbers can be completely avoided (especially in CPUs) by

using a different algorithm. The alternating projected gradient (APG) method

(Lin, 2007) is such an algorithm, and it is also easy to introduce regularization

terms.With ridge penalties the objective function

f(V,W ; ϵ) = ∥X − VW∥2F +
ϵ

2
∥V ∥2F +

ϵ

2
∥W∥2F

is minimized. The corresponding APG update is given by

V n+1 = P+

(
(1− σnϵ)V

n − σn(V
nWn(Wn)T −X(Wn)T )

)
Wn+1 = P+

(
(1− τnϵ)W

n − τn((V
n+1)TV n+1Wn − (V n+1)TX)

)
,

where P+ denotes the projection onto the nonnegative orthant; σn and τn are

the step sizes. This update rule can be interpreted as an MM algorithm, due to

the nature of projected gradient. Convergence of APG is guaranteed if ϵ > 0,

σn ≤ 1/(2∥Wn(Wn)T + ϵI∥2F), and τn ≤ 1/(2∥(V n)TV n + ϵI∥2F).

For the distributed implementation, X is assumed to be an [m] × p ma-

trix. The resulting matrix V is distributed as an [m] × r matrix, and W is

distributed as an r× [p] matrix. The distributed code is equivalent to replacing

torch.mm with distmat.mm in the dist_stat code provided, with an addi-

tional optional argument out_sizes=W.sizes on the tenth line. As discussed

in Section 3.4, distributed matrix multiplication algorithms are automatically

selected from Table 3.1 based on the arguments.

Table 3.4 compares the performance of the two NMF algorithms on the

multi-GPU setting in Table 3.3 with 10, 000 × 10, 000 data for 10,000 itera-

tions. The data are row-distributed in dist_stat and column-distributed in

DistStat.jl. It can be seen that the performances are comparable between

the two algorithms, with APG being slightly slower with fixed number of iter-
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Table 3.4: Runtime (in seconds) of NMF algorithms on 10, 000× 10, 000 simu-
lated data on GPUs

dist_stat DistStat.jl
GPUs r = 20 r = 40 r = 60 r = 20 r = 40 r = 60

Multiplicative
1 62 71 75 62 72 83
2 43 55 63 42 60 72
3 38 57 71
4 37 51 63 34 54 68
5 39 54 66 38 56 75
6 36 56 80
7 37 58 81
8 40 60 75 37 59 83

APG
1 68 76 82 61 80 85
2 49 61 69 43 60 79
3 38 59 74
4 44 58 70 36 54 72
5 46 60 73 37 59 78
6 37 56 75
7 38 61 88
8 47 68 83 39 59 82

ations. This is because APG has slightly more operations involved. With more

than 4 GPUs, the communication burden outweighs the speedup from using

more GPU cores, and the algorithm becomes slower. The execution time be-

tween the dist_stat and DistStat.jl implementations are also largely

comparable, with DistStat.jl version being faster in r = 20 cases. Exper-

iments with 3, 6, or 7 GPUs were impossible with 10, 000 × 10, 000 data with

dist_stat, because the size of dataset was not divisible by 3, 6, and 7.

Additional experiments were conducted to see how the value of ϵ affects

the convergence. The results are shown in Table 3.8. Convergence was faster for

higher values of ϵ. The number of iterations to convergence in the multiplicative

algorithm was higher than the APG with ϵ = 10 for higher-rank decompositions

(r = 40 and 60) due to heavier communication burden.
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Table 3.5: Runtime (in seconds) of NMF algorithms on 200, 000× 200, 000 sim-
ulated data on multiple AWS EC2 instances

dist_stat DistStat.jl
Instances r = 20 r = 40 r = 60 r = 20 r = 40 r = 60

Multiplicative
4 1419 1748 2276 1392 1576 2057
5 1076 1455 1698 1187 1383 1847
8 859 966 1347 851 936 1430

10 651 881 1115 708 856 1065
16 549 700 959 553 694 907
20 501 686 869 554 672 832

APG
4 1333 1756 2082 1412 1711 2023
5 1088 1467 1720 1215 1372 1775
8 766 994 1396 849 916 1388

10 677 870 1165 673 799 1014
16 539 733 936 547 684 867
20 506 730 919 538 727 836

Table 3.5 compares the algorithms and implementations using 200, 000 ×

200, 000 data on multiple AWS EC2 instances for 1000 iterations. For

DistStat.jl implementation, two processes per instance were used to avoid

the communication burden. Once again, elapsed time was largely similar be-

tween the two algorithms. APG is faster than the multiplicative algorithms in

more cases compared to GPU, because the multiplicative algorithm on CPU of-

ten suffers from the slowdown due to creation of denormal numbers. The cluster

in a cloud was scalable on larger datasets, running faster with more instances,

up to 2.83x-speedup on 20-instance cluster over a four-instance cluster. Between

the two implementations, the DistStat.jl implementation was faster in 24

out of 30 cases.
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Table 3.6: Runtime (in seconds) comparisons for NMF on the simulated
[10, 000]× 10, 000 data

10,000 iterations
method r CPU 1 GPU 2 GPUs 4 GPUs 8 GPUs
Multiplicative 20 655 160 93 62 50

40 978 165 102 73 72
60 1355 168 109 85 86

APG 20 504 164 97 66 57
(ϵ = 0) 40 783 168 106 78 77

60 1062 174 113 90 92

Table 3.7: Comparison of objective function values for simulated [10, 000] ×
10, 000 data after 10,000 iterations and 100,000 iterations

method r 10,000 iterations 100,000 iterations
Multiplicative 20 8.270667E+06 8.270009E+06

40 8.210266E+06 8.208682E+06
60 8.155084E+06 8.152358E+06

APG 20 8.271248E+06 8.270005E+06
(ϵ = 0) 40 8.210835E+06 8.208452E+06

60 8.155841E+06 8.151794E+06
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3.5.2 Positron emission tomography

Positron emission tomography (PET) is one of the earliest applications of the

EM algorihtm in computed tomography (Lange and Carson, 1984; Vardi et al.,

1985). In this scenario, we consider a two-dimensional imaging consisting of

p pixels obtained from the circular geometry of q photon detectors. We esti-

mate Poisson emission intensities λ = (λ1, · · · , λp), which is proportional to the

concentration of radioactively labeled isotopes injected to biomolecules. Such

an isotope emits a positron, which collides with a nearby electron, forming two

gamma-ray photons flying in almost opposite directions. These two photons are

detected by a pair of photon detectors corresponding to the line of flight. The

coincidence counts (y1, . . . , yd) are observed. Detector pairs are enumerated by

1, 2, . . . , d = q(q − 1)/2. The likelihood of detection for a detector pair i is

modeled by Poisson distribution with mean
∑p

j=1 eijλj , where eij is the prob-

ability that a pair of photons is detected by the detector pair i given that a

positron is emitted in the pixel location j. The matrix E = (eij) ∈ Rd×p can

be precomputed based on the geometry of the detectors. The corresponding

loglikelihood to maximize is given by

L(λ) =
d∑

i=1

yi log
 p∑

j=1

eijλj

−
p∑

j=1

eijλj

 .

Without a spatial regularization term, the reconstructed intensity map is grainy.

One remedy is adding a ridge-type penalty of −(µ/2)∥Dλ∥22, where D is the

finite difference matrix on the pixel grid; each row of D has one +1 and one

−1. The MM iteration based on separation of the penalty function by the

minorization

(λj − λk)
2 ≥ −1

2
(2λj − λn

j − λn
k)

2 − 1

2
(2λk − λn

j − λn
k)

2
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is:

zn+1
ij = eijyiλ

n
j

/(∑
k

eikλ
n
k

)

bn+1
j = µ

(
njλ

n
j +

∑
k

gjkλ
n
k

)
− 1

λn+1
j =

−bn+1
j −

√√√√(bn+1
j )2 − 4aj

d∑
i=1

zn+1
ij

/ (2aj),

where nj =
∑

k gjk and aj = −2µnj are precomputed. Matrix G = (gjk)

is the adjacency matrix corresponding to the grid. See Section 3.2 of Zhou

et al. (2010) for the detailed derivation. The sparse structure of G and E is

exploited for software implementation in dist_stat. Implementation with

DistStat.jl is omitted, since the package does not support sparse matrices

yet. By using matrix notations and broadcasting semantics, the PyTorch code

can be succinctly written as:

# G: adjacency matrix, sparse p-by-p
# mu: roughness penalty parameter
# E: detection probability matrix, d-by-p
# lambd: poisson intensity, p-by-1, randomly initialized
# y: observed data, d-by-1
# eps: a small positive number for numerical stability
N = torch.mm(G, torch.ones(G.shape[1], 1))
a = -2 * mu * N
for i in range(max_iter):

el = torch.mm(E, lambd)
gl = torch.mm(G, lambd)
z = E * y * lambd.t() / (el + eps)
b = mu * (N * lambd + gl) -1
c = z.sum(dim=0).t()
# update lambda
if mu != 0:

lambd = (-b - (b**2-4*a*c).sqrt())/(2*a+eps)
else:

lambd = -c/(b+self.eps)
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Figure 3.2 shows the results with a p = 64 × 64 Roland-Varadhan-Frangakis

(RVF) phantom (Roland et al., 2007) with d = 2016 with various values of

µ, and Figure 3.4 shows the results with a 128 × 128 extended cardiac-torso

(XCAT) phantom (Lim et al., 2018; Ryu et al., 2020) with d = 8128. Images

get smooth as the value of µ increases, but the edges are blurry.

To promote sharp contrast, the total variation (TV) penalty (Rudin et al.,

1992) can be employed. Adding an anisotropic TV penlty yields minimizing

−L(λ) + ρ∥Dλ∥1 =
d∑

i=1

[(Eλ)i − yi log((Eλ)i)] + ρ∥Dλ∥1,

which is equivalent to the formulation in Section 2.1. We can use the PDHG al-

gorithm discussed in Section 1.3.4. Put K = [ET , DT ]T ,

f(z, w) =
∑

i(−yi log zi) + ρ∥w∥1, and g(λ) = 1TEλ + δ+(λ), where 1 is the

all-one vector of conforming shape and δ+ is the 0/∞ indicator function for the

nonnegative orthant. Since f(z, w) is separable in z and w, applying iteration

(1.5) using the proximity operator (1.2), we obtain the following update rule:

λn+1 = P+(λ
n − τ(ET z +DTw + ET1))

λ̃n+1 = 2λn+1 − λn

zn+1 =
1

2

(
(zn + σEλ̃n+1)−

√
(zn + σEλ̃n+1)2 + 4σy

)
wn+1 = P[−ρ,ρ](w

n + σDλ̃n+1),

where P[−ρ,ρ] is elementwise projection to the interval [−ρ, ρ]. Convergence is

guaranteed if στ < 1/∥[ED]∥22. An implementation is given by:

# tau, sig: predetermined
# E: d-by-p
# D: l-by-p
# y: d-by-1, observed count
# rho: penalty parameter
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Table 3.9: Convergence time comparisons for TV-penalized PET with different
values of ρ. Problem dimension is p = 10, 000 and d = 16, 110. Eight GPUs
were used.

ρ iterations time (s) function
0 6400 20.6 -2.417200E+05

0.01 4900 15.8 -2.412787E+05
0.1 5000 16.1 -2.390336E+05

1 2800 9.5 -2.212579E+05

# lambd: p-by-1, randomly initialized
# z: d-by-1, initialized to -1
# w: l-by-1, initiailzed to 0

Et1 = torch.mm(E.t(), torch.ones(E.shape[0], 1))
for i in range(max_iter):

lambd_prev = lambd
Etz = torch.mm(E.t(), z)
Dtw = torch.mm(D.t(), w)

lambd = torch.clamp(lambd - tau * (Etz + Dtw + Et1),
min=0.0)

lambd_tilde = 2 * lambd - lambd_prev

el = torch.mm(E, lambd_tilde)
z_step = z + sig * el
z = 0.5 * (z_step - torch.sqrt(z_step ** 2 +

4 * sig * y))

dl = torch.mm(D, lambd_tilde)
w_step = w + sig * dl
w = torch.clamp(w, max=rho, min=-rho)

Figures 3.3 and 3.5 are the TV-reconstructed versions of Figures 3.2 and

3.4, respectively. Compare the edge contrast.

Table 3.9 shows the convergence with different values of penalty parameters.

Observe that the algorithm converges faster for large values of ρ. Scalability
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experiments were carried out with large RVF-like phantoms using grid sizes

p = 300× 300, 400× 400, and 900× 900, with the number of detectors q = 600

(d = 179, 700). The matrix E is distributed as a d× [p] matrix, and the matrix

D is distributed as an l × [p] matrix. The symmetric adjacency matrix G is

distributed as a [p]×p matrix. The sparse structure of these matrices is exploited

using the sparse tensor data structure of PyTorch. Timing per 1000 iterations

is reported in Table 3.10. For reference, the data used in Zhou et al. (2010) were

for 64 × 64 grid with q = 64, or d = 2016. Time per iterations of the PDHG

method for the TV penalty is noticeably shorter as each iteration is much

simpler than the MM counterpart for the ridge penalty, with no intermediate

matrix created. The total elapsed time gets shorter with more GPUs. Although

the speedup when adding more devices is somewhat mitigated in this case due

to using sparse structure, resulting in 1.25x-speedup for 8 GPUs over 2 GPUs

with p = 160, 000, we can still take advantage of the scalability of memory with

more devices.

3.5.3 Multidimensional scaling

Multidimensional scaling is one of the earliest applications of the MM principle

(de Leeuw, 1977; de Leeuw and Heiser, 1977). In this example, we reduce the

dimensionality of m data points by mapping them into θ = (θ1, . . . , θm)T ∈

R[m]×q in q-dimensional Euclidean space in a way that keeps the dissimilarity

measure yij between the data points xi and xj as close as possible to that in

the original manifold. In other words, we minimize the stress function

f(θ) =

q∑
i=1

∑
j ̸=i

wij(yij − ∥θi − θj∥2)2

=

q∑
i=1

∑
j ̸=i

[
−2wijyij∥θi − θj∥2 + wij∥θi − θj∥22

]
+ const.,
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Table 3.10: Runtime (in seconds) comparison of 1,000 iterations of absolute-
value penalized PET. Sparse structures of E and D were exploited. The number
of detector pairs d was fixed at 179,700.

configuration p = 90, 000 p = 160, 000 p = 810, 000

GPUs
1 × × ×
2 21 35 ×
4 19 31 ×
8 18 28 ×

AWS EC2 c5.18xlarge instances
1 63 108 530
2 46 84 381
4 36 49 210
5 36 45 188
8 33 39 178

10 38 37 153
20 26 28 131

where the wij are the weights. We adopt the following surrogate function that

majorizes f :

g(θ|θn) = 2

q∑
i=1

∑
j ̸=i

[
wij

∥∥∥∥θi − 1

2
(θni + θnj )

∥∥∥∥2
2

−
wijyij(θi)

T (θni − θnj )

∥θni − θnj ∥2

]
.

The corresponding update equation obtained from setting the gradient of g(θ|θn)

to zero is

θn+1
ik =

∑
j ̸=i

[
yij

θnik − θnjk
∥θni − θnj ∥2

+ (θnik + θnjk)

]/2
∑
j ̸=i

wij


for i = 1, . . . , n and k = 1, . . . , q. See Zhou et al. (2010) for the detailed deriva-

tion. In PyTorch syntax, this can be parallely computed by the code:

# initialize theta from Unif(-1, 1)
for i in range(max_iter):

# compute Z_{ij} = y_{ij} /
# \|\theta^i - \theta^j\|_2^2
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d = torch.mm(self.theta, self.theta.t())
# to broadcast the below
TtT_diag = torch.diag(d).view(-1, 1)

d = d.mul_(-2.0)
d.add_(TtT_diag)
d.add_(TtT_diag.t())
# directly modify the diagonal
d_diag = d.view(-1)[::(self.q+1)]
d_diag.fill_(inf)
Z = torch.div(self.y, d)
# the below is length-q vector
Z_sums = Z.sum(dim=1, keepdim=True)

# Compute \theta^T (W - Z_n), where
# W = 1 - diag(1,1,...1)
weight_minus_Z = 1.0 - Z
weight_minus_Z_diag = WmZ.view(-1)[::(self.q+1)]
weight_minus_Z_diag.fill_(0)
# # directly modify the diagonal
# where the weight is zero
TWmZ = torch.mm(self.theta.t(), weight_minus_Z)

theta = (self.theta * (self.w_sums + Z_sums) +
TWmZ.t())/(self.w_sums * 2.0)

The code below is a simple implementation of MDS in DistStat.jl.

W_sums = sum(W; dims=2)
for i in 1:iter

mul!(theta_distances, transpose(theta), theta)
diag!(d_dist, theta_distances)
diag!(d_local, theta_distances)
theta_distances .= -2theta_distances .+ d_dist .+

d_local
fill_diag!(theta_distances, Inf)
Z .= y ./ theta_distances
Z_sums .= sum(Z; dims=1) # Z sums, length m.
WmZ .= W .- Z
mul!(theta_WmZ, theta, WmZ)
theta .= (theta .* (Z_sums .+ W_sums) .+ theta_WmZ)./
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Table 3.11: Runtime (in seconds) of MDS on 10, 000 × 10, 000 simulated data
on multiple GPUs

dist_stat DistStat.jl
GPUs q = 20 q = 40 q = 60 q = 20 q = 40 q = 60

1 292 301 307 402 415 423
2 146 151 154 267 275 279
3 210 212 216
4 81 84 88 89 93 97
5 74 78 80 77 83 85
6 64 70 72
7 58 64 69
8 52 58 64 53 60 65

2W_sums
end

This code can also run for local array only with minor modifications involving

the matrix diagonals.

For numerical experiments, a [10,000] × 10,000 and a [100,000] × 1,000

dataset was sampled from the standard normal distribution. For reference, the

dataset used in Zhou et al. (2010) was 401 × 401. The pairwise Euclidean dis-

tances between data points were computed distributedly (Li et al., 2010): in

each stage, data on one of the processors are broadcast and each processor

computes pairwise distances between the data residing on its memory and the

broadcast data. This is repeated until all the processors broadcast its data.

Table 3.11 compares the performance of DistStat.jl and dist_stat

on multiple GPUs with 10, 000 × 10, 000 dataset. While dist_stat is faster

with fewer GPUs employed, the gap between the two implementations vanishes

dramatically as more GPUs are used.

For the AWS experiments, 36 processes per instance were used for

DistStat.jl, because the step that mainly causes inter-instance communi-
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Table 3.12: Runtime (in seconds) of MDS on 100, 000× 1000 simulated data on
multiple AWS EC2 instances

dist_stat DistStat.jl
Instances q = 20 q = 40 q = 60 q = 20 q = 40 q = 60

4 2875 3097 3089 2093 2007 2188
5 2315 2378 2526 1625 1704 1746
8 1531 1580 1719 1073 1105 1215

10 1250 1344 1479 909 980 1022
16 821 914 1031 630 714 736
20 701 823 903 531 663 701

cation is the matrix-vector multiplication, and its communication cost is much

less than NMF. Note that this setting is impossible with the dist_stat im-

plementation, because 36 does not divide 100,000. For dist_stat, the job was

run with two processes with 18 threads each per instance. Table 3.12 shows the

runtime of each experiment for 1000 iterations on 100, 000 × 1000 dataset. It

can be seen that DistStat.jl implementation is significantly faster.

3.5.4 ℓ1-regularized Cox regression

Finally, we apply the proximal gradient descent to ℓ1-regularized Cox regression

(Cox, 1972). In this problem, we are given a covariate matrix X ∈ Rm×p, and a

possibly right-censored survival time y = (y1, . . . , ym) as data. Each element of

y is defined by yi = min{ti, ci}, where ti is time to event and ci is right-censoring

time for that sample. δi = I{ti≤ci} indicates if the sample i is censored or not.

We put δ = (δ1, . . . , δm)T . The log partial likelihood of the Cox model is then

L(β) =
m∑
i=1

δi

βTxi − log

 ∑
j:yj≥yi

exp(βTxj)

 .

Coordinate descent-type approaches for this type of analyses are proposed by

Suchard et al. (2013) and Mittal et al. (2014).
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To obtain a proximal gradient update, we need the gradient ∇L(β) and its

Lipschitz constant. The gradient of the log partial likelihood is

∇L(β) = XT (I − P )δ,

where we define wi = exp(xTi β), Wj =
∑

i:yi≥yj
wi, and the matrix P = (πij)

whose elements are

πij = I(yi ≥ yj)wi/Wj .

Each row of P is normalized to sum to one. A Lipschitz constant of ∇L(β)

can be found by finding an upper bound of ∥∇2L(β)∥2, where ∇2L(β) is the

Hessian of L(β):

∇2L(β) = XT (Pdiag(δ)P T − diag(Pδ))X.

Note ∥P∥2 ≤ 1, since the sum of each row of P is 1. It follows that ∥∇2L(β)∥2 ≤

2∥X∥22, and ∥X∥2 can be quickly computed by using the power iteration (Golub

and Van Loan, 2013).

We introduce an ℓ1-penalty to the log partial likelihood in order to enforce

sparsity in the regression coefficients and use the proximal gradient descent to

estimate β by putting g(β) = −L(β), f(β) = λ∥β∥1. Then the update rule is:

wn+1
i = exp(xTi β); Wn+1

j =
∑

i:yi≥yj

wn+1
i

πn+1
ij = I(ti ≥ tj)w

n+1
i /Wn+1

j

∆n+1 = XT (I − Pn+1)δ, where Pn+1 = (πn+1
ij )

βn+1 = Sλ(β
n + σ∆n+1).

If the data are sorted in the nonincreasing order of yi, Wn
j can be computed

using the cumulative sum function. While this is not so obvious to implement
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in a parallel environment, a CUDA device kernel function for this operation

is readily provided with PyTorch. We can write a simple proximal gradient

descent update for the Cox regression as:

# X: data matrix, m-by-p
# delta: censoring indicator, m-by-1
# y: right-censored survival time
# X is assumed to be sorted in decreasing order of y_i
# lambd: penalty parameter

soft_threshold = torch.nn.Softshrink(lambd)
L = 2 * power(X) ** 2
# power(X): power iteration to compute
# the spectral norm of X
sigma = 1/L

# mask: pi_ind[i, j] = (y[i] >= y[j])
pi_ind = (y - y.t() >= 0).to(dtype=tf.float64)

for i in range(max_iter):
Xbeta = torch.mm(X, beta)
w = torch.exp(Xbeta)
W = w.cumsum(0)
pi = (w / W.t()) * pi_ind
grad = torch.mm(X.t(), delta - torch.mm(pi, delta))
beta = soft_threshold(beta + grad * sigma)

assuming no ties in yi’s for simplicity. The soft-thresholding operator Sλ(x)

is also implemented in PyTorch. We compute the full wi/Wj first with w /

W.t() then multiply it to the indicator I(yi ≥ yj) precomputed. A simple

implementation of this algorithm in Julia, assuming no ties in yi can be written

by:

y_dist = distribute(reshape(y, 1, :))
fill!(pi_ind, one(T))
pi_ind .= ((pi_ind .* y_dist) .- y) .<= 0
for i in 1:iter

mul!(Xbeta, X, beta)
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w .= exp.(Xbeta)
cumsum!(W, w)
W_dist .= distribute(reshape(W, 1, :))
pi .= pi_ind .* w ./ W_dist
mul!(pi_delta, pi, delta)
dmpd .= delta .- pi_delta
mul!(gradient, transpose(X), dmpd)
beta .= soft_threshold.(beta .+ sigma .* gradient,

lambda)
end

For simulation, the data matrix X ∈ Rm×[p], distributed along the columns,

is sampled from the standard normal distribution. The algorithm is designed

to keep a copy of the estimand β in every device.

For performance optimization, note that in addition to the memory for X, an

intermediate storage for two m ×m matrices are needed. This can be avoided

by environment-specific implementation. For example, the CPU function to

compute P(n+1)δ can be written using LoopVectorization.jl (Elrod, 2020)

for efficient single instruction, multiple data parallelization using the Advanced

Vector Extensions (AVX). These environment-specific implementations not only

use less memory, but also result in some speedup. On the local node used, the

device-specific CPU implementation with four processes with each process using

a single core took almost half the time compared to the dot broadcasting-based

implementation. The GPU implementation with four GPUs was 5-10% faster.

Code for accelerating computation of P(n+1)δ is avialable in Appendix D.

Table 3.13 demonstrates the scalability of the proximal gradient algorithm

for ℓ1-regularized Cox regression on multiple GPUs. While the dist_stat was

faster with double precision arithmetics in many cases, the DistStat.jl im-

plementation was faster in some cases. Unfortunately, the underlying algorithm

for the cumsum() method in PyTorch is known to be numerically unstable,

and it could not be used for very small values of λ. On the other hand, the
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Table 3.13: Runtime (in seconds) of ℓ1-regularized Cox regression on 10, 000×
[10, 000] simulated data on multiple GPUs with λ = 10−8.

GPUs dist_stat (Float64) DistStat.jl (Float64) DistStat.jl (Float32)
1 382 447 292
2 205 196 113
3 160 91
4 115 136 80
5 98 121 75
6 113 71
7 106 69
8 124 86 67

Table 3.14: Runtime (in seconds) of ℓ1-regularized Cox regression on 100, 000×
[200, 000] simulated data on multiple AWS EC2 instances with λ = 10−8.

Nodes dist_stat DistStat.jl
4 1455 918
5 1169 819
8 809 558

10 618 447
16 389 290
20 318 245

cumsum() function from CuArrays.jl is numerically stable for small values

of λ. Using single-precision, the users can get the results more quickly.

For the AWS experiments on DistStat.jl, 36 processes per instance were

used once again. Table 3.14 shows the runtime of the algorithm for 1000 iter-

ations with a simulated 100, 000 × [200, 000] dataset. Thanks to the flexibility

of the Julia implementation, the speedup of DistStat.jl over dist_stat

is obvious.

3.5.5 Genome-wide survival analysis of the UK Biobank dataset

Now, let us see real-world application of ℓ1-regularized Cox regression to genome-

wide survival analysis for Type 2 Diabetes (T2D). The UK Biobank dataset

(Sudlow et al., 2015) was used, which contains information on approximately
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800,000 single nucleotide polymorphisms (SNPs) of 500,000 individual subjects

recruited from the United Kingdom. After filtering SNPs for quality control

and subjects for the exclusion of Type 1 Diabetes patients, 402,297 subjects in-

cluding 17,994 T2D patients and 470,189 SNPs remained. For the analysis with

dist_stat, the information of 200,000 randomly sampled subjects including

8,995 T2D patients were used. Any missing genotype was imputed with the col-

umn mean. Along with the SNPs, sex and top ten principal components were

included as unpenalized covariates to adjust for population-specific variations.

The resulting dataset was 701 GB with double-precision.

The analysis for this large-scale genome-wide dataset was conducted as fol-

lows. Incidence of T2D was used as the event (δi = 1) and the age of onset

was used as survival time yi. For non-T2D subjects (δi = 0), age at the last

visit was used as yi. Breslow’s method (Breslow, 1972) was applied for any

tie in yi. 63 different values of the regularization parameter λ in the range

[0.7× 10−9, 1.6× 10−8] were used, with which 0 to 111 SNPs were selected. For

each value of λ, the ℓ1-regularized Cox regression model of Section 3.5.4 was

fitted. Every run converged after at most 2080 iterations that took less than

2800 seconds using 20 c5.18xlarge instances from AWS EC2.

The SNPs are ranked based on the largest value of λ for which each SNP is

selected. (No variables were removed once selected within the range of λ used.

The regularization path and the full list of the selected SNPs are available in

Appendix E.) Among the 111 SNPs selected, three of the top four selections are

located on TCF7L2, whose association with T2D is well-known (Scott et al.,

2007; The Wellcome Trust Case Control Consortium, 2007). Also prominently

selected are SNPs from genes SLC45A2 and HERC2, whose variants are known

to be associated with skin, eye, and hair pigmentation (Cook et al., 2009). This

is possibly due to the dominantly European population in the UK Biobank
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Table 3.15: SNPs with p-values of less than 0.01 on unpenalized Cox regression with variables
selected by ℓ1-penalized Cox regression

SNP ID Chr. Location A1A A2B MAFC Mapped Gene Coefficient p-value
rs4506565 10 114756041 A T 0.238 TCF7L2 2.810e-1 <2e-16
rs12243326 10 114788815 C T 0.249 TCF7L2 1.963e-1 0.003467
rs8042680 15 91521337 A C 0.277 PRC1 2.667e-1 0.005052
rs343092 12 66250940 T G 0.463 HMGA2 −7.204e-2 0.000400
rs7899137 10 76668462 A C 0.289 KAT6B −4.776e-2 0.002166
rs8180897 8 121699907 A G 0.445 SNTB1 6.361e-2 0.000149
rs10416717 19 13521528 A G 0.470 CACNA1A 5.965e-2 0.009474
rs231354 11 2706351 C T 0.329 KCNQ1 4.861e-2 0.001604
rs9268644 6 32408044 C A 0.282 HLA-DRA 6.589e-2 2.11e-5
A Minor allele, B Major allele,
C Minor allele frequency. The boldface indicates the risk allele determined by the reference
allele and the sign of the regression coefficient.

study. Mapped genes for 24 SNPs out of the selected 111 were also reported in

Mahajan et al. (2018), a meta-analysis of 32 genome-wide association studies

(GWAS) for about 898,130 individuals of European ancestry; see Tables E.1

and E.2 for details. Then, an unpenalized Cox regression analysis using the 111

selected SNPs was conducted. The nine SNPs with the p-values less than 0.01

are listed in Table 3.15. The locations in Table 3.15 are with respect to the

reference genome GRCh37 (Church et al., 2011), and mapped genes were pre-

dicted by the Ensembl Variant Effect Predictor (McLaren et al., 2016). Among

these nine SNPs, three of them were directly shown to be associated with T2D

(The Wellcome Trust Case Control Consortium (2007) and Dupuis et al. (2010)

for rs4506565, Voight et al. (2010) for rs8042680, Ng et al. (2014) for rs343092).

Three other SNPs have mapped genes reported to be associated with T2D

in Mahajan et al. (2018): rs12243326 on TCF7L2, rs343092 on HMGA2, and

rs231354 on KCNQ1.

With DistStat.jl, the entire dataset for this experiment was used, thanks

to memory efficiency. 43 different values of λ in range [6.0×10−9, 1.5×10−8] were

used, where 0 to 320 SNPs were selected. For the analysis, 20 c5.18xlarge
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instances were used. It took less than 2050 iteration until convergence, where

convergence is determined by testing if |f(β(n))−f(β(n−10))|
|f(β(n))+1| < 10−5. For each λ,

the experiment took 3180 to 3720 seconds.

The SNPs were ranked based on the largest of λ for which each SNP has

nonzero coefficient, then breaking any tie based on the absolute values of the

coefficients. The set of top nine selections is identical to that of the analysis

with 200,000 subjects with dist_stat with slightly different order, as listed

in Table 3.16. As before, significance test using unpenalized Cox regression with

only selected SNPs, gender, and top 10 principal components is carried out.

SNPs with p-values less than 0.01/333 were selected using Bonferroni correction

to control family-wise error rate less than 0.01. Table 3.17 lists the 9 selected

SNPs.

Table 3.16: Top nine SNPs selected by ℓ1-penalized Cox regression

Rank SNP ID Chr Location A1A A2B MAFC Mapped Gene Sign
1 rs4506565 10 114756041 A T 0.314 TCF7L2 +
2 rs16891982 5 33951693 G C 0.073 SLC45A2 −
3 rs12243326 10 114788815 T C 0.281 TCF7L2 +
4 rs12255372 10 1148088902 G T 0.285 TCF7L2 +
5 rs28777 5 33958959 A C 0.062 SLC45A2 −
6 rs35397 5 33951116 T G 0.096 SLC45A2 −
7 rs1129038 15 28356859 T C 0.261 HERC2 −
8 rs12913832 15 28365618 G A 0.259 HERC2 −
9 rs10787472 10 114781297 A C 0.470 TCF7L2 +

A Major allele, B Minor allele, C Minor allele frequency. The boldface indicates the risk
allele determined by the reference allele and the sign of the regression coefficient.

Six of the SNPs, including the SNPs with five lowest p-values are previously

reported to have direct association with T2D (rs1801212 from WFS1 (Fawcett

et al., 2010), rs4506565 from TCF7L2 (The Wellcome Trust Case Control Con-

sortium, 2007; Dupuis et al., 2010), rs2943640 from IRS1 (Langenberg et al.,

2014), rs10830962 from MTNR1B (Klimentidis et al., 2014; Salman et al., 2015),
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rs343092 from HMGA2 (Ng et al., 2014), and rs231362 from KCNQ1 (Riobello

et al., 2016)). In addition, rs1351394 is from HMGA2, known to be associated

with T2D. This seems to be an improvement over the dist_stat result in

which three of the top nine selections were found to be directly associated with

T2D and three others were on the known T2D-associated genes.

Table 3.17: SNPs with significant coefficients with significance level 0.01 after
Bonferroni correction

SNP ID Chr Location A1A A2B MAFC Mapped Gene Coefficient p-value
rs1801212 4 6302519 A G 0.270 WFS1 0.1123 <2E-16
rs4506565 10 114756041 A T 0.314 TCF7L2 0.2665 <2E-16
rs2943640 2 227093585 C A 0.336 IRS1 0.0891 1.57E-14
rs10830962 11 92698427 C G 0.402 MTNR1B 0.0731 1.46E-11
rs343092 12 66250940 G T 0.166 HMGA2 -0.0746 2.26E-07
rs1351394 12 66351826 C T 0.478 HMGA2 0.0518 1.70E-06
rs2540917 2 60608759 T C 0.389 RNU1-32P -0.0476 2.18E-05
rs1254207 1 236368227 C T 0.395 GPR137B 0.0458 2.84E-05
rs231362 11 2691471 G A 0.461 KCNQ1 0.0607 2.87E-05
A Major allele, B Minor allele,
C Minor allele frequency. The boldface indicates the risk allele determined by the reference allele
and the sign of the regression coefficient.

Although the interpretation of the results requires additional sub-analysis,

the result shows the promise of joint association analysis using multiple regres-

sion models. In GWAS it is customary to analyze the data on SNP-by-SNP ba-

sis. The mapped genes harboring the SNPs selected by the half-million-variate

regression analysis include CPLX3 and CACNA1A associated with regulation

of insulin secretion, and SEMA7A and HLA-DRA involved with inflammatory

responses (based on DAVID (Huang et al., 2009a,b)). These genes might have

been missed in conventional univariate analysis of T2D due to moderate sta-

tistical significance values. Joint GWAS may overcome such a limitation, and

be possible by combining the computing power of modern HPC and scalable

algorithms.
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3.6 Discussion

Packages dist_stat and DistStat.jl provide first steps to provide a uni-

fied development environment for multiple nodes with multiple GPUs. The

packages supply distributed array data structure based on any type of under-

lying array. In particular, DistStat.jl can be used with any array type on

any hardware provided that the array interface is implemented in Julia with

MPI support.

Statistical applications including NMF, MDS, PET, and ℓ1-regularized Cox

regularization are considered, and scalability is shown on a 8-GPU workstation

and a virtual cluster on AWS cloud with up to 20 instances. Performance of

DistStat.jl was equivalent to or better than its dist_stat counterpart.

With the newly-developed packages, the biological dataset of size 400, 000 ×

500, 000 could be analyzed.
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Listing 3.3 Monte Carlo estimation of π for TensorFlow on multiple nodes
using Horovod
import tensorflow as tf
import horovod.tensorflow as hvd
# initialize horovod
hvd.init()
rank = hvd.rank()
# without this block, all the processes try to allocate
# all the memory from each device, causing out of memory
# error.
devices = tf.config.experimental.list_physical_devices(

"GPU")
if len(devices) > 0:

for d in devices:
tf.config.experimental.set_memory_growth(d, True)

# select device
tf.device("device:gpu:{}".format(rank))
# tf.device("device:cpu:0") for CPU
# function runs in parallel with (graph computation/
# lazy-evaluation)
# or without (eager execution) the line below
@tf.function
def mc_pi(n):

# this code is executed on each device
x = tf.random.uniform((n,), dtype=tf.float64)
y = tf.random.uniform((n,), dtype=tf.float64)
# compute local estimate for pi
# and save it as ’estim’.
estim = tf.reduce_mean(tf.cast(

x**2 + y ** 2 <1, tf.float64))*4
# compute the mean of ’estim’ over all the devices
estim = hvd.allreduce(estim)
return estim

if __name__ == ’__main__’:
n = 10000
estim = mc_pi(n)
# print the result on rank zero
if rank == 0:

print(estim.numpy())
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Listing 3.4 An example usage of the module distmat.
import torch, distmat
import torch.distributed as dist
dist.init_process_group(’mpi’)
rank = dist.get_rank()
size = dist.get_world_size()

device = ’cuda:{}’.format(rank)
# or simply ’cpu’ for CPU computing
if device.startswith(’cuda’): torch.cuda.set_device(rank)

tensortype = torch.DoubleTensor
# torch.cuda.FloatTensor for
# a single-precision matrix on a GPU
A = distmat.distgen_uniform(4, 4, TType=tensortype)
B = distmat.distgen_uniform(4, 2, TType=tensortype)
AB = distmat.mm(A, B) # A * B
if rank == 0: # to print this only once

print("AB = ")
print(rank, AB.chunk) # print the rank’s protion of AB.
C = (1 + AB).log() # elementwise logarithm
if rank == 0:

print("log(1 + AB) = ")
print(rank, C.chunk) # print the rank’s portition of C.
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(a) µ = 0 (b) µ = 10−7

(c) µ = 10−6 (d) µ = 10−5

Figure 3.2: Reconstructed images of the RVF phantom with a ridge penalty.

(a) ρ = 2−10 (b) ρ = 2−8

(c) ρ = 2−6 (d) ρ = 2−4

Figure 3.3: Reconstructed images of the RVF phantom with a TV penalty.
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(a) µ = 0 (b) µ = 10−6

(c) µ = 10−5 (d) µ = 10−4

Figure 3.4: Reconstructed images of the XCAT phantom with a ridge penalty.

(a) ρ = 0 (b) ρ = 10−3

(c) ρ = 10−2.5 (d) ρ = 10−2

Figure 3.5: Reconstructed images of the XCAT phantom with a TV penalty.
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Chapter 4

Conclusion

In this dissertation, highly parallelizable algorithms for statistical computing

are reviewed, and a class among them, namely, a variant of primal-dual hy-

brid gradient (PDHG) for three-function sum is accelerated to its asymptotic

optimum. Then, easy-to-use software packages to implement various statistical

algorithms, including the former, are developed.

Abstraction of highly complex computing operations have rapidly evolved

over the last decade. In this dissertation, how statisticians can benefit from this

evolution is explored. It is also shown that many useful tools to incorporate

computing clusters and accelerators have been created outside of the statistical

community. Unfortunately, such developments have been mainly made in lan-

guages other than R, particularly in Python and Julia, with which statisticians

might not be familiar. Although there are libraries that deal with simple parallel

computation in R, common issues with these libraries are that it is difficult for

them to incorporate GPUs which might significantly speed up the computation

and that it is hard to write more full-fledged parallel programs without directly
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writing code in C or C++. This two-language problem calls for statisticians

to take a second look at Python and Julia. Fortunately, these languages are

not hard to learn. A remedy from the R side may be either developing more

user-friendly interfaces for the distributed-memory environment, with help from

those who are engaged in computer engineering, or R community writing a good

wrapper for the important Python and libraries. A good starting point may be

a Python or Julia interface to R. The R package reticulate (Ushey et al.,

2019) and JuliaCall (Li, 2019) might be good candidates. For example, there

is an interface to TensorFlow based on reticulate (RStudio, 2019).

The methods discussed in this dissertation can be applied efficiently even

when the dataset is larger than several gigabytes by using multiple CPU ma-

chines or using multiple GPUs. The advantages of using multiple CPU ma-

chines and multiple GPUs are two-fold. First, we can take advantage of data

parallelism with more computing cores, accelerating the computation. Second,

we can push the upper limit of the size of the dataset to analyze. As cloud

providers now support virtual clusters better suited for HPC, statisticians can

deal with bigger problems utilizing such services, using up to several thousand

cores easily.

A major weakness of the current approach is that its effectiveness can be

degraded by the communication cost between the nodes and devices. One way

to avoid this issue is by using high-speed interconnection between the nodes

and devices. With multi-CPU machines, it can be covered by a high-speed

interconnection technology such as InfiniBand. Even when such kind of envi-

ronment is not affordable, we may still use relatively high-speed connection

equipped with instances from a cloud. The network bandwidth of 25 Gbps

supported for c5.18xlarge instances of AWS was quite effective in our ex-

periments. Another way to alleviate the communication issue is employing
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communication-avoiding algorithms (Van De Geijn and Watts, 1997; Ballard

et al., 2011; Koanantakool et al., 2016) to minimize the amount of communi-

cation between computing units. This approach has been utilized for statis-

tical inference (Jordan et al., 2019) and sparse inverse covariance estimation

(Koanantakool et al., 2018).

Loss of accuracy due to the single-precision of the GPU, prominent in

our Cox regression example, can be solved by purchasing scientifically-oriented

GPUs with better double-precision supports, which costs money. Another op-

tion is to go to clouds: for example, P2 and P3 instances in AWS support

scientific GPUs. Nevertheless, even with that double-precision floating-point op-

eration speed is 1/32 compared to single-precision, desktop GPUs with double-

precision could achieve more than 10-fold speedup over CPU.
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Appendix A

Monotone Operator Theory

Here we briefly state necessary results from monotone operator theory for the

proofs in the subsequent section. For more details, see Bauschke and Combettes

(2011).

Set-valued operators. A set-valued operator T : Rn → 2R
n maps a vector

z ∈ Rn to a set T (z) ⊂ Rn. The graph of T is denoted by graT = {(z, w) ∈

Rn × Rn : w ∈ T (z)}. When T (z) is single-valued, i.e., T (z) = {w}, T is a

function, and we write simply as T (z) = w. We use I to denote the identity

operator, i.e, I(z) = z. When no confusion incurs, we also use Tz to mean

T (z). In particular, when T is a single-valued linear operator, Tz is identified

with a multiplication of the corresponding matrix T ∈ Rn×n by a vector z.

The set of zeros of T is defined as zerT = {z ∈ Rn : 0 ∈ Tz}. The inverse

of T is T−1 : Rn → 2R
n such that T−1(w) = {z ∈ Rn : w ∈ Tz}, hence

graT−1 = {(w, z) ∈ Rn ×Rn : w ∈ Tz}. The resolvent of T is RT = (I + T )−1.

Scaling of an operator T by t ∈ R is defined by (tT )(z) = tT (z). Composition
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of two set-valued operators T1 : Rn → 2R
n and T2 : Rn → 2R

n is defined by

T2T1z =
⋃

w∈T1z
T2w.

Fixed points. An operator T : Rn → 2R
n is called nonexpansive if ∥u−u′∥2 ≤

∥z−z′∥2 for all u ∈ T (z), u′ ∈ T (z′) ∈ Rn; it is called contractive if the inequality

is strict. Any nonexpansive operator is single-valued. The set of fixed points of

a single-valued operator T is denoted by FixT , i.e., FixT = {z : z = Tz}. For

a contractive operator T , the fixed point iteration zk+1 = Tzk converges to a

point in FixT , if FixT ̸= ∅.

Averaged operators. An operator T is called α-averaged, 0 < α < 1, if

T = (1 − α)I + αR for some nonexpansive operator R. Usually R is defined

implicitly. Note that T itself is nonexpansive, and FixT = FixR. If T1 is

α1-averaged and T2 is α2-averaged, then T1T2 is α-averaged where α = (α1 +

α2 − 2α1α2)/(1 − α1α2). An α-averaged operator T is nonexpansive but not

necessarily contractive, hence the fixed point iteration zk+1 = Tzk above may

not converge to a fixed point even if FixT ̸= ∅. In this case, the Krasnosel’skĭi-

Mann (KM) iteration zk+1 = zk+ρk(Tz
k−zk) with a sequence {ρk} ⊂ (0, 1/α]

such that
∑∞

k=0 ρk(1− αρk) = ∞ ensures convergence.

Monotone operators. An operator T is called monotone if ⟨z−z′, w−w′⟩ ≥

0 for all z, z′ ∈ Rn and for all w ∈ Tz, w′ ∈ Tz′, and maximally monotone if

it is monotone and there is no monotone operator T ′ such that T ̸= T ′ and

graT ⊂ graT ′. The resolvent of a maximally monotone operator is single-

valued; it is 1/2-averaged.

Cocoercive operators. A single-valued operator T is called γ-cocoercive if

for some γ > 0, ⟨z − z′, T z − Tz′⟩ ≥ γ∥Tz − Tz′∥22. A cocoercive operator
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is maximally monotone. If an operator T is γ-cocoercive with γ > 1/2, then

I − tT (t > 0) is t/(2γ)-averaged. A convex, closed, and proper function ϕ has

L-Lipschitz continous gradient ∇ϕ if and only if ∇ϕ is 1/L-cocoercive.

Subdifferential. An important example of a maximally monotone operator

is the subdifferential of a convex closed proper function. A vector g ∈ Rn is a

subgradient of a convex function ϕ at z if ϕ(z′) ≥ ϕ(z) + ⟨g, z′ − z⟩, ∀z′ ∈ Rn.

The subdifferential of ϕ at z is the set of subgradients at z: ∂ϕ(z) = {g ∈

Rn : ϕ(z′) ≥ ϕ(z) + ⟨g, z′ − z⟩, ∀z′ ∈ Rn}. When ϕ is differentiable, ∂ϕ(z) =

{∇ϕ(z)}. If ϕ is in addition closed and proper, (∂ϕ)−1 = ∂ϕ∗ holds, where ϕ∗

is convex conjugate defined by ϕ∗(w) = supz∈Rn{⟨z, w⟩ − ϕ(z)}. The resolvent

of a maximally monotone subdifferential operator is the proximity operator:

R∂ϕ = (I + ∂ϕ)−1(z) = proxϕ(z) = argminz′∈Rn ϕ(z′) + 1
2∥z

′ − z∥22.

Skew-symmetric operators. Another example of a maximally monotone

operator is a skew-symmetric matrix. The sum of a maximally monotone oper-

ator and a skew-symmetric matrix is also maximally monotone.

Change of metric. Note that the notion of nonexpansiveness, averagedness,

cocoercivity, and monotonicity of an operator requires the inner product ⟨·, ·⟩

and its associated norm ∥ · ∥2. We can appropriately define these concepts with

respect to another inner product and its associated norm as well, say ⟨·, ·⟩M and

∥ · ∥M , for M a symmetric, positive definite matrix. In particular, averagedness

of composition, convergence of the KM iteration, and averagedness of I − tT

for cocoercive T hold by substituting the inner products and norms by ⟨·, ·⟩M

and ∥ · ∥M , respectively.
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Forward-backward splitting. Some optimization problems can be trans-

lated to finding an element of zerT for an appropriate choice of maximally

monotone operator T . Often T can be split into a sum of two maximally mono-

tone operators F and G. If G is γ-cocoercive (hence single-valued), then we

see

0 ∈ T (z) ⇐⇒ (I + tF )(z) ∋ (I − tG)(z)

⇐⇒ z = RtF (I − tG)(z), (A.1)

for t > 0. Equivalence (A.1) shows that zer (F +G) = Fix(RtF (I − tG)), thus

we may solve the problem of finding a zero of T by the following fixed-point

iteration

zk+1 = (1− ρk)z
k + ρkRtF (I − tG)(zk). (A.2)

This iteration is a KM iteration because RtF (I−tG) is a 1/δ-averaged operator,

where δ = 2 − t/(2γ). Thus (A.2) converges for t ∈ (0, 2γ) if zer(F + G) ̸= ∅

and under the aforementioned condition for {ρk}. Furthermore, the following

hold (Bauschke and Combettes, 2011, proof of Theorems 25.8):

∥zk+1 − z∥22 ≤ ∥zk − z∥22, ∀z ∈ zer(F +G); (A.3a)∑∞
k=0

δ−ρk
ρk

∥zk+1 − zk∥22 ≤ ∥z0 − z∥22, ∀z ∈ zer(F +G); (A.3b)

∥zk+1 − zk∥2 → 0. (A.3c)

Preconditioning. In the forward-backward splitting above, observe that the

identity matrices in the first line can be replaced by an invertible matrix M ,

yielding a preconditioned forward-backward splitting algorithm

zk+1 = (1− ρk)z
k + ρkRtM−1F (I − tM−1G)(zk). (A.4)
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Preconditioning is useful when evaluating the resolvent RtM−1F is easier than

RtF . It can be shown that if M is symmetric positive definite, M−1F is maxi-

mally monotone with respect to ⟨·, ·⟩M (Combettes and Vũ, 2014), and M−1G

is γλmin(M)-cocoercive with respect to ∥ · ∥M (Davis, 2015). Therefore we can

replace ∥ · ∥2 by ∥ · ∥M , and γ by γλmin(M) in (A.3).
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Appendix B

Proofs for Chapter II

B.1 Preconditioned forward-backward splitting

Proof of Lemma 1. Observe that

∥z− − z∥2M = ∥z− − zρ + zρ − z∥2M
= ∥z− − zρ∥2M − 2⟨z− − zρ, z − zρ⟩M + ∥zρ − z∥2M , (B.1)

and, from (A.1),

z+ +M−1Fz+ ∋ z− −M−1Gz−

⇐⇒ z+ +M−1

[
0 KT

−K ∂h∗

] [
x+

y+

]
∋ z− −M−1

[
∇f

0

] [
x−

y−

]
⇐⇒ (1/ρ)(z− − zρ) = z− − z+ ∈ M−1

[
∇f(x−) +KT y+

−Kx+ + ∂h∗(y+)

]
(B.2)

Then,

⟨z− − zρ, z − zρ⟩M = ⟨ρ(z− − z+), z − zρ⟩M (B.3)

= ρ

〈[
∇f(x−) +KT y+

−Kx+ + ∂h∗(y+)

]
,

[
x− xρ
y − yρ

]〉
= ρ⟨∇f(x−), x− xρ⟩+ ρ⟨KT y+, x− xρ⟩
+ ρ⟨−Kx+, y − yρ⟩+ ρ⟨∂h∗(y+), y − yρ⟩
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= ρ⟨∇f(x−), x− − xρ⟩+ ρ⟨∇f(x−), x− x−⟩ (B.4)

+ ρ⟨KT y+, x− xρ⟩+ ρ⟨−Kx+, y − yρ⟩
+ ρ⟨∂h∗(y+), y+ − yρ⟩+ ρ⟨∂h∗(y+), y − y+⟩

≤ ρ⟨∇f(x−), x− − xρ⟩+ ρ(f(x)− f(x−))

+ ρ⟨KT y+, x− xρ⟩+ ρ⟨−Kx+, y − yρ⟩
+ ρ⟨∂h∗(y+), y+ − yρ⟩+ ρ(h∗(y)− h∗(y+)), (B.5)

understanding that “∂h∗(·)” represents a subgradient in the corresponding sub-
differential. The first and second equalities follow from (B.2); the last inequality
is due to the definition of subgradient. By plugging the inequality (B.3) in (B.1)
and rearranging terms, we obtain

2ρ(L(x+, y)− L(x, y+))− ∥z− − z∥2M + ∥zρ − z∥2M
≤ −∥z− − zρ∥2M + 2ρ⟨∇f(x−), x− − xρ⟩+ 2ρ⟨∂h∗(y+), y+ − yρ⟩
− 2ρ⟨KT y+, xρ⟩+ 2ρ⟨Kx+, yρ⟩+ 2ρ(f(x+)− f(x−)) (B.6)

Now it suffices to show that the right-hand side of (B.6) is less than or equal
to (1− 2/ρ)∥z− − zρ∥2M + (Lf/ρ)∥x− − xρ∥22. To see this,

(RHS) = −∥z− − zρ∥2M + 2ρ⟨∇f(x−), x− − xρ⟩+ 2ρ⟨∂h∗(y+), y+ − yρ⟩
− 2ρ⟨KT y+, xρ − x+⟩ − 2ρ⟨KT y+, x+⟩+ 2ρ⟨Kx+, yρ − y+⟩
+ 2ρ⟨Kx+, y+⟩+ 2ρ(f(x+)− f(x−))

= −∥z− − zρ∥2M + 2ρ(f(x+)− f(x−)− ⟨∇f(x−), x+ − x−⟩)
+ 2ρ⟨∇f(x−) +KT y+, x+ − xρ⟩+ 2ρ⟨−Kx+ + ∂h∗(y+), y+ − yρ⟩

= −∥z− − zρ∥2M + 2ρ(f(x+)− f(x−)− ⟨∇f(x−), x+ − x−⟩)
+ 2ρ⟨M(z− − z+), z+ − zρ⟩

= −∥z− − zρ∥2M + 2ρ(f(x+)− f(x−)− ⟨∇f(x−), x+ − x−⟩)
+ 2⟨z− − zρ, z

+ − zρ⟩M
= −∥z− − zρ∥2M + 2ρ(f(x+)− f(x−)− ⟨∇f(x−), x+ − x−⟩)

+ 2(1− 1/ρ)⟨z− − zρ, z
− − zρ⟩M

≤ (1− 2/ρ)∥z− − zρ∥2M + ρLf∥x− − x+∥22
= (1− 2/ρ)∥z− − zρ∥2M + (Lf/ρ)∥x− − xρ∥22

where the third equality follows from (B.2); the fourth and fifth equalities are
from (A.1); the first inequality is due to the Lipschitz continuity of ∇f ; the
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final equality is again from (A.1).

We need the following fact to prove Theorem 1.

Proposition 5. Let M be a symmetric, positive definite matrix in R(p+l)×(p+l)

and G as given in (2.11). Then, for µ > 0 such that

∥(x, 0)∥2M−1 ≤ (1/µ)∥x∥22, ∀x ∈ Rp, (B.7)

operator M−1G is µ/Lf -cocoercive in ⟨·, ·⟩M .

Proof.

∥M−1Gz −M−1Gz′∥2M = ∥Gz −Gz′∥2M−1

= ∥(∇f(x)−∇f(x′), 0)∥2M−1

≤ (1/µ)∥∇f(x)−∇f(x′)∥22
≤ (Lf/µ)⟨∇f(x)−∇f(x′), x− x′⟩
= (Lf/µ)⟨Gz −Gz′, z − z′⟩
= (Lf/µ)⟨M−1Gz −M−1Gz′, z − z′⟩M .

Note that we used 1/Lf -cocoercivity of ∇f in the third line.

Proof of Proposition 1. Note that ∥LT · ∥2MLV
= ⟨MLVL

T ·, LT ·⟩ = ∥ · ∥2MCV
and

likewise ⟨LT ·, LT ·⟩MLV
= ⟨·, ·⟩MCV

. Then,

⟨M−1
LV L−1GL−Tw −M−1

LV L−1GL−Tw′, w − w′⟩MLV

= ⟨(LTM−1
CVL)(L

−1GL−T )(LT z)

− (LTM−1
CVL)(L

−1GL−T )(LT z′), LT z − LT z′⟩MLV

= ⟨LT (M−1
CVGz −M−1

CVGz′), LT (z − z′)⟩MLV

= ⟨M−1
CVGz −M−1

CVGz′, z − z′⟩MCV

≥ (µ/Lf )∥M−1
CVGz −M−1

CVGz′∥MCV

= (µ/Lf )∥LT (L−TM−1
LV L−1GL−T (LT z)− L−TM−1

LV L−1GL−T (LT z′)∥2MLV

= (µ/Lf )∥M−1
LV L−1GL−Tw −M−1

LV L−1GL−Tw′∥2MLV
,

where the inequality and µ come from Proposition 5, as follows. From (2.13),
we see that

M−1
CV = L−TM−1

LV L−1 =

[
I τK

I

] [
τI

( 1σ I − τKKT )−1

] [
I 0
τK I

]
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=

[
τI + τ2KT ( 1σ I − τKKT )−1K τKT ( 1σ I − τKKT )−1

τ( 1σ I − τKKT )−1K ( 1σ I − τKKT )−1

]
and can choose µ = 1/τ−σ∥K∥22, because λmax(τI+τ2KT ( 1σ I−τKKT )−1K) =
τ + τ2∥K∥22/(1/σ − τ∥K∥22) = 1

1/τ−σ∥K∥22
. Therefore M−1

LV L−1GL−T is (1/τ −
σ∥K∥22)/Lf -cocoercive with respect to ∥ · ∥MLV

.

Proof of Proposition 2. For M given by (2.17), its inverse is given by

M−1 = L̃−TMLVL̃
−1 =

[
I −τC

I

] [
τI

( 1σ I − τKKT )−1

] [
I

−τC I

]
=

[
τI + τ2CT ( 1σ I − τKKT )−1C −τCT ( 1σ I − τKKT )−1

−τ( 1σ I − τKKT )−1C ( 1σ I − τKKT )−1

]
.

Since λmax(τI + τ2CT ( 1σ I − τKKT )−1C) = τ + τ2∥C∥22/(1/σ− τ∥K∥22), we see

that (B.7) holds with µ =
(
τ + τ2∥C∥22/(1/σ − τ∥K∥22)

)−1
=

1/τ−σ∥K∥22
1−στ(∥K∥22−∥C∥22)

.

This shows that the operator M−1G is 1/τ−σ∥K∥22
Lf (1−στ(∥K∥22−∥C∥22))

-cocoercive with re-
spect to ⟨·, ·⟩M . Hence, Algorithm (2.18) meets the condition for (A.4) with
t = 1 if with γ =

1/τ−σ∥K∥22
Lf (1−στ(∥K∥22−∥C∥22))

> 1/2. Required positive definiteness of

M implies 1
τσ > ∥K∥22. Thus the result (2.20) follows.

Proof of Theorem 1. From the convexity-concavity of L(x, y), we have

L(x̄N , y)− L(x, ȳN ) ≤ 1∑N
k=0 ρk

N∑
k=0

ρk(L(x̃k, y)− L(x, ỹk))

≤ 1

2
∑N

k=0 ρk

(
∥z0 − z∥2M +

N∑
k=0

Lf

ρk
∥xk+1 − xk∥22

)
,

where the second inequality comes from Lemma 1 by putting z− = zk, z+ = z̃k,
ρ = ρk, zρ = zk+1, and noting that 1 < 1/α < 2 by the assumption µ > Lf/2.
Now by Proposition 5 we see that RM−1F (I−M−1G) is α-averaged with respect
to ∥ · ∥M , thus by (A.3b) we have

1− αρ̄

α

∞∑
k=0

1

ρk
∥xk+1 − xk∥22 ≤

∞∑
k=0

1− αρk
αρk

∥xk+1 − xk∥22

≤
∞∑
k=0

1− αρk
αρk

∥zk+1 − zk∥22 ≤
1

λmin(M)
∥z0 − z⋆∥2M .
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Therefore

L(x̄N , y)− L(x, ȳN ) ≤ 1

2
∑N

k=0 ρk

(
∥z0 − z∥2M +

N∑
k=0

Lf

ρk
∥xk+1 − xk∥22

)

≤ 1

2
∑N

k=0 ρk

(
∥z0 − z∥2M +

αLf

(1− αρ̄)λmin(M)
∥z0 − z⋆∥2M

)
.

Proof of Corollary 1. The proof closely follows that of Loris and Verhoeven
(2011, Theorem 1), given for f being quadratic. Because zk = (xk, yk) →
(x⋆, y⋆) = z⋆ ∈ FixT where T = RM−1F (I − M−1G), we see z̃k = Tzk → z⋆

and thus z̄N = (x̄N , ȳN ) = (
∑N

k=1 ρkz̃
k)/(

∑N
k=1 ρk) → z⋆. Also because (x⋆, y⋆)

is a saddle-point of L(x, y), we have F⋆ = F(x⋆) = L(x⋆, y⋆) ≥ L(x⋆, y) for all
y ∈ Rl. Then

0 ≤ F(x̄N )−F⋆ = F(x̄N )− L(x⋆, y⋆) ≤ F(x̄N )−F(x⋆, ȳN )

= sup
y∈Rl

L(x̄N , y)− L(x⋆, ȳN ).

The supy∈Rl L(x̄N , y) = f(x̄N )+ supy∈Rl⟨Kx̄N , y⟩−h∗(y) is attained at a ŷN ∈
∂h(Kx̄N ) because under the assumption domh = Rl, h∗ is 1-coercive, thus
−⟨Kx̄N , ·⟩+h⋆(·) is coercive (Hiriart-Urruty and Lemaréchal, 1993, Prop.X.1.3.9;
Bauschke and Combettes, 2011, Proposition 11.14). As x̄N converges, Kx̄N is
bounded independent of N . Now because h is real-valued, it follows that h is
locally Lipschitz in the neighborhood of Kx̄N (see, e.g., Bertsekas, 2009, Propo-
sition 5.4.2). Let the local Lipschitz constant be Q. It also follows that ∂h(Kx̄N )
is bounded by Q, i.e. ∥ŷN∥2 ≤ Q. Therefore

0 ≤ F(x̄N )−F⋆ = F(x̄N )− L(x⋆, y⋆) = sup
y∈Rl

L(x̄N , y)− L(x⋆, ȳN )

= max
∥y∥2≤Q

L(x̄N , y)− L(x⋆, ȳN )

≤ max
∥y∥2≤Q

1

2
∑N

k=0 ρk

(
∥(x0, y0)− (x⋆, y)∥2M

+
αLf

(1− αρ̄)λmin(M)
∥z0 − z⋆∥2M

)

= C1/(

N∑
k=0

ρk).
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We need the following lemma to prove Theorem 2.

Lemma 2 (Davis (2015), Theorem 4.1). Suppose T : Rn → Rn is an α-averaged
operator with respect to ∥ · ∥M , where 0 < α < 1 and M ≻ 0. Let z⋆ ∈ Fix T
and z0 ∈ Rn. For {ρk} ⊂ (1, 1/α), consider a sequence {zk} generated by the
KM iteration:

zk+1 = zk + ρk(T zk − zk).

If τ = supk≥0(1− αρk)ρk/α > 0, then we have

∥T zk − zk∥2M ≤
∥z0 − z⋆∥2M
τ(k + 1)

and ∥T zk − zk∥2M = o

(
1

k + 1

)
. (B.8)

Proof of Theorem 2. By condition (2.21), ∥z′∥2M ≥ ν∥x′∥22 + ϵ∥y′∥22 for all z′ =
(x′, y′). Then, in the same manner as the proof of Theorem 1, we put z− = zk,
z+ = z̃k, ρ = ρk, zρ = zk+1 in Lemma 1 and note that 1 < 1/α < 2 by the
assumption ν > Lf/2 to have

2ρk(L(x̃k, y)− L(x, ỹk)) ≤ ∥zk − z∥2M − ∥zk+1 − z∥2M + ϵ(1− 2/ρk)∥yk − yk+1∥22
+
(
ν − 2ν−Lf

ρk

)
∥xk − xk+1∥22. (B.9)

The rest of the proof closely follows that of Davis (2015, Theorem 4.2). Note
ν satisfies (B.7) and hence by Proposition 5, RM−1F (I −M−1G) : zk 7→ z̃k is
α-averaged with respect to ∥ · ∥M . Let zρ = (1 − ρ)zk + ρz̃k =: Tρz

k for any
ρ ∈ (0, 1/α); for ρ = ρk, we have zρ = zk+1. Then the map Tρ : zk 7→ zρ
is αρ-averaged with respect to ∥ · ∥M and hence ∥zρ − z⋆∥M ≤ ∥zk − z⋆∥M .
From (A.3a), we have ∥zρ− z⋆∥M ≤ ∥z0− z⋆∥M , thus by the triangle inequality
∥zρ − z∥M ≤ ∥z0 − z⋆∥M + ∥z⋆ − z∥M for any z ∈ Rp+l. Then we have

(1/ρ)⟨zk − zρ, zρ − z⟩M = ⟨z̃k − zk, zρ − z⟩M
≤ ∥z̃k − zk∥M∥zρ − z∥M

≤ ∥z0 − z⋆∥M√
τ(k + 1)

(∥z0 − z⋆∥M + ∥z⋆ − z∥M )

(B.10)

for all ρ ∈ (0, 1/α), where the last inequality is from Lemma 2.
Note that Lemma 1 (with the improvement (B.9) above) still holds if ρk is

replaced by any ρ ∈ (0, 1/α) and zk+1 is replaced by zρ. Therefore we have

L(x̃k, y)− L(x, ỹk)
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≤ inf
0<ρ<1/α

1

2ρ

(
∥zk − z∥2M − ∥zρ − z∥2M − ϵ( 2

ρ
− 1)∥yρ − yk∥22 + (ν − 2ν−Lf

ρ
)∥xρ − xk∥22

)
= inf

0<ρ<1/α

1

2ρ

(
2⟨zk − zρ, zρ − z⟩M + ∥zρ − zk∥2M − ϵ( 2

ρ
− 1)∥yρ − yk∥22

+ (ν − 2ν−Lf

ρ
)∥xρ − xk∥22

)
≤ inf

0<ρ<1/α

1

2ρ

(
2⟨zk − zρ, zρ − z⟩M + (λ̄+ ϵ− 2ϵ

ρ
)∥yρ − yk∥22 + (λ̄+ ν − 2ν−Lf

ρ
)∥xρ − xk∥22

)
= inf

0<ρ<1/α

1

ρ
⟨zk − zρ, zρ − z⟩M +

1

2ρ

(
(λ̄+ ϵ− 2ϵ

ρ
)∥ỹk − yk∥22 + (λ̄+ ν − 2ν−Lf

ρ
)∥x̃k − xk∥22

)
≤ 1

ρ̃
⟨zk − zρ̃, zρ̃ − z⟩M

by choosing a small ρ̃ ∈ (0, 1/α) such that λ̄+ϵ ≤ 2ϵ/ρ̃ and λ̄+ν ≤ (2ν−Lf )/ρ̃,
where λ̄ = λmax(M). The first equality uses the cosine rule

2⟨a− b, c− b⟩M = −∥a− c∥2M + ∥a− b∥2M + ∥c− b∥2M

for any a, b, c ∈ Rp+l. The desired result follows from (B.10).
The o(1/

√
k + 1) rate is also from (B.10) and Lemma 2.

Proof of Proposition 3. We first show that Condition 2 is equivalent to

0 ≺ M−1 ≺

[
2
Lf

I

∞

]
, (B.11)

or zTM−1z < 2
Lf

∥x∥22 + δ{0}(y) for all z = (x, y) ̸= 0. To see this, let g1(z) =

(1/2)zTMz and g2(z) =
1
2z

T

[Lf

2 I
0

]
z =

Lf

4 ∥x∥22. Then Condition 2 ensures

that g1(z) > g2(z) for all z ̸= 0. Take the convex conjugates of g1 and g2. Ob-
serve that for w = (w1, w2), g∗1(w) = supz⟨w, z⟩− (1/2)zTMz = (1/2)wTM−1w
and

g∗2(w) = sup
z
⟨w, z⟩ − g2(z) = sup

x
⟨w1, x⟩ −

Lf

4 ∥x∥22 + supy⟨w2, y⟩

=

{
1
Lf

∥w1∥22, if w2 = 0,

∞, otherwise.

Conjugacy asserts that g∗1(w) ≤ g∗2(w), or equivalently

0 ≺ M−1 ⪯

[
2
Lf

I

∞

]
.
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Now for w = (w1, 0) (w1 ̸= 0), f∗
1 (w) = ⟨w, ẑ⟩ − (1/2)ẑTMẑ = (1/2)w1M̄11w1,

where

M−1 =

[
M̄11 M̄12

M̄T
12 M̄22

]
, ẑ = M−1w =

[
M̄11w1

M̄T
12w1

]
̸= 0,

because M̄11 ≻ 0. Then

1
2w

T
1 M̄11w1 = g∗1(w) = ⟨w, ẑ⟩ − g1(ẑ) < ⟨w, ẑ⟩ − g2(ẑ)

≤ supz⟨w, z⟩ − g2(z) = g∗2(w) =
1
Lf

∥w1∥22,

or M̄11 ≺ 2
Lf

I. It follows (B.11). Because both g1 and g2 are convex, closed,
and proper, the same logic applies to g∗1 and g∗2, meaning that the above matrix
inequality implies Condition 2, establishing the equivalence.

Now Condition 1 implies (x, 0)TM−1(x, 0) < 2
Lf

∥x∥22 for all x ̸= 0 and
zTM−1z < ∞, implying (B.11), thus Condition 2. That Condition 2 implies
Condition 1 is straightforward, by choosing 1/µ ∈ [λmax(M̄11), 2/Lf ).

Condition 3 is equivalent to

0 ≺ M−1 ⪯
[
1
ν I

1
ϵ I

]
, (B.12)

thus (x, 0)TM−1(x, 0) ≤ 1
ν ∥x∥

2
2 where ν > Lf/2. This implies Condition 1.

Finally, note that

zTM−1z = xT M̄11x+ 2xT M̄T
12y + yT M̄22y

≤ λmax(M̄11)∥x∥22 + 2xT M̄T
12y + λmax(M̄12)∥y∥22,

or

M−1 ⪯
[
λmax(M̄11)I M̄12

M̄T
12 λmax(M̄22)I

]
.

Both λmax(M̄11) and λmax(M̄22) are positive because M̄11, M̄22 ≻ 0. Then
the second inequality in (B.12) holds if and only if either 1

ν = λmax(M̄11),
M̄12 = 0, 1

ϵ − λmax(M̄22) ≥ 0 or 1
ν > λmax(M̄11), M̄12 = 0, 1

ϵ − λmax ≥
( 1ν − λmax(M̄11))

−1∥M̄12∥22 (Boyd and Vandenberghe, 2004, Appendix A). Now
because Condition 1 implies λmax(M̄11) ≤ 1

µ < 2
Lf

, we can choose ν and ϵ so
that 1

µ ≤ 1
ν < 2

Lf
and 1

ϵ ≥ λmax(M̄22)+( 1ν −λmax(M̄11))
−1∥M̄12∥22. This implies

(B.12) and thus Condition 3.
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B.2 Optimal acceleration

The following proposition plays a central role in proving Theorems 3 and 4.

The following proposition is a key in proving the above results.

Proposition 6. Assume that ρk ≤ 1 for any k. If zk = (xk, yk) is generated by
(2.23), then for any z = (x, y) ∈ Z,

ρ−1
k G(zk+1, z)− (ρ−1

k − 1)G(zk, z)

≤ ⟨∇f(xkmd), x̃
k+1 − x⟩+

ρkLf

2
∥x̃k+1 − x̃k∥22

+ g(x̃k+1)− g(x) + h∗(ỹk+1)− h∗(y)

+ ⟨Kx̃k+1, y⟩ − ⟨Kx, ỹk+1⟩.

Upcoming Lemmas 4 and 6 are derived from Proposition 6. Theorems 3–6

follow from these lemmas.

Proof. By the convexity of f and Lf -Lipschitz smoothness of ∇f ,

ρ−1
k f(xk+1) ≤ ρ−1

k f(xkmd) + ρ−1
k ⟨∇f(xkmd), x

k+1 − xkmd⟩+
ρ−1
k Lf

2
∥xk+1 − xkmd∥22.

From equation (2.23c), xk+1 − xkmd = ρk(x̃
k+1 − x̃k). Thus,

ρ−1
k f(xk+1) ≤ ρ−1

k f(xk
md) + ρ−1

k ⟨∇f(xk
md), x

k+1 − xk
md⟩+

ρkLf

2
∥x̃k+1 − x̃k∥22

(2.23h)
= ρ−1

k f(xk
md) + (ρ−1

k − 1)⟨∇f(xk
md), x

k − xk
md⟩

+ ⟨∇f(xk
md), x̃

k+1 − xk
md⟩+

ρkLf

2
∥x̃k+1 − x̃k∥22

= (ρ−1
k − 1)[f(xk

md) + ⟨∇f(xk
md), x

k − xk
md⟩] (B.13)

+ [f(xk
md) + ⟨f(xk

md), x̃
k+1 − xk

md⟩] +
ρkLf

2
∥x̃k+1 − x̃k∥22

= (ρ−1
k − 1)[f(xk

md) + ⟨∇f(xk
md), x

k − xk
md⟩]

+ [f(xk
md) + ⟨f(xk

md), x− xk
md⟩]

+ ⟨f(xk
md), x̃

k+1 − x⟩+ ρkLf

2
∥x̃k+1 − x̃k∥22

≤ (ρ−1
k − 1)f(xk) + f(x) + ⟨∇f(xk

md), x̃
k+1 − x⟩+ ρkLf

2
∥x̃k+1 − x̃k∥22,

where the last inequality again uses the convexity of f .
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Now using the convexity of g and (2.23h), we have g(xk+1) ≤ (1−ρk)g(x
k)+

ρkg(x̃
k+1). Thus,

ρ−1
k [g(xk+1)− g(x)] ≤ (ρ−1

k − 1)[g(xk)− g(x)] + [g(xk+1)− g(x)]. (B.14)

Likewise,

ρ−1
k [h∗(xk+1)−h∗(x)]

(2.23i)
≤ (ρ−1

k −1)[h∗(xk)−h∗(x)]+[h∗(xk+1)−h∗(x)]. (B.15)

Combining inequalities (B.13), (B.14), and (B.15), it follows that

ρ−1
k G(zk+1, z)− (ρ−1

k − 1)G(zk, z) = ρ−1
k

{
[f(xk+1) + g(xk+1) + ⟨Kxk+1, y⟩ − h∗(y)]

−[f(x) + g(x)− ⟨Kx, yk+1⟩ − h∗(yk+1)]
}

+ (ρ−1
k − 1)

{
[f(xk) + g(xk) + ⟨Kxk, y⟩ − h∗(y)]

−[f(x) + g(x)− ⟨Kx, yk⟩ − h∗(yk)]
}

= ρ−1
k f(xk+1)− (ρ−1

k − 1)f(xk)− f(x)

+ ρ−1
k [g(xk+1)− g(x)]− (ρ−1

k − 1)[g(xk)− g(x)]

+ ρ−1
k [h∗(yk+1)− h∗(y)]− (ρ−1

k − 1)[h∗(yk)− h∗(y)]

+ ⟨K[ρ−1
k xk+1 − (ρ−1

k − 1)xk], y⟩ − ⟨Kx, ρ−1
k yk+1 − (ρ−1

k − 1)yk⟩

≤ f(x) + ⟨∇f(xk
md, x̃

k+1 − x⟩+ ρkLf

2
∥xk+1 − xk∥22

+ g(x̃k+1)− g(x)

+ h∗(ỹk+1)− h(y)

+ ⟨K[ρ−1
k xk+1 − (ρ−1

k − 1)xk], y⟩ − ⟨Kx, ρ−1
k yk+1 − (ρ−1

k − 1)yk⟩
(2.23h),(2.23i)

≤ f(x) + ⟨∇f(xk
md, x̃

k+1 − x⟩+ ρkLf

2
∥xk+1 − xk∥22

+ g(x̃k+1)− g(x) + h∗(ỹk+1)− h(y)

+ ⟨Kxk+1, y⟩ − ⟨Kx, yk+1⟩

The following lemmas find an upper bound for G(z̃k+1, z).

Lemma 3 (Loris and Verhoeven (2011), Lemma 1). If y+ = proxσh∗(y−+σ∆),
then

⟨y − y+,∆⟩ − h∗(y) + h∗(y+) ≤ 1

2σ

(
∥y − y−∥22 − ∥y − y+∥22 − ∥y− − y+∥22

)
(B.16)
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for any y.

Lemma 4. If zk+1 = (xk+1, yk+1) is obtained by (2.23), we have the following
under the condition (2.25) if g ≡ 0 or A = −K:

ρ−1
k γkG(zk+1, z) ≤ Dk(z, z̃

[k])− γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩+ γk⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩

+ τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩ − γk

(
1− q

2τk
− Lfρk

2

)
∥x̃k+1 − x̃k∥22

− γk

(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22, (B.17)

where γk is defined by

γk =

{
1 if k = 1

θ−1
k γk−1 if k ≥ 2

, (B.18)

and Dk(z, z̃
[k]) is defined by

Dk(z, z̃
[k]) :=

k∑
i=1

[
γi
2τi

(∥x− x̃i∥22 − ∥x− x̃i+1∥22) +
γi
2σi

(∥y − ỹi∥22 − ∥y − ỹi+1∥22)
]
.

(B.19)

Proof. For iteration (2.23), the following relation holds by Lemma 3 and Lemma
3:

⟨y − ỹk+1, ũk+1⟩+ h∗(ỹk+1)− h∗(y) ≤ 1

2σk

(
∥y − ỹk∥22 − ∥ỹk+1 − ỹk∥22 − ∥y − ỹk+1∥22

)
,

⟨x̃k+1 − x,∇f(xk
md) + ṽk+1⟩+ g(x̃k+1)− g(x) =

1

2τk

(
∥x− x̃k∥22 − ∥x̃k+1 − x̃k∥22 − ∥x− x̃k+1∥22

)
.

Using the above relationship along with Proposition 6, we obtain the following.

ρ−1
k G(zk+1, z)− (ρ−1

k − 1)G(zk, z)

≤ 1

2τk

(
∥x− x̃k∥22 − ∥x− x̃k+1∥22

)
−
(

1

2τk
−

Lfρk
2

)
∥x̃k+1 − x̃k∥22

+
1

2σk

(
∥y − ỹk∥22 − ∥y − ỹk+1∥22

)
− 1

2σk
∥ỹk+1 − ỹk∥22

− ⟨x̃k+1 − x, ṽk+1⟩+ ⟨ũk+1, ỹk+1 − y⟩+ ⟨Kx̃k+1, y⟩ − ⟨Kx, ỹk+1⟩.
(B.20)

The sum of the four inner products on the last line, namely, −⟨x̃k+1−x, ṽk+1⟩+
⟨ũk+1, ỹk+1 − y⟩+ ⟨Kx̃k+1, y⟩ − ⟨Kx, ỹk+1⟩, multiplied by γk can be computed
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as follows.

γk[−⟨x̃k+1 − x,ṽk+1⟩+ ⟨ũk+1, ỹk+1 − y⟩+ ⟨Kx̃k+1, y⟩ − ⟨Kx, ỹk+1⟩]
= γk[−

(
⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩ − θk⟨x̃k+1 − x,BT (ỹk − ỹk−1)⟩

)
+
(
⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩ − θk⟨A(x̃k − x̃k−1), ỹk+1 − y⟩

)
+ τk⟨(K +A)(K +B)T (ỹk+1 − ỹk), ỹk+1 − y⟩
− τk−1θk⟨(K +A)(K +B)T (ỹk − ỹk−1), ỹk+1 − y⟩]

=−
(
γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩ − γk−1⟨x̃k − x,BT (ỹk − ỹk−1)

)
+
(
γk⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩ − γk−1⟨A(x̃k − x̃k−1), ỹk − y⟩

)
+ τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩
− τk−1γk−1⟨(K +B)T (ỹk − ỹk−1), (K +A)T (ỹk − y)⟩
+ γk−1⟨x̃k+1 − x̃k, BT (ỹk − ỹk−1)⟩ − γk−1⟨A(x̃k − x̃k−1), ỹk+1 − ỹk⟩
− γk−1τk−1⟨(K +B)T (ỹk − ỹk−1), (K +A)T (ỹk+1 − ỹk)⟩.

We used the relation

ũk+1 = Kx̃k+1 +A(x̃k+1 − x̃k)− θkA(x̃k − x̃k−1)

+ τk(K +A)(K +B)T (ỹk+1 − ỹk)− θkτk−1(K +A)(K +B)T (ỹk − ỹk−1),

which holds if g ≡ 0 or A = −K in the first equality.

By upper bounding the inner product terms, and noting that θk = γk−1/γk =
τk−1/τk = σk−1/σk, we have:

|γk−1⟨x̃k+1 − x̃k, BT (ỹk − ỹk−1)⟩| ≤ γkq

2τk
∥x̃k+1 − x̃k∥22 +

∥B∥22γk−1τk−1

2q
∥ỹk − ỹk−1∥22

|γk−1⟨x̃k − x̃k−1, AT (ỹk+1 − ỹk)⟩| ≤ ∥A∥22γk−1σk−1

2r
∥x̃k − x̃k−1∥22 +

γkr

2σk
∥ỹk+1 − ỹk∥22

|γk−1τk−1⟨(K +B)T (ỹk − ỹk−1),(K +A)T (ỹk+1 − ỹk)⟩|

≤ ∥K +A∥2∥K +B∥2γk−1τk−1θk
2

∥ỹk − ỹk−1∥22

+
∥K +A∥2∥K +B∥2γk−1τk−1

2θk
∥ỹk+1 − ỹk∥22

(B.21)

for some positive q and r. Thus

ρ−1
k γkG(zk+1, z)− (ρ−1

k − 1)γkG(zk, z)

≤ γk
2τk

(
∥x− x̃k∥22 − ∥x− x̃k+1∥22

)
+

γk
2σk

(
∥y − ỹk∥22 − ∥y − ỹk+1∥22

)
−
(
γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩ − γk−1⟨x̃k − x,BT (ỹk − ỹk−1)

)
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+
(
γk⟨x̃k+1 − x̃k, AT (ỹk+1 − y)⟩ − γk−1⟨x̃k − x̃k−1, AT (ỹk − y)⟩

)
+ τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩
− τk−1γk−1⟨(K +B)T (ỹk − ỹk−1), (K +A)T (ỹk − y)⟩

− γk

(
1− q

2τk
−

Lfρk
2

)
∥x̃k+1 − x̃k∥22 +

∥A∥22γk−1σk−1

2r
∥x̃k − x̃k−1∥22

− γk

(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22

+
γk−1τk−1

2

(
∥B∥22
q

+ ∥K +A∥2∥K +B∥2θk
)
∥ỹk − ỹk−1∥22.

Recursively applying the above relation, we obtain:

ρ−1
k γkG(zk+1, z)

≤ Dk(z, z̃
[k])− γk(⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩ − ⟨x̃k+1 − x̃k, AT (ỹk+1 − y)⟩

− τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩)

− γk

(
1− q

2τk
−

Lfρk
2

)
∥x̃k+1

− x̃k∥22 − γk

(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22

−
k−1∑
i=1

γi

(
1− q

2τi
−

Lfρk
2

− ∥A∥22σi
2r

)
∥x̃i+1 − x̃i∥22

−
k−1∑
i=1

γi

(
1− r

2σi
− ∥K +A∥2∥K +B∥2τi−1

2

− τi
2

(
∥B∥22
q

+ ∥K +A∥2∥K +B∥2θi
))

∥ỹi+1 − ỹi∥22.

Thus by the conditions (2.25), the desired result holds.

Proof of Theorem 3. First we find an upper bound of Dk(z, z̃
[k]).

Dk(z, z̃
[k]) =

γ1
2τ1

∥x− x̃1∥22 −
k−1∑
i=1

1

2

(
γi
τi

− γi+1

τi+1

)
∥x− x̃i+1∥22 −

γk
2τk

∥x− x̃k+1∥22

+
γ1
2σ1

∥y − ỹ1∥22 −
k−1∑
i=1

1

2

(
γi
σi

− γi+1

σi+1

)
∥y − ỹi+1∥22 −

γk
2σk

∥y − ỹk+1∥22
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≤ γ1
τ1

Ω2
X −

k−1∑
i=1

(
γi
τi

− γi+1

τi+1

)
Ω2

X − γk
2τk

∥x− x̃k+1∥22

+
γ1
σ1

Ω2
Y −

k−1∑
i=1

(
γi
σi

− γi+1

σi+1

)
Ω2

Y − γk
2σk

∥y − ỹk+1∥22

=
γk
τk

Ω2
X +

γk
σk

Ω2
Y − γk

(
1

2τk
∥x− x̃k+1∥22 +

1

2σk
∥y − ỹk+1∥22

)
, (B.22)

where we used (2.24) for the inequality.
Consider the following upper bounds of the three inner product terms in

(B.17):

|γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩| ≤ γkq

2τk
∥x̃k+1 − x∥22 +

∥B∥22γkτk
2q

∥ỹk+1 − ỹk∥22

|γk⟨x̃k+1 − x̃k, AT (ỹk+1 − y)⟩| ≤ ∥A∥22γkσk
2r

∥x̃k+1 − x̃k∥22 +
γkr

2σk
∥ỹk+1 − y∥22

|τk⟨(K +B)T (ỹk+1 − ỹk),(K +A)T (ỹk+1 − y)⟩|

≤ ∥K +A∥2∥K +B∥2γkτk
2

∥ỹk+1 − ỹk∥22

+
∥K +A∥2∥K +B∥2γkτk

2
∥ỹk+1 − y∥22.

(B.23)

Then (2.25a), (B.17), (B.22), and (B.23) imply that

ρ−1
k γkG(zk+1, z) ≤ γk

τk
Ω2

X +
γk
σk

Ω2
Y − γk

1− q

2τk
∥x− x̃k+1∥22

− γk

(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk

2

)
∥y − ỹk+1∥22

− γk

(
1− q

2τk
− Lfρk

2
− ∥A∥22σk

2

)
∥x̃k+1 − x̃k∥22

− γk

(
1− r

2σk
− τk

2

(
2∥K +A∥2∥K +B∥2 + ∥B∥22

))
∥ỹk+1 − ỹk∥22

≤ γk
τk

Ω2
X +

γk
σk

Ω2
Y .

That is, (2.27).

Proof of Corollary 2. First check (2.28) and (2.29) satisfy (2.25):

1− q

τk
− Lfρk − ∥A∥22σk

r
≥
(
(1− q)P2 −

a2

r

)
ΩXLK

ΩY
≥ 0,
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1− r

σk
− τk

(
2∥K +A∥2∥K +B∥2 +

∥B∥22
q

)
≥
(
1− r − 2cd+ b2/q

P2

)
ΩXLK

ΩY
≥ 0,

Then by (2.27), we have

G⋆(zk) ≥ ρk−1

τk−1
Ω2
X +

ρk−1

σk−1
Ω2
Y

=
4P1Lf + 2P2(k − 1)LKΩY /ΩX

k(k − 1)
Ω2
X +

2LKΩX/ΩY

k
Ω2
Y

=
4P1Ω

2
X

k(k − 1)
Lf +

2ΩXΩY (P2 + 1)

k
LK .

We need the following lemma to prove Theorem 4.

Lemma 5. Consider a saddle point ẑ = (x̂, ŷ) of the problem (2.2), and the
parameters ρk, θk, τk, and σk satisfying the conditions for Theorem 4. Then

∥x− x̃1∥22 +
τk
σk

∥y − ỹ1∥22 ≥ (1− q)∥x− x̃k+1∥22 +
τk
σk

(
1

2
− r

)
∥y − ỹk+1∥22

(B.24)

and

G̃(z̃k+1, vk+1) ≤ ρk
2τk

∥xk+1 − x̃1∥22 +
ρk
2σk

∥yk+1 − ỹ1∥22 =: δk+1 (B.25)

for all t ≥ 1, where G̃ is defined in (2.31), and

vk+1 =

(
ρk
τk

(x̃1 − x̃k+1)−BT (ỹk+1 − ỹk),

ρk
σk

(ỹ1 − ỹk+1) +A(x̃k+1 − x̃k) + (K +A)(K +B)T (ỹk+1 − ỹk)

)
(B.26)

Proof. First, let us prove (B.24). The conditions for Lemma 4 clearly holds.
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Note that

Dk(z, z̃
[k]) =

γ1
2τ1

∥x− x̃1∥22 −
k−1∑
i=1

(
γi
2τi

− γi+1

2τi+1

)
∥x− x̃k+1∥22 −

γk
2τk

∥x− x̃k+1∥22

+
γ1
2σ1

∥y − ỹ1∥22 −
k−1∑
i=1

(
γi
2σi

− γi+1

2σi+1

)
∥y − ỹk+1∥22 −

γk
2σk

∥y − ỹk+1∥22.

(B.27)

By (2.32), one may see that

γ−1
k Dk(z, z

[k]) =
1

2τk
∥x− x̃1∥22 −

1

2τk
∥x− x̃k+1∥22 +

1

2σk
∥y − ỹ1∥22 −

1

2σk
∥y − ỹk+1∥22.

Thus (B.17) is equivalent to

ρ−1
k G(z̃k+1, z) ≤ 1

2τk
∥x− x̃1∥22 −

1

2τk
∥x− x̃k+1∥22 +

1

2σk
∥y − ỹ1∥22 −

1

2σk
∥y − ỹk+1∥22

− ⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩+ γk⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩
+ τk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩

−
(
1− q

2τk
− Lfρk

2

)
∥x̃k+1 − x̃k∥22

−
(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22.

Note that∣∣⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩
∣∣ ≤ ∥A∥22σk

2r
∥x̃k+1 − x̃k∥22 +

r

2σk
∥ỹk+1 − y∥22

|τk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩|

≤ τ2kσk∥K +A∥22∥K +B∥22∥ỹk+1 − ỹk∥22 +
1

4σk
∥ỹk+1 − y∥22∣∣⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩

∣∣ ≤ q

2τk
∥x̃k+1 − x∥22 +

∥B∥22τk
2q

∥ỹk+1 − ỹk∥22.

(B.28)

Thus

ρ−1
k G(zk+1, z) ≤ 1

2τk
∥x− x̃1∥22 −

1− q

2τk
∥x− x̃k+1∥22

+
1

2σk
∥y − ỹ1∥22 −

1

2σk

(
1− r − 1

2

)
∥y − ỹk+1∥22

−
(
1− q

2τk
− Lfρk

2
− ∥A∥22σk

2r

)
∥x̃k+1 − x̃k∥22
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−
(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2
− ∥B∥22τk

2q
− ∥K +A∥22∥K +B∥22τ2

kσk

)
∥ỹk+1 − ỹk∥22.

It can be easily seen that

1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2
− ∥B∥22τk

2q
− ∥K +A∥22∥K +B∥22τ2kσk

≥ 1− r

2σk
− τk∥B∥22

2q
− τk∥K +A∥2∥K +B∥2

≥ 0.

Hence

ρ−1
k G(zk+1, z) ≤ 1

2τk
∥x−x̃1∥22−

1− q

2τk
∥x−x̃k+1∥22+

1

2σk
∥y− ỹ1∥22−

1/2− r

2σk
∥y− ỹk+1∥22.

Since G(zk+1, ẑ) ≥ 0, we obtain

∥x− x̃1∥22 +
τk
σk

∥y − ỹ1∥22 ≥ (1− q)∥x− x̃k+1∥22 +
τk
σk

(1/2− r)∥y − ỹk+1∥22.

Next, we prove (B.25). Note that

∥x− x̃1∥22 − ∥x− x̃k+1∥22 = 2⟨x̃k+1 − x̃1, x− xk+1⟩+ ∥xk+1 − x̃1∥22 − ∥xk+1 − x̃k+1∥22
∥y − ỹ1∥22 − ∥y − ỹk+1∥22 = 2⟨ỹk+1 − ỹ1, y − yk+1⟩+ ∥yk+1 − ỹ1∥22 − ∥yk+1 − ỹk+1∥22.

(B.29)

From this, we have:

ρ−1
k G(zk+1, z)− 1

τk
⟨x̃1 − x̃k+1, xk+1 − x⟩ − 1

σk
⟨ỹ1 − ỹk+1, yk+1 − y⟩

− ⟨x− xk+1, BT (ỹk+1 − ỹk)⟩+ ⟨A(x̃k+1 − x̃k), y − yk+1⟩

+ τk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (y − yk+1)⟩

≤ 1

2τk

(
∥xk+1 − x̃1∥22 − ∥xk+1 − x̃k+1∥22

)
+

1

2σk

(
∥yk+1 − ỹ1∥22 − ∥yk+1 − ỹk+1∥22

)
−

(
1− q

2τk
− Lfρk

2

)
∥x̃k+1 − x̃k∥22

−
(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22

− ⟨x̃k+1 − xk+1, BT (ỹk+1 − ỹk)⟩+ ⟨A(x̃k+1 − x̃k), ỹk+1 − yk+1⟩

+ τk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − yk+1)⟩

≤ 1

2τk
∥xk+1 − x̃k∥22 +

1

2σk
∥yk+1 − ỹ1∥22

− 1− q

2τk
∥xk+1 − x̃k+1∥22 −

1/2− r

2σk
∥yk+1 − ỹk+1∥22
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−
(
1− q

2τk
− Lfρk

2
− ∥A∥22σk

2r

)
∥x̃k+1 − x̃k∥22

−
(
1− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2
− ∥B∥22τk

2q
− ∥K +A∥22∥K +B∥22τ2

kσk

)
∥ỹk+1 − ỹk∥22

≤ 1

2τk
∥xk+1 − x̃1∥22 +

1

2σk
∥yk+1 − ỹ1∥22.

In the penultimate inequality, the upper bound for inner product terms similar
to (B.28) was used.

Proof of Theorem 4. It is sufficient to find upper bounds of ∥vk+1∥2 and δk+1.
From the definition of R and (B.24), we have ∥x̂ − x̃k+1∥2 ≤ µR and ∥ŷ −
ỹk+1∥2 ≤

√
σk
τk
νR. For vk+1 defined in (B.26),

∥vk+1∥2 ≤ ρk(
1

τk
∥x̃1 − x̃k+1∥2 + ∥B∥2∥ỹk+1 − ỹk∥2

+
1

σk
∥ỹ1 − ỹk+1∥2 + ∥A∥2∥x̃k+1 − x̃k∥2 + ∥K +A∥2∥K +B∥2τk∥ỹk+1 − ỹk∥2)

≤ ρk(
1

τk
(∥x̂− x̃1∥2 + ∥x̂− x̃k+1∥2) +

1

σk
(∥ŷ − ỹ1∥2 + ∥ŷ − ỹk+1∥2)

+ ∥A∥2(∥x̂− x̃k+1∥2 + ∥x̂− x̃k∥2)

+ (∥B∥2 + ∥K +A∥2∥K +B∥2τk)(∥ŷ − ỹk+1∥2 + ∥ŷ − ỹk∥2)

≤ ρk
τk

∥x̂− x̃1∥2 +
ρk
σk

∥ŷ − ỹ1∥2

+ ρk

(
1

τk
+ 2∥A∥2

)
µR+ ρk

(
1

σk
+ 2∥B∥2 + 2∥K +A∥2∥K +B∥2τk

)
νR

=
ρk
τk

∥x̂− x̃1∥2 +
ρk
σk

∥ŷ − ỹ1∥2

+R

[
ρk
τk

(
µ+

τ1
σ1

ν

)
+ 2ρk (∥A∥2µ+ ∥B∥2ν) + 2τkρk∥K +A∥2∥K +B∥2ν

]
,

i.e., (2.34). In the last equality, we used

1

σk
=

τk
σk

1

τk
=

τ1
σ1

1

τk
.

Now, we find an upper bound for δk+1 defined in (B.25).

δk+1 =
ρk
2τk

∥xk+1 − x̃1∥22 +
ρk
2σk

∥yk+1 − ỹ1∥22

≤ ρk
τk

(
∥x̂− xk+1∥22 + ∥x̂− x̃1∥22

)
+

ρk
σk

(
∥ŷ − yk+1∥22 + ∥ŷ − ỹ1∥22

)
=

ρk
τk

(R2 + (1− q)∥x̂− xk+1∥22 +
τk
σk

(1/2− r)∥ŷ − yk+1∥22

+ q∥x̂− xk+1∥22 +
τk
σk

(r + 1/2)∥ŷ − yk+1∥22)
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≤ ρk
τk

[R2 +
ρk
γk

k∑
i=1

γi[(1− q)∥x̂− x̃i+1∥22 +
τk
σk

(1/2− r)∥ŷ − ỹi+1∥22

+ q∥x̂− x̃i+1∥22 +
τk
σk

(r + 1/2)∥ŷ − ỹi+1∥22]]

≤ ρk
τk

[R2 +
ρk
γk

k∑
i=1

γi[R
2 + q∥x̂− x̃i+1∥22 +

τk
σk

(r + 1/2)∥ŷ − ỹi+1∥22]]

≤ ρk
τk

[
2 + qµ2 + (r + 1/2)ν2

]
R2

=
ρk
τk

[
2 +

q

1− q
+

r + 1/2

1/2− r

]
R2,

i.e., (2.33). In the second and third inequalities, we used

xk+1 =
ρk
γk

k∑
i=1

γix̃
i+1, yk+1 =

ρk
γk

k∑
i=1

γiỹ
i+1, and

ρk
γk

k∑
i=1

γi = 1.

Proof of Corollary 3. First check if (2.36) and (2.37) satisfy (2.25) and (2.32).
Conditions (2.32) and (2.25a) are trivial to see. To prove (2.25b) and (2.25c):

1− q

τk
− Lfρk −

∥A∥22σk
r

≥ LK

(
(1− q)P2

N

k
− a2k

rN

)
≥ LK

(
(1− q)P2 −

a2

r

)
≥ 0,

and

1− r

σk
−τk

(
2∥K +A∥2∥K +B∥2 +

∥B∥22
q

)
≥
(
(1− r)N

k
− (2cd+ b2/q)k

P2N

)
LK

≥
(
(1− r)P2 − (2cd+ b2/q)

)
LK/P2 ≥ 0.

Condition (2.37) also implies that τk ≤ σk.
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Note that

ρN
τN

≤
4P1Lf

N2
+

2P2LK

N

L2
KρNτN ≤

2NL2
K

(2P1Lf + P2NLK)(N + 1)
≤ 2LK

P2N

ρNLK ≤ 2LK

N
.

(B.30)

When we put ∥A∥2 ≤ aLK , ∥B∥2 ≤ bLK , ∥K + A∥2 ≤ cLK , and ∥K + B∥2 ≤
dLK , ∥vk+1∥2 is bounded above by

∥vk+1∥2 ≤
ρk
τk

(
∥x̂− x̃1∥2 + ∥ŷ − ỹ1∥2

)
+R

[
ρk
τk

(
µ+

τ1
σ1

ν

)
+ 2ρkLK(aµ+ bν) + 2τkρkL

2
Kcdν

]
.

Thus by (B.30), we have

ϵN+1 ≤ δN+1 ≤
(
4P1Lf

N2
+

2P2LK

N

)[
2 +

q

1− q
+

r + 1/2

1/2− r

]
R2,

which is (2.38), and

∥vN+1∥2 ≤
4P1Lf

N2

[(
∥x̂− x̃1∥2 + ∥ŷ − ỹ1∥2

)
+R

(
µ+

τ1
σ1

ν

)]
+

LK

N

[
2P2

((
∥x̂− x̃1∥2 + ∥ŷ − ỹ1∥2

)
+R

(
µ+

τ1
σ1

ν

))
+ 4R(aµ+ bν) +

4Rcdν

P2

]
,

which is (2.39).

B.3 Optimal stochastic acceleration

We obtain a bound similar to Lemma 4 first. The following lemma provides an

upper bound on ρ−1
k γkG(zk, z).

Lemma 6. Assume that zk = (xk, yk) is the iterates generated by the iteration
(2.43). Also assume that the parameters satisfy (2.25a) (2.32), and (2.45). Then
for any z ∈ Z, we have
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ρ−1
k γkG(zk+1, z) ≤ Dk(z, z̃

[k])− γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩
+ γk⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩
+ τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩

− γk

(
s− q

2τk
−

ρkLf

2

)
∥x̃k+1 − x̃k∥22

− γk

(
t− r

2σk
− ∥K +A∥2∥K +B∥2τk−1

2

)
∥ỹk+1 − ỹk∥22

+
k∑

i=1

Λi(z),

(B.31)

where γk and D(z, z̃[k]) are defined in (B.18) and (B.19), respectively, and

Λi(z) := −(1− s)γi
2τi

∥x̃i+1 − xi∥22 −
(1− t)γi

2σi
∥ỹi+1 − yi∥22 − γi⟨∆i, zi+1 − z⟩.

(B.32)

Proof. Analogous to the proof of Lemma 4, except for that we start with

⟨−ũk+1, ỹ
k+1 − y⟩+ h∗(ỹk+1)− h∗(y)

≤ 1

2σk
∥y − ỹk∥22 −

1

2σk
∥ỹk+1 − ỹk∥22 −

1

2σk
∥y − ỹk+1∥22

⟨F̂(xkmd), x̃
k+1 − x⟩+ ⟨x̃k+1 − x, ṽk+1⟩+ g(x̃k+1)− g(x)

≤ 1

2τk
∥x− x̃k∥22 −

1

2τk
∥x̃k+1 − x̃k∥22 −

1

2τk
∥x− x̃k+1∥22.

Now we define ∆k
x,f := F̂(xkmd) − ∇f(xkmd), ∆

k
x,K := ṽk+1 − ṽk+1,o, ∆k

y :=

−ũk+1+ ũk+1,o, and ∆k := (∆k
x,∆

k
y), where ũk+1,o and ṽk+1,o is the result from

(2.23) calculated with the recent iterates (x̃k+1, ỹk+1), (x̃k, ỹk) and (x̃k−1, ỹk−1)

from (2.43).

We need the following lemmas.
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Lemma 7 (Lemma 4.5, Chen et al., 2011). Let τi, σi, and γi > 0. For any
z̃1 ∈ Z, define z̃1v = x̃1 and

zi+1
v = argmin

z=(x,y)∈Z
−τi⟨∆i

x, x⟩ − σi⟨∆i
y, y⟩+

1

2
∥z − ziv∥22, (B.33)

then

k∑
i=1

γi⟨−∆i, ziv − z⟩ ≤ Dk(z, z̃
[k]
v ) +

k∑
i=1

τiγi
2

∥∆i
x∥22 +

k∑
i=1

σiγi
2

∥∆i
y∥22, (B.34)

where z̃
[k]
v := {ziv}ki=1.

Lemma 8. The following holds for E[∥∆i
x,f∥22], E[∥∆i

x,K∥22], and E[∥∆i
y∥22].

E[∥∆i
x,f∥22] ≤ χ2

x,f (B.35a)

E[∥∆i
x,K∥22] ≤ χ2

x,K + χ2
B (B.35b)

E[∥∆i
y∥22] ≤ χ2

y + χ2
A + τ2i ∥K +A∥22(χ2

x + χ2
B). (B.35c)

If A = −K and B = bK, after rearranging terms in (2.43), we have

E[∥∆i
x,f∥22] ≤ χ2

x,f

E[∥∆i
x,K∥22] ≤ χ2

x,K

E[∥∆i
y∥22] ≤ χ2

y.

(B.36)

Proof. (B.35a) is trivial, by (2.42). Note that

∆i
x,K = K̂y(ỹ

k+1)−KT ỹk+1 + B̂(ỹk+1 − ỹk − θk(ỹ
k − ỹk−1))

−BT (ỹk+1 − ỹk − θk(ỹ
k − ỹk−1)),

and as separate calls for the stochastic oracle are independent, we obtain (B.35b).
If we define

∆i
v := F̂(x̃k)−∇f(x̃k) + v̄k − v̄k,o,

then one may easily check that

E[∥∆i
v∥22] ≤ χ2

x,f + χ2
x,K + χ2

B.
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Then we have:

∆i
y = K̂x(x̃

k − τk(∇f(x̃k) + v̄k,0 +∆i
v))− Â(θk(x̃

k − x̃k−1) + τk(∇f(x̃k) + v̄k,0 +∆i
v))

−K(x̃k − τk(∇f(x̃k) + v̄k,0 +∆i
v)) +A(θk(x̃

k − x̃k−1) + τk(∇f(x̃k) + v̄k,0 +∆i
v))

− τk(K +A)∆i
v,

thus

E[∥∆i
y∥22] ≤ χ2

y + χ2
A + τ2k∥K +A∥22(χ2

x + χ2
B).

When A = −K and B = bK, we may rearrange (2.43) to include only one
call to either K̂x or K̂y, as

ũk+1 = K̂x(x̃
k + θk(x̃

k − x̃k−1))

ṽk+1 = K̂y(ỹ
k+1 + b((ỹk+1 − ỹk)− θk(ỹ

k − ỹk−1))).

Then using the approach similar to above, we may obtain (B.36).

Proof of Theorem 5. First we use the bounds in (B.23) to obtain

ρ−1
k γkG(zk+1, z) ≤ γk

τk
Ω2
X +

γk
σk

Ω2
Y +

k∑
i=1

Λi(z),

following the steps to prove Theorem 3. Then by the definition of Λi(z), we
have

Λi(z) = −(1− s)γi
2τi

∥x̃i+1 − xi∥22 −
(1− t)γi

2σi
∥ỹi+1 − yi∥22 + γi⟨∆i, z − zi+1⟩

= −(1− s)γi
2τi

∥x̃i+1 − xi∥22 −
(1− t)γi

2σi
∥ỹi+1 − yi∥22 + γi⟨∆i, zi − zi+1⟩

+ γi⟨∆i, z − zi⟩

≤ τiγi
2(1− s)

∥∆i
x∥22 +

σiγi
2(1− t)

∥∆i
y∥22 + γi⟨∆i, z − zi⟩,

where the last line is due to Young’s inequality. By this result and Lemma 7,
we have

k∑
i=1

Λi(z) ≤
k∑

i=1

[
τiγi

2(1− s)
∥∆i

x∥22 +
σiγi

2(1− t)
∥∆i

y∥22 + γi⟨∆i, ziv − zi⟩+ γi⟨−∆i, ziv − z⟩
]

≤ Dk(z, z̃
[k]
v ) +

1

2

k∑
i=1

[
(2− s)τiγi

1− s
∥∆i

x∥22 +
(2− t)σiγi

1− t
∥∆i

y∥22 + γi⟨∆i, ziv − zi⟩
]
.

(B.37)
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Let us define Uk as

Uk :=
1

2

k∑
i=1

[
(2− s)τiγi

1− s
∥∆i

x∥22 +
(2− t)σiγi

1− t
∥∆i

y∥22 + γi⟨∆i, ziv − zi⟩
]

(B.38)

for later use.
Note that ∆i and zi are independent by the assumptions of stochastic oracle.

By this fact and Lemma 8,

E[Uk] ≤
1

2

k∑
i=1

[
(2− s)τiγi(χ

2
x + χ2

B)

1− s
+

(2− t)σiγi(χ
2
y + χ2

A + τ2
k∥K +A∥22(χ2

x + χ2
B))

1− t

]
.

(B.39)

Similar to (B.22), Dk(z, z̃
[k]
v ) ≤ Ω2

Xγk
τk

+
Ω2

Y γk
σk

. Thus we have:

E[ρ−1
k γkG⋆(zk+1)] ≤ 2γk

τk
Ω2
X +

2γk
σk

Ω2
Y + E[Uk].

The above relation along with (B.39) implies the condition (a).
Proof of part (b) is analogous to the proof of Theorem 3.1 in Chen et al.

(2014). This uses a large-deviation theorem for martingale-difference sequence.

Proof of Corollary 4. First we check (2.45a) and (2.45b).

s− q

τk
− ρkLf − ∥A∥22σk

r
≥ LKΩY

ΩX

(
(s− q)P2 −

1

r

)
≥ 0

t− r

σk
− τk

(
2∥K +A∥2∥K +B∥2 +

∥B∥22
q

)
≥
(
(t− r)R− b2/q

P2

)
ΩX

ΩY
≥ 0,

by (2.52). Note that γk = k,
∑k

i=1

√
i ≤

∫ k+1
1

√
udu ≤ 2

3(k + 1)3/2 ≤ 2
√
2

3 (k +

1)
√
k, so

1

γk

k∑
i=1

τiγi ≤
ΩX

kP3χx

k∑
i=1

√
i ≤ 2

√
2ΩX(k + 1)

√
k

3kP3χx
and

1

γk

k∑
i=1

σiγi ≤
ΩY

kP3χy

k∑
i=1

√
i ≤ 2

√
2ΩY (k + 1)

√
k

3kP3χy
,
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which in turn implies

C0(k) ≤
2

k + 1

[
2(2P1LfΩX + P2LKΩY k + P3χxk

3/2)

k
ΩX

+ 2LKΩXΩY + P3χyΩY k
1/2

+

√
2(2− s)ΩXχ2

x(k + 1)
√
k

3(1− s)P3χxk
+

√
2(2− t)ΩY χ

2
y(k + 1)

√
k

3(1− t)P3χyk

]

≤
8P1LfΩ

2
X

k(k + 1)
+

4LKΩXΩY (P2 + 1)

k
+

4P3(χxΩX + 4χyΩY )√
k

+

√
2(2− s)ΩXχx

3(1− s)
√
k

+

√
2(2− t)ΩY χy

3(1− t)
√
k

and

C1(k) ≤
2

k + 1

[√
2

k

(√
2χxΩx + χyΩy

)√√√√ k∑
i=1

i2

+

√
2(2− s)ΩXχ2

x(k + 1)
√
k

3(1− s)P3χxk
+

√
2(2− t)ΩY χ

2
y(k + 1)

√
k

3(1− t)P3χyk

]

≤

(
4 +

√
2(2− s)

3(1− s)

)
ΩXχx√

k
+

(
2
√
2 +

√
2(2− s)

3(1− s)

)
ΩY χy√

k
.

We need the following lemma to prove Theorem 6.

Lemma 9. For a saddle point ẑ = (x̂, ŷ) of (2.2), and the parameters ρk, θk,
τk, and σk satisfy (2.25a), (2.32), and (2.45), then

(1− q)∥x̂− x̃k+1∥22 + ∥x̂− x̃k+1
v ∥22 +

τk(1/2− r)

σk
∥ŷ − ỹk+1∥22 +

τk
σk

∥ŷ − ỹk+1
v ∥22

≤ 2∥x̂− x̃1∥22 +
2τk
σk

∥ŷ − ỹ1∥22 +
2τk
γk

Uk, (B.40)

where (x̃k+1
v , ỹk+1

v ) is defined in (B.33), and Uk is defined by (B.38).
Furthermore,

G̃(zk+1, vk+1) ≤ ρk
τk

∥xk+1 − x̃1∥22 +
ρk
σk

∥yk+1 − ỹ1∥22 +
ρk
γk

Uk := δ′k+1, (B.41)
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for k ≥ 1, where

vk+1 = ρk

(
1

τk
(2x̃1 − x̃k+1 − x̃k+1

v )−BT (ỹk+1 − ỹk),

1

σk
(2ỹ1 − ỹk+1 − ỹk+1

v ) +A(x̃k+1 − x̃k) + τk(K +A)(K +B)T (ỹk+1 − ỹk)

)
.

Proof. By applying the bounds (B.28) and (B.37) to (B.31), we obtain:

ρ−1
k γkG(zk+1, z) ≤ D̄k(z, z̃

[k]) +
qγk
2τk

∥x− x̃k+1∥22 +
(r + 1/2)γk

2σk
∥y − ỹk+1∥22

+ D̄k(z, z̃
[k]
v ) + Uk,

where

D̄k(z, z̃
[k]) =

γk
2τk

(∥x− x̃1∥22 − ∥x− x̃k+1∥22) +
γk
2σk

(∥y − ỹ1∥22 − ∥y − ỹk+1∥22).

Letting z = ẑ and using G(zk+1, ẑ) ≥ 0 leads to (B.40). If we only use (B.37)
on (B.31), we get:

ρ−1
k γkG(zk+1, z) ≤ D̄k(z, z̃

[k])− γk⟨x̃k+1 − x,BT (ỹk+1 − ỹk)⟩
+ γk⟨A(x̃k+1 − x̃k), ỹk+1 − y⟩
+ τkγk⟨(K +B)T (ỹk+1 − ỹk), (K +A)T (ỹk+1 − y)⟩
+ D̄k(z, z̃

[k]
v ) + Uk.

Applying (B.29) and following the steps of Lemma 5 results in (B.41).

Proof of Theorem 6. Note that (B.39) holds by Lemma 8. By the definition of
S in (2.59) and (B.39), we have

E[Uk] ≤
γk
2τk

S2.

By the above, (B.40), and (2.35), we have

E[∥x̂− x̃k+1∥22] ≤
2R2 + S2

1− q
and E[∥ŷ − ỹk+1∥22] ≤

(2R2 + S2)σ1
τ1(1/2− r)

.

By Jensen’s inequality, this leads to

E[∥x̂− x̃k+1∥2] ≤

√
2R2 + S2

1− q
and E[∥ŷ − ỹk+1∥2] ≤

√
(2R2 + S2)σ1
τ1(1/2− r)

.

164



Similarly, we have

E[∥x̂− x̃k+1
v ∥2] ≤

√
2R2 + S2 and E[∥ŷ − ỹk+1

v ∥2] ≤

√
(2R2 + S2)σ1

τ1
.

Thus

E[∥vk+1∥2] ≤ ρk E[
1

τk
(2∥x̂− x̃1∥2 + ∥x̂− x̃k+1∥2 + ∥x̂− x̃k+1

v ∥2)

+
1

σk
(2∥ŷ − ỹ1∥2 + ∥ŷ − ỹk+1∥2 + ∥ŷ − ỹk+1

v ∥2)

+ ∥A∥2(∥x̂− x̃k+1∥2 + ∥x̂− x̃k∥2)
+ (∥B∥2 + ∥K +A∥2∥K +B∥2τk)(∥ŷ − ỹk+1∥2 + ∥ŷ − ỹk∥2)]

≤ 2ρk∥x̂− x̃1∥2
τk

+
2ρk∥ŷ − ỹ1∥2

σk

+
√
2R2 + S2

[
ρk
τk

(1 + µ′) +
ρk
σk

√
σ1
τ1

(1 + ν ′)

+ ρk(2∥A∥2µ′ + 2∥B∥2ν ′
√

σ1
τ1

)

+ 2ρkτk∥K +A∥2∥K +B∥2ν ′
√

σ1
τ1

]

where µ′ = 1/
√
1− q and ν ′ = 1/

√
1/2− r. Now we find an upper bound

of E[δ′k+1].

E[δ′k+1] ≤ E
[
2ρk
τk

(∥x̂− xk+1∥22 + ∥x̂− x̃1∥22) +
2ρk
σk

(∥ŷ − yk+1∥22 + ∥ŷ − ỹ1∥22)
]
+

ρk
2τk

S2

=
ρk
τk

E
[
(2R2 + 2(1− q)∥x̂− xk+1∥22 +

2τk(1/2− r)

σk
∥ŷ − yk+1∥22)

+ 2q∥x̂− xk+1∥22 +
2τk(r + 1/2)

σk
∥ŷ − yk+1∥22

]
+

ρk
2τk

S2

≤ ρk
τk

[
2R2 +

2ρk
γk

k∑
i=1

γi[(2R
2 + S2) + qµ′2(2R2 + S2) + (r + 1/2)ν′2(2R2 + S2)] +

S2

2

]

=
ρk
τk

[
6R2 +

5

2
S2 +

2q

1− q
(2R2 + S2) +

2(r + 1/2)

1/2− r
(2R2 + S2)

]
=

ρk
τk

[(
6 +

4q

1− q
+

4(r + 1/2)

1/2− r

)
R2 +

(
5

2
+

2q

1− q
+

2(r + 1/2)

1/2− r

)
S2

]
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Proof of Corollary 5. First we check (2.45a) and (2.45b):

s− q

τk
− ρkLf − ∥A∥22σk

r
≥ LK

(
(s− q)P2 −

1

r

)
≥ 0,

t− r

σk
− τk

b2L2
K

q
≥ LK

(
(t− r)− b2

qP2

)
≥ 0,

by (2.61).

Now, if we put η = 2P1Lf + P2LK(N − 1) + P3N
√
N − 1χ′,

S ≤

√√√√N−1∑
i=1

(2− s)χ2
xi

2

(1− s)τ2
+

N−1∑
i=1

(2− t)χ2
yi

2

(1− t)η2

≤

√
N2(N − 1)

3η2

(
(2− s)χ2

x

1− s
+

(2− t)χ2
y

1− t

)
=

χ′N
√
N − 1√
3η

≤ χ′N
√
N − 1√

3N
√
N − 1χ′/R̃

=
R̃√
3
.

(B.42)

Thus ϵN is bounded above by

ϵN ≤ ρN−1

τN−1
(ζR2 + ξS2) ≤ ρN−1

τN−1
(ζR2 + ξ

R̃2

3
),

where ζ = 6 + 4q
1−q +

4(r+1/2)
1/2−r and ξ = 5

2 + 2q
1−q +

2(r+1/2)
1/2−r .

Note that

ρN−1

τN−1
∥x̂− x̃1∥ ≤ ρN−1

τN−1
R,

ρN−1

σN−1
∥ŷ − ỹ1∥ ≤ ρN−1

τN−1

√
σ1
τ1

R

and that

ρN−1LK ≤ 2LK

N
,

ρN−1

τN−1
≤ 2η

N(N − 1)
=

4P1Lf + 2P2LK(N − 1) + 2N
√
N − 1χ′/R̃

N(N − 1)

=
4P1Lf

N(N − 1)
+

2P2LK

N
+
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N − 1

(B.43)
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Thus

ϵN ≤ ρN−1

τN−1
(ζR2 + ξS2)

≤

(
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N
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.

Now note that
√
2R2 + S2 ≤

√
2R+ S.
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2ρN−1

τN−1

(
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√
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√
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√
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√
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(
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)
,

thus we obtain the desired order for both ϵN and E[∥vN∥].
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Appendix C

AWS EC2 and ParallelCluster

We used AWS Elastic Compute Cloud (EC2) via CfnCluster throughout our

multi CPU-node experiments, which is updated to ParallelCluster after we had

completed the experiments. In this section, we instruct how to use Parallel-

Cluster via Amazon Web Services. This section is structured into three parts:

setting up AWS account and how to configure and run a job on ParallelCluster.

We refer the readers to the official documentation1 and an AWS whitepaper2

for further details.

C.1 Overview

A virtual cluster created by ParallelCluster consists of two types of instances

in EC2: a master node and multiple worker instances. The master instance

manages jobs through a queue on a job scheduler and several AWS services

such as Simple Queue Service and Auto Scaling Group. When a virtual cluster is
1https://docs.aws.amazon.com/parallelcluster/index.html
2https://d1.awsstatic.com/Projects/P4114756/deploy-elastic-hpc-cluster_

project.a12a8c61339522e21262da10a6b43a3678099220.pdf
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created, the shared file system. The software necessary for the jobs are installed

in this file system, and a script to set up the environment variables for the

tools is utilized. While the master instance does not directly take part in the

actual computation, the speed of network on the shared file system depends

on the instance type of the master instance. If the jobs depend on the shared

dataset, the master instance has to allow fast enough network speed. The actual

computation is performed on the worker instances. Each worker has access to

the shared file system where the necessary tools and data reside. The network

speed between workers depends on the worker instance type.

C.2 Glossary

We briefly introduce some of the key concepts regarding the AWS and cluster

computing in this subsection.

Some of the basic concepts from AWS are shown below:

• Instance: a virtual computer on AWS EC2. There are various types of

instances determines number of cores, memory size, network speed, etc.

c5.18xlarge is prominently utilized in our experiments.3

• Region: a region, e.g., North Virginia, Ohio, North California, Oregon,

Hong Kong, Seoul, Tokyo is completely independent from other regions,

and data transfer between regions are charged.

• Availablity zone: there are a handful of availability zones in each region.

Each availability zone is isolated, but availability zones in the same region

is interconnected with a low-latency network. Note that a virtual cluster

created by ParallelCluster is tied to a single availity zone.
3See https://aws.amazon.com/en/ec2/instance-types/ for the full list of types

of instances.
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Listed below are some, but not all, of the AWS services involved in Parallel-

Cluster. They are all managed automatically through ParallelCluster and can

be modified through the AWS console.

• Elastic Compute Cloud (EC2): the core service of AWS that allows users

to rent virtual computers. There are three methods of payment available:

– On-demand: hourly charged, without risk of interruption.

– Spot: bid-based charging. Serviced at up to 70%-discounted rate, but

is interrupted if the price goes higher than the bid price.

– Reserved: one-time payment at discounted rate.

• Elastic Block Store (EBS): persistent block storage volume for EC2 in-

stances, e.g. a solid-state drive (SSD). In ParallelCluster, each instance is

started with a root EBS volume exclusive to each instance.

• CloudFormation: An interface that describes and provisions the cloud

resources.

• Simple Queue Service: the actual job queue is served through message

passing between EC2 instances.

• CloudWatch: monitors and manages the cloud.

• Auto Scaling Group: a collection of EC2 instances with similar character-

istics. The number of instances is automatically scaled based on criteria

defined over CloudWatch.

• Identity and Access Management (IAM): An IAM user is an “entity that

[one] creates in AWS to represent the person or application that uses it
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to interact with AWS.”4 Each IAM user is granted certain permissions

determined by the root user. As there are many services involved in Par-

allelCluster, it is recommended to use an IAM user with full permission.

• Virtual Private Cloud (VPC): a VPC is a dedicated virtual network ex-

clusive to the user, isolated from any other VPCs, which spans all the

availability zones in one region. A subnet is a subnetwork in VPC exclu-

sive to a single availity zone.5

• Security Group (SG): A security group acts as a “virtural firewall that

controls the traffic for one or more instances.”6

Here are some of the concepts related to cluster computing:

• Shared file system: for multiple instances to work on the same data, it is

convenient to have a file system that can be accessed by all the instances

involved. In ParallelCluster, it is implemented as an additional EBS vol-

ume attached to the master instance. All the worker instances can access

this volume, and its speed of network depends on the instance type of the

master instance.

• Job: a unit of execution. defined by either a single command or a job

script.

• Queue: a data structure containing jobs to run. Jobs in a queue is managed

and prioritized by a job scheduler.

• Master: an instance that manages the job scheduler.
4https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
5https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Subnets.html
6https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

using-network-security.html
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• Worker: an instance that executes the jobs.

• Job scheduler: an application program that controls the execution of jobs

over a cluster. e.g. Sun Grid Engine, Torque, Slurm, etc. The Sun Grid

Engine (SGE) was used for our experiments.

Several SGE commands are as follows:

• qsub: submits a job to the job queue

• qdel: removes a job on the job queue

• qstat: shows the current status of the queue

• qhost: shows the current list of workers

C.3 Prerequisites

The following are needed before we proceed. Most of these might be considered

the first steps to use AWS.

• Access keys with administrative privileges: Access keys are credentials for

IAM users and root users. They consist of access key ID (analogous to

username) and secret access key (analogous to passwords). They should

be kept confidential. It is recommended to create a temporary IAM user

with administrative privilage and create an access key ID and a secret

access key for the IAM user. They can be created in the AWS console (or

the IAM console for an IAM user).7

• A VPC and a subnet: A VPC for each region and a subnet for each

availability zone is created by default. One may use these default VPC

and subnet or newly-created ones.
7https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_

access-keys.html
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• A security group: One may use a default security group or a newly-created

one.

• A key pair that allows the user to access the cloud via SSH: Amazon EC2

uses public-key cryptography for login credentials. Each EC2 instance is

configured with a public key, and the user has to access this instance using

the matching private key. It can be generaged and managed on AWS EC2

console as well as the user’s terminal.8

C.4 Installation

First, we install the ParallelCluster command line interface (CLI) on a local

machine. ParallelCluster command line interface is distributed through the

standard Python Package Index (PyPI), so one may install it through pip,

the standard package-installing command for Python. One may install Paral-

lelCluster by executing the following on the command line:

sudo pip install aws-parallelcluster

C.5 Configuration

Once ParallelCluster is installed on a local machine, an initial configuration is

needed. It can be done by various ways, but the easiest way is through the

command below:

pcluster configure

Then, the interactive dialog to setup ParallelCluster appears:

8https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.
html
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ParallelCluster Template [default]: <a name desired>
AWS Access Key ID []: <copy and paste the access key>
AWS Secret Access Key ID []: <copy and paste the key>
Acceptable Values for AWS Region ID:

eu-north-1
ap-south-1
eu-west-3
eu-west-2
eu-west-1
ap-northeast-2
ap-northeast-1
sa-east-1
ca-central-1
ap-southeast-1
ap-southeast-2
eu-central-1
us-east-1
us-east-2
us-west-1
us-west-2

AWS Region ID [ap-northeast-2]: <the region to use>
VPC Name [<default name>]: <a name desired>
Acceptable Values for Key Name:

<the registered key names appear here>
Key Name []: <enter the EC2 key pair name>
Acceptable Values for VPC ID:

<the list of VPC appears here>
VPC ID []: <enter one of the vpc above>
Acceptable Values for Master Subnet ID:

<the list of subnet ids appears here>
Master Subnet ID [subnet-<default value>]: <subnet id>

Now examine the files in the directory ~/.parallelcluster (a hidden

directory under the home directory). The file pcluster-cli.log shows the

log and the file config shows the configuration. One can modify the file

config to fine-tune the configuration per user’s need. The following is the

config corresponding to our CfnCluster experiments:
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[global]
update_check = true
sanity_check = true
cluster_template = test

[aws]
aws_region_name = ap-northeast-2

[cluster test]
vpc_settings = testcfn
key_name = <key name>
initial_queue_size = 0
max_queue_size = 20
ebs_settings = expr_ebs
scheduler = sge
compute_instance_type = c5.18xlarge
master_instance_type = c5.18xlarge
cluster_type = spot
spot_price = 1.20
base_os = centos7
scaling_settings = custom
extra_json = {"cluster" : { "cfn_scheduler_slots" : "2"} }
master_root_volume_size = 20
compute_root_volume_size = 20

[ebs expr_ebs]
ebs_snapshot_id = < a snapshot id >
volume_size = 40

[vpc testcfn]
master_subnet_id = < a subnet id >
vpc_id = < a vpc id >

[aliases]
ssh = ssh {CFN_USER}@{MASTER_IP} {ARGS}

[scaling custom]
scaling_idletime = 20

In the [global] section, we set global configurations. The cluster_template
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names the cluster section to be used for the cluster.

update_check check for the updates to ParallelCluster, and sanity_check

validates that resources defined in parameters.

In the [aws] section, the region is specified. AWS access key and secret

key may appear here unless specified in the base AWS CLI.

In the [cluster] section, we define the detailed specification of the virtual

cluster. The vpc_settings names a setting for VPC, detailed in the [vpc]

section, and the ebs_settings names the setting for EBS, detailed in [ebs]

section. The key_name defines the key name to use. The initial_queue_size

defines the number of worker instances at the launch of the cluster. We used

zero for our experiments, as we often needed to check if the configuration is

done properly on master before running actual jobs. The worker instances are

launched upon submission of a new job into the queue, and they are terminated

when the workers stay idle for a while (not exactly defined, but often around

five to ten minutes).

We set the max_queue_size, the maximum number of worker instances to

20. We used CentOS 7 as the base_os for our instances. The

master_root_volume_size and the compute_root_volume_size de-

termine the size of root volume of the master instance and each of the worker

instance, respectively. For the scheduler, we used the Sun Grid Engine (sge).

For the compute_instance_type, we used c5.18xlarge, an instance with

36 physical cores (72 virtual cores with hyperthreading). It consists of two non-

uniform memory access (NUMA) nodes with 18 physical cores each. In NUMA

memory design, an access to local memory of a processor is faster than an access

to non-local memory within a shared memory system. master_instance_type

defines the instance type of the master. Sometimes it is fine to be as small as

t2.micro, a single-core instance, but we needed an instance with good net-
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work performance when many instances simultaneously accessed a large data

file on shared storage. The cluster_type is either ondemand (default) or

spot. For c5.18xlarge in Seoul region (ap-northeast-2), on-demand

price was $3.456 per instance-hour, while the spot price was at $1.0788 per

instance-hour throughout the duration of our experiments. Budget-constrained

users may use spot instances for worker instances. In case of this scenario, the

spot_prices was set to $1.20 per instance-hour, so if the actual price went

above this value, our worker instances would have been terminated. Only the

on-demand instance could be used as the master instance, so smaller instance

might be desirable for lower cost. The setting extra_json = {"cluster"

: { "cfn_scheduler_slots" : "2"} } sets number of slots that an in-

stance bears to two. Each computing job is required to declare the number of

“slots” to occupy. By default, the number of slots per instance is the number

of virtual cores the instance has. This default setting is natural, but a problem

arises if we intend to utilize shared-memory parallelism in NUMA node-level,

as the number of slots occupied is tied to the number of instances launched.

We assigned one slot per NUMA node that an instance has (i.e., 2 slots per

instance), and utilized all 18 physical cores per NUMA node.

The [ebs] section defines the configuration for the EBS volume mounted

on the master node and shared via NFS to workers. The ebs_snapshot_id

defines the ID of the EBS snapshot to be used. We had datasets and packages

necessary for our jobs pre-installed in an EBS volume and created a snapshot.

The size of the volume was 40 GB. By default, the volume is mounted to the

path /shared.

We refer the readers to the manual https://docs.aws.amazon.com/

parallelcluster/ for further details.
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C.6 Creating, accessing, and destroying the cluster

We can create a virtual cluster named example by issuing the following com-

mand on a local machine:

pcluster create example

To access the master instance through ssh, one needs the location of the

private key (.pem) file. The command to use is:

pcluster ssh example -i <private key file>

The default username for instances with CentOS is centos. The default

username depends on the Amazon Machine Image (AMI) being used to create

a virtual machine, which is determined by the base_os selected on the con-

figuration. The names of the existing clusters can be listed using the command

pcluster list, and we may completely remove a cluster example using

the command pcluster delete example.

C.7 Installation of libraries

Now we can access the master node through secure shell(SSH). We have a shared

EBS volume mounted at /shared, and we are to install necessary software

there. For our experiments, we installed anaconda, a portable installation of

Python, in the directory /shared. A script to set up environment variables is

also created and saved in /shared:

# setup.sh
module load mpi/openmpi-x86_64 # loads MPI to the environment
source /shared/conda/etc/profile.d/conda.sh
export PATH=/shared/conda/bin:$PATH
export LD_LIBRARY_PATH=/shared/conda/lib:$LD_LIBRARY_PATH
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We issued the command:

source setup.sh

to set up the environment variables. We installed PyTorch from source9, as

it is required to do so in order to incorporate MPI.

To download our code, one can issue the command:

git clone https://github.com/kose-y/dist_stat /shared/dist_stat

C.8 Running a job

To provide instructions on how to define the environment to each instance, we

need a script defining each job. The following script mcpi-2.job is for running

the program for Monte Carlo estimation of π in Section 3.3 (Listing 3.1) using

two instances (four processes using 18 threads each).

#!/bin/sh
#$ -cwd
#$ -N mcpi
#$ -pe mpi 4
#$ -j y
date
source /shared/conda/etc/profile.d/conda.sh
export PATH=/shared/conda/bin:$PATH
export LD_LIBRARY_PATH=/shared/conda/lib:$LD_LIBRARY_PATH
export MKL_NUM_THREADS=18
mpirun -np 4 python /shared/dist_stat/examples/mcpi-mpi-pytorch.py

The line -pe mpi 4 tells the scheduler that we are using four slots. Setting

the value of the environment variable MKL_NUM_THREADS to 18 means that

MKL runs with 18 threads or cores for that process. We launch four processes

in the cluster, two per instance, as defined by our ParallelCluster setup, in

parallel using MPI. We can submit this job to the Sun Grid Engine (the job

scheduler) using the command:
9https://github.com/pytorch/pytorch#from-source
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qsub mcpi-2.job

When we submit a job, a message similar to the following appears:

Your job 130 ("mcpi") has been submitted

One may see the newly submitted job in the queue using the command

qstat.

qstat

job-ID prior name user state submit/start at queue slots ja-task-ID
---------------------------------------------------------------------------------------------

130 0.55500 mcpi centos qw 02/28/2019 03:58:54 4

If we want to delete any job waiting for the queue or running, use the

command qdel.

qdel 130

centos has deleted job 130

Once the job is completed, the output is saved as a text file named such as

mcpi.o130. For example:

Thu Feb 28 04:07:54 UTC 2019
3.148

The scripts for our numerical examples are in /shared/dist_stat/jobs.

C.9 Miscellaneous

To keep what is on the EBS volume on the cloud and access later, we need

to create a snapshot for the volume. We can later create a volume based on
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this snapshot10, and mount it on any instance11. In ParallelCluster, this is done

automatically when we give an ID of a snapshot in the config file.

10https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-creating-snapshot.html

11https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
ebs-using-volumes.html
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Appendix D

Code for memory-efficient
ℓ1-regularized Cox proportional
hazards model

For CPU code, the following code accelerates the computation of P(n+1)δ for

ℓ1-regularized Cox regression in Section 3.5.4 using the AVX.

using LoopVectorization
function pi_delta!(out, w, W_dist, delta, W_range)

# fill ‘out‘ with zeros beforehand.
m = length(delta)
W_base = minimum(W_range) - 1
W_local = W_dist.localarray
@avx for i in 1:m

outi = zero(eltype(w))
for j in 1:length(W_range)

outi += ifelse(i <= j + W_base,
delta[j + W_base] *
w[i] / W_local[j], zero(eltype(w)))

end
out[i] = outi

end
DistStat.Barrier()
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DistStat.Allreduce!(out)
return out

end

DistStat.Allreduce!(out) computes the elementwise sum of out in all

ranks, and saves it in the place of out. For GPU, the kernel function can be

written as follows:

function pi_delta_kernel!(out, w, W_dist, delta, W_range)
idx_x = (blockIdx().x-1) *

blockDim().x + threadIdx().x
stride_x = blockDim().x * gridDim().x
W_base = minimum(W_range) - 1
for i in idx_x:stride_x:length(out)

for j in W_range
@inbounds if i <= j

out[i] += delta[j] * w[i] /
W_dist[j - W_base]

end
end

end
end

And the host function to compute P(n+1)δ is:

function pi_delta!(out::CuArray, w::CuArray,
W_dist, delta, W_range)

fill!(out, zero(eltype(out)))
numblocks = ceil(Int, length(w)/256)
CuArrays.@sync begin

@cuda threads=256 blocks=numblocks pi_delta_kernel!(
out, w, W_dist.localarray, delta, W_range)

end
DistStat.Allreduce!(out)
out

end
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Appendix E

Details of SNPs selected in
ℓ1-regularized Cox regression

Figure E.1 shows the solution path for SNPs within the range we used for the

experiment in Section 3.5.5. Tables E.1 and E.2 list the 111 selected SNPs with

dist_stat.
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Figure E.1: Solution path for ℓ1-regularized Cox regression on the UK Biobank
dataset. Signs are with respect to the reference allele: positive value favors
alternative allele as the risk allele.
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Table E.1: SNPs selected by ℓ1-penalized Cox regression: #1-#56

Rank SNP ID ChrA Location A1B A2C MAFD Mapped genes SignE KnownF

1 rs4506565 10 114756041 A T 0.238 TCF7L2 + Yes
2 rs12243326 10 114788815 C T 0.249 TCF7L2 + Yes
3 rs16891982 5 33951693 G C 0.215 SLC45A2 −
4 rs12255372 10 114808902 T G 0.215 TCF7L2 + Yes
5 rs12913832 15 28365618 G A 0.198 HERC2 −
6 rs28777 5 33958959 C A 0.223 SLC45A2 −
7 rs1129038 15 28356859 C T 0.343 HERC2 −
8 rs35397 5 33951116 T G 0.304 SLC45A2 −
9 rs10787472 10 114781297 C A 0.430 TCF7L2 + Yes

10 rs2470890 15 75047426 T C 0.429 CYP1A2 −
11 rs2472304 15 75044238 A G 0.460 CYP1A2 −
12 rs1378942 15 75077367 A C 0.401 CSK, MIR4513 −
13 rs34862454 15 75101530 T C 0.416 LMAN1L −
14 rs849335 7 28223990 C T 0.406 JAZF1, JAZF1-AS1 − Yes
15 rs864745 7 28180556 C T 0.316 JAZF1 − Yes
16 rs12785878 11 71167449 T G 0.251 NADSYN1, DHCR7 −
17 rs4944958 11 71168073 G A 0.237 NADSYN1, DHCR7 −
18 rs8042680 15 91521337 A C 0.277 PRC1, PRC1-AS1, Y_RNA +
19 rs35414 5 33969628 T C 0.188 SLC45A2 −
20 rs1635852 7 28189411 T C 0.423 JAZF1 −
21 rs10962525 9 16659863 T C 0.321 BNC2 +
22 rs1446585 2 136407479 G A 0.322 R3HDM1 +
23 rs7570971 2 135837906 A C 0.327 RAB3GAP1 +
24 rs36074798 15 91518800 ACT A 0.328 PRC1, PRC1-AS1, Y_RNA + Yes
25 rs10962612 9 16804167 G T 0.088 BNC2 −
26 rs10962612 2 135911422 T C 0.097 RAB3GAP1, ZRANB3 +
27 rs941444 17 17693891 C G 0.073 RAI1 − Yes
28 rs6769511 3 185530290 T C 0.045 IGF2BP2 + Yes
29 rs916977 15 28513364 T C 0.044 HERC2 −
30 rs35390 5 33955326 C A 0.062 SLC45A2 −
31 rs35391 5 33955673 T C 0.374 SLC45A2 −
32 rs1470579 3 185529080 A C 0.436 IGF2BP2 + Yes
33 rs2862954 10 101912064 T C 0.488 ERLIN1 −
34 rs2297174 9 16706557 A G 0.346 BNC2 −
35 rs1667394 15 28530182 T C 0.274 HERC2 −
36 rs12440952 15 74615292 G A 0.279 CCDC33 +
37 rs56343038 9 16776792 G T 0.318 BNC2, LSM1P1 −
38 rs9522149 13 111827167 T C 0.395 ARHGEF7 −
39 rs343092 12 66250940 T G 0.463 HMGA2, HMGA2-AS1 − Yes
40 rs10733316 9 16696626 T C 0.436 BNC2 −
41 rs823485 1 234671267 T C 0.488 LINC01354 +
42 rs12910825 15 91511260 A G 0.384 PRC1, PRC1-AS1, RCCD1 + Yes
43 rs2959005 15 74618128 T C 0.222 CCDC33 −
44 rs10756801 9 16740110 T G 0.494 BNC2 −
45 rs12072073 1 3130016 C T 0.497 PRDM16 +
46 rs7039444 9 20253425 T C 0.360 (intergenic variant) +
47 rs7899137 10 76668462 A C 0.289 KAT6B −
48 rs11078405 17 17824978 T G 0.291 TOM1L2 +
49 rs830532 5 142289541 C T 0.333 ARHGAP26 +
50 rs833283 3 181590598 G C 0.352 (intergenic variant) −
51 rs10274928 7 28142088 A G 0.365 JAZF1 − Yes
52 rs13301628 9 16665850 A C 0.412 BNC2 −
53 rs885107 16 30672719 C T 0.353 PRR14, FBRS +
54 rs8180897 8 121699907 A G 0.445 SNTB1 +
55 rs23282 5 142270301 G A 0.225 ARHGAP26 +
56 rs6428460 1 198377460 C T 0.229 (intergenic variant) +

A Chromosome, B Minor allele, C Major allele, D Minor allele frequency, E Sign of the regression coefficient,
F Mapped gene included in Mahajan et al. (2018). The boldface indicates the risk allele determined by the
reference allele and the sign of the regression coefficient.
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Table E.2: SNPs selected by ℓ1-penalized Cox regression: #57-#111

Rank SNP ID ChrA Location A1B A2C MAFD Mapped genes SignE KnownF

57 rs11630918 15 75155896 C T 0.383 SCAMP2 −
58 rs7187359 16 30703155 G A 0.335 (intergenic variant) +
59 rs2183405 9 16661933 G A 0.271 BNC2 +
60 rs2651888 1 3143384 G T 0.411 PRDM16 +
61 rs2189965 7 28172014 T C 0.340 JAZF1 + Yes
62 rs12911254 15 75166335 A G 0.344 SCAMP2 −
63 rs757729 7 28146305 G C 0.441 JAZF1 − Yes
64 rs6495122 15 75125645 C A 0.478 CPLX3, ULK3 −
65 rs4944044 11 71120213 A G 0.426 AP002387.1 −
66 rs6856032 4 38763994 G C 0.109 RNA5SP158 +
67 rs1375132 2 135954405 G A 0.478 ZRANB3 +
68 rs2451138 8 119238473 T C 0.314 SAMD12 −
69 rs6430538 2 135539967 T C 0.470 CCNT2-AS1 +
70 rs7651090 3 185513392 G A 0.281 IGF2BP2 + Yes
71 rs4918711 10 113850019 T C 0.285 (intergenic variant) −
72 rs3861922 1 198210570 A G 0.466 NEK7 −
73 rs7917983 10 114732882 T C 0.481 TCF7L2 + Yes
74 rs1781145 1 1388289 A C 0.362 ATAD3C +
75 rs7170174 15 94090333 T C 0.246 AC091078.1 −
76 rs7164916 15 91561446 T C 0.246 VPS33B, VPS33B-DT +
77 rs696859 1 234656596 T C 0.430 (intergenic variant) +
78 rs28052 5 142279870 C G 0.166 ARHGAP26 +
79 rs1408799 9 12672097 T C 0.277 (intergenic variant) −
80 rs10941112 5 34004707 C T 0.355 AMACR, C1QTNF3-AMACR −
81 rs11856835 15 74716174 G A 0.261 SEMA7A −
82 rs4768617 12 45850022 T C 0.259 (intergenic variant) −
83 rs8012970 14 101168491 T C 0.179 (intergenic variant) −
84 rs4402960 3 185511687 G T 0.187 IGF2BP2 + Yes
85 rs1695824 1 1365570 A C 0.164 LINC01770, VWA1 +
86 rs934886 15 55939959 A G 0.360 PRTG −
87 rs7083429 10 69303421 G T 0.367 CTNNA3 +
88 rs4918788 10 114820961 G A 0.348 TCF7L2 + Yes
89 rs7219320 17 17880877 A G 0.318 DRC3, AC087163.1, ATPAF2 +
90 rs61822626 1 205118441 C T 0.478 DSTYK − Yes
91 rs250414 5 33990623 C T 0.361 AMACR, C1QTNF3-AMACR −
92 rs11073964 15 91543761 C T 0.362 VPS33B,PRC1 + Yes
93 rs17729876 10 101999746 G A 0.352 CWF19L1, SNORA12 −
94 rs2386584 15 91539572 T G 0.360 VPS33B, PRC1 + Yes
95 rs683 9 12709305 C A 0.430 TYRP1, LURAP1L-AS1 −
96 rs17344537 1 205091427 T G 0.462 RBBP5 −
97 rs10416717 19 13521528 A G 0.470 CACNA1A +
98 rs2644590 1 156875107 C A 0.453 PEAR1 −
99 rs447923 5 142252257 T C 0.384 ARHGAP26, ARHGAP26-AS1 +

100 rs2842895 6 7106316 C G 0.331 RREB1 − Yes
101 rs231354 11 2706351 C T 0.329 KCNQ1, KCNQ1OT1 + Yes
102 rs4959424 6 7084857 T G 0.410 (intergenic variant) −
103 rs2153271 9 16864521 T C 0.411 BNC2 −
104 rs12142199 1 1249187 A G 0.398 INTS11, PUSL1, ACAP3, MIR6727 −
105 rs2733833 9 12705095 T G 0.272 TYRP1, LURAP1L-AS1 −
106 rs1564782 15 74622678 A G 0.283 CCDC33 −
107 rs9268644 6 32408044 C A 0.282 HLA-DRA +
108 rs271738 1 234662890 A G 0.395 LINC01354 +
109 rs12907898 15 75207872 T C 0.391 COX5A −
110 rs146900823 3 149192851 GC G 0.344 TM4SF4 −
111 rs1635166 15 28539834 T C 0.118 HERC2 −

A Chromosome, B Minor allele, C Major allele, D Minor allele frequency,
E Sign of the regression coefficient, F Mapped gene included in Mahajan et al. (2018). The boldface indicates the
risk allele determined by the reference allele and the sign of the regression coefficient.
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국문초록

지난 10년간의하드웨어와소프트웨어의기술적인발전은고성능컴퓨팅의접근장

벽을그어느때보다낮추었다.이학위논문에서는병렬화용이하고역행렬연산이

없는 변수 분리 알고리즘과 그 통계계산에서의 구현을 논의한다. 첫 부분은 볼록

함수 두 개 또는 세 개의 합으로 나타나는 구조화된 희소 통계 추정 문제에 대해

다룬다.이때함수들중하나는비평활함수와선형함수의합성으로나타난다.그

예시로는그래프구조를통해유도되는희소융합 Lasso문제와한변수가여러그

룹에 속할 수 있는 그룹 Lasso 문제가 있다. 이를 풀기 위해 역행렬 연산이 없는 두

종류의 원시-쌍대 (primal-dual) 알고리즘을 단조 연산자 이론 관점에서 통합하며

이를 통해 병렬화 용이한 precondition된 전방-후방 연산자 분할 알고리즘의 집합

을 제안한다. 이 통합은 점근적으로 최적 수렴률을 갖는 가속 알고리즘의 집합을

구성하는데활용된다.두번째부분에서는 PyTorch와 Julia를통해사용하기쉬운

분산 행렬 자료 구조를 제시한다. 이 구조는 사용자들이 코드를 한 번 작성하면

이것을 노트북 한 대에서부터 여러 대의 그래픽 처리 장치 (GPU)를 가진 워크스

테이션, 또는 클라우드 상에 있는 슈퍼컴퓨터까지 다양한 스케일에서 실행할 수

있게해준다.아울러,이자료구조를비음행렬분해,양전자단층촬영,다차원척

도법, ℓ1-벌점화 Cox 회귀 분석 등 다양한 병렬화 가능한 통계적 문제에 적용한다.

이 예시들은 8대의 GPU가 있는 워크스테이션과 720개의 코어가 있는 클라우드

상의 가상 클러스터에서 확장 가능했다. 한 사례로 400,000명의 대상과 500,000

개의단일염기다형성정보가있는 UK Biobank자료에서의제2형당뇨병 (T2D)

발병 나이를 ℓ1-벌점화 Cox 회귀 모형을 통해 분석했다. 500,000개의 변수가 있는

모형을 적합시키는 데 50분 가량의 시간이 걸렸으며 알려진 T2D 관련 다형성들

을 재확인할 수 있었다. 이러한 규모의 전유전체 결합 생존 분석은 최초로 시도된

것이다.
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