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ABSTRACT 
 

The coastal ecosystems of Korea are subject to a broad range of adverse impacts 
from anthropogenic activities. Coastal sediments are particularly vulnerable to 
pollution by chemicals because they act as terminal sinks for persistent and 
hydrophobic toxicants. Furthermore, contaminated sediments potentially cause 
harmful effects on not only benthic animals but also pelagic organisms through 
sedimentary resuspension and bioturbation processes. Thus, it is crucial to ensure 
high sediment quality to maintain the environmental health of marine organisms, 
which can be evaluated using ecological risk assessments (ERA). Complexity of 
anthropogenic influences on coastal sediments necessitates use of an integrated 
assessment strategy for effective interpretation and subsequent management of 
ecological risk associated with chemical contaminants. In this study, an enhanced, 
the multiple lines of evidence (LOEs) approach for sediment assessment, that 
combined use of chemical contamination, biological effect, and benthic community 
structure in the sediment was used to assess spatiotemporal changes and ecological 
risks of persistent toxic substances (PTSs) including polycyclic aromatic 
hydrocarbons (PAHs), alkylphenols (APs), and styrene oligomers. Various bioassays, 
environmental DNA based assessments for benthic microbial communities, and 
several ecological quality (EcoQ) indices of macrobenthic community structure were 
also implemented.  

The concentrations of targeted PTSs in the study areas were generally half that 
of previous years in recent years. Compared to the inner region, the concentrations 
of PTSs in sediments from the outer regions were significantly lower. These 
decreasing trends seemed to be associated with the implementation of pollution 
control measures and the management of toxic substances in South Korea. Strong 
aryl hydrocarbon receptor (AhR)- and estrogen receptor (ER)-mediated potencies 
were documented in the mid-polar and polar fractions of sediment extracts. AhR-
mediated potencies in sediments also declined with PAH concentration over the 
sampling time interval, whereas ER-mediated potencies increased. Thus, over the 
sampling period, the input of ER agonists appears to have been substantial and 
continuous, especially in Masan Bay.  

Potency balance analysis demonstrated that only small portions of AhR- and 
ER-mediated potencies could be explained by identified known chemicals, including 
PAHs and APs. Thus, target chemicals were not a major AhR- or ER- agonist in 
sediments of the study area. Thus, to identify potential toxic chemicals in samples, 
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non-targeted full-scan screening analyses (FSA; GC- and LC-QTOFMS) were 
performed. As a result, enoxolone was first identified as a novel AhR agonist in the 
sediment of Masan Bay. Enoxolone had a relative potency of 0.13 compared to 
benzo[a]pyrene (1.0) in the H4IIE-luc bioassay. Nonylphenols were also detected, 
with this group being associated with membrane damage influencing the viability of 
microalgae. Non-polar compounds were strongly associated with inhibiting the 
bioluminescence of Vibrio fischeri and having lethal effects on the embryos of Danio 
rerio. Overall, the selected endpoints and FSA demonstrated the toxicological 
properties of complex environmental mixtures comprehensively. 

To evaluate the ecological effects of pollutants on benthic microbial 
communities, the relative abundance of Planctomycetes could be used as an indicator 
of sedimentary contamination by PAHs and metals. Based on correlation analyses, 
cadmium and ER-mediated potencies were more associated with bacterial 
abundance at the taxonomic level of class compared to other PTSs and metals. EcoQ 
indices tended to reflect PTS contamination of macrobenthic communities in the 
region. Ratio-to-mean (RTM) values obtained from the three LOEs indicated that the 
quality of sediments from the offshore area of the bay had recovered more over the 
16-year period compared to inland areas. The RTM values of the benthic indices was 
similar to those obtained in the chemical analysis; however, changes across the study 
period were less pronounced. Thus, while chemical concentrations have the potential 
to decline rapidly, benthic communities require much longer to recover. Other 
conditions, such as metal contamination and/or hypoxia in bottom water, represent 
additional anthropogenic pressures on the benthic community. Overall, the present 
work demonstrated assay- and endpoint-specific variation and sensitivity for the 
potential toxicity of chemical mixtures in sediments, reaffirming the utility of “the 
multiple LOEs approach” in ERA. In conclusion, the characterization of in situ 
bacterial communities could provide a useful baseline for monitoring and assessing 
sediment quality in an integrated manner. 
 
 

Keywords: Coastal pollution, Persistent toxic substances, In vitro and in vivo 
bioassays, Benthic community, Sediment triad assessment, Advanced 
effect-directed analysis 
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1.1. Backgrounds 

In Korea, nearly all coastal marine environments adjacent to municipalities have 

been exposed to broad range of adverse impacts, especially during the period of rapid 

industrialization since the 1970s (Halpern et al., 2008; Xu et al., 2015; Hong et al., 

2016). Coastal sediment is an important part of marine environments, providing 

habitat and food resources for the benthos. It can also act both as source and sinks of 

various persistent toxic substances (PTSs) that are introduced to coastal waters from 

a myriad of point and non-point sources (Hollert et al., 2003; Chapman et al., 2007; 

Luo et al., 2009; Dai et al., 2014) (Figure 1.1). Accordingly, contaminated sediments 

with PTSs might cause significant adverse effect on various marine organisms, 

especially to epi- and endo-benthic fauna as well as pelagic organisms through 

sedimentary resuspension and bioturbation processes (Holler et al., 2002; Schulze-

Sylvester et al., 2016) (Figure 1.1). Additionally, as PTSs commonly have semi-

volatile and relatively lipophilic characteristics, they can accumulate in marine 

organisms, becoming biomagnified through the food chain (Wania and Mackay, 

1996; Oost et al., 2003). Thus, maintaining of sediment quality is crucial to maintain 

environmental health, and has become one of the focuses in environmental 

regulations (Davoren et al., 2005).  

Because anthropogenic influences on coastal sediments are complex, ecological 

risk assessments (ERA) of integrated sediment assessment strategies must be 

accurate (Davoren et al., 2005). The ERA process that aims to identify potential 

ecological hazards, due to the exposure to chemical and non-chemical stressors, 

including contaminants (USEPA, 1992). ERAs include three fundamental steps: 

identification of stressors that are related to problem formulation; characterization of 

exposure and ecological effects; and risk characterization (Table 1.1). In terms of 

ERA, the “traditional” sediment quality triad (SQT) approach allows possible 

ecological impacts to be determined using multiple lines of evidence (LOEs). SQT 

includes three components: (1) exposure (chemical analysis; chemical LOE), (2) 

effects assessment (bioassays; toxicological LOE and benthic community structure 

analyses; ecological LOE), and risk characterization (weight of evidence 

determinations) (Long and Chapman, 1985; Chapman, 1990, 2006) (Table 1.1 and 

Figure 1.2). 
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Figure 1.1.  
Illustration of sources of various pollutants in the coastal environment and the 
concept and components of this study. 
 



  

 4 

Table 1.1.  
Interpretation of traditional triad approach for ecological risk assessment (related in 
Table 6.1).  

No. Lines of evidence Interpretation References 
 Chem. Tox. Ecol.   

1 + + + Contaminant-induced degradation in 
field evident 

a, b 

2 + - - Contaminants unavailable to 
organisms in the field 

c 

3 - + - Unmeasured factors contributing to 
toxicity 

d, e, f, g 

4 - - + Effects on benthos not due to 
sediment contamination 

h, i 

5 + + - Toxic contaminants probably 
stressing sediment-dwelling 
organisms 

a 

6 - + + Unmeasured chemicals contributing 
to toxicity 

- 

7 + - + Toxicity tests not sensitive enough i 

Chem.; Chemical contamination, Bio.; Biological effect, Ecol.; Benthic community structure, (+); 
employed approach. (-); Not considered approach, a Long and Chapman (1985), b Chapman (1990), c 

May et al. (1975), d Hollert et al. (2002), e Karuppiah and Gupta (1996), f Svenson et al. (1996), g 

Hollert et al. (2003), h Richard et al. (1985), I Lachmund et al. (2003). Orange box indicated that used 
approaches in this study.  
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Figure 1.2.  
Concept of the integrated sediment assessment used, which combines data from 
chemical contamination (concentrations and composition), biological effect (in vitro 
and in vivo bioassays), as well as benthic community structure (in situ studies). In 
contrast to the original triad approach by Chapman (1990), effect-directed analysis 
(EDA) were additionally performed. 
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While the traditional SQT LOE has evolved, two LOEs of the SQT continue to 

be universally used: chemical and toxicological LOEs. The third component, 

ecological LOE, was initially restricted to evaluating the structure of the benthic 

community (Long and Chapman, 1985; Chapman et al., 1987a, Chapman, 1990). 

However, it was subsequently clarified that this LOE was not restricted to benthos, 

but rather dealt with the broad category of alterations to resident communities 

(Chapman, 1996). However, definitive conclusions cannot be obtained in all cases, 

as causation cannot be definitively determined without further research. Ultimately, 

the “traditional” SQT is based on correlation, not causation. The “traditional” and 

additional LOEs, such as effect-directed analysis (EDA), fit into risk assessment 

frameworks (Figure 1.2), that also include causation. Causation LOEs generally 

include additional studies once an SQT has been completed. Consequently, the 

“traditional” SQT serves as a screening-level risk assessment, with causation being 

examined at a higher tier, in which a more detailed risk assessment is provided (Hill 

et al., 2000).  

With respect to diagnostic methods for identifying causative toxicants in 

complex environmental samples, such as sediments, EDA is regarded as a useful tool 

(Brack, 2003; Hong et al., 2016a). This analysis involves progressive fractionations, 

which reduces the complexity of the mixture, allowing focused chemical analysis on 

selected fractions that exhibit significant bioactivity (Brack, 2003; Weiss et al., 2009). 

However, since they do not provide information on all bioactive fractions and/or 

endpoints-specific variations or sensitivity of applied bioassays, such a targeted 

chemical analysis has limitations (Jeon et al., 2017; Lee et al., 2017). Alternatively, 

to fill the gaps, recently ERA has been challenged to adopt multiple lines of evidence 

approach, by employing effects-based methods (EBMs) along with full-scan 

screening analysis (FSA) (Babić et al., 2018; Brack et al., 2019). EBMs are regarded 

as holistic approaches to complement in vitro bioassays and can include a battery of 

in vivo bioassays targeting some important pelagic communities of fish, invertebrates, 

and algae (Brack et al., 2019). FSA is frequently practiced by use of high-resolution 

mass spectrometry, such as time-of-flight mass spectrometry (TOFMS) and Orbitrap 

ultrahigh-resolution mass spectrometry, which can detect untargeted compounds and 

potentially toxic substances in environmental mixture samples (Gallampois et al., 
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2015; Schymanski et al., 2015; Xiao et al., 2016; Tousova et al., 2017).  

Furthermore, these techniques can provide accurate masses from which the formula 

of chemicals can be determined, and putative structures can be derived by use of the 

MS/MS and libraries.  

For chemical LOE, it is important to examine the occurrence, fate, and 

distribution of PTSs in sediments (Khim and Hong, 2014). Studies on concentrations 

of PTSs in sediments from the same region over long periods of time could be 

informative about changes in environments associated with anthropogenic activities. 

The PTSs in the sediments of Korean coastal waters have been extensively 

monitored only since the mid-1990s (Figure 1.3). Among various coastal areas, 

Masan Bay and Sihwa Bay have been identified as hot spots for coastal pollution, 

and were designated special management areas (SMAs) in 1982 and 2000, 

respectively (Figure 1.3) (Khim and Hong, 2014). However, most of the policies and 

regulations implemented in Korea are for management of water quality not for 

sediment. More importantly, chemical concentrations are not sufficient to 

demonstrate biological effects, because they do not provide information about the 

potential adverse effects on aquatic organisms. 

For a comprehensive assessment, bioassays combined with chemical analyses 

are needed to infer probable adverse biological effects (Chapman, 2007). Bioassays 

utilized in the present study cover three mechanisms of actions including specific-, 

baseline-, and reactive-toxicity (Jia et al., 2019). In vitro bioassays comprise receptor 

gene assays for measuring “specific toxicity” of AhR agonists, such as polycyclic 

aromatic hydrocarbons (PAHs) (H4IIE-luc bioassay) and the bacterial test (Vibrio 

fischeri assay), which is related to the energy metabolism of a bacterium, was used 

for “baseline toxicity” measurements (Brack et al., 1999; ISO, 2007; Jia et al., 2019) 

(Table 1.1). In vitro bioassays are characterized by being rapid, cost-effective, 

sensitive, and reproducible assays (Kammann et al., 2005). However, despite the 

obvious advantages of in vitro assays for the determination of toxicological profiles 

of sediments, results of in vitro bioassays can explain only a small portion of overall 

toxic potencies in extracted samples and is limited with respect to predicting in vivo 

toxicity, which requires assessment of tissue-specific toxicity, adaptive response, and 

metabolic conversion to predict effects on fitness of individuals (Massei et al., 2019).   
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Figure 1.3.   
Mini review of traditional study efforts and historical trend in number of the sediment assessment by number of publications of each component 
of target approach (Scopus was used). studies on persistent toxic substances (PTSs) in sediments of Korean coastal waters over the past two 
decades, including 90 reports published since 1997, based on the literature survey (Scopus).   
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Thus, in addition to in vitro bioassays, several in vivo toxicity tests which cover 

broad range of modes of action, and represent different levels of biological 

organization including microalgae and fish embryo, for “reactive toxicity” could be 

conducted. Microalgae (including diatoms, dinoflagellates, and cyanobacteria) are 

known not only to be highly sensitive to the contamination of marine ecosystems in 

response to various PTSs, but also food source for small, free-swimming crustaceans 

or fish larvae, referred to as zooplankton (Jeong, 1999). Hence, it is very important 

to identify the toxic effects of microalgae. Each bioassay exhibits different 

sensitivities to chemical contaminations in sediments; thus, the combination of a 

battery of bioassays provides a better assessment of the sediment contaminations 

(Maltby et al., 2005; Brack et al., 2019). However, chemical and toxicological 

analyses cannot capture community-level effects observed in natural systems. The 

utility of such results is enhanced when it can be integrated more closely with 

ecological data. Hence, to obtain a fuller understanding, it is preferable to bring 

together different LOEs. 

Ecological effects are an alternative line of evidence, enabling the responses of 

taxa to be examined under relevant environmental conditions (e.g. spatio-temporal 

varied exposure to multiple stressors). To predict ecological effects, studies have 

tended to focus on structures of communities of benthic organisms (Wernersson et 

al., 2015). Benthic organisms represent ecological receptors ideal for assessment of 

sediment quality because they are exposed both directly and indirectly by 

contaminated sediments (Chapman et al., 2013). Generally, responses of benthic 

organisms to environmental factors are assessed by use of biotic indexes of numbers 

of taxa and individuals, diversity, and tolerance, which provide an integrated 

evaluation of alterations caused by exposure to multiple stressors. And also, studies 

over gradients of stressors (both spatially and temporally) can provide thresholds for 

adverse effects for single or multiple stressors (Brock et al., 2008; Coffey et al., 2014; 

Schipper et al., 2014). However, it is disadvantageous that values of biotic indices 

are not always sensitive to effects of some stressors and there are concerns regarding 

subjectivity of interpretations of indices (Lim et al., 2007).  

Also, traditionally community-level data have only examined a small 

proportion of a system’s true diversity by focusing on large, easily quantifiable 
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organisms (e.g. diatoms, fish and macrobenthic invertebrates). In doing so, the 

diversity and functionality of a community held within the microbiota have often 

been ignored.  

Within benthic communities, microbial communities play an important role in 

biogeochemical cycling (Fischer and Pusch, 2001), decomposition of contaminants, 

and in providing other functions necessary for sustaining aquatic ecosystems (Reed 

and Martiny, 2013; Xie et al., 2017). Microbial communities, including bacteria, are 

extremely sensitive to changes in physicochemical conditions, such as temperature, 

pH, salinity, and concentrations of contaminants (Herlemann et al., 2011; Gibbons 

et al., 2014; Xie et al., 2016, 2017). Bacteria respond rapidly to changing 

environmental conditions and adapt their degree of activity, diversity, or community 

structure (Xie et al., 2016, 2017). This means that the composition of in situ bacterial 

communities can potentially be used to monitor key elements of sediment quality. 

By using environmental DNA (eDNA) metabarcoding, most microbial communities 

can be identified (Amann et al., 1995). Thus, approaches that use metagenomic level 

analysis to characterize the complexity of microbial ecosystems in sediments could 

provide a rapid and efficient way to identify and monitor benthic microbial 

communities and enumerate individual taxa (Sharmin et al., 2013; Gibbons et al., 

2014). Improvements in methods for metabarcoding eDNA, in concert with 

advances in bioinformatics analysis, could provide a promising approach for 

improving ERA (Zhang, 2019). 
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1.2. Objectives 

In this dissertation, an integrated ecological risk assessment using multiple lines of 

evidence in order to make a best-judgment weight of evidence decisions for PTSs in 

contaminated sediments from the Korean coastal waters through Chapter 2 to 6. Key 

questions that required resolving or clarification in current sediment assessment 

research, along with specific objectives and workflow, are stated as follows (Table 

1.2 and Figure 1.4): 

 

1. Chapter 2 

Determined long-term changes (> 15-year gaps) in distributions of PTSs 

and assessed their potential toxic (AhR- and ER-mediated potencies) 

effects in sediments from Sihwa Bay  

 

2. Chapter 3  

Enhanced effect-directed analysis was conducted to identify the toxicity 

profile of contaminants in sediments by use of multiple bioassays and 

evaluate assay-specific relative potencies (RePs) of tentative AhR agonists 

in sediments from Masan Bay  

 

3. Chapter 4   

Conducted comprehensive assessments with chemistry, in vitro bioassays, 

and eDNA-based benthic bacterial communities in relation to PTSs in 

sediment collected over space (5 regions) and time (5 years). 

 

4. Chapter 5   

Integrated sediment assessment using triad approach (chemical, bioassays, 

and ecological investigations) and characterization of AhR- and ER-

mediated potencies in coastal sediments. 

 

Finally, conclusions including summary, environmental implications and limitations, 

and future research directions are provided in Chapter 6.
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Table 1.2.  
Summary of the key questions that have not been resolved or clarified in current sediment assessment research. Approaches and objectives for 
each Chapter are suggested. 

Subject Key question Ch. Approach 

I In vitro toxicity 
to sediment pollution 

Any changes in distributions & potential toxic effects of PTSs over time? 
(Sihwa Bay, 1998 vs. 2016) 

2 Chem. Tox.  
Mass balance analysis 

II In vitro and in vivo toxicities  
to sediment pollution 

Any differences in variations and/or sensitivities cross assays/endpoints?  
(Masan Bay, 2015) 

3 Chem. Tox.  
Effect-directed analysis 

III Benthic bacterial community 
response to sediment pollution  

Any changes in ecotoxicological effects and benthic microbial community associated 
with PTSs for 5 years?  
(West coast of Korea, 2010-2014) 

4 Chem. Tox. Ecol. 
Sediment triad approach 

IV Macrobenthic community 
response to sediment pollution 

Any changes in ecotoxicological effects and benthic community responses associated 
with PTSs over 15 years? 
(Masan Bay, 1998 vs. 2015) 

5 Chem. Tox. Ecol. 
Sediment triad approach 
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Figure 1.4.  
Schematic diagram to investigate the chemical (target and non-target), toxicities (cell, 
bacterial, microalgae, and fish embryo), and ecological (benthic microbial and 
macrobenthic community) assessments in contaminated coastal sediment.  
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CHAPTER 2. 
 

LONG-TERM CHANGES IN DISTRIBUTIONS OF 
DIOXIN-LIKE AND ESTROGENIC COMPOUNDS 

IN SEDIMENTS OF LAKE SIHWA, KOREA: 
REVISTED MASS BALANCE 
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A., Khim, J. S. Long-term changes in distributions of dioxin-like and estrogenic compounds in 
sediments of Lake Sihwa, Korea: Revisited mass balance. Chemosphere 2017, 181, 767–777. 
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2.1. Introduction 

Lake Sihwa is an artificial lake located on the west coast of Korea that was formed 

in 1994 following the construction of a dike, which separates it from the sea (Figure 

2.1a). The original purpose of the lake was to supply water to industrial complexes 

and the surrounding cities, such as Siheung, Ansan, and Hwaseong (Khim and Hong, 

2014; Lee et al., 2014). However, after embankment in 1994 the dike stopped flow 

of tidal currents, the water quality was subject to environmental deterioration 

because, in parallel to rapid growth of the population and industrial development 

(Yoo et al., 2006; Lee et al., 2014). In addition, various chemicals have been 

continuously discharged into the lake via several inland creeks. Thus, the Korean 

government enforced strategies to redress this problem, such as providing seawater 

circulation and since 1996 relocating the discharge from sewage treatment plants to 

outside the dike (Figure 2.1a). In 2000, the Korean government designated Lake 

Sihwa as a special coastal management zone and in 2011 constructed a tidal power 

station (TPS) to increase tidal mixing (Lee et al., 2014), and finally in 2013 

implemented a total pollution load management system. Consequently, water quality 

of Lake Sihwa has somewhat improved, but contamination of sediments by 

persistent toxic substances (PTSs) still remained (Jeon et al., 2017; Meng et al., 

2017).  

Several previous studies have reported the presence of classic PTSs, especially 

polycyclic aromatic hydrocarbons (PAHs) and alkylphenols (APs), in sediments of 

Lake Sihwa (Khim et al., 1999a; Li et al., 2004a, 2004b; Hong et al., 2010; Choi et 

al., 2011) (Figure 2.2a). PAHs are aryl hydrocarbon receptor (AhR) agonists, and are 

considered priority pollutants because of their mutagenicities and carcinogenicities 

(Lotufo and Fleeger, 1997). APs such as nonylphenol (NP) and octylphenol (OP) are 

degradation products of alkylphenol ethoxylates (APEOs), and mimic estrogen. 

Consequently, these compounds can disrupt hormonal balance (Koniecko et al., 2014) 

mediated by estrogen receptor (ER) dependent mechanisms (Behnisch et al., 2001; 

Giesy et al., 2002). Thus, use and production of APs have been banned, or their uses 

are strictly regulated (Soares et al., 2008).  
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Figure 2.1. 
(a) Satellite images and brief summary of the events/activity related to Lake Sihwa, 
including management effort and pollution control by the Korea Government (1987–
recent). IC: Industrial complex; STP: Sewage Treatment Plant; TPS: Tidal Power 
Station; TPLMS: Total Pollution Load Management System; WQ: Water Quality; 
MOE: Ministry of Environment; SCR: Sihwa Coastal Reservoir; MOMAF: Ministry 
of Maritime Affairs and Fisheries. (b) Map showing the locations of the study areas 
in the inland creeks in 2001 (1–8) and 2015 (17–22), and sediment sampling sites 
from inside of dike in 1998 (9–16) and 2015 (23–27). a Data from Koh et al. (2005).
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Figure 2.2. 
Summary of concentrations of: (a) polycyclic aromatic hydrocarbons (PAHs), 
alkylphenols (APs), and styrene oligomers (SOs); (b) AhR- and ER-mediated 
potencies in sediments from inland creeks, inner bay, and outer bay around Lake 
Sihwa. 
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Recently, emerging PTSs, such as styrene oligomers (SOs), have been detected 

in sediments of Lake Sihwa (Hong et al., 2016b; Lee et al., 2016) (Figure 2.2a). SOs, 

including styrene dimers (SDs) and styrene trimers (STs) are produced by 

decomposition of polystyrene plastic (Ohyama et al., 2001; Yanagiba et al., 2008; 

Kwon et al., 2015), particularly during thermal decomposition (Kitamura et al., 2003; 

Kwon et al., 2014). Despite growing concern about contamination of marine 

environments by plastics, few studies have surveyed concentrations of SOs in coastal 

sediments (Kwon et al., 2015; Hong et al., 2016b). Furthermore, there have been no 

previous surveys of SOs in sediments of Lake Sihwa before 2010s. Thus, studies on 

distributions of SOs and their toxicities, such as endocrine disrupting effects are 

needed.  

Objectives of the present study, results of which are presented here, were to: 1) 

investigate changes in classic PTSs (PAHs and APs) and emerging chemicals (SOs) 

in sediments from Lake Sihwa and nearby inland creeks, 2) identify the sources of 

selected target PTSs by compositional analyses, 3) evaluate AhR- and ER-mediated 

potencies associated with sediment extracts, and 4) assess the relative contributions 

of targeted compounds in sediments to total induced in vitro activities. Identification 

and quantification of individual compounds by use of gas chromatography (GC)-

mass selective detector (MSD) and quantification of AhR- and ER-agonists by use 

of in vitro bioassays using recombinant cells with a luciferase reporter gene were 

applied simultaneously. The results of this study provide information on relatively 

long-term changes of several classes of environmental pollutants and associated 

biological responses in coastal sediments, highlighting adaptive management and 

control for some persistent and emerging PTSs. 
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2.2. Materials and Methods 

2.2.1. Sampling and sample preparations 
Sediments were collected from Lake Sihwa and nearby creeks in Korea (Figure 2.1b). 

A total of 27 batches of samples from three surveys conducted over a 15-year period 

were collected. These samples included archived samples collected from Lake Sihwa 

in January 1998 and newly collected samples from inland creeks and the lake in 2015 

(Figure 2.1b). The sites from which samples were collected during 2015 were the 

same as those from which samples had been collected in 2001 (Hong et al., 2016b). 

To investigate long-term changes in occurrences and distributions of selected PTSs, 

the eight samples of sediments collected from inland creeks (S1–S8) in 2001 (Koh 

et al., 2005) were compared to samples collected from the same areas of creeks 

during 2015. Due to differences in sampling sites in creeks between 2001 and 2015 

(Figure 2.1b), site-specific comparison was limited. Most of the sites inside Lake 

Sihwa receive PTSs from similar sources, thus trends in long-term, temporal changes 

between creeks and lake could be observed and comparisons made. 

All samples were immediately transferred to the laboratory and stored at -20 °C 

until analyses. Samples collected in 1998 were freeze-dried and kept at -20 °C for 

18 years. To obtain better insight on differences in concentrations of target chemicals 

in sediments and to avoid technical or methodological biases, samples that had been 

collected in 1998 were extracted and analyzed together with the 2015 samples. 

Detailed descriptions of sample preparation for chemical analyses and 

bioassays have been published previously (Hong et al., 2012, 2015). In brief, 10 g of 

freeze-dried sediments were extracted for 16 h with 350 mL dichloromethane 

(Burdick & Jackson, Muskegon, MI) by use of Soxhlet extractor. To remove 

elemental sulfur, extracts were treated with activated copper powder (Sigma Aldrich, 

Saint Louis, MO) and concentrated to 1 mL. For in vitro assays, the aliquot of extract 

was exchanged into dimethyl sulfoxide (DMSO, Sigma-Aldrich) by use of 

differential volatilization. 
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2.2.2 Instrumental analysis 
Concentrations of PAHs, SOs and APs in organic extracts of sediments were 

quantified using an Agilent 7890 GC equipped with a 5975C MSD (Agilent 

Technologies, Santa Clara, CA). Details of instrumental conditions for analyses of 

PAHs, SOs, and APs and their full chemical names (with abbreviations) and 

structures were provided in Table 2.1 and Figures 2.3–2.5. A total of 15 PAHs were 

quantified, including acenaphthylene (Acl), acenaphthene(Ace), fluorene (Flu), 

phenanthrene (Phe), anthracene (Ant), fluoranthene (Fl), pyrene (Py), 

benzo[a]anthracene (BaA), chrysene (Chr), benzo[b]fluoranthene (BbF), 

benzo[k]flouranthene (BkF), benzo[a]pyrene (BaP), indeno[1,2,3-cd]pyrene (IcdP), 

dibenz[a,h] anthracene (DBahA), and benzo[g,h,i]perylene (BghiP). APs were also 

quantified, including NPs (isomeric mixture), nonylphenol monoethoxylate 

(NP1EO), nonylphenol diethoxylate (NP2EO), 4- tert-octylphenol (4-t-OP), 4-tert-

octylphenol monoethoxylate (OP1EO), and 4-tert-octylphenol diethoxylate 

(OP2EO).  

Limits of detection (LODs) for PAHs, SOs, and APs in sediments were 

calculated as 3.707 × standard deviation of the standard sample were analyzed. 

LODs for PAHs, SOs, and APs ranged from 0.2 to 1.3 ng g-1 dry mass (dm), from 

0.2 to 0.9 ng g-1 dm, and from 0.1 to 0.9 ng g-1 dm, respectively (Table 2.2). 

Analytical method blank samples were quantified with each set of samples. Mean 

concentrations of PAHs, SOs, and APs in blank samples were all less than LODs. 

Five surrogate standards (SS; acenaphthene-d10, phenanthrene-d10, chrysened12, 

and perylene-d12 for PAHs and SOs; bisphenol A-d16 for APs) were used to assess 

the recoveries of target chemicals. Mean recoveries of five SS were generally within 

the acceptable range (83−102% for PAHs and SOs; 77% for APs; detailed in Table 

2.2). Accuracy of determination of PAHs was assessed by use of certified reference 

material (CRM 1941b; marine sediment, Gaithersburg, MD) and recoveries ranged 

74−112% (mean = 93%; n = 3). 
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Table 2.1.  
GC-MSD instrumental conditions for the determination of polycyclic aromatic hydrocarbons, styrene oligomers, and alkylphenols. 

Target Compounds Polycyclic aromatic hydrocarbons Styrene oligomers  Alkylphenols 

Naphthalene (Na) 
Acenaphthylene (Acl) 
Acenaphthene (Ace) 
Fluorene (Flu) 
Phenanthrene (Phe) 
Anthracene (Ant) 
Fluoranthene (Fl) 
Pyrene (Py) 
Benzo[a]anthracene (BaA) 
Chrysene (Chr) 
Benzo[b]fluoranthene (BbF) 
Benzo[k]fluoranthene (BkF) 
Benzo[a]pyrene (BaP) 
Indeno[1,2,3-cd]pyrene (IcdP) 
Dibenz[a,h]anthracene (DBahA) 
Benzo[g,h,i]perylene (BghiP) 

1,3-diphenylpropane (SD1) 
cis-1,2-diphenylcyclobutane (SD2) 
2,4-diphenyl-1-butene (SD3) 
trans-1,2-diphenylcyclobutane (SD4) 
2,4,6-triphenyl-1-hexene (ST1)  
1e-phenyl-4e-(1-phenylethyl)-tetralin (ST2) 
1a-phenyl-4e-(1-phenylethyl)-tetralin (ST3) 
1a-phenyl-4a-(1-phenylethyl)-tetralin (ST4) 
1e-phenyl-4a-(1-phenylethyl)-tetralin (ST5) 
1,3,5-triphenylcyclohexane (ST6) 

 4-tert-octylphenol (4-t-OP) 
4 -tert-octylphenol monoethoxylate (OP1EO) 
4-tert-octylphenol diethoxylate (OP2EO) 
Nonylphenol (NP) 
Nonylphenol monoethoxylate (NP1EO) 
Nonylphenol diethoxylate (NP2EO) 

GC/MSD system Agilent 7890A GC and 5975C MSD 
Column DB-5MS (30 m long × 0.25 mm i.d. × 0.25 μm film thickness) 
Gas flow 1.0 mL min-1 (He) 
Injection mode Splitless 
MS temperature 180 °C 
Detector temperature 230 °C 

Injection volume 2 μL  1 μL 

Oven temperature 
 
 

1. 60 °C hold 2 min 
2. Increase 6 °C/min. to 300 °C 
3. 300 °C hold 13 min 
 

 1. 60 °C hold 5 min. 
2. Increase 10 °C/min. to 100 °C 
3. Increase 20 °C/min. to 300 ° C 
4. 300 °C hold 6 min. 
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Figure 2.3. 
Chemical structure of the targeted PAHs (polycyclic aromatic hydrocarbons) in the 
present study may be expected to have the potential to cause adverse effects through 
the aryl hydrocarbon receptor (AhR) mediated mechanism of action.  
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Figure 2.4.  
Chemical structure of the targeted APs (alkylphenols and alkylphenol ethoxylates) 
in the present study may be expected to have the potential to cause adverse effects 
through the estrogen receptor (ER) mediated mechanism of action. 
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Figure 2.5.  
Chemical structure of the targeted SOs (styrene dimers and styrene trimers) in the 
present study may be expected to have the potential to cause adverse effects through 
the aryl hydrocarbon receptor (AhR) mediated mechanism of action. 
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Table 2.2.  
QA/QC data for sedimentary PAHs, SOs, and APs measured in the present study. 

a Mean ± SD.  

Compounds 
Method detection limit Surrogate recovery 

(ng g-1 dm) (%, n = 7) 
PAHs and SOs   
Acl 0.78  
Ace 0.89  
Flu 1.32  
Phe 0.95  
Ant 0.40  
Fl 0.95  
Py 0.90  
BaA 0.62  
Chr 0.95  
BbF 0.66  
BkF 0.86  
BaP 0.69  
IcdP 0.72  
DbahA 0.17  
BghiP 0.61  
   
SD1 0.34  
SD2 0.65  
SD3 0.94  
SD4 0.23  
ST1 0.57  
ST2 0.53  
ST3 0.30  
ST4 0.49  
ST5 0.32  
ST6 0.34  
   
Ace-d10  a 82.9 ± 10.1 
Phe-d10  102.3 ± 22.2 
Chr-d12  97.6 ± 14.6 
Pery-d12  92.9 ± 20.4 
   
APs   
4-t-OP 0.07  
NPs 0.93  
t-OP1EO 0.09  
NP1EOs 0.45  
t-OP2EO 0.09  
NP2EOs 0.76  
   
BPA-d16  76.8 ± 18.7 
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2.2.3 In vitro bioassays 

The H4IIE-luc bioassay was preformed according to previously published methods 

(Hong et al. 2012, 2015, 2016b). Dilution factors for samples were determined from 

the results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

assay (Yoo et al., 2006), samples with the percentage of live cells > 80% were used 

for the bioassay. Trypsinized cells (~7 × 104 cells mL-1) from a culture plate was 

seeded in 60 interior wells of a 96-well plate by adding 250 mL per well (Figure 

2.6a). Metabolically labile compounds, such as PAHs or stably AhR binding 

compounds, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs), and coplanar-polychlorinated biphenyls (Co-PCBs) were 

identified with two exposure durations (4 and 72 h) in H4IIE-luc bioassay (Louiz et 

al., 2008; Lee et al., 2013; Larsson et al., 2014). After overnight incubation, the cells 

were exposed to 0.25 mL of extracts of sediments per well (0.1% dose). After 4 h 

and 72 h exposure, luminescence produced by luciferase was measured by use of a 

Victor X3 multi-label plate reader (PerkinElmer, Waltham, MA). The detailed 

molecular mechanisms of activation of gene expression by the AhR described in 

Figure 2.6b. 

A MVLN bioassay was used to evaluate ER-mediated potencies in organic 

extracts of sediments (Khim et al., 1999a, 1999b). Trypsinized cells from a culture 

plate were diluted to a concentration of approximately 1.25 × 105 cells mL-1 in the 

60 interior wells of a 96-well plate with 250 mL medium per well. After 24 h 

incubation, test and control wells were dosed with 0.25 mL per well. Luciferase 

activity was determined after 72 h of exposure using methods described previously 

(Villeneuve et al., 2002). Estrogenic compounds induced expression of the luc-gene 

in the basal cellular assay (Figure 2.6b). Details of culturing conditions of two cell-

lines for bioassays were provided in Table 2.3 
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Figure 2.6.  
(a) Graphic summary of the recombinant-cell lines bioassay’s procedure. (b) The molecular mechanisms of activation of gene expression by the 
aryl hydrocarbon receptor (AhR)- and estrogen receptor (ER)- mediated responses in cell. 2,3,7,8-TCDD; 2,3,7,8-tetrachlorodibenzo-p-dioxin; 
HSP90; 90 kDa heat shock protein, AIP; AhR-interaction protein (also known as XAP2), ARNT; AhR nuclear translocator, DRE; dioxin responsive 
element, ERE; estrogen responsive element. 
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Table 2.3.  
Culturing conditions of two recombinant cells (H4IIE-luc and MVLN). 

Cell type H4IIE-luc MVLN 
ATCC number CRL-1548 HTB-22 
Organism Rat Human 
Tissue Hepatoma; liver Breast cancer  
Growth properties Epithelial  
Sub-culturing  Remove medium  add fresh 025% trypsin solution for 3 min.  

 remove trypsin  add fresh medium and dispense into a new petri 
dish 

Split ratio a A sub cultivation ratio of 1:4 
Fluid renewal a Every 2 to 3 days 
Growth environment b 37 ℃, 5% CO2  
Culture duration c Initiate new culture from frozen cells after approximately 10 passages to 

reduce the risk of intraspecies cross-contamination, phenotypic drift, or 
senescence 

a Described by ATCC — http://www.atcc.org/. 
b White et al. (2010). 
c Freshney (1992).   
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2.2.4 Potency balance analysis 

Responses of the H4IIE-luc assay expressed as mean relative luminescence units 

were converted to percentages of maximum response (% BaPmax or % TCDDmax) for 

a standard containing 50 nM BaP (100% BaPmax) for 4 h and 300 pM 2,3,7,8-

tetrachlorodibenzop- dioxin (TCDD) (100% TCDDmax) for 72 h. Responses of the 

MVLN bioassay were converted to relative response units expressed as the 

percentage of the maximum response (% E2max) observed for 1235 nM 17β-estradiol 

(E2). Significant responses were defined as those that were three times the standard 

deviation of the mean of the solvent controls. 

AhR-mediated potencies at 72 h exposure were expressed as 2,3,7,8-TCDD 

equivalent concentrations (pg TCDD-EQ g-1 dm). These concentrations were 

determined directly from the sample dose-response relationships generated by 

testing samples at multiple levels of dilution. The E2 standard equivalent 

concentration (pg E2-EQ g-1 dm) was also calculated using the same method. 

Effective concentrations (EC50s) of BaP and TCDD in H4IIE-luc cells and E2 in 

MVLN cells were 2.91, 0.72, and 4.06 log fmol well-1, respectively (Figure 2.7). 

Relative potencies (RePs) were determined directly from the sample dose-response 

relationships for each sample and standard curve generated from the range of 

standard materials (TCDD and E2) dilutions. ReP50s were determined at dilutions 

of samples for which responses were equivalent to 50% response levels of maximum 

concentrations of TCDD or E2 on standard curves, respectively (Hong et al., 2012; 

Lee et al., 2013). All samples were performed in triplicates.  

A potency balance analysis between bioassay-derived concentrations (for TCDD-

EQs and E2-EQs) and instrument-derived concentrations (TCDD equivalent 

concentrations [TEQs] and E2 equivalent concentrations [EEQs]) in sediments were 

conducted to evaluate how individual chemicals contributed to total dioxin-like and 

estrogenic potencies. Concentrations of TEQs were calculated as the sum of the 

TEQs, by multiplying the concentration of individual PAHs by their respective ReP 

values obtained from previous studies (Villeneuve et al., 2002) (Table 2.4). EEQ 

values of APs were summed from concentrations of NPs and 4-t-OP multiplied by 

their respective RePs, which were previously reported (Villeneuve et al., 1998). 



  

 
30 

 

Principal component analysis (PCA) was performed using the normalized values of 

the chemical analysis data (individual chemicals) and the bioassay data (bioassay-

derived equivalents). SPSS 23.0 (SPSS INC., Chicago, IL) was used for the 

statistical analysis. 
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Figure 2.7.  
Dose-response curves for all tested standard materials in the present study. Each data 
point is the Mean ± SD (n = 3). 
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Table 2.4.  
Relative potency values of PAHs for the AhR-mediated potencies used in this study. 

Target compounds ReP values of H4IIE-luc cells a (72 h) 
Benzo[a]anthracene (BaA) 1.9 × 10-6 
Chrysene (Chr) 2.3 × 10-6 
Benzo[b]fluoranthene (BbF) 5.1 × 10-6 
Benzo[k]flouranthene (BkF) 1.4 × 10-4 
Benzo[a]pyrene (BaP) 1.6 × 10-6 
Indeno[1,2,3-cd]pyrene (IcdP) 1.5 × 10-5 
Dibenz[a,h]anthracene (DBahA) 4.6 × 10-6 

a Villeneuve et al. (2002). 
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2.3. Results and Discussion 

2.3.1. Long term changes in distributions of PTS in sediments 

PAHs, APs, and SOs were detected in all sediment samples (Figure 2.8). Total 

concentrations of PAHs ranged from 11.3 to 1900 ng g-1 dm (mean: 231 ng g-1 dm). 

Concentrations of APs and SOs ranged from 1.24 to 5024 ng g-1 dm (mean: 965 ng 

g-1 dm) and 10.1 to 740 ng g-1 (mean: 227 ng g-1 dm), respectively. In general, 

concentrations of target chemicals varied among locations and when samples were 

collected, with an increasing trend for PAHs and a decreasing trend for APs and SOs. 

Concentrations of PAHs extracted from sediment in inland creeks ranged from 

12.8 to 643 ng g-1 dm (mean: 226 ng g-1 dm, n = 8) in 2001 (Koh et al., 2005) and 

from 210 to 1900 ng g-1 dm (mean: 693 ng g-1 dm, n = 6) in 2015. Mean 

concentrations of PAHs in sediments from inland creeks increased by nearly three-

fold over the ~15-year period between the two collections (Figure 2.8a). These 

changes might be due to releases of pyrogenic (combustion) and petrogenic 

(petroleum) sources between 2001 and 2015 (Valavanidis et al., 2008). In lake 

sediments, concentrations of PAHs were similar in 1998 (mean: 18.9 ng g-1 dm) and 

2015 (mean: 25.1 ng g-1 dm). Detectable concentrations of PAHs in sediments from 

the lake observed in sediments collected in 1998 (Khim et al., 1999a) were similar 

to those in sediments collected in 2015. In general, concentrations of PAHs were 

greater in sediments from inland creeks than in those from the lake. These results 

were consistent with the results of a previous study, in which concentrations of PAHs 

were greater near urban centers (Juhasz and Naidu, 2000; Lee et al., 2016). 

Similar to PAHs, concentrations of APs were also greater in sediments from 

inland creeks than those from the lake (Khim et al., 1999a; Li et al., 2004a; Imran et 

al., 2005). Thus, it can be concluded that most PAHs and APs originated from 

surrounding industrial complexes and cities. Mean concentrations of APs in 

sediments from the lake were 410 ng g-1 dm (n = 8) in 1998 and 3 ng g-1 dm (n = 5) 

in 2015. SOs are emerging pollutants resulting from the degradation of plastics in 

marine environments. However, during the last decade, there are no reports are 

available on historical distributions of SOs in coastal environments. 
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Figure 2.8.  
Spatio-temporal distributions of (a) polycyclic aromatic hydrocarbons (PAHs), (b) 
alkylphenols (APs), and (c) styrene oligomers (SOs) in the sediment samples from 
the inland creeks and inner side of dam of Lake Sihwa in the past and current studies. 
Box plots represent the minimum, 25%, median, 75%, and maximum values of data 
from same period and region. Data refer to a Koh et al. (2005), b Hong et al. (2016b), 
c Khim et al. (1999a). ** Significant declines in concentration are indicated for each 
chemical group (p < 0.05). 
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Thus, to address the historical occurrence as well as long-term changes, in this 

study, archived samples from 1998 were re-analyzed together with samples collected 

in 2015. Concentrations of SOs in sediments from the lake were ranged from 132 to 

324 ng g-1 dm (mean: 217 ng g-1 dm) in 1998 and from 10.1 to 62.6 ng g-1 dm (mean: 

34.2 ng g-1 dm) in 2015 (Hong et al., 2016b). These results indicated that, although 

only recently recognized as emerging PTSs, SOs have been present in the Lake 

Sihwa aquatic system for several decades. The major reason for the dramatic 

decrease concentrations of SOs in sediments between the two sampling years was 

likely, not due to dilution, but rather, changes in multiple sources of SOs 

contamination in the given area. Limited information is available on the occurrences 

of SOs in sediments; thus, more complementary studies would be necessary to 

identify their sources and fate. 

Concentrations of PAHs, APs, and SOs in sediments from inland creeks were 

greater than those from the lake (Figure 2.8). This spatial distribution of PTSs 

indicates that chemicals tend to accumulate in sediments near the sources, because 

of anthropogenic activities in municipal and industrial areas. PTSs that are related to 

industrialization, urbanization, and hydrophobic compounds, rather than hydrophilic 

contaminants, can contribute significantly to toxicities of sediments (Schulze-

Sylvester et al., 2016). Because PTSs could not be transported to distant regions due 

to the hydrodynamic conditions of the lake, greater concentrations of PAHs, APs, 

and SOs observed in sediments from inland creeks suggest that the region is still 

affected by industrial complex in nearby cities.  

Since the late 1990s, sediments from the lake, which had been contaminated 

previously could have been purified by occasional circulation of seawater through 

the water gate (Lee et al., 2014). In addition, construction of the tidal power station 

in 2012 could have reduced sediment contamination in the lake due to circulation of 

seawater into the lake. 

Relative compositions of target PTSs in sediments collected in 2015 were 

compared to profiles of the same chemicals in sediments collected in 1998 and 2001 

(Figure 2.9). Profiles of relative concentrations of PAHs, APs, and SOs varied 

among locations and in particular between the lake and inland creeks and between 
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when sediments were collected. These results indicated that spatio-temporal changes 

in sources of contaminants with possible recent input(s) (Yunker et al., 2002). When 

compared to PAHs collected in 1998 and 2001, PAHs observed in 2015 were 

dominated by higher-molecular weight (HMW) PAHs that had five to six rings 

(Figure 2.10). These patterns were especially predominant in the sediments from the 

inland creeks. On average, HMW PAHs (such as BkF, BaP, DBahA, and BghiP) 

from the inland creeks represented 23.4% of total PAHs in 2001; however, by 2015, 

this percentage had increased to 41.1%. Over time relative contributions of HMW 

PAHs in sediments from inland creeks increased by more than two-fold, while those 

of lower-molecular weight (LMW) PAHs (such as Ant, Py, and Chr) declined. These 

results confirmed that industrial waste (combustion of heavy-duty diesel engines and 

gasoline engines) contributes to the concentrations of HMW PAHs (Rogge et al., 

1993) in sediments of inland creeks. This phenomenon occurred because HMW 

PAHs are derived from combustion of gasoline and diesel in vehicles, whereas LMW 

PAHs in the environment are derived from incomplete combustion of wood, coal, 

and biomass (Li and Duan, 2015). It is also possible that due to lesser hydrophobicity 

LMW PAHs they can degrade more rapidly, which would cause a decline in relative 

contributions of LMW PAHs to total concentrations of PAHs. Ratios of IcdP / (IcdP 

+ BghiP) against BaA / (BaA +Chr) and Fl / (Fl + Py) as a function of Ant / (Ant + 

Phe) in sediments were calculated to verify sources of PAHs contributed from 

petroleum and combustion, respectively (Figure 2.11) (Yunker et al., 2002). Results 

showed that PAHs in sediments of inland creeks originated primarily from 

combustion of petroleum, whereas those in sediments in the lake originated from 

combustion of grass, wood, and coal (Hong et al., 2012; Jiao et al., 2012).  

In 2015, relative compositions of APs varied between sediments from inland 

creeks and the lake (Figure 2.9b). In sediments from inland creeks, among APs, NP 

(72.7%) was the predominant constituent, followed by NP1EO (15.2%). Similarly, 

relative proportions of 4-t-OP were greater than those of OP1EO and OP2EO in 

sediments from inland creeks. The pattern observed in sediments from the lake was 

different. For example, NP2EO (40.3%) and NP1EO (37.6%) were the primary APs 

in sediments from the lake. It is possible that, because NP and 4-t-OP are 
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hydrophobic chemicals that tend to adsorb to sediments, the chemicals do not break 

down well in water columns (Ying et al., 2002). These results collectively suggest 

that current regulations, which prohibit their use, along with more efficient treatment 

of wastes have been effective in reducing inputs of APs into the inland creeks and 

subsequently into the lake.  

In 2015, of the 10 SOs, ST1 (43.6%) was the predominant constituent in 

sediments from inland creek sediments, followed by SD3 (22.1%). In contrast, also 

in 2015, in sediments from the lake, SD3 (47.0%) was the predominant chemical 

(Figure 2.9c). These results indicate that SD3 is widely distributed in the coastal area, 

and might be transported to areas relatively far from land. Also, the composition of 

STs (71.0%) in sediments collected from the lake in 1998 was greater compared to 

that in sediments (37.0%) collected during 2015. Greater concentrations of STs 

compared to SDs indicate that the relationship between polystyrene pollution and the 

human population is affected by direct inputs from local sources (Kwon et al., 2014; 

Hong et al., 2016b). Because, after mechanical breakdown, ST1 is first detected from 

decomposition of polystyrene, relatively large contributions of STs might indicate 

recent inputs of fresh materials. Results of a previous study showed that ST1 adsorbs 

to surfaces of sediments and can persist for some time (Saido et al., 2014). However, 

the results of the present study indicated that concentrations of STs were not 

maintained over the 15 years. Few studies have been conducted on distributions and 

relative compositions of SOs in coastal marine sediments (Kwon et al., 2014, 2015; 

Saido et al., 2014; Hong et al., 2016b), thus more studies are required on sedimentary 

SOs. 
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Figure 2.9.  
Comparison of profiles of relative concentrations of (a) 15 individual PAHs to total 
concentrations of PAHs, (b) two APs (4-t-OP + NP) and four APEOs to total APs for 
the past and recent samples, and (c) 10 individual SO to total SOs concentrations in 
the sediments from the inland creeks and inside of dam in the past (1999 and 2001) 
and recent (2015) years.  
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Figure 2.10.  
Mean composition of PAH ring number to total PAHs from the inland creeks and 
inside of dam sediments in the past and current studies.  
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Figure 2.11.  
Results of the diagnostic ratios for the source identification of the PAHs. (a) Cross 
plots for the ratios between BaA / (BaA + Chr) with IcdP / (IcdP + BghiP) and (b) 
the ratios between Ant / (Ant + Phe) with Fl / (Fl + Py) for source identifications of 
PAHs in the sediments. 
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2.3.2. AhR- and ER-mediated potencies 

To assess potential AhR-mediated potencies of sediments from Lake Sihwa (Figure 

2.12) and differentiate between labile and more recalcitrant compounds, H4IIE-luc 

bioassays were performed after both 4 h and 72 h. All extracts contained AhR-

mediated potency that was dependent on duration of exposure as well as location. In 

sediments collected from the lake in 2015, mean concentrations of AhR-mediated 

potency for 4 h exposure were 60 to 127% BaPmax (mean = 103% BaPmax). In 

comparison, mean concentrations of AhR-mediated potency after 72 h exposure 

ranged from 2 to 11% TCDDmax (mean = 6% TCDDmax) (Figure 2.12). These results 

suggest that the chemicals responsible for activation are rapidly metabolized by the 

cells. This finding supports the hypothesis that PAH-like chemicals are important in 

observed AhR-mediated activity (Louiz et al., 2008; Kinani et al., 2010). Also, 

greater AhR-mediated potency was detected in sediments from inland creeks 

compared to that in sediments from the lake. Dioxin-like activity and chemical 

analysis showed large variation across sites, which might be related to industrial and 

urban activities in the vicinities of inland creeks (Figure 2. 13a). Thus, results of the 

H4llE-luc bioassay indicated that various actions implemented to reduce releases of 

these compounds to the creeks have been effective, but concentrations of dioxin-like 

compounds in sediments of Lake Sihwa remain high. 

The 19 sediment extracts were screened for their ability to promote ER-

mediated gene expression in MVLN cells (Figure 2.13a; inland creek 2001 sediment 

data were obtained from Koh et al., 2005). All of the tested samples elicited a 

significant increase in luciferase expression. The sediments that exhibited 

estrogenicity were collected from rivers that receive sewage discharges. Sources of 

various ER agonists in sediments are hypothesized to originate from sewage 

effluents and industrial discharges (Luo et al., 2011). Over time, ER-mediated 

potency in sediments from the lake has decreased significantly. Mean estrogenic 

potencies were 211 pg E2-EQ g-1 dm and 128 pg E2-EQ g-1 dm in sediments collected 

1998 and 2015, respectively (Table 2.5 and Figure 2.13a).  
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Figure 2.12.  
AhR-mediated potencies of the sediment raw extracts from the inland creeks and 
lake in the past and current years at 4 h and 72 h exposure durations in the H4IIE-
luc bioassay. a Data from Koh et al. (2005). * Data were not available. 
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Figure 2.13. 
Spatiotemporal distributions of (a) TCDD-EQs and E2-EQs in sediments from 
inland creeks and Lake Sihwa in 1998 and 2001 or 2015 (Mean ± SD (n = 3)).  
(b) Scatter plots showing the dose-response relationships between the chemical 
analyses and biological responses in the inland creeks and lake sediments of Lake 
Sihwa. a Data refer to Koh et al. (2005).  
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Table 2.5.  
Overview of the results for the instrument-derived equivalents and bioassay-derived equivalents of sediments collected from Lake Sihwa, Korea.  
Region  
 
 

Sampling 
year 

 

# of 
sites 

Instrument-derived equivalents  a Bioassay-derived equivalents   b Potency balance analysis 

c TEQ d EEQ    TCDD-EQ E2-EQ   TEQ/TCDD-EQ EEQ/E2-EQ 

Min.–Max. (Mean) Min.–Max. (Mean)   Mean Mean   Min.–Max. (Mean) 

(pg g-1 dm)  (pg g-1 dm)  (%) 
Inland 
creeks 

2001 e 8 0.1–4.7  (1.7) 3.4–65.9 (22.0)  86.3 148  0.6–5.6 (2.6) 8.1–18.5  (14.6) 

2015 6 0.6–5.9  (2.1) f n.d.–13.5 (2.9)  3630 211  0.0–0.2 (0.1) 0.02–3.8   (0.8) 

Lake 1998 8 n.d.–0.3  (0.1) 0.4–14.4 (5.4)  54.7 356  0.1–0.4 (0.2) 0.4–12.9  (3.5) 

2015 5 0.3–0.9  (0.6) 0.0–0.1 (0.03)  47.0 128  0.6–2.0 (1.3) 0.0–0.1  (0.03) 
a Bioassay- derived values were obtained from sample dose-response relationships generated by testing samples at multiple levels of dilution. 
b Potency balance values were obtained from the percentage of instrument-derived values to the bioassay-derived values. 
c TEQ values of PAHs were summed from the chemical concentrations of BaA, Chr, BbF, BkF, BaP, IcdP, and DBahA multiplied by the ReP values obtained in a previous study 

(Villeneuve et al., 2002). 
d EEQ values of APs were summed from the chemical concentrations of NPs and 4-t-OP multiplied by the ReP values obtained in a previous study (Villeneuve et al., 1998). 
e Data from Koh et al. (2005). 
f n.d.: Below detection limits. 
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These results indicated that concentrations of major ER-active compounds in 

sediments from the lake have decreased over the last 15 years. This change indicates 

that efforts directed towards the improvement of the Lake Sihwa environment, 

including the ban in 2002 on the use of ER-active compounds in household products, 

have been effective (Hong et al., 2010).  

Although concentrations of ER-active compounds declined over time, spatial 

patterns of estrogenic potencies in sediments did not change. ER-mediated potencies 

in the past and present sediment samples from the inland creeks were greater those 

in sediments from the lake. This difference might be because the sediments in the 

inland creeks have been more contaminated by industrial, agricultural, and domestic 

wastewaters from the nearby cities. Several studies have reported that the sources of 

various ER agonists in sediments originate from industrial discharge and sewage 

effluent. Examples of such agonists include NPs, 4-t-OP, estrone (E1), and estradiol 

(E2) (White et al., 1994; Kinani et al., 2010; Luo et al., 2011). In our study, APs 

concentrations (such as NPs and 4-t-OP) were consistently detected over time in the 

sampled sediments. Thus, these results support the conclusion that even though APs 

are relatively weak ER agonists, their concentrations are sufficient to contribute a 

significant portion of the ER-mediated potency measured in the bioassay.  
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2.3.3. Potency balance 

To determine the proportion of in vitro potencies observed in samples, that could be 

explained by concentrations of known agonists, a potency balance analysis was 

conducted (Khim et al., 2001; Giesy et al., 2002; Hong et al., 2012). TEQs 

contributed by Ah-active PAHs explained only a small portion of total concentrations 

of TCDD-EQ. Proportions explained by PAHs ranged from 0.2 to 2.6% in sediments 

from 1998–2001 and from 0.1 to 1.3% in sediments collected in 2015 (Table 2.5 and 

Figure 2.14). By examining the relationship between TCDD-EQs and AhR-active 

PAHs of the dataset in a scatterplot (Figure 2.13b), TCDD-EQs were found to be 

correlated (r2 = 0.75, p < 0.01) with AhR-active PAHs in sediments from inland 

creeks. Known AhR-active compounds accounted for only a small portion of total 

induced AhR-mediated potencies in sediments but significant correlations between 

some AhR-active PAHs and dioxin-like activities suggested some compounds 

similar to PAHs were acting as agonists. Overall, the results of the potency balance 

suggest that unknown AhR-mediated compounds are broadly distributed in the 

sediments. 

NP and 4-t-OP contributed 14.6% of the concentration of EEQs in sediments 

collected from inland creeks in 2001 and 0.8% of EEQs in 2015. In comparison, in 

sediments from the lake, NP and 4-t-OP contributed only 3.5% of concentrations of 

EEQs in 1998 and 0.03% of concentrations of EEQs in 2015 (Table 2.5). 

Contributions of known ER agonists, such as NP, decreased over 15 years. Target 

APs did not explain much of the overall estrogenic activities, particularly in 

sediments collected more recently. Thus, studies on unidentified ER agonists in 

sediments are needed. For example, to better characterize sources of contamination 

of these sites, use of EDA, based on sample fractionation and identification of 

fractions causing significant potencies in bioassays followed by detailed untargeted 

instrumental analyses (Brack, 2003; Hong et al., 2016c). In sediments from inland 

creeks, ER-mediated potencies (E2-EQs) were correlated (r2 = 0.50, p < 0.01 and r2 

= 0.32, p = 0.04, respectively) with concentrations of ∑ 2 ER-active APs (Figure 

2.13b). These results indicate that total concentrations of ER-mediated potencies in 

sediments from Lake Sihwa were relatively well explained by concentrations of APs. 
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Figure 2.14. 
Potency balance between bioassay-derived (TCDD-EQs) and instrument-derived 
TEQs in sediments collected from Lake Sihwa and the relative contributions of 
identified TEQs in the sediment samples. 
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To characterize the bioassay-EQ in the sediments further, a principal component 

analysis (PCA), based on the concentrations of residues, was performed (Figure 

2.15). The PCA produced two major components that collectively accounted for 56.0% 

of the total variance. PC1 (explaining 30.0% of total variance) was positively 

correlated with PAHs, APs, and E2-EQ, but was negatively correlated with TCDD-

EQ. When sites were ordinated based on PCA scores, they were classified into three 

groups. The first group contained sediments collected in 2015 from inland creeks. 

These sites exhibited greater concentrations (top 10%) of target PTSs and contained 

greater concentrations of TCDD-EQ and E2-EQ. The second group was 

characterized by sites with relatively great concentrations of PAHs and APs. These 

sites might have accumulated these compounds from independent sources and/or due 

to different conditions along the creeks to the lake. The lesser correlation between 

concentrations of TCDD-EQ and PAHs indicates that AhR-active PAHs explain only 

a small proportion of concentrations of TCDD-EQ. Overall, the PCA analysis 

demonstrated that the majority of variance was observed among locations but 

generally supported the time-dependent aggregation. 
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Figure 2.15. 
Principal component analysis of PAHs, APs, AhR-mediated potencies (% TCDDmax), 
ER-mediated potencies (% E2max), and bioassay-derived equivalents associated with 
the sediments collected from the 27 locations in Lake Sihwa. Clusters are represented 
as locations (inland creeks and lake), in which principal components 1 and 2 
accounted for 30.0% and 26.0% of the variability of the dataset, respectively.  
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CHAPTER 3. 

 

MULTIPLE BIOASSAYS AND TARGETED AND 
NONTARGETED ANALYSES TO 
CHARACTERIZE POTENTIAL 

TOXICOLOGICAL EFFECTS ASSOCIATED 
WITH SEDIMENTS OF MASAN BAY: FOCUSING 

ON AhR-MEDIATED POTENCY 
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3.1. Introduction 

Assessing chemical contamination of sediments is complicated because chemicals 

occur as complex mixtures and undergo both biotic and abiotic transformations 

(Brack, 2003). The development of highly sensitive target analyses allows precise 

and accurate quantification of chemical contaminations in sediments (Seoane et al., 

2017). However, due to technical limitations, such analyses often provide little 

information about toxicity of chemical mixtures and/or bioavailability (Xiao et al., 

2016; Brack et al., 2019). More importantly, chemical concentrations are not 

sufficient to demonstrate biological effects, because they do not provide information 

about the potential adverse effects on aquatic organisms (Brack, 2003; Wang et al., 

2014; Lee et al., 2018). 

In the present study, EDA was conducted to identify the toxicity profile of 

contaminants in sediments by use of multiple bioassays. Based on the results of 

previous pollution studies in Korean coastal waters, Masan Bay was selected as a 

study area from which to obtain contaminated sediments. Masan Bay, located on the 

southeastern coast of South Korea, is a semi-enclosed bay with restricted water 

exchange. It is subject to numerous anthropogenic impacts, including urbanization, 

industrialization, and intensive shipping activity (Figure 3.1). Severe pollution of 

sediments and associated significant toxic effects have been reported for Masan Bay 

since the 1990s (Figure 3.1) (Khim et al., 1999b; Jeon et al., 2017; Lee et al., 2018). 

In particular, over the past few decades, riverine and bay sediments from the study 

area are reported to be contaminated with various environmental pollutants (Hong et 

al., 2009; Yim et al., 2014; Lee et al., 2016).  

Bioassays utilized in the present study cover three mechanisms of actions 

including specific-, baseline-, and reactive-toxicity (Jia et al., 2019). In vitro 

bioassays comprise receptor gene assays for measuring “specific toxicity” of AhR 

agonists, such as polycyclic aromatic hydrocarbons (PAHs) (H4IIE-luc bioassay) 

and the bacterial test (Vibrio fischeri assay), which is related to the energy 

metabolism of a bacterium, was used for “baseline toxicity” measurements (Brack 

et al., 1999; ISO, 2007; Jia et al., 2019). Inhibition of growth of microalgae and cell 
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viability tests and the fish embryo toxicity test (FET) were conducted to assess the 

acute toxicity with multiple endpoints on the primary producers and vertebrate 

species, respectively (Hollert et al., 2003). Each bioassay exhibits different 

sensitivities to chemical contaminations in sediments; thus, the combination of a 

battery of bioassays provides a better assessment of the sediment contaminations 

(Maltby et al., 2005; Brack et al., 2019). 

The present study aimed to (i) assess potential toxicological effects of polluted 

sediments using a battery of bioassays with various organisms and endpoints, (ii) 

measure concentrations and compositions of target PTSs (PAHs, styrene oligomers 

(SOs), and alkylphenols (APs)) in sediments using GC-MSD, (iii) identify 

untargeted AhR agonists in some potent fractions using GC-QTOFMS and LC-

QTOFMS, (iv) evaluate relative potencies (RePs) of tentative AhR agonists, if any, 

using the H4IIE-luc bioassay, and finally (v) determine relationships between 

chemical concentrations and/or compositions in sediments and observed in vitro and 

in vivo biological effects. A schematic representation of the stepwise procedures of 

the present study is shown in Figure 3.2 (details description of Figure 3.2 in materials 

and methods section).  
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Figure 3.1.  
Sampling sites (S1 and S2) of surface sediments from the vicinity of inland creeks 
of Masan Bay, Korea (March 2016). The type of business in the industrial complex 
was referred from the website of Changwon City (https://www.changwon.go.kr). 
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Figure 3.2.  
Workflow overview of the fractionation strategy, bioassays, and chemical analyses 
used to identify priority substances in the sediments from Masan Bay, Korea. 
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3.2. Materials and Methods 

3.2.1. Sampling and sample preparations 

Sites S1 and S2 were located near Samho Creek and Nam Creek, respectively, which 

are two major rivers flowing into the Masan Bay (Figure 3.1). In March 2016, surface 

sediments (~3 cm) were collected by use of a hand shovel. Sample preparation for 

bioassays and chemical analyses was conducted, with minor modifications to 

previously published methods (Hong et al., 2015). In brief, sediments were freeze-

dried, passed through a 1-mm sieve, and homogenized. Sediments (60 g) were 

extracted with 350 mL dichloromethane (DCM, J.T Baker, Phillipsburg, NJ) in a 

Soxhlet extractor for 16 h. Raw organic extracts were concentrated to 6 mL with a 

rotary evaporator and N2 gas flow (~10 g sediment equivalent (SEq) mL-1). For 

bioassays, the aliquot of raw extracts was exchanged into dimethyl sulfoxide (DMSO, 

Sigma-Aldrich, Saint Louis, MO) to obtain a final concentration of 0.1% DMSO in 

the test solution (Table 3.1). 

REs were fractionated in a two-step procedure (Figure 3.2). Step one 

fractionation was conducted with 4 mL raw extracts using 8 g activated silica gel 

(70−230 mesh, Sigma-Aldrich) in a packed glass column based on differences in 

polarity (F1 to F3) (Hong et al., 2015). The first fraction (F1) was collected by elution 

with 40 mL hexane. The second fraction (F2) was eluted with 50 mL of 20% DCM 

in hexane (v/v). The third fraction (F3) was eluted in 50 mL of 60% DCM in acetone 

(J.T Baker).   

If the primary fractions were significantly toxic, a secondary fractionation step 

was applied using reverse-phase (RP)-HPLC (Agilent 1260 HPLC; Agilent 

Technologies, Santa Clara, CA) (Figure 3.2). Instrumental conditions of RP-HPLC, 

including sampling times and log Kow intervals, were presented (Table 3.2). 

Separation conditions of RP-HPLC were optimized previously through several tests 

with GC-MSD confirmation using 34 PCBs, 16 PAHs, 7 APs, and 5 phthalates (with 

log Kow values) (Hong et al., 2015). Acceptable elution efficiency with all 

compounds was achieved (> 85%).
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Table 3.1. 
Description of the experimental design for the bioassays examined in this study. 

Bioassays In vitro assays  In vivo assays  
Test organism H4IIE-luc Vibrio fischeri 

 
Isochrysis galbana 
/Pheodactylum tricornutum 

Danio rerio 

Specific purpose 
 

Measurement of AhR-
mediated potencies 

Evaluation of inhibition of 
bioluminescence 

Reproduction inhibition of 
microalgae 

Measurement of 
developmental toxicity 

Test samples Raw, F1–F3, 
F2.1–F2.10 for S1 and S2 
F3.1–F3.10 for S2 

S.T a: Raw, F1–F3 
E.T b: Raw, F1–F3 for S1 
     Raw, F1–F2 for S2 

Raw, F1–F3 
 

Raw, F1–F3 
 

Experimental conditions     
 Test chamber 96-well plates  96-well plates  250 mL culture flasks 24-well plates 
 Solvent carrier 0.1% DMSO 0.1% DMSO 0.1% DMSO 0.1% DMSO 
 Temperature (℃) 37 15 15 26 ± 1 
 Test duration (hours) 4  0.5  96 96 
 Initial concentrations 7.0 × 104 cells mL-1 S.T: 200 μL of samples with 

25 μL of bacterial solution  
E.T c: 100 μL of samples with 

100 μL of bacterial solution  
 

6.0 × 104 cells mL-1 

/ 3.0 × 104 cells mL-1 
5 organisms 

Replicates  3 4 3 3 
Positive control Benzo[a]pyrene Zinc sulfate solution - - 
Endpoint AhR-mediated potency Bioluminescence inhibition Growth inhibition 

Cell size 
Cell granularity 
Chlorophyll a 
Esterase activity 
Membrane integrity 

Lethality 
Spinal curvature 
Cardiac edema 
Tail abnormality 
Segmentation defects 

Data presented in Figure 3.7a Figure 3.7b and Table 3.9 Figures 3.8, 3.9a and b Figure 3.9c 
a S.T: Screening test. 
b E.T: EC50 test. 
c Tested with eight concentrations of 50% serial dilution.  
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Table 3.2.  
Instrumental conditions of reverse phase-HPLC for fractionation of organic raw 
extracts. Retention times of various organic chemicals (test standards, n = 62) given 
as a function of the log Kow values of chemicals. 

RP-HPLC 
system 

Agilent 1260 HPLC system (Preparative scale) 

Detector 1260 Multiple wavelength detector 

Column PrepHT XDB-C18 reverse phase column (250 mm × 21.2 mm × 7 μm) 

Mobile phase Water (A) : MeoH (B) (40 : 60, v/v), Isocratic elution 

Injection volume 1 mL 

Flow rate 10 mL min-1 

Gradient 
conditions a 
 

Time  
(min.) 

Solvent 
A B 

0 40 60 
40 0 100 
65 0 100 
66 0 60 
70 40 60 

 

Test standards a 34 polychlorinated biphenyls 
16 polycyclic aromatic hydrocarbons 
7 alkylphenols 
5 phthalates 

Fractions 
collected a 

 

RP-HPLC 
Sub-fraction 

Starting–End  
sampling time (min.) 

Log Kow 

1 1.81–8.30 < 1 
2  8.30–14.78 1–2 
3 14.78–21.27 2–3 
4 21.27–27.75 3–4 
5 27.75–34.24 4–5 
6 34.24–40.73 5–6 
7 40.73–47.21 6–7 
8 47.21–53.70 7–8 
9 53.70–60.18 8–9 
10 60.18–66.67 > 9 

a Hong et al. (2016).  
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3.2.2. In vitro bioassays 

To measure AhR-mediated potencies in REs, silica-gel fractions, and RP-HPLC 

fractions, a panel of established in vitro reporter gene cell lines (H4IIE-luc) were 

used (Khim et al., 1999) (Figure 3.2). The bioassay methods were previously 

described in detail (Figure 2.6 and Table 3.1) (Hong et al., 2016). Luminescence of 

luciferase was quantified using a Victor X3 multi-label plate reader. The responses 

were converted to the percentage of the maximum response according to 50 nM BaP, 

viz., % BaPmax. 

A bioluminescence test with the marine bacterium, gram-negative bacteria, V. 

fischeri (NRRL B-11177) was conducted by use of the luminescent bacteria toxicity 

measurement apparatus (N-TOX model 200; NeoEnBiz Inc., Bucheon, Korea), 

following standard methods of the Ministry of Maritime Affairs and Fisheries of 

South Korea (MOMAF, 2005) and Lee et al. (2019). The screening test was 

performed following the methods described in Table 3.1 and Figure 3.3a. When the 

inhibition of luminescence was detected in the screening test, a serial dilution test 

was performed. Each experiment consisted of four controls and four replicates. A 

Quality Assurance/Quality Control (QA/QC) test to maintain the validity of the test 

method was also conducted with the reference standard using zinc sulfate solution 

for each fresh vial of bacteria that was opened (ISO, 1998).  

Bacterial physiological processes of luminescence are regulated by quorum 

sensing (QS) systems (Schaefer et al., 1996) including the two genes (luxI and luxR) 

and two like-proteins (LuxI and LuxR) which control expression of the lux operon 

(luxICDABE) (Figure 3.3b) (Engebrecht et al., 1983). The genes luxICDABE are 

common to all of them and code for the luciferase and the fatty-acid-reductase 

polypeptides (Meighen, 1993). luxI gene directs the synthesis of N-acylhomoserine 

lactone (AHLs) which is extracellular signaling molecules to monitor their 

population density in QS control of gene expression. It can diffuse in and out of the 

cell membrane and increases in concentration with increasing cell density. The luxR 

gene is located upstream of the lux operon and encoded LuxR.  

 

http://2011.igem.org/Team:UNIPV-Pavia/Project/Motivation#Schaefer
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Figure 3.3.  
(a) Graphic summary of Vibrio fischeri bioassay. (b) A simplified view of V. fischeri quorum-sensing system and chemical structures of N-
acylhomoserine lactone (AHL) autoinducer.  
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3.2.3. In vivo bioassays 
To investigate possible adverse effects of sediments on primary producers, inhibition 

of growth of algae was investigated, with some modifications to ISO (2006) and Lee 

et al. (2015) (Figure 3.2 and Table 3.1). The marine algal strains Isochrysis galbana 

and Pheodactylum tricornutum were obtained from the Korea Marine Microalgae 

Culture Center (KMMCC) and cultured (Table 3.3). After 96 h of culture, inhibition 

growth of microalgae was determined by counting the number of cells in each 

treatment by use of a disposable hemocytometer (In CYTO, Chungcheongnam-do, 

Korea) under a light microscope (Optical Microscope: CHS, Olympus, Japan) 

(Figure 3.4a). Growth inhibition rate (μ) was calculated using ISO (ISO, 2006).  

The viability of the microalgae population after exposure to samples were 

assessed by flow cytometry (FCM) with specific fluorescent dyes, which is described 

in Figure 3.4b. Sub-samples (1 mL) for the FCM analysis of microalgae (I. galbana 

and P. tricornutum) were taken after 96 h from the same culture flasks as those 

measured microscopically. FCM analysis of microalgae was performed on a BD 

FACS Canto Ⅱ flow cytometer equipped with 405 nm laser exciting SYTOX blue 

(Thermo Fisher Scientific) and propidium iodide (PI; Invitrogen, Ltd. UK), 488 nm 

laser exciting fluorescein diacetate (FDA; Sigma), and 633 nm laser exciting 

chlorophyll a (Chl a) (Table 3.3). The microalga population was quantified as the 

Pacific Blue (450/50), FITC (530/30), and APC (660/20) filters related to 

fluorescence from SYTOX blue, FDA, and Chl a, respectively (Shapiro, 2005). For 

I. galbana, dual staining was performed with FDA and SYTOX blue. 

Esterase activity of microalgae exposed to the samples was evaluated using 

non-fluorescent lipophilic dye FDA (Hadjoudja et al., 2009). FDA, which is taken 

up by live cells and converted to its fluorescent derivative fluorescein by cellular 

esterase, was applied at a final concentration of 5 μM mL−1 (15 min., room 

temperature, and darkness). After FDA staining, samples were stained with SYTOX 

blue at a final concentration of 2 μM mL−1 and incubated in darkness for 10 min. at 

room temperature. Membrane integrity was assessed by SYTOX blue, which 

penetrates damaged membrane cells, becoming stuck to nucleic acid structures 

(Olsen et al., 2016). Esterase activity and membrane integrity changes can indicate 



  

 
61 

 

either the preliminary stage of toxic action or display the adaptation ability of 

organisms to influence toxic substances in samples (Li et al., 2011). The FCM signals 

from I. galbana, dual stained with FDA and SYTOX blue were presented as dot plots 

and separated into quadrants (Q1 to Q4) (Figure 3.5).  

For P. tricornutum, staining was conducted with FDA (30 μM mL−1) and PI (5 

μM mL−1) (Cid et al., 1996). Thermal shock dead cells were obtained using a 60 ℃ 

water bath for 1 h heating and were used as a positive control. FCM dot plots of I. 

galbana and P. tricornutum cell signals were plotted as coordinates of FDA, SYTOX 

blue, and PI fluorescence intensity for unstained, stained, and boiled cells, 

respectively (Figure 3.5). Cell viability was expressed as the percentage of 

metabolically active cells with respect to the cells of solvent control treatment 

(Figure 3.5). Samples were measured in triplicate using the counting cells function 

of the flow cytometery. In addition, cell size and granularity (intracellular complexity) 

were measured by forward scatter detector and side scatter (SS), respectively 

(Mullaney et al., 1969; Tousova et al., 2017). The data were analyzed with the 

software FlowJoTM ver.10.0, which is independent of the flow cytometer used. 

Maintenance and breeding of zebrafish, Danio rerio, followed the previously 

described method (Kim et al., 2016). The fish embryo testing (FET) was performed 

according to the OECD Test No. 236 (OECD, 2013) using a wild‐type zebrafish 

strain. In brief, five freshly fertilized zebrafish embryos were randomly placed in 24-

well plates, with one embryo per well in 2 mL of test media (i.e., solvent control or 

sample extract) (Abdel-Shafy and Mansour, 2016). Three replicates were tested per 

treatment (total n = 15 embryos per treatment) (Table 3.1). The 24-well plates were 

then covered with self-adhesive foil and incubated at 26 ± 1 °C. Lethal and sub-lethal 

effects were monitored every 24 h after the start of exposure until the end of the test, 

at 96 h. 
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Table 3.3.  
Culture condition of three microalgae and test condition of each microalgae species 
for measured cell viability of algae cells using flow cytometry. 

 

Scientific name Isochrysis galbana Phaeodactylum tricornutum 

Class Prymnesiophyceae Bacillariophyceae 

Cell size 5−6 μm 5−6 μm × 10−14 μm 

Culture condition 20 ℃, 12:12 (Light : Dark) 20 ℃, 12:12 (Light : Dark) 

Initial cell density 6 × 104 cells mL-1 3 × 104 cells mL-1 

Staining protocol Double staining Single staining 

Dye FDA, SYTOX blue FDA, PI (propidium iodide) 

Ex/Em (nm) 488/530, 444/480 488/530, 488/582 

Endpoint Growth inhibition (72 h) 
Esterase activity (FDA) 
Cell membrane intensity (SYTOX 
blue) 
Chlorophyll-a  
Cell size (FS) 
Intracellular complexity (SS) 

Growth inhibition (72 h) 
Esterase activity (FDA) 
Cell membrane intensity (PI) 
(PI) 
Chlorophyll-a 
Cell size (FS) 
Intracellular complexity (SS) 
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Figure 3.4.  
(a) Graphic summary of microalgae bioassay using flow cytometry. (b) A simplified view of stain mechanism using in this study to determine 
healthy cells and stressed cells. 
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Figure 3.5.  
Dot plots of flow cytometry analysis of (a) Isochrysis galbana and (b) 
Phaeodactylum tricornutum. Mean values were obtained in logarithmic scale and 
represented in arbitrary units (a.u.). Q1 (upper left quadrant, healthy cells) presented 
active esterase and intact membrane, Q2 (upper right quadrant, membrane-damaged 
cells) presented active esterase and membrane minimally damaged, Q3 (lower left 
quadrant, inactive cells) presented esterase activity not detectable and intact 
membrane, and only stained with SYTOX blue presented in Q4 (lower right quadrant, 
dead cells; esterase activity not detectable and membrane compromised).   
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3.2.4. Targeted chemical analyses 
Thirty-one PTSs (including 15 PAHs, 10 SOs, and 6 APs) were analyzed in 

sediments, using the methods adapted from Hong et al., 2015, and 2016b (Figure 

3.2). The full names of the target compounds and results of QA/QC test were 

provided in Tables 3.4–3.5. Detailed information on instrumental conditions was 

presented in Table 2.1 (see Chapter 2). 
  



  

 
66 

 

Table 3.4.  
Concentrations and relative potency of AhR-mediated activity for PAHs reported 
previously and potency balance between instrument-derived BEQs and bioassay-
derived BaP-EQs in the Soxhlet fraction (F2) of sediment samples from Masan Bay, 
South Korea. 

Target compounds Abbreviations ReP a Sites 
PAHs concentrations 
(ng g-1 dm) 

  S1 S2 

Acenaphthene Ace  0.5 0.3 

Acenaphthylene Acl  1.4 0.7 

Fluorene Flu  6.3 2.4 

Phenanthrene Phe  78 13 

Antracene Ant  5.0 1.6 

Fluoranthene Fl  17 27 

Pyrene Py  67 19 

Benzo[a]anthracene BaA 3.2 × 10-1 36 22 

Chrysene Chr 8.5 × 10-1 5.3 6.0 

Benzo[b]fluoranthene BbF 5.0 × 10-1 22 33 

Benzo[k]fluoranthene BkF 4.8 × 10-1 2.3 4.0 

Benzo[a]pyrene BaP 1.0 5.4 8.7 

Dibenz[a,h]anthracene  DbahA 6.6 × 10-1 3.3 3.6 

Indeno[1,2,3-cd]pyrene IcdP 5.8 × 10-1 5.9 11 

Benzo[g,h,i]perylene BghiP  23 29 

Sum of PAHs Σ PAHs  280 180 

BEQ concentrations 
(Instrument-derived 
equivalents, ng BEQ g-1 dm) 

Σ BEQs  39 48 

Magnitude-based BaP-EQ concentrations b 
(Bioassay-derived equivalents, ng BaP-EQ g-1 dm) 

3.3 × 104 4.5 × 104 

Potency balance analysis 
(BEQ/BaP-EQ × 100 (%)) 

0.12 0.11 

a Kim et al. (2019).  
b Bioassay-derived BaP-EQs were calculated as a percentage of the maximum response observed for a 

50 nM BaP standard elicited by 100% sediment organic extracts.  
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Table 3.5.  
Concentrations of styrene oligomers (SOs) and alkylphenols (APs) in the sediments 
of Masan Bay, South Korea. 

Compounds / Sites a Abb. Concentrations 
(ng g-1 dm) 

Detection 
limit 

(ng g-1 dm,  
n = 7) 

  S1 S2 

Styrene Oligomers     

1,3-diphenylpropane SD1 0.6 0.0 0.34 

cis-1,2-diphenylcyclobutane SD2 0.7 0.0 0.65 

2,4-diphenyl-1-butene SD3 7.3 49 0.94 

trans-1,2-diphenylcyclobutane SD4 0.7 0.0 0.28 

4,6-triphenyl-1-hexene ST1 5.4 1.6 0.57 

1e-phenyl-4e-(1-phenylethyl)-tetralin ST2 2.7 1.5 0.53 

1a-phenyl-4e-(1-phenylethyl)-tetralin ST3 4.2 1.0 0.30 

1a-phenyl-4a-(1-phenylethyl)-tetralin ST4 4.3 2.8 0.49 

1e-phenyl-4a-(1-phenylethyl)-tetralin ST5 1.1 0.7 0.32 

1,3,5-triphenylcyclohexane (isomer mix) ST6 7.6 0.0 0.34 

Sum of SOs  35 56  

Alkylphenols      

4-tert-octylphenol 4-t-OP 30 5.5 0.09 

Nonylphenols NP 540 140 0.97 

4-tert-octylphenol-monoethoxylate OP1EO 20 1.2 0.10 

Nonylphenol-monoethoxylates NP1EO 310 21 0.49 

4-tert-octylphenol-diethoxylate OP2EO 40 2.3 0.10 

Nonylphenol-diethoxylates NP2EO 170 5.4 0.88 

Sum of APs  1100 180  
a Abb.: Abbreviations.  



  

 
68 

 

3.2.5. Full-scan screening analyses 
FSA using GC-QTOFMS was performed on F2.7 and F2.8 of S2, on which AhR-

mediated potencies of samples were great. Instrumental conditions and process of 

tuning are presented in Table 3.6. LC-QTOFMS analysis was performed with a 

Kintex Core-Shell C18 column to screen F3 sub-fractions (F3.6 and F3.7). 

Information on the instruments and analytical conditions are presented in Table 3.7. 

Peak View SoftwareTM v.2.2 (AB SCIEX, Foster City, CA) was used to detect peaks, 

and peak lists were obtained from full-scan chromatograms of the samples, solvent, 

and processed blanks (Xie et al., 2012). GC-QTOFMS and LC-QTOF MS were 

performed in the laboratory of Human & Ecology analytical in Hanyang University 

and National Instrumentation Center for Environmental Management in Seoul 

National University, respectively.  

Five criteria were used to select candidates for AhR agonists based on the LC-

QTOFMS analysis and Figure 3.6a. From the FSA, four commercially available 

compounds (such as 1,2-di(p-tolyl)ethane, flucofuron, niflumic acid, and enoxolone) 

were selected to confirm their AhR-mediated potencies using the H4IIE-luc bioassay 

(Figure 3.6b). The first filtering step involved elemental composition matching of 

the compounds with a mass tolerance of 20.0 ppm to the NIST library (ver. 2017) 

(Figure 3.6a) (Zedda and Zwiener, 2012). The matching score (mass accuracy score) 

indicated how close the observed mass is to the theoretically expected mass. It is a 

function of the user’s specific Parent Mass Tolerance. Intermediate matches are 

scored based on the following linear equation (Equation 1). 

 

Matching Score (mass accuracy score) =  -0.5 Delta Mass (AMU)
Precursor Mass Tolerance (AMU)

 + 1 (1) 

 

The second step involved removing noise peaks. If blank samples showed the 

intensity, they were removed (Cui et al., 2018). The number of candidates was 

greatly reduced for most peaks by using a cutoff value of the MS/MS matching score 

(in all cases ≥ 90) in the third step (Kind and Fiehn, 2010). The fourth step involved 

selecting only compounds with a score of ≥ 90 by isotopic distribution (Cui et al., 
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2018). Finally, the chemicals were chosen that had an aromatic ring because a 

previous study showed that compounds with aromatic ring structures had AhR 

binding affinity.   
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Table 3.6.  
Instrumental conditions of GC-QTOFMS for full-scan screening analysis. 

Instrument 
 

GC: Agilent Technologies 7890B 
QTOFMS: Agilent Technologies 7200 

Samples F2.7 and F2.8 RP-HPLC fractions from Site 2 

Column DB-5MS UI (30 m × 0.25 mm i.d. × 0.25 μm film) 

Carrier gas He 

Flow rate 1.2 mL min.-1 

Injection volume 2 μL 

Mass range 50–600 m/z 
Ion source 
temperature 

230 °C 

Ionization mode EI mode (70 eV) 

Tuning condition - Instruments are tuned before use each day batches are initiated. 
- Tuned with a compound of known mass spectrum; perfluorotributyl-

amine (PFTBA) 
- Ions from the PFTBA spectrum for its tuning: m/z 68.9947, 130.9915, 

218.9851, 413.9770, 463.9738 and 501.9706 
- Mass accuracy and correct mass errors to within 5 ppm 

Software 
 
 
 

Qualitative analysis B.08.01  
MassHunter Quantitative analysis 
Unknown analysis B.08.01 
NIST Library (ver. 2014) 

Criteria of candidate 
AhR compounds  

Minimum number of ion peaks > 5 
Peak shape quality > 60% 
Matching factor scores > 70 
- Matching factor score (the accurate mass pattern match score) 
 = Contribution of Mass Abundance Score, Mass Accuracy Score, Mass 
Spacing Score 
- Mass Abundance Score records how well the abundance pattern of the 
measured  

isotope cluster compared with values predicted from the proposed 
formula  
- Mass Accuracy Score records how well the measured mass (or m/z) 

compared with the value predicted from the proposed formula 
- Mass Spacing Score records how the m/z spacing between the lowest 

m/z ion and the A+1 and A+2 ions compared with the values predicted 
from the proposed formula 

  



  

 
71 

 

Table 3.7.  
Instrumental conditions of LC-QTOFMS for full-scan screening analysis. 

Instrument 
 

LC: Thermo Scientific Ultimate 3000 
QTOFMS: Triple time-of-flight (TripleTOF®) 5600 mass 
spectrometer (Sciex, Foster City, CA, USA) 

Samples F3.6 and F3.7 RP-HPLC fractions from Site 2 

Analytical column Phenomenex Kinetex XB-C18 column  
(2.1 mm × 100 mm i.d. × 1.7 μm film) 

Column temperature 40 °C 

Injection volume 3 μL 

Flow rate 0.4 mL min.-1 

Mobile phase A: 0.1% Formic acid and 10 mM ammonium formate in water,   
B: 0.1% Formic acid in acetonitrile 

Mobile phase gradient 
Time (min.) 

Solvent 
A B 

0 90 10 
1 90 10 
15 0 100 
24 0 100 
25 90 10 
30 90 10 

 

Ionization mode Electro spray ionization (ESI) Positive and Negative mode 

Mass scan type Full scan and Information Dependent Acquisition (IDA) Scanning 

Mass scan range  50–2000 m/z 

MS/MS scan range 50–2000 m/z 

Nebulizing gas 50 psi 

Heating gas 50 psi 

Curtain gas 25 psi 

Desolation temperature 500 °C 

Ion spray voltage Positive: 5.5 kV, Negative: 4.5 kV 

Collision voltage Positive: 35 ± 15 eV, Negative: -35 ± 15 eV 

Collision gas Nitrogen 

Software 
 
 
 

PeakView 2.2 
Scafford Elements version 2.2.1 
NIST Library (ver. 2017 for Elements) 
HMDB Library 
MoNA export LC-MS, MS-MS Library   
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Figure 3.6.  
(a) A stepwise approach of LC-QTOFMS data analysis to select AhR agonist 
candidates and (b) the molecular structure of tentative AhR agonists.  
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3.2.6. Toxicological confirmation 
The RePs for the AhR-mediated potencies of the four candidate compounds were 

determined. Each compound was prepared at six concentrations (viz., 1000, 200, 40, 

8.0, 1.6, and 0.32 μg mL-1), and was analyzed using the method of in vitro bioassay 

that described above (see Chapter 2). RePs were measured based on the previous 

study with minor modifications (Villeneuve et al., 2000; Kim et al., 2019). Potency 

balnce analysis of targeted chemicals was performed between instrument-derived 

BEQs and bioassay-derived BaP-EQs to determine how each compound contributed 

to total induced AhR-mediated potency (see Chapter 2). 

 

3.2.7. VirtualToxLab in silico analysis 
For compounds without reference compounds, tentative identification was 

completed using QSAR modeling (Figure 3.2). The AhR binding affinities of 

tentative compounds, which were identified from FSA, were simulated by 

VirtualToxLab. It combines automated, flexible docking with multi-dimensional 

QSAR to simulate and quantify the toxic potential and the binding of chemicals 

toward a series of currently implemented proteins that trigger adverse effects (Vedani 

et al., 2015). Univariate analyses were carried out using SPSS 23.0.  

The difference among treatments and control was analyzed by Kruskal–Wallis 

test, followed by Dunnett’s test for microalgae bioassay. And the difference between 

sites of the response of treatments was analyzed by t-test for Danio rerio bioassay. 

In all statistical analyses, p values less than 0.05 were considered to be statistically 

significant. Multivariate data analyses were performed using the PRIMER 6 

statistical software (PRIMER-E Ltd, Plymouth, UK) with the PERMANOVA+ add-

on package. The data for each endpoint (for microalgae cell viability is only data 

from I. galbana and except for SOs because of less concentration) were standardized 

and were used to construct a Bray-Curtis similarity matrix. This matrix was then 

subjected to canonical analysis of principal coordinates (CAP) and principal 

component analysis (PCA) to visualize the similarity between fractionation and 

bioassays (Anderson and Willis, 2003).  
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3.3. Results and Discussion 

3.3.1. AhR-mediated potencies 

Raw extracts of sediments from both sites, S1 and S2, reached saturation efficiency 

(≥ 100% BaPmax) exhibited strong AhR-mediated potencies in the H4IIE-luc 

bioassay (Figure 3.5A). Among the three silica gel fractions (F1–F3) of raw extracts, 

AhR-mediated potencies were greater in F2 than those of F1 and F3. Typical AhR-

active compounds in F2 reported include planar hydrophobic contaminants, such as 

PAHs, PCBs, and dioxins. These chemicals have been repeatedly reported as major 

groups of sedimentary PTSs in the study area and elsewhere in the Korean coastal 

waters (Hong et al., 2012; Kinani et al., 2010; Lee et al., 2017; Louiz et al., 2008). 

Although co-eluting chemicals in F1 include some active AhR agonists, such as 

hexachlorobenzene and p,p´-1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene, these 

chemicals likely occur at small concentrations in sediments of Masan Bay (Hong et 

al., 2003; Koh et al., 2005) (Table 3.8). 

The F2 of S1 and F2 and F3 of S2 exhibited greater AhR-mediated potencies 

compared to those of raw extracts. Thus, these F2 and F3 were further fractionated 

into 10 sub-fractions using RP-HPLC. Among the 10 RP-HPLC sub-fractions of F2 

from both sampling sites, the greatest AhR-mediated potency was observed in the 

F2.7, followed by F2.8 and F2.6 (Figure 3.7a). The results indicated that these 

fractions contained major AhR active chemicals, which seemed to be aromatics with 

5–8 log Kow values. In addition, significant AhR-mediated potencies were shown in 

the super-hydrophobic fractions such as F2.8–F2.10 of S1, of which fractions 

contained the 7−9 ring PAHs (≥ C24-PAH) (Thiäner et al., 2019). Meanwhile, S2 

sediment had greater AhR-mediated potency of the F3 (Figure 3.7a), which indicated 

that polar AhR agonists (e.g., dinitro-, hydroxyl-PAHs, and N-heterocycles) were 

present (Lübcke-von Varel et al., 2011; Xiao et al., 2016). For the 10 RP-HPLC sub-

fractions of F3 from S2, considerable AhR-mediated potencies were evidenced in 

the F3.5−F3.7 fractions.
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Table 3.8.  
Profile of eluted compounds in fractions from different polarities of the solvent. 

Elution solvent 
from  
other study 

Sample type Fractions in this study Eluted compounds References 
 F1 

Hexane 
 

(100%) 

F2  
Hexane: 

DCM 
(80:20, v/v) 

F3 
Acetone: 

DCM 
(40:60, v/v) 

    

Hexane Sediments ○   PAHs with two aromatic rings (DDE, PCBs) & 
Bexachlorobenzene 

Khim et al., 1999a 

Hexane:DCM  
(80:20, v/v) 

 ○  PAHs with two aromatic rings (Ace, Flu, Na) 
PAHs with four aromatic rings (BaA, Chr, Fl, Py) 
PAHs with five aromatic rings (BaP, BbF, BkF, DbahA) 
PAHs with six aromatic rings (BghiP) 

 

DCM:Methanol 
(50:50, v/v) 

  △ PAHs with two aromatic rings (Bisphenol A) & NP, OP  

Toluene Sediments △   PAHs with two aromatic rings (3,3',4,4',5,5'-
hexachlorobiphenyl, 3,3',4,4',5-Pentachlorobiphenyl, PCN, 
3,3',4,4'-Tetrachlorobiphenyl) 

Khim et al., 1999b 

Hexane:DCM 
(80:20, v/v) 

Fish  ○  PAHs with two aromatic rings (p,p -DDD, p,p -DDT) Kannan et al., 2000 

     Chlordanes, HCHs  
Toluene Sediments △   PAHs with two aromatic rings (PCDFs) Yamashita et al., 2000 
Hexane Sediments ○   PAHs with two aromatic rings (23478-PeCDF, 2,4,4'-

Trichlorobiphenyl, 2,2',5,5'-Tetrachlorobiphenyl, 
2,2',4,5,5'-Pentachlorobiphenyl, 2,3',4,4',5-
Pentachlorobiphenyl, 2,2',3,4,4',5'-Hexachlorobiphenyl, 
2,2',4,4',5,5'-Hexachlorobiphenyl, 2,2',3,4,4',5,5'-
Heptachlorobiphenyl) 

Hilscherova et al., 
2001 

Hexane:DCM 
(80:20, v/v) 

  ○  OC pesticides  

DCM    △ Polar metabolites steroid compounds   
Hexane Sediments ○   Non-polar aliphatic compounds Brack et al., 2003 
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Table 3.8.  
Profile of eluted compounds in fractions from different polarities of the solvent (continued). 

Elution solvent 
from other study 

Sample type Fractions in this study Eluted compounds References 
 F1 

Hexane 
 

(100%) 

F2  
Hexane: 

DCM 
(80:20, v/v) 

F3 
Acetone: 

DCM 
(40:60, v/v) 

    

Hexane:DCM 
(90:10, v/v) 

Sediments  △  PAHs Grote et al., 2005 

Hexane:DCM 
(95:5, v/v) 

Sediments  △  PAHs with two aromatic rings (Anthraquinone) Varel et al., 2008 

     PAHs with three aromatic rings (Benzo[b]naphtho[2,1-d] 
thiophene, 4H-Cyclopenta[def]phenanthrene-4-one,2,2-
naphthalenylbenzothiophene, 9-nitroanthracene) 

 

DCM    △ PAHs with four aromatic rings (4H-Cyclopenta[cd]pyrene-
3[4H]-one, 1-Hydroxypyrene) 

 

     PAHs with five aromatic rings (Dibenz[a,j]acridine)  
Acetonitrile    △ PAHs with two aromatic rings (2-Hydroxyanthraquinone)  
Hexane:DCM 
(50:50, v/v) 

Sediments  △  BHT, Phthalate compounds  Kaisarevic et al., 2009 

DCM  Sediments   △ Androgenic compounds Weiss et al., 2009 
Hexane  ○   Aliphatic hydrocarbons  
Hexane Soils ○   Non-polar aliphatic compounds  WÖlz et al., 2010 
Hexane:DCM 
(90:10, v/v) 

  △  Non-polar PAHs  

DCM    △ Polar compounds  
Hexane:DCM 
(90:10, v/v) 

Sediments △   PAHs with two aromatic rings (PBDEs) Qu et al., 2011 

Hexane:DCM 
(80:20, v/v) 

 △   PAHs with two aromatic rings (TBBPA) & HBCDs  
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Table 3.8.  
Profile of eluted compounds in fractions from different polarities of the solvent (continued). 
Elution solvent 
from other 
study 

Sample type Fractions in this study Eluted compounds References 
 F1 

Hexane 
 

(100%) 

F2  
Hexane: 

DCM 
(80:20, v/v) 

F3 
Acetone: 

DCM 
(40:60, v/v) 

  
  

Hexane:DCM 
(90:10, v/v) 

Sediments △   PAHs with two aromatic rings (PBDEs) Qu et al., 2011 

Hexane:DCM 
(80:20, v/v) 

 △   PAHs with two aromatic rings (TBBPA) & HBCDs  

Hexane Worm, 
sediments, 
crude oil 

○   Saturate hydrocarbons  Vrabie et al., 2012 

DCM    △ Aromatic compounds  

Heptane Sediments △   PAHs with two aromatic rings (2,4′-DDT, TCDD) Creusot et al., 2013 

Heptane:DCM 
(50:50, v/v) 

  △  PAHs with two aromatic rings (BP3, Cypermethrin, 
Fenofibrate) 
PAHs with three aromatic rings (Clotrimazole, Fenvalerate, 
TPP) 

 

Ethyl acetate    △ PAHs with two aromatic rings (n-Benzylparaben)  
     Dexamethasone, β-Estradiol, Isoproturon, Prednisolone, 

Spironolactone, and α-Zearalanol 
 

Hexane:Ace 
(97:3, v/v) 

Sediments  △  PAHs with two aromatic rings (C6-Na, Diclofenac, 
Methyltriclosan, Triclosan, Benzophenone, Ketoprofen, 
Naproxen) 

Regueiro et al., 2013 

     PAHs with three aromatic rings (Carbamazepine)  
     Butylparaben, Clofibric acid, Mecoprop, Methyl 

chlorophenoxy acetic acid, Methyl dihydrojasmonate, 
Propylparaben, Tertbuthylazine, Tris(2-chloroethyl) 
phosphate  

 

Hexane:DCM 
(50:50, v/v) 

Porewater  △  PAHs with two aromatic rings (Carbazole) 
PAHs with three aromatic rings (Retene) 

Fang et al., 2014 
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Table 3.8.  
Profile of eluted compounds in fractions from different polarities of the solvent (continued). 
Elution solvent 
from other 
study 

Sample type Fractions in this study Eluted compounds References 
 F1 

Hexane 
  

(100%) 

F2  
Hexane: 

DCM 
(80:20, v/v) 

F3 
Acetone: 

DCM 
(40:60, v/v) 

    

Hexane Crude oil ○   Aliphatic compounds Radović et al., 2014 
DCM 
Methanol 

   △ Aromatic compounds 
Resins and polar compounds  

Hexane:DCM 
(80:20, v/v) 

Crude oil  ○  PAHs with two aromatic rings (Dbthio, C1-Dbthio, C2-
Dbthio, C3-Dbthio, C1-Flu, C2-Flu, C1-Na, C2-Na, C3-
Na, C4-Na) 

Hong et al., 2015 

     PAHs with three aromatic rings 
(C1-Phe, C2-Phe, C3-Phe, C4-Phe) 

 

     PAHs with four aromatic rings 
(BeP, C1-Chr, C2-Chr, C3-Chr) 

 

Hexane:DCM 
(80:20, v/v) 

Sediments  ○  PAHs with two aromatic rings (Styrene dimers) 
PAHs with three aromatic rings (Styrene trimers) 

Hong et al., 2016 

Hexane  Sediments ○   PCBs, Co-planar PCBs without chlorination in ortho-
position, PCNs with 3-6 Cl  

Xiao et al., 2016 

Hexane: DCM 
(95:5, v/v)  

  △  PAHs with two rings to seven aromatic rings 
Monoitro-PAHs  

 

DCM    △ (Hydroxy-)quinones, keto-, dinitro-, hydroxyl-PAHs and 
N-Heterocycles with rising polarity  

 

Acetonitrile    △ 2-Hydroxyanthraquinone   

Hexane Oiled 
sediments 

○   Saturate hydrocarbons Kim et al., 2017 
Ace:DCM 
(40:60, v/v)   ○ Resins and polar compounds  
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Figure 3.7.  
(a) AhR-mediated potencies of raw extracts (RE), silica gel fractions, and RP-HPLC 
fractions (F2.1–F2.10 and F3.1–F3.10; sub-fractions of F2 and F3, respectively) of 
S1 and S2 sediments from Masan Bay, Korea determined at 4 h exposures in the 
H4IIE-luc bioassay (Error bar: Mean ± SD; n = 3). (b) Bioluminescence inhibition 
of Vibrio fischeri for the effective concentration (EC50) test of raw extracts and 
fraction samples in the sediments of Masan Bay over 30 min. period.
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3.3.2. Inhibitions of bioluminescence 

In the screening test, nearly all fractions were acutely toxic to the bacterium, V. 

fischeri (Table 3.9). Only one sample, F3 of sediment extract of S2, showed a 

hormetic effect with bacterial inhibition rate of −4%. Thus, the EC50 testing was 

performed excluding F3 of S2. Bioluminescence of V. fischeri was inhibited by both 

raw extracts of S1 and S2; however, raw extracts from S1 (EC50 = 0.9 g SEq L-1) 

showed greater inhibition compared to raw extracts from S2 (EC50 = 1.5 g SEq L-1) 

(Figure 3.7b). Of the three silica gel fractions, the least EC50s were observed in F1 

for both sites. F2 of S2 also showed significant acute toxicity (EC50 = 2.3 g SEq L-

1), while the F2 of S1 did not cause inhibition.  

The greater inhibition of V. fischeri in F1 was likely associated with some non-

polar compounds, such as n-alkanes (C11–C29), and 4,4´-dichlorodiphenylsulphide 

being eluted in the fraction (Table 3.10) (Brack et al., 1999). In addition, the toxicity 

of F1 was suspected to be caused by aliphatic hydrocarbons containing sulfur, which 

are known as major toxicants to V. fischeri in raw extracts of sediments (Svenson et 

al., 1998). Even if elemental sulfur is removed in the pre-treatment procedure, the 

sulfide compounds in sediments might have been partially removed. In the previous 

study, toxicity to V. fischeri completely disappeared after removal of sulfur (Brack 

et al., 1999). Some chinoidic PAH metabolites, which frequently occur in 

environmental samples, are suspected as contributors to the potential toxicity in F2. 

Possible toxicants contributing to the effects of F3 are polar compounds, such as 

endosulfan, dimethoate, atrazine, and n-tributyltin (Table 3.10) (Brack et al., 1999; 

Kammann et al., 2005). In particular, NPs of known toxic chemicals to V. fischeri are 

present in the F3 can be suspected to be responsible at least for certain parts of the 

observed adverse effects shown in S1 (Stasinakis, 2008). 
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Table 3.9.  
Bioluminescence inhibition of Vibrio fischeri for the screening test and effective 
concentration (EC50) test of organic raw extracts (REs) and fraction samples in the 
sediments of Masan Bay over 30 min. period. 

Sites Samples Screening test  EC50 test 

  Control (%) Treatment (%) Inhibition rate (%)  EC 50 (g L-1) 

S1 REs 100 29.8 70.2  0.9 

 F1 95 31.5 63.5  3.7 

 F2 95.8 42.3 53.5  n.c.a 

 F3 95.3 63.0 32.3  7.7 

S2 REs 100 29.0 71  1.5 

 F1 95.0 27.5 67.5  1.2 

 F2 95.8 21.8 74.0  2.3 

 F3 95.3 99.3 n.c.  n.a.b 
a n.c.: Not calculated.  
b n.a.: Not analyzed.  
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Table 3.10.  
Mini reviews on the application of bioassays for toxicity assessment of various chemicals. 

Assay Endpoint Compounds Uses/origins References 
In vitro bioassays     
 H4IIE-luc AhR-mediated 

potency 
1,2-benzanthracene Urban particulate matters and tobacco 

smoke 
USEPA, 2007 

   1,2-benzofluorene Tar and naturally synthesized USEPA, 2007 
   2-(methylthio)benzothiazole (MTBT) Rubber additive  Xiao et al., 2016 
   2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) Waste incineration, metal production, 

and fossil-fuel and wood combustion 
Khim et al., 1999 
 

   2-mercaptobenzothiazole (MBT) Rubber additive Xiao et al., 2016 
   4,5-methanochrysene Urban particulate matters and tobacco 

smoke 
Cha et al., 2019 

   5-methylbenz[a]anthracene (5MBA) Petrogenic origin Kim et al., 2019 
   11H-benzo[a]fluorene Gasoline engines and tobacco smoke  Cha et al., 2019 
   11H-benzo[b]fluorene (11BF) Petrogenic origin Kim et al., 2019 
   Alkylbenzenes Derivatives of benzene Vrabie et al., 2012 
   Benzothiazole Rubber additive Xiao et al., 2016 
   Benz[b]anthracene Film layer of OFETs and OLEDs Cha et al., 2019 
   Dinaphthofurans (DNFs)  Lübcke-von Varel et al., 2011 
   Halogenated aromatic hydrocarbons (HAHs) Emissions from diesel vehicles, coal 

burning stoves, wood burning 
Floehr et al., 2015 

   Methylated PAHs [methylated 
benzo[a]pyrenes, 1-methylchrysene (1MC), 3-
methylchrysene (3MC), 3-methylphenanthrene 
(3MP)] 

Petrogenic origin Trilecova et al., 2011 

   Nitro-PAHs Emissions from diesel vehicles, coal 
burning stoves, wood burning 

Jung et al., 2012 

   Organochlorine pesticides OCPs) Agricultural/ Produced in the high 
temperature environment of forest fires 

Wang et al., 2014 
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Table 3.10.  
Mini reviews on the application of bioassays for toxicity assessment of various chemicals (continued). 

Assay Endpoint Compounds Uses/origins References 
 H4IIE-luc  Polychlorinated biphenyl (PCBs) and  

Polychlorinated naphthalenes (PCNs) 
Electrical apparatus, carbonless copy paper 
and in heat transfer fluids 

Luo et al., 2009;  
Qiao et al., 2006 

   Polychlorinated dibenzo-p-dioxins 
(PCDD/F) 

By-products in the manufacture of some 
organochlorides 

Khim et al., 1999,25, 
Wang et al., 2014-34 

   Polycyclic aromatic hydrocarbons (PAHs) Anthropogenic origin gas work and coke Floehr et al., 2015 
   β-naphthoflavone Putative chemopreventive agent. Nannelli et al., 2009 
 Vibiro fischeri Bioluminescence 

inhibition 
-) -Z) 2,6-dimethylocta-5,7-diene-2,3-diol Plant-derived pesticides Pino-Otín et al., 2019 

   4-nonylphenol (4-NP) Non-ionic surfactants, 
/ wastewater disposal 

Stasinakis et al., 2008 

   Atrazine Agriculture practices, golf courses Hernando et al., 2007 
   Azaarene Anthropogenic origin gas work and coke 

manufacturing sites, timber and asphalt 
treatment facilities 

Neuwoehner et al., 2009 

   Carbamazepine, ibuprofen, fluoxetine, 
17α-ethynylestradiol, propranolol, and 
caffeine 

Pharmaceutical products Maranho et al., 2015 

   Chinoidic PAHs, brominated phenols and 
indoles 

Combustion and natural origin Kammann et al., 2005 

   Dexketoprofen Pharmaceutical compounds Mennillo et al., 2018 
   Dimethoate Organophosphate insecticide and acaricide Farré et al., 2002 
   Endosulfan Chlorinated insecticide Palma et al., 2008 
   Heavy metals Fishing, mining, industry, wastewaters, 

transport and/or recreational activities 
Garcia-Ordiales et al., 
2019,Olajire et al., 2005 

   Imidazolium ionic liquids (ILs) with alkyl 
chain from C4 to C10 

Accidental spills, containers washing 
operations, leaching from waste disposal 
sites 

Diaz et al., 2018, 
Jafari et al., 2019 

   n-alkanes, n-tributyltin, sulfur, 
4,4´-dichlorodiphenylsulphide 

Antifouling agents in paints for boats, ships, 
and docks (n-tributyltin) 

Brack et al., 1999 
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Table 3.10.  
Mini reviews on the application of bioassays for toxicity assessment of various chemicals (continued). 

Assay Endpoint Compounds Uses/origins References 
 Vibiro fischeri Bioluminescence 

inhibition 
Phenolic pollutants Natural substance degradation, industrial 

activities pulp and paper industry, 
petrochemical works) 

Kahru, 2002 

   Polycyclic aromatic hydrocarbons (PAHs) Combustion  Liehr, 2013 
   Simazine Nonselective weed control in industrial areas Hernando et al., 2007 
   Triclosan Antimicrobial agent; Soaps, toothpaste, 

mouthwash, and cosmetics as well as in 
textiles 

Gorenoglu et al., 2018 

In vivo bioassays    
 Isochrysis 

galbana 
Growth inhibition 4-nonylphenol (4-NP) Non-ionic surfactants/wastewater disposal Tato et al., 2018 

   Aniline Polyurethane and other industrial chemicals Wang et al., 2019 
   Bisphenol A (BPA) Polycarbonate and epoxy Tato et al., 2018 
   Dibromochloromethane Disinfection byproducts  Fisher et al., 2014 
   Ethylhexyl dimethyl p-aminobenzoic acid  Giraldo et al., 2017 
   Octocrylene (OC) Ingredient in sunscreens and cosmetics Giraldo et al., 2017 
   Oil tar mat and MC252  Accidental spills and industry Garr et al., 2014 
   Pentachlorophenol Organochlorine biocide Beiras and Tato, 2018 
   PAH (pyrene) Thermal decomposition of organic matter Petersen and Dahllof, 2007 
   PAHs benz[a]anthracene and fluoranthene) Thermal decomposition of organic matter Othman et al., 2012 
   Petroleum hydrocarbon Accidental spills and industry Wang et al., 2016 
   Propranolol carbamazepine, ibuprofen, 

fluoxetine, 17α-ethynylestradiol 
Pharmaceutical products Maranho et al., 2015 

   Triclosan Antimicrobial agent; Soaps, toothpaste, 
mouthwash, and cosmetics as well as in 
textiles 

Tato et al., 2018 
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Table 3.10.  
Mini review on the application of bioassays for toxicity assessment of various chemicals (continued). 

Assay Endpoint Compounds Uses/origins References 
 Danio rerio Embryo toxicity 2,3-benzofuran Component of coal tar Kais et al., 2015 
   4-nonylphenol (4-NP) Detergents, paints, pesticides, personal care 

products, and plastics 
Kammann et al., 2009 

   BPA Polycarbonate and epoxy Kais et al., 2015 
   Chlorpyrifos Pesticides and insecticide Kais et al., 2015 
   Heterocyclic aromatic compounds 

(Acridine and carbazole)  
Acridine dye, pesticides, and atebrin Peddinghaus et al., 2012 

   Hexachlorobenzene Fungicide  Kosmehl et al., 2012 
   Metals Construction and home appliances. LeFauve and Connaughton, 

2017 
   Methyl mercury chloride Inorganic mercury Kais et al., 2015 
   PAHs Combustion Kosmehl et al., 2012, 

Schiwy et al., 2015 
   Paraoxon-methyl Insecticide parathion Kais et al., 2015 
   PCBs Heat transfer agent Di Paolo et al., 2015 
   Phthalate Plasticizers Mu et al., 2018 
   Quinoline Alkaloid and quinoline dye Kais et al., 2015 
  Embryo toxicity 

Gene expression 
Polychlorinated dibenzo-p-dioxins 
(PCDD/F) 

By-products in the manufacture of some 
organochlorides 

Boulanger-Weill and Sumbre, 
2019; Peddinghaus et al., 2012 

  Embryo toxicity 
EROD activity 
Gene expression 
Teratogenicity 

β-naphthoflavone Drug products Schiwy et al., 2015 
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Overall, V. fischeri bioassay showed another aspect of acute in vitro response 

to environmental fraction samples, compared to the H4IIE-luc bioassay. That is, 

inhibition of bioluminescence was sensitive with increasing chain length among non-

polar molecules, whilst insignificant acute toxicity was observed in the H4IIE-luc 

cells (Diaz et al., 2018). This is because the gram-negative luminescent bacteria have 

a multi-layered structure, and thus transmittance of polar molecules is likely small 

(Park et al., 2017). 
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3.3.3. Inhibition of growth and viability of cells 

Rates of inhibition of growth were 68% and 39% in the F3 of S1 and S2, respectively 

(Figure 3.8). More toxicants that affected I. galbana were present in S1 compared to 

S2. In contrast, the numbers of algal cells of the F1 increased for both sites (Figure 

3.8). This hormesis is a phenomenon that is defined as a stimulatory beneficial effect 

at low concentrations of toxic chemicals (Calabreseci, 1999). Rates of growth of I. 

galbana were significantly inhibited (p < 0.05), mainly by F3 from both sites, of 

which fraction contain aromatic esters, such as alkylsulfonic acid phenylesters, 

phthalates, and aromatic amine such as n-phenyl-b-naphthalene amine (Brack et al., 

1999; Schwab et al., 2009).  

Previous studies analyzing the toxicities of environmental samples to 

microalgae mostly focused on inhibition of growth (Brack, 2003; de Castro-Català 

et al., 2016; Schwab et al., 2009). In this study, inherent properties and viability of 

microalgae exposed to polarity-based fraction samples were assessed by flow 

cytometry. I. galbana cultured in the presence of the F3 from S1 exhibited lesser 

forward scatter signals, which were related to a significant decrease in sizes of cells 

(p < 0.05) (Figure 3.8) (Mullaney et al., 1969). This sample also exhibited 

significantly (p < 0.05) less chlorophyll-a (Chl a) fluorescence, whereas the other 

samples exhibited 14% greater amounts of Chl a fluorescence in comparison to 

control cultures. However, this second result was not statistically significant (p > 

0.05) (Figure 3.8). Cell granularity responded similarly to Chl a fluorescence.  

In I. galbana, the least percentages of living cells (healthy cells; % solvent 

control gate) were observed in F2 for both sites (Figure 3.9a). Cells exposed to F2 

samples; effects were observed for esterase activity rather than membrane integrity. 

This result was more pronounced in S1. In other words, compounds that existed in 

F2 caused toxicity to algae, affecting enzyme activity, but did not cause lethality. 

Variations in sensitivities of microglial enzyme activity between samples could be 

explained by chemical compositions since total concentrations of PAHs in S1 and S2 

did not greatly differ but corresponding homologs were different between these two 

samples. For example, the high proportion of phenanthrene (28%) and pyrene (24%) 

contributing to total concentrations of PAHs in S1 might result in significantly 
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greater enzyme activity compared to that of S2 (both explained 17% to total PAHs) 

(Figure 3.9a, b and Table 3.4). This result is consistent with the previous finding that 

phenanthrene and pyrene adversely affect the growth and abundance of marine 

phytoplankton (Echeveste et al., 2010a). Especially, pyrene has strong phytotoxic 

effects on algae (average LC10 values for algae 2–6 μg L-1) (Echeveste et al., 2010b; 

Kottuparambil and Agusti, 2018) affecting nutrient uptake (ammonium, nitrate, and 

silicate) and incorporation carbon by algal communities (Petersen and Dahllof, 2007). 

Relatively high populations of I. galbana were observed in Q3/Q4 quadrants 

(by a vertical and a horizontal line based on the FDA- and SYTOX blue-fluorescence 

intensity from the cells) for F3 for both S1 and S2 (stressed and dead cell; details in 

SI) especially S1, which indicated the effect of F3 might be associated with 

nonylphenols (NP). The concentration of NP was 5.4 μg L-1 in the sample exposed 

to microalgae. Although the exposed NP concentration was relatively low 

considering the effective NP concentration reported in the previous study (EC50 = 

24.1 μg L-1; calculated by growth inhibition), NP could be one potential 

environmental pollutant being related to membrane damage of I. galbana (Figure 

3.9a). Results of previous studies have shown that NPs as well as n-phenyl-b-

naphthalene amine, which elutes in F3, damaged cell membranes of algae and 

invertebrates, by causing oxidative stress (Table 3.10) (Mullaney et al., 1969; 

Echeveste et al., 2010 a, b). It is necessary to confirm the toxicity contributions of 

NPs by spiking toxicity tests, which will provide a better understanding of the 

ecologically relevant predictions of NP’s risk in the contaminated sediments. 

For P. tricornutum, no significant effects were observed on growth, Chl a 

fluorescence, cell size, and cell granularity for all of the samples (Figure 3.8 and 

Figure 3.9b). However, lesser esterase activity was identified by displacement of 

FDA fluorescence on the x-axis in the histogram (shift to the left) (Figure 3.9b). 

Strong inhibition of esterase activity was detected in F3 for both sites and F2 from 

S1 (Figure 3.9b). The percentage of nonviable cells of P. tricornutum (measured 

using PI staining) was not significantly different from that of control cultures. 

Because P. tricornutum has a thicker cell layer than does I. galbana, effects on 

enzymatic activity were more pronounced than was damage to the cell membrane. 
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In general, toxicological responses and sensitivities of Masan Bay sediments to the 

two species of microalgae, P. tricornutum and I. galbana, generally indicated both 

species- and endpoint-dependent toxic responses to environmental mixtures (Lee et 

al., 2019). 
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Figure 3.8.  
Variation in growth inhibition, inherent cell properties (chlorophyll a; 
autofluorescence, cell size, and cell granularity), and cell viability (esterase activity 
and membrane integrity) of (a) Isochrysis galbana and (b) Phaeodactylum 
tricornutum exposed to raw extract (RE) and fraction samples (F1 to F3). Significant 
differences with respect to control are shown using lower case letters (Error bar: 
Mean ± SD; n = 3). 
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Figure 3.9.  
(a) Two-dimensional flow cytometry dot plots of I. galbana cell signals plotted as 
coordinates of FDA- and SYTOX blue-fluorescence intensity treated for 96 h with 
solvent control, raw extracts (REs), and silica gel fractions (F1–F3). Each dot 
represents one cell; colors denote relative particle density in each population. All 
cells were placed in four categories and were easily differentiated: Viable FDA-
unstained SYTOX blue cells (Q1; upper left quadrant, healthy cells), viable 
fluorescein diacetate (FDA)- stained SYTOX blue cells (Q2; upper right quadrant, 
membrane-damaged cells), unstained cells (Q3; lower left quadrant, inactive cells), 
and only stained with SYTOX blue (Q4; lower right quadrant, dead cells). (b) 
Fluorescence histograms of P. tricornutum stained with FDA or PI following 
exposure to solvent control, raw extracts, and F1–F3. F1 fraction of Site 1 was not 
analyzed. Mean values were obtained in the logarithmic scale and represented in 
arbitrary units (a.u.). Microalgae of solvent control exposed gated. (c) Results of in 
vivo bioassay with zebrafish embryo (Danio rerio) exposed to solvent controls, raw 
extract, and fraction samples (Error bar: Mean ± SD; n = 3).  
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3.3.4. Embryo developmental toxicity 
REs from both sites caused significant lethality, after 96 h exposures, compared to 

the solvent control (Figure 3.9c). Exposures to fractions also caused significant 

developmental toxicities, with varying responses among samples and sites. Results 

of a previous study demonstrated significant toxic effects on this species are mainly 

associated with the presence of PAHs, e.g., naphthalene, phenanthrene, pyrene, and 

benzo[a]pyrene, all of which eluted in F2 (Sogbanmu et al., 2016). However, in 

contrast to the greater concentration of PAHs in S1, toxic effects were not 

significantly different between sampling sites (Figure 3.9c). Results indicated that 

the PAHs concentration in sediments from the Masan Bay deposit is below the level 

that is sensitive to FET. Further study is necessary to clarify the evaluation of PAHs 

(dioxin-like compounds) in sediments, the analyses of CYP1A at the transcriptional 

and protein levels, and use of a transgenic along with for developmental toxicity 

(Dong et al., 2019). 

However, F1 and F3 in S2 caused significantly greater lethality and 

developmental toxicities than those in S1. Specifically, among fractions of S2, the 

greatest lethality (47%) was observed in embryos exposed to F1, followed by similar 

levels for F3 (34%) and F2 (33%). The incidence of spinal curvature followed a 

similar trend to lethality; however, sub-lethal effects were greatest in embryos that 

exposed to F3. Many lipophilic neurotoxins accumulating in sediments primarily 

target membrane sodium channels and cause adverse effects on D. rerio (Silver et 

al., 2010; Wang and Wang, 2003). In the previous study, brominated phenols and 

indoles showed a sensitivity of the D. rerio embryo test (Kammann et al., 2005). 

Thus, it is plausible that these chemicals, which are predominant in F3, contribute to 

the observed effects. Polar organic toxicants including NP and phthalates were 

detected in the FSA and those are well known to cause toxicity to fish embryos 

(Table 3.10). However, NP concentration in S1 was greater than that of S2, 

indicating that NP might not be responsible for the observed effects (Figure 3.10a). 
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Figure 3.10.  
(a) Concentrations of targeted polycyclic aromatic hydrocarbons (PAHs), styrene 
oligomers (SOs), and alkylphenols and their ethoxylates (APs) in sediments from 
Masan Bay, Korea. Abbreviations of target compounds were shown in Tables 3.4 and 
3.5. (b) Comparison of the relative composition of PAHs, SOs, and APs in sediments. 
(c) Molecular structure of tentative AhR agonist for toxicological confirmation and 
butterfly plot comparing the observed MS/MS annotated spectrum of enoxolone (m/z 
469.5 → 425.5) to the library spectrum. (d) Dose-response relationships for AhR-
mediated potency of enoxolne and benzo[a]pyrene in the H4IIE-luc bioassay (Error 
bar: Mean ± SD; n = 3) and concentrations of enoxolone. 
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3.3.5. Occurrence, distributions, and sources of targeted analytes 

All of the targeted chemicals, including PAHs, SOs, and APs were detected in 

sediments from both sites in Masan Bay. Concentrations of PAHs were moderate to 

low with 280 ng g-1 and 180 ng g-1 dry mass (dm) at S1 and S2, respectively (Table 

3.4). Phenanthrene was the most dominant PAH at S1, followed by pyrene and 

benzo[g,h,i]perylene (Figure 3.10a and Table 3.4). Phenanthrene and pyrene are 

widely used in industries, including the manufacture of resins, pesticides, and 

pigments some of which are highly developed in the Masan industrial region  

(Abdel-Shafy and Mansour, 2016; Jiao et al., 2012; Kim et al., 2007). Concentrations 

of PAHs in sediments from both sites did not exceed the interim sediment quality 

guidelines (ISQGs) suggested by the Canadian Council of Ministers of the 

Environment (CCME, 2002). Results of recent studies have shown that 

concentrations of PAHs have been decreasing in sediments of Masan Bay for the past 

decade. This is in response to control of pollution by implementation of the Total 

Pollution Load Management System, thus the lesser concentrations of PAHs 

observed in 2016 samples were reasonable (Lee et al., 2016).   

Concentrations of SOs were also low with 35 and 56 ng g-1 dm, at S1 and S2, 

respectively (Table 3.5). It was recently reported the historical pollution of SOs in 

Masan Bay sediments by analysis of 1998 archived and 2014 collected samples. A 

drastic decrease in sedimentary concentrations of 10 SOs in the region from 1998 

(mean = 4940 ng g-1 dm; n = 7) to 2014 (mean = 128 ng g-1 dm; n = 7). SOs found 

in the present study reflected the relatively low concentrations of recently reported 

SOs in Masan Bay, thus continuing input would be minimal for this group of 

emerging chemicals of concern at the moment. 

Concentrations of APs in sediments from S2 (180 ng g-1 dm) were relatively 

low, but an elevated concentration of APs was found in the upper creek site of S1 

(1100 ng g-1 dm), which exceeded the ISQG (Figure 3.10 and Table 3.5) (CCME, 

2002). Indeed, Masan Bay area has long been contaminated by APs with maximum 

reported NP + 4-t-OP concentrations of 4070 ng g-1 dm in the lower reach of Samho 

creek in 1998 (Khim et al., 1999a). Thus, the relatively great concentration of APs 

detected in S1 sediment reflected the continuing input of land-driven municipal 



  

 
95 

 

sources such as surfactants into the bay. 

Concentrations of PAHs did not greatly differ between S1 and S2, but S1 

sample showed relatively greater concentration (280 ng g-1 dm) compared to that of 

S2 (180 ng g-1 dm). While, proportions of PAHs with 4−6 rings (higher molecular 

mass PAHs), which include relatively strong AhR agonists, prevailed in S2. These 

compositional characteristics of PAHs apparently influenced great BEQs in S2 than 

that in S1, however, targeted PAHs can explain as much as 0.1% of total AhR-

mediated potency in corresponding samples and fractions. Collectively, these results 

indicated presence of more unknown AhR agonists in S2. Thus, FSA was further 

conducted on fraction samples of S2. 

There was a difference in SOs composition between S1 and S2. Among SOs, 

styrene trimers (STs) mainly dominated in S1, while styrene dimers (SDs), especially 

2,4-diphenyl-1-butene (SD3), dominated in S2 (Figure 3.10b). However, 

concentrations of SOs were relatively small compared to other targeted chemicals. 

Thus, interpretation of direct association to varied responses of multiple bioassays 

was limited. APs showed both great variations in concentrations and compositions 

between S1 and S2 samples. Among 6 APs, NP dominated concentrations in 

sediments at both sites, but other APs showed varied proportion to total APs. 

Nonylphenol ethoxylates (NPEOs) dominated in S1 compared to S2 (Figure 3.10b). 

Differences in sensitivity for APs enriched fraction sample, viz., F3 from S1, to in 

vivo bioassays were observed for both inhibition of growth of algae and embryo 

developmental toxicity. Differences in homologue compositions within a group of 

targeted analytes justified use of multiple bioassays and endpoints in risk assessment.  
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3.3.6. Full-scan screening analyses 
In order to address possible contributions of unidentified AhR agonists in samples 

to the observed potencies as determined by the H4IIE-luc bioassay, FSA with GC-

QTOFMS was performed on some of the most active fractions; F2.7 and F2.8 of raw 

extracts of S2 (Figure 3.7a). First, formulas derived from accurate mass were 

compared to those in the NIST library (Booij et al., 2014). Following two-step 

fractionations of sediment raw extracts, 142 and 264 compounds were detected in 

F2.7 and F2.8, respectively. Overall, 34 and 118 compounds in F2.7 and F2.8 had 

matching factor scores of > 70 (Muz et al., 2017). Next, 11 and 28 aromatic 

compounds were selected from F2.7 and F2.8, respectively (Mekenyan et al., 1996). 

Of these chemicals, no compounds with more than 3-rings, which is the main feature 

of AhR agonists, were detected (Xiao et al., 2016). However, five compounds with 

more than two benzene rings were detected in F2.7 and F2.8. These chemicals were 

selected as tentative AhR-active compounds (Table 3.10). 

From F3 sub-fractions, F3.6 and F3.7 of raw extracts of S2 sediment exhibited 

significant AhR-mediated potencies (Figure 3.7a). Thus, this study also focused on 

characterizing the AhR agonists in these two fractions using LC-QTOFMS. After 

peaks were detected, elemental compositions were matched exhaustively using 

accurate m/z (Zedda and Zwiener, 2012). Overall, 1732 and 2402 compounds were 

detected in F3.6 and F3.7, respectively. Second, after removing noise peaks, 1229 

and 1888 compounds were retained (Cui et al., 2018). Based on accurate masses and 

isotope distribution scores, flucofuron, niflumic acid, and enoxolone in F3.6 and 

scytalone in F3.7 were finally identified as tentative AhR active compounds (Figure 

3.6b and Table 3.10).  

Overall, 14 candidate compounds were identified including xenobiotics, 

antibiotics, and insecticide (Kind and Fiehn, 2010; Cui et al., 2018). Among these 

chemicals, flucofuron is an insecticide and known to be highly toxic to fish and 

invertebrates (Cole, 1999). Enoxolone is a pentacyclic triterpenoid derivative of the 

beta-amyrin type obtained from the hydrolysis of glycyrrhizic acid, and has some 

additional pharmacological properties, with possible antiviral, antifungal, 

antiprotozoal, and antibacterial activity (Badam, 1997; Salari and Kadkhoda, 2003).  
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3.3.7. Toxicological confirmation 
During biological characterization, AhR-mediated potencies of four tentative 

compounds including 1,2-di(p-tolyl)ethane, flucofuron, niflumic acid, and 

enoxolone, for which authentic standards were available, were assessed by use of the 

H4IIE-luc bioassay (Table 3.11). Among these chemicals, only enoxolone (18β-

glycyrrhetinic acid) showed significant AhR-mediated potency. Results of previous 

studies suggested that enoxolone increases CYP gene activity, but, to our knowledge, 

none have been identified as AhR agonists (Zhao et al., 2012; Lv et al., 2015). The 

ReP value of enoxolone for the AhR-mediated potency compared to that of BaP was 

determined for the first time during this study, by use of the dose-response 

relationship obtained with the H4IIE-luc bioassay. AhR-mediated potency of the 

identified AhR agonist was sufficiently great (4 − 80% BaPmax), and the calculated 

ReP value was 0.13 (Figure 3.10d). The enoxolone peak was confirmed in the LC-

QTOFMS by use of authentic standards and was detected in F3.6 from S2 (~10 ng 

g-1 dm) (Figure 3.10d).  

Binding affinities with AhR and other potential toxicities (mutagenicity, 

carcinogenicity, developmental toxicity, and estrogen activity) of 14 candidates, 

including 10 unavailable standard materials, were tested by use of in silico method 

such as VirtualToxLab. Among 14 candidates, seven compounds were found to be 

able to bind to the AhR (Table 3.10). Interestingly, it was found that enoxolone, 

which showed AhR potencies by in vitro assay (H4IIE-luc), did not bind to the AhR 

in the VirtualToxLab. Because VirtualToxLab is based solely on thermodynamic 

considerations, i.e. ignoring mechanisms influencing the availability of a compound 

at the site of action, there could be many anti-empirical examples that are not 

consistent with toxicity results (de Lima Ribeiro and Ferreira, 2005; Zvinavashe et 

al., 2008). This result shows that the use of QSAR models has also a certain 

limitation and thus prediction needs careful caution with empirical confirmations by 

exercising multiple bioassays. Data on co-occurrences of several toxicological 

endpoints generated by the same sample represent a clearer structure when reduced 

by a comprehensive understanding by statistical tools. The canonical analysis of 

principal coordinates (CAP) for raw extracts and fraction samples of both sites and 
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all endpoints, such as AhR-mediated potency, bioluminescence inhibition, 

microalgae cell viability of I. galbana, development toxicity, and concentrations of 

PAHs and APs, identified that each endpoint could be grouped with 

ecotoxicologically-relevant fractions (Figure 3.11).  

Of the five bioassays used as detectors for sediment toxicity in the raw extracts 

and fractions, the inhibition of bioluminescence of V. fischeri and lethality of FET 

showed remarkable sensitivities to non-polar fraction of F1. The AhR-mediated 

potency was associated mainly with the mid-polar fraction of F2. Overall, the effect 

of compounds eluting in the most polar fraction of F3 was reflected by membrane 

integrity of microalgae cell viability, not by cell size or granularity. Strict regulations 

on releases of NPs have been implemented, so concentrations of NPs in F3 are less.  

In all bioassays (except luminescent bacteria), the biological effects associated with 

fractions were greater than those in the raw extracts. For the sediments of Masan Bay 

investigated here, antagonistic reaction in mixture raw extracts seems to play an 

important role as highlighted by the previous study (Kammann et al., 2005). Such 

antagonistic effects might be the result of false-negative results in bioassays exposed 

to raw extracts (Weiss et al., 2009; Wang et al., 2014). For example, the presence of 

polymeric PAHs, such as dibenz[a,j]anthracene, dibenz[a,c]anthracene, and picene 

inhibited BaP-induced AhR toxic potency (Pushparajah and Ioannides, 2018). 

Another possible explanation for antagonism lies in the natural environment, 

compounds might be mixed; resulting in a delayed uptake as well as a reduced 

accumulation (Schwab et al., 2009; Pushparajah and Ioannides, 2018). Future studies 

are necessary to confirm this effect such as testing of the remixing the separated 

samples (Khim et al., 2000).   
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Table 3.11.  
List of candidates for AhR-active compounds in the fraction samples (F2.7, F2.8, 
F3.6, and F3.7) of organic raw extracts of S2 sediment using GC-QTOFMS (F2.7 
and F2.8 fractions) and LC-QTOFMS (F3.6 and F3.7 fractions) and binding affinity 
to AhR estimated by VirtualToxLab. 
Fraction and compounds CAS 

Number 
Molecular 
formula 

Molecular 
weight 
(g mol-1) 

Matching 
factor/ 
Mass 
error a 

AhR 
binding 
affinity b 

F2.7 fraction                                                                                                

 2,5-Dimethyl-8-(propan-2-yl)-
1,2,3,4,4a,7,8,8a-
octahydronaphthalen-2-ol 

254182 c C15H26O 222.37 76.5 Not binding 

 1,2-di(p-tolyl)ethane* 61558 c C16H18 210.31 71.3 Binding 

 Methyl 1-(2,3,4-
trifluorobenzoyl)prolinate 

462819 c C13H12F3NO3 287.23 72.5 Not binding 

 2-(4-biphenylyl)-2-propanol 34352-74-4 C15H16O 212.29 72.8 Binding 

 4-tert-butylbiphenyl 1625-92-9 C16H18 210.31 74.0 Binding 

F2.8 fraction  

 2,6-Di-isopropylnaphthalene 24157-81-1 C16H20 212.33 83.3 Binding 

 cis-Calamenene 72937-55-4 C15H22 202.33 72.5 Binding 

 Naproxen 22204-53-1 C14H14O3 230.26 75.0 Binding 

 2-[(5-methylpyridin-2-
yl)amino]-1-phenylethanol 

14140 b C14H16N2O 228.29 71.9 Not binding 

 5,7-Difluoro-3,4-dihydro-
2(1H)-napthalenone 

280105 c C10H8F2O 182.17 71.0 Binding 

F3.6 fraction  

 Flucofuron* 370-50-3 C15H8Cl2F6N2O 417.13 1.996 Failed 

 Niflumic acid* 4394-00-7 C13H9F3N2O2 282.22 1.248 Not binding 

 Enoxolone* 471-53-4 C30H46O4 470.69 0.507 Not binding 

F3.7 fraction  

 Scytalone 49598-85-8 C10H10O4 194.18 0.611 Not binding 
a Mass error expressed in ppm for LC-based results. 
b Data from VirtualToxLab. 
c Chemspider ID. 
* These chemicals were confirmed for AhR-mediated potency by use of H4IIE-luc bioassay. 
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Figure 3.11.  
Scatter diagram of canonical analysis of principal coordinates (CAP) between the 
bioassay data and treated samples. CAP was significant with p = 0.05. Purple and 
green vectors (Spearman pairwise correlations) point in the direction of the increased 
values for any given variable. 



  

 
101 

 

CHAPTER 4. 
 

INTEGRATED ASSESSMENT OF WEST COAST 
OF SOUTH KOREA BY USE OF BENTHIC 

BACTERIAL COMMUNITY STRUCTURE AS 
DETERMINED BY eDNA, CONCENTRATIONS OF 

CONTAMINANTS, AND IN VITRO BIOASSAYS 
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4.1. Introduction 

The west coast of South Korea, along with nearby rivers/estuaries, is part of the 

Yellow Sea region, a region that has become highly urbanized and industrialized 

(Jeon et al., 2017). Various types of anthropogenically-produced contaminants from 

agricultural, industrial, and domestic activities have been discharged into coastal 

sediments in the region, which is the final sink for those contaminants (Khim and 

Hong, 2014). Based on results of previous toxicological studies, concentrations of 

PTSs in sediments off the west coast of South Korea, were deemed to pose risks to 

biota (Khim et al., 1999; Hong et al., 2012; Jeon et al., 2017). PTSs, such as PAHs, 

APs, metals, and metalloids, accumulating in coastal sediments can adversely affect 

aquatic and/or benthic ecosystems at all levels of biological organization from 

molecules to communities (Fent, 2001).  

To evaluate of quality of sediments contaminated by PTSs, conventional 

sediment assessments use chemical analyses combined with a determination of 

toxicological effects. However, this approach focuses on a limited suite of 

ecotoxicological effects and often lacks ecological relevance. In addition, the 

conventional approach cannot capture effects on populations and communities in 

natural ecosystems (de Castro-Català et al., 2016). Therefore, to comprehensively 

evaluate sediment quality, a triad approach was applied, wherein physicochemical 

data, such as salinity, pH, and concentrations of contaminants, toxicological data, 

and benthic community structure data are concurrently examined (Lee et al., 2018). 

However, few studies have addressed the ecological association of concentrations of 

PTSs and benthic communities (Lee et al., 2018; Yoon et al., 2017). Especially, 

characteristics of in situ bacterial communities have been neglected in conventional 

sediment quality assessment approaches (Torsvik et al., 2002).  

More than 99% of microorganisms that have been observed in nature cannot 

generally be cultivated or phenotypically identified with standard culture techniques. 

However, with environmental DNA (eDNA) metabarcoding, most microbial 

communities can be identified (Amann et al., 1995). Thus, approaches that use 

metagenomic level analysis to characterize the complexity of microbial ecosystems 
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in sediments could provide a rapid and efficient way to identify and monitor benthic 

microbial communities and enumerate individual taxa (Sharmin et al., 2013; 

Gibbons et al., 2014). Improvements in methods for metabarcoding eDNA, in 

concert with advances in bioinformatics analysis, could provide a promising 

approach for improving ecological risk assessments (Zhang, 2019). 

From the 1970s to the early 1990s, many sea dikes (estuary dams) and landfill 

projects occurred along the west coast of South Korea (Figure 4.1). As a result, most 

major rivers and estuaries along the west coast have been disconnected from the open 

sea, leading to different salinity regimes on the two sides of the dams. Salinity is 

thought to be the major factor affecting bacterial community composition (Wu et al., 

2006; Campbell and Kirchman, 2013), more important than the influence of 

temperature or pH (Lozupone and Knight, 2007). Several studies on shifts in 

bacterial community composition along aquatic salinity gradients have substantiated 

the influence of salinity on bacterial composition (Kirchman et al., 2005; Kan et al., 

2008; Campbell and Kirchman, 2013). However, most of these gradient studies were 

conducted in one region and/or over a short duration. To bridge the multiple 

environmental variables including salinity and chemical contaminants, in vitro 

toxicological test, and bacterial communities in the assessment of sediment quality, 

a comprehensive five-year field study on the west coast of South Korea had been 

conducted. The present study investigated the effects of salinity and concentrations 

of toxic chemicals on bacterial composition in sediments. The toxic chemicals 

included dioxin-like and estrogenic chemical pollutants, measured as aryl 

hydrocarbon receptor (AhR)-mediated potencies and estrogen receptor (ER)-

mediated potencies because those endpoints represent a large spectrum of dioxin-

like and estrogenic chemicals that might exist in contaminated sediments (Hong et 

al., 2016; Lee et al., 2017).  

Specific objectives of the present study were to: (1) characterize spatio-

temporal distributions of benthic bacterial communities in sediments along the west 

coast of South Korea; (2) compare in situ bacterial communities and endpoints of 

chemical analysis and in vitro bioassays; and (3) identify bacterial taxa indicative of 

specific environmental variables.  
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4.2. Materials and Methods 

4.2.1. Study area and sediment collection 

Surface sediments were collected during May, annually between 2010 and 2014 from 

15 sites (11 seawater sites and 4 freshwater sites) in five coastal regions from rivers, 

estuaries, and open sea along the west coast of South Korea. The five regions include 

Lake Sihwa (Region A), Asan & Sapgyo (Region B), as well as the Taean Coast 

(Region C), and estuaries of the Geum River (Region D) and Yeongsan Rivers 

(Region E) (Figure 4.1 and Table 4.1). The inside of the estuary dams or sea dikes 

(i.e., landward) is composed of freshwater except for Lake Sihwa, which has a tidal 

power plant that has allowed tides to pass through since its construction in 2011 

(Figure 4.1 and Table 4.1). In contrast, seaward sides of dikes are saline. Sediments 

were immediately transported, at 4 °C, to the laboratory and stored at –20 °C until 

analysis. Samples were freeze-dried and ground with a mortar and pestle prior to 

analyses.  
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Figure 4.1.  
Pictures and satellite images of sampled sites from five regions of the west coast of 
South Korea and brief summary of activities related to sampling each region. Panels: 
(a) Lake Sihwa (LS), (b) Lakes Sapgyo and Asan (SG and AS), (c) Taean coast, 
including Sinduri (SD), Manlipo (ML), Anmyundo (AM), (d) Geum River Estuary 
(GG), and (e) Youngsan River Estuary (YS). 
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Table 4.1.  
Latitude, longitude, and region information for each sampling site along the west coast of South Korea. 

Province Region Sites Latitude Longitude Year   Remark     Salinity on May 
     2010 2011 2012 2013 2014   Geographical description  
Gyeonggi  Lake Sihwa (A) LS1 N37° 20.093’ E126° 41.370’ √ √ √ √ √   Coastal area, outside of sea dike 30.9 ± 1.8 
    LS2 N37° 19.543’ E126° 39.427’   √     Coastal area, outside of sea dike 32.0 ± 2.0 
    LS3 N37° 18.657’ E126° 36.618’ √    √   Inside of sea dike   32.4 ± 2.2 
    LS4 N37° 19.494’ E126° 39.340’ √    √   Inside of sea dike   31.9 ±2.5 
Chungnam Asan (B) AS1 N36° 53.600’ E126° 54.742’ √  √  √   Inside of sea dike   0.5 ± 0.1 
    AS2 N36° 54.929’ E126° 54.317’ √ √ √ √ √   Coastal area, outside of sea dike 29.0 ± 4.3 
  Sapgyo (B) SG1 N36° 52.728’ E126° 49.633’ √ √ √ √ √   Inside of sea dike   0.5 ± 0.0 
    SG2 N36° 53.704’ E126° 49.148’ √ √ √ √ √   Coastal area, outside of sea dike 29.1 ± 1.7 
  Taean (C) SD N36° 50.312’ E126° 11.004’ √ √ √ √ √   Coastal area (beach; Sinduri) 32.3 ± 0.1 
    ML N36° 47.027’ E126° 08.185’ √  √  √   Coastal area (beach; Manlipo) 32.0 ± 0.3 
    AM N36° 32.403’ E126° 19.588’ √ √ √ √ √   Coastal area (beach; Anmyundo) 32.4 ± 0.7 
Jeonbuk Geum River (D) GG1 N36° 01.347’ E126° 44.532’ √ √ √ √ √   River, inside of dam   0.2 ± 0.0 
    GG2 N36° 00.510’ E126° 44.117’ √ √ √ √ √   Coastal area, outside of dam 29.8 ± 4.1  
Jeonnam Yeongsan River (E) YS1 N36° 46.930’ E126° 26.648’ √ √ √ √ √   Coastal area, outside of dam 27.9 ± 2.3 
    YS2 N36° 47.198’ E126° 27.767’ √ √ √ √ √   River, inside of dam   0.6 ± 0.3 
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4.2.2. Next-generation sequencing and bioinformatics analyses 

Total DNA was extracted from 0.25 g aliquots of each homogenized surface 

sediment by use of a Power Soil DNA Kit (MoBio Laboratories Inc., CA, USA). 

Detailed descriptions for amplifying bacterial 16S rRNA genes (V3 fragment) have 

been previously published (Xie et al., 2016). Triplicate PCR reactions were 

performed for each sample to minimize potential PCR bias. Products of PCR were 

checked, purified, and quantified (Figure 4.2). All purified products of PCR were 

pooled equally for subsequent sequencing. Sequencing adapters were linked to 

purified DNA fragments with the ION proton sequencer (Life Technologies, CA, 

USA) following the manufacturer's instructions. These processes were conducted by 

the research laboratory of Ecotoxicology and Health Risk in Nanjing University. 

Low quality raw reads (mean quality score < 20, scanning window = 50) and 

sequences which contained ambiguous ‘N’ and were shorter than 100 bp but longer 

than 180 bp in length were discarded by using the Quantitative Insights into 

Microbial Ecology (QIIME) toolkit (Caporaso et al., 2010). Chimeras were removed 

and clustered operational taxonomic units (OTUs) with a similarity cutoff of 97% 

following the UPARSE pipeline method (Edgar, 2013). Taxonomy of bacterial OTUs 

was assigned to representative sequences by use of the Ribosomal Database Project 

(RDP) classifier against the Greengenes database (DeSantis et al., 2006; Wang et al., 

2007). Observed OTUs were rarefied at equal sequencing depth to reduce biases 

resulting from differences in sequencing depth. Alpha-diversity (Shannon indices) 

was calculated on all twenty equal-depth rarefactions and then averaged them.  
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Figure 4.2. 
The experimental procedure used for bacterial community analysis in this study. 
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4.2.3. Analyses of chemicals and toxicological tests 
Concentrations of 15 PAHs and six alkylphenols (APs) and in vitro ecotoxicological 

assays [H4IIE-luc bioassays for determining AhR-mediated potencies (presented as % 

BaPmax) and MVLN bioassays for determining ER-mediated potencies (presented as % 

E2max)] were obtained for sediments collected from the same locations during 2010 

to 2014, Jeon et al. (2017). Concentrations of eight metals (Cd, Cr, Cu, Hg, Li, Ni, 

Pb, and Zn) and one metalloid (As) were also reported for the sediments in a previous 

study by Kim et al. (2020). Metals and metalloids were expressed in sum of hazard 

quotients (Σ HQmetals) by Ryu et al. (2016). All prior chemical measurements and 

toxicological results are summarized in Figure 4.3.  
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Figure 4.3.  
Spatial and temporal distributions of persistent toxic substances (PTSs) and potential toxicities in sediments along the west coast of South Korea 
from 2010 to 2014. PTSs include organic pollutants, metals, and metalloid arsenic. Potential toxicities include AhR- and ER-mediated potencies. 
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4.2.4. Statistics analyses 

SPSS 23.0 and PRIMER 6 statistical software (PRIMER-E Ltd, Plymouth, UK) with 

the PERMANOVA+ add-on package (Lozupone and Knight, 2005; Clarke and 

Gorley, 2006) were used to perform statistical analyses. Statistical significance was 

set at p < 0.05. The bacterial community with phyla data was reduced by eliminating 

species that contributed < 1% of total abundance. Abundance was log-transformed 

[ln (x+1)] and normalized to balance it across the recorded taxa in the measure of 

similarity (Clarke and Warwick, 2001). The nonparametric Mann-Whitney U (M-W) 

and Kruskal-Wallis (K-W) with Bonferroni correction were used to detect significant 

differential features between the salinity, sampled regions, and years. Subsequently, 

to perform categorize of bacterial assemblage composition, cluster analysis (CA) 

was performed using a Bray-Curtis similarity matrix (Legendre and Legendre, 2012). 

This study used the nonparametric Mann-Whitney U (M-W) test and Kruskal-Wallis 

(K-W) test with Bonferroni correction to detect significant differential features 

between the salinity, sampled regions, and years. Subsequently, to categorize 

(differentiate) bacterial assemblages, cluster analysis (CA) using a Bray-Curtis 

similarity matrix was performed (Legendre and Legendre, 2012). 

All environmental variables including Σ PAHs, Σ APs, metals, and metalloid 

(including Σ HQmetals), and toxicological results were log-transformed and 

normalized following procedures by Xie et al., 2017. Discriminating chemical and 

toxicological results by sampled year was confirmed by canonical analysis of 

principal coordinates (CAP) with Euclidean distance matrix. Next, principal 

coordinate analysis (PCoA) applied to the distance matrix to enable comparisons of 

biota among sedimentary environments. This allowed assessment of potential 

interactions between environmental variables and compositions of bacterial 

communities, at the phylum taxonomic level, based on the Bray-Curtis similarity 

matrix and Spearman's rank correlation coefficients (Lozupone and Knight, 2005). 

PCoA is useful for reducing and representing patterns present in distance matrices 

by displaying dissimilarities among objects (Gower, 1996).  
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Finally, to identify specific bacterial taxa that may have responded to the various 

variables measured, Spearman's rank correlation coefficients were developed for 

associations between results of chemical and toxicological data and the abundance 

of bacteria with phylum/class data.  
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4.3. Results and Discussion 

4.3.1. Description of next-generation sequencing data 

A total of 4,634,661 bacterial 16S, V3 sequences were obtained for sediments along 

the west coast of South Korea. Sequences with low quality, short lengths, PCR bias, 

lack of annotated references, or lineage filtering were discarded (Bragg et al., 2013). 

Due to low sequencing depth, samples collected in 2012 were discarded. After our 

quality check of raw reads, there remained a total of 2,464,770 reads for further 

analyses. From those remaining filtered raw reads, the number of 5,001 bacterial 

OTUs which represented 49 phyla, were discovered. According to rarefaction curves 

for bacterial communities, most of the abundant bacterial OTUs were saturated from 

more than 80,000 sequences per sample (Figure 4.4).  
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Figure 4.4. 
Rarefaction curves of the observed OTU numbers of bacterial communities (a) by 
salinity and (b) sampling years in sediments.  
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4.3.2. Spatial distributions of bacterial communities with phylum 

taxonomic level 
At the level of phyla, compositions of bacterial communities varied among 

sediments and were dominated by Proteobacteria (mean 28.7%), Actinobacteria 

(13.1%), Firmicutes (12.7%), Chloroflexi (12.5%), Planctomycetes (8.7%), 

Bacteroidetes (8.2%), Verrucomicrobia (4.2%), Acidobacteria (3.7%), and 

Gemmatimonadetes (1.5%) (Figure 4.5a). As expected, Proteobacteria were the most 

abundant bacterial phylum from all sediments collected from along the west coast of 

South Korea between 2010 and 2014. A similar pattern of compositions for bacterial 

communities in sediments has been observed by several previous studies conducted 

around the world (Gibbons et al., 2014; King et al., 2015; Xie et al., 2016). These 

dominant phyla are free-living and also include some nitrogen-fixing bacteria (Li et 

al., 2009; Sharmin et al., 2013). 

Relationships between mean, relative abundance salinity, sampled region, and 

year were observed (Figure 4.5b to 4.5e). Although salinity and/or spatial variability 

are known to be major contributors to microbial community structure and function 

(Lozupone and Knight, 2007; Campbell and Kirchman, 2013; Xie et al., 2017), in 

this study mean compositions of bacteria, as determined at the level of phyla, 

exhibited no statistically significant, correlation with salinity (M-W test) or sampled 

region (K-W test) (Bonferroni-corrected, p > 0.05) (Figure 4.5b and 4.5c). This 

unexpected result might be due to the fact that salinity gradients are sometimes 

temporarily diluted in response to an input of freshwater from temporally irregular 

discharges of freshwater through the sea dikes in our study regions (Noh et al., 2019). 

Therefore, a better understanding of patterns in spatial proximity and shared 

environment characteristics will require intensive sediment sampling from along 

transects that reflect a longer gradient in physicochemical parameters, such as 

salinity, pH, and contaminant composition. 
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Figure 4.5.  
The structures of the bacterial communities at phylum taxonomic level in sediments 
along the west coast of South Korea. Panels: (a) relative abundance of the dominant 
bacteria at the phylum level across all samples, statistical comparisons for mean 
relative abundances at the phylum taxonomic level between (b) salinity, (c) sampling 
region, (d) sampling years, and (e) alpha-diversity estimated with Shannon indices 
of all sediment samples. Low (< 1%) abundant phyla and unresolved taxa were 
indicated as “Others” in panel (a). Mann-Whitney U test for panel (b) and Kruskal-
Wallis test for panels (c−e) was obtained with Bonferroni corrections. Significance 
was determined at p < 0.05 (*). 
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Among the dominant phyla, Firmicutes and Verrucomicrobia showed 

significant differences in mean relative abundance across sampling year (K-W test, 

Bonferroni-corrected, p < 0.05) (Figure 4.5d). In 2010, Firmicutes and 

Verrucomicrobia were distributed at similar level, but Firmicutes abundance 

gradually increased over time, whereas Verrucomicrobia abundance declined over 

time, with the Firmicutes eventually becoming 20 times more abundant than 

Verrucomicrobia by 2013. Firmicutes is quite rare phylum in natural sediments but 

is dominant taxa in sugar cane processing sites (Sharmin et al., 2013). However, none 

of the sites which sampled in this study were near sugar cane processing areas. 

Verrucomicrobia was related to Planctomycetes and was known to exist in majority 

of which are eutrophic or even heavily polluted (Spring et al., 2016), and were 

particularly abundant occurrence in marine environments (Cardman et al., 2014). 

Several reports of Verrucomicrobia occurring in extreme environments, such as in 

sulfide-rich water and sediments, have been published (Freitas et al., 2012; Spring 

et al., 2016). 

Mean values of alpha-diversity (Shannon indices) from all sites bacterial 

communities were significantly greater in 2013 and 2014 than in the 2010 (K-W test, 

Bonferroni-corrected, p < 0.05) (Figure 4.5e). Our results indicate that although only 

one bacterial community showed a significant increase in diversity over time at the 

phylum taxonomic level, population change could become even more significant if 

lower level taxa are examined. Hierarchical clustering of our surface sediment 

samples also showed a separation of bacterial communities by sampling year (2010–

11 and 2013–14). High bootstrap values indicated changing environmental 

influences on the bacterial community over time (Figure 4.6a). Changes in patterns 

of diversity could have any number of explanations. However, assuming that 

sediment contamination favors pollution-tolerant species over non-tolerant species, 

then complex communities will respond to chemical contamination in a magnitude-

dependent effect with respect to toxic pollutants so that over time microbial 

communities will increase in diversity as pollution increases (Gillan et al., 2005). 
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Figure 4.6.  
Classifications of sampled sites based on environmental conditions and biotic 
composition. Panels: (a) bacterial composition along the west coast of South Korea 
based on a Bray-Curtis dendrogram of 16S rRNA sequences clustered into OTUs at 
97% similarity, followed by orange-colored background bars indicating the 
designated group, (b) scatter diagram of canonical analysis of principal coordinates 
(CAP) with Euclidean distance matrix, including results of 15 PAHs, 6 APs, and 9 
metals and metalloid, and AhR- and ER-mediated potencies grouped by year, (c) 
Principal coordinates analysis (PCoA) ordinations (first two principal coordinates 
are displayed) based on Bray-Curtis dissimilarity, showing similarity in community 
composition between samples. Data are Phylum taxonomic level and have been log-
transformed [ln(x+1)]. Blue vectors (Spearman correlation test) point in the direction 
of the increased values for any given variable. Sediments with similar environmental 
profiles or bacterial compositions are located near each other on the diagram. 
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The scatter diagram of CAP of environmental variables (including chemical 

contaminants and toxicological parameters) show a pattern similar to that observed 

for bacterial communities (Figure 4.6b). Our CAP analysis could partition effects of 

‘sampling year’ for the various environmental variables. This study determined 

temporal trends (which increased, decreased, or did not change) of PTSs and 

potential toxicity in sediments along the west coast of South Korea by examining 

linear correlations between concentrations (or toxicities) and sampling years (Figure 

4.3) (Jeon et al., 2017; Kim et al., 2020). From 2010 to 2014, temporal distributions 

of PAHs and APs declined from overtime, whereas concentrations of heavy metals 

Cd, Cr, and Hg increased. According to a previous study, PAHs can contribute to 

reductions in freshwater and marine biotic diversity (Malaj et al., 2014); thus, 

variations in of chemical concentrations might indicate variations in the composition 

of bacterial communities. In addition, the adverse effects on biota of high 

concentrations of some metals are due to the metals’ abilities to block and inactivate 

sulfhydryl groups of proteins (Valls and De Lorenzo, 2002). In this study, AhR-

mediated potency in sediments declined over time, whereas ER-mediated potency 

showed a slightly increase from 2010 to 2014 (Jeon et al., 2017). Overall, the 

concentration of metals (Cd, Cr, and Hg) and ER-mediated activity was relatively 

higher during the 2013–2014 period than in the 2010–2011 period (Kim et al., 2020). 

Despite the spatial differences, the temporal variability of contaminants and 

toxicological results showed the dominant role contaminants have in shaping the 

structures of bacterial communities in sediments on west coast of South Korea. When 

integrated results from chemical, toxicological, and microbiological data were 

plotted with PCoA (Figure 4.6c), the results showed that 59.9% of the variability in 

the composition of the bacterial assemblages in sediments could be explained by the 

first two principal component axes (PCoA1 and PCoA2) (Figure 4.6c). Bacterial 

phyla were divided into two groups in the distribution by the PCoA diagram (years 

2010–2011 and years 2013–2014). Distributions of Firmicutes were correlated with 

profiles of contaminants/toxicological measured during 2013–14, whereas 

Verrucomicrobia were greatly correlated with 2010–11 samples, which corresponds 

to the above results. Observed correlations cannot be constructed to indicate 
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causation of either the effects of factors or dissimilarities between individual sample 

points, but they do provide insight into where additional work can be focused to 

determine causation (Clarke and Gorley, 2006).  

Due to heterogeneity of estuarine and coastal environments, sediment 

characteristics and rate of discharge of the river, which correlated most strongly with 

bacterial communities (Crump and Hobbie, 2005), can vary slightly from year to 

year, even if the same sites are monitored in the same season each year. However, 

according to the previous study, TOC and TN did not show a large difference over 

the years (Kim et al., 2020), the effect of changes of PTSs is more effective than that 

from the differences in sediment properties in terms of spatiotemporal heterogeneity 

of samples. Due to the inherent heterogeneity of sediments in estuaries and coastal 

environments, sediment characteristics and river-flow rates, which correlated most 

strongly with bacterial community compositions (Crump and Hobbie, 2005), can 

vary slightly from year to year, even at the same in the same season each year. 

However, according to a recent study by Kim et al. (2020), the values of TOC and 

TN do not show significant differences among years and changes over time in coastal 

sediments are due more to differences in spatiotemporal heterogeneity of PTSs than 

to differences in the heterogeneity of sediment properties.  
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4.3.3. Temporal variation in the bacterial communities at the class and 

family taxonomic levels 

Analysis of data presented here at the class and family taxonomic levels provided 

deeper understanding of factors related to the composition of the dominant fraction 

of bacterial communities in sediments. For all sampled years, the relative abundances 

of the top five classes at each site were presented in Figure 4.7a. Although the four 

most frequently occurring classes were Gammaproteobacteria, followed by 

Anaerolineae, Alphaproteobacteria, and Deltaproteobacteria, the highest relative 

abundances for all sampled years were Bacilli (24.1%), followed by 

Gammaproteobacteria (17.5%), Acidimicrobiia (13.6%), and Anaerolineae (13.3%) 

(Figure 4.7a). This result is consistent with several previous studies that 

characterized microbial communities in sediments (Hullar et al., 2006; Crump and 

Hobbie, 2005). Although the relative abundance of Gammaproteobacteia was 

highest in 2013, with no significant difference among sampled years and steadily 

dominant. However, at the family taxonomic level, OM60, Halomonadaceae, 

Piscirickettsiaceae, and Thiotrichaceae were significantly different relative to 

abundance among sampled years.  

Among these four families, only Halomonadaceae abundance increased over 

time, while OM60, Piscirickettsiaceae, and Thiotrichaceae decreased over time. A 

study by Feris et al. (2003) suggested that the presence of Gammaproteobacteria in 

sediments is positively associated with heavy metal concentrations, whereas 

Gaboyer et al. (2014) suggested that Halomonadaceae may be tolerant to metals such 

as Cd, Cr, Cu, and Ag. Among the environmental factors, the concentrations of heavy 

metals (Cd, Cr, and Hg) increased in sediments over time, especially Cd 

(significantly increased) and Halomonadaceae, which is tolerant of Cd have become 

more abundant.  

Classes Bacilli and Clostridia in the Phylum Firmicutes exhibited significantly 

different abundances by year (Figure 4.7b). Within the Phylum Verrucomicrobia, the 

dominant classes were Verrucomicrobiae and Verruco-5, followed by Spartobacteria 

and Pedosphaerae (Figure 4.7b). Opitutae and Methylacidiphilae were present but 

occurred at relatively lower abundances than the other classes (Figure 4.7b).  
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Figure 4.7. 
Structures of bacterial communities (at class taxonomic level) in sediments along the 
west coast of South Korea. Panels: (a) the five most abundant bacteria at each site 
were marked for all sampled years, (b) mean relative abundance of bacteria (at the 
class taxonomic level) that showed differences at phylum taxonomic level, (c) mean 
relative abundance of bacteria (at the class taxonomic level) that showed no 
difference at the phylum taxonomic level. The Kruskal-Wallis test, followed by a 
Bonferroni correction, was performed on data in by panels (b)–(c). Significance was 
determined at p < 0.05 (*).  
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According to previous studies and consistent with our results, Opitutae is 

significantly more frequent in the water column, whereas Verrucomicrobiae is more 

common in marine sediments and to some extent in lakes (Allgaier and Grossart, 

2006; Arnds et al., 2010; Freitas et al., 2012). Among the classes of bacteria that 

exhibited a significant difference in abundance by year, the relative abundances of 

Bacilli and Actinobacteria showed relatively increasing pattern over time, while 

abundances of Anaerolineae, Deltaproteobacteria, Phycisphaera, Verruco-5, and 

Bacterodia showed relatively decreasing pattern over time (Figure 4.7b and 4.7c). 

Desulfobacteraceae and Syntrophobacteraceae, which include 

Deltaproteobacteia, were significantly different in abundance between year 2010 and 

2014 (p < 0.05). The relative abundance of these two bacterial communities is shown 

to decrease, which was consistent with the temporal pattern in PAHs concentrations. 

In previous studies, Deltaproteobacteia has been mostly observed in sites highly 

contaminated by PAHs and is crucial in the anaerobic degradation of organic 

contaminants and the cycling of sulfur compounds (Sun et al., 2013; Quero et al., 

2015).  

Overall, in this study, four families of bacteria (Anaerolinaceae, 

Desulfobacteraceae, Piscirickettsiaceae, and Spirochaetaceae) were more 

concentrated in sediments during the 2010–11 period that in the 2013–14 period 

(Table 4.2). Anaerolinaceae, Desulfobacteraceae, and Piscirickettsiaceae have been 

found to be positively associated with residual oils in sediments, which indicates 

relatively great concentrations of PAHs being associated (Xie et al., 2018). 

Furthermore, presence of Anaerolinaceae and Desulfobacteraceae indicates the 

biodegradation of petroleum hydrocarbons (Xie et al., 2018). In the presence of PTSs, 

these two bacterial families might metabolize PAHs, APs, and metals, resulting in 

the possible removal of these chemical species from sediments (Chariton et al., 2010; 

Zhang et al., 2017; Genderjahn et al., 2018; Lee et al., 2019). 
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Table 4.2.  
The mean relative abundances of the bacterial communities at family level which showed significant difference by sampling years in sediments 
along the west coast of South Korea. 

Phylum Class Order Family 
Relative abundance (%)  Bonferroni-corrected p value 

2010 2011 2013 2014  10–
11 

10–13 10–14 11–13 11–14 13–14 

Actinobacteria Actinobacteria Actinomycetales Corynebacteriaceae 0.08 0.58 0.28 0.20   0.00 0.02 0.02 0.05  
   Frankiaceae 0.07 0.08 0.14 0.50        
   Geodermatophilaceae 0.02 0.02 0.06 0.46   0.03     
   Microbacteriaceae 0.12 0.09 0.48 0.84     0.02 0.01  
   Micrococcaceae 0.03 0.08 0.91 0.24   0.01  0.01   
   Micromonosporaceae 0.06 0.07 0.23 1.59      0.04  
   Mycobacteriaceae 0.36 0.82 1.05 0.80     0.02   
   Nocardioidaceae 0.05 0.10 0.30 0.22        
   Sporichthyaceae 0.01 0.03 0.04 0.62        
   Streptomycetaceae 0.03 0.04 0.19 0.22  0.02 0.00 0.01 0.01   
Chloroflexi Anaerolineae Anaerolineales Anaerolinaceae 1.03 0.68 0.44 0.30    0.03    
Firmicutes Bacilli Bacillales Alicyclobacillaceae 0.04 0.03 0.10 0.43    0.05  0.04  
   Bacillaceae 0.83 1.41 3.95 4.62   0.01 0.00 0.04 0.01  
   Exiguobacteraceae 0.02 0.03 1.02 0.07   0.00 0.01 0.00   
   Paenibacillaceae 0.05 0.02 0.14 0.55    0.05  0.01  
   Planococcaceae 0.95 1.79 7.53 2.68   0.00 0.02 0.00   
  Lactobacillales Carnobacteriaceae 0.01 0.02 2.95 0.09   0.00  0.00   
Planctomycetes Planctomycetia Gemmatales Gemmataceae 0.06 0.15 0.37 0.22   0.05  0.04   
   Isosphaeraceae 0.03 0.08 0.12 0.55    0.02    
Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae 0.03 0.13 0.15 0.34   0.02 0.00    
 Deltaproteobacteria Desulfobacterales Desulfobacteraceae 2.11 1.74 0.59 0.84    0.04    
  Syntrophobacterales Syntrophobacteraceae 1.04 0.70 0.31 0.31    0.03    
 Gammaproteobacteria Alteromonadales OM60 0.69 0.54 0.17 0.16    0.01    
  Oceanospirillales Halomonadaceae 3.88 4.66 15.88 8.67   0.01  0.02   
  Thiotrichales Piscirickettsiaceae 2.27 2.38 0.62 0.86    0.05    
   Thiotrichaceae 0.41 0.08 0.12 0.07    0.03    
Spirochaetes Spirochaetes Spirochaetales Spirochaetaceae 0.71 0.62 0.16 0.26   0.05 0.04    
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4.3.4. Correlation between bacterial communities and environmental 

variables 
Significant Spearman’s rank correlation between the relative abundance of bacterial 

individual taxa and the concentration/value of environmental variables facilitated 

our detection of potential bioindicators of environmental contaminants. Among the 

measured environmental variables, each bacterial abundance based on phyla were 

more significantly related to concentrations of Σ PAHs, Σ APs, and heavy metals (i.e., 

Cd and Hg) than were AhR- and ER-mediated potencies (Figure 4.8a). The Σ PAHs 

negatively correlated with the abundance of Planctomycetes. Abundance of 

Firmicutes was positively correlated with concentrations of Cd, whereas abundances 

of Planctomycetes and Verrucomicrobia were negatively correlated with 

concentrations of Cd. In addition, abundances of Chloroflexi were positively 

correlated with concentrations of Hg, but negatively correlated with abundances of 

Planctomycetes.  

Overall, metals have greater influences on shaping structures of microbial 

communities in sediments than do other variables measured in this study. Responses 

to changes in concentrations of metals can reduce abundances of less metal-tolerant 

species in sediments and thus allow other, more-tolerant species to dominate, which 

in turn reduces biodiversity. In particular, adverse effects on biota of high 

concentrations of some metals are due to their abilities to block and inactivate 

sulfhydryl groups of proteins (Valls and de Lorenzo, 2002). Otherwise, non-linear 

correlations showed between abundant phyla Actinobacteria and Proteobacteria and 

environmental variables. Because these two phyla were the most abundant in the 

sediments, the variance at lower bacterial levels is offset, making it difficult to 

determine relationships between bacterial abundances and environmental variables. 

The effect of Cd on bacteria was statistically discernible at both the phylum and 

class taxonomic levels, whereas concentrations of APs and % E2max, which indicate 

the presence of estrogenic compounds, were only discernible at the phylum and class 

taxonomic levels, respectively. The abundances of various bacterial taxa were 

associated with ER-mediated potencies, whereas associations were not observed 

relative to AhR-mediated potencies.  
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Figure 4.8.  
Correlations and classifications of bacterial assemblages in sediments along the west 
coast of South Korea at phyla and class taxonomic levels relative to tested 
environmental variables. Panels: (a) correlation results between environmental 
variables and bacterial communities of phyla taxonomic levels within the depicted 
phyla (two phyla that were significantly different among years are depicted in red), 
(b) pairwise comparisons of environmental variables with a color gradient denoting 
Spearman’s rank correlation coefficient with bacterial community structure based on 
taxonomic classes. The network of panel (a) was filtered to include only a ‘two-tailed’ 
p < 0.05.  
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These results are consistent with those of previous studies (Xie et al., 2017). The 

phyla Acidobacteria and Planctomycetes both showed a positive correlation with Σ 

PAHs concentrations, whereas at the class taxonomic level, Holophagae (Phylum 

Acidobacteria) and Brocadiae (Phylum Planctomycetes) exhibited a negative 

association with Σ PAHs concentrations. Like metals, Σ PAHs can shape the structure 

of bacterial communities by increasing the relative abundance of Holophagae in a 

bacterial community. Thus, the relative abundances of Holophagae and Brocadiae 

could be used as potential indicators of the concentrations of PAHs in sediments.  

Patterns of response to contaminants varied among bacterial classes. Bacilli 

with their ability to reduce soluble and amorphous ferric iron and other oxidized 

metal species were resistant to Cd.   
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CHAPTER 5. 
 

INTEGRATED ASSESSMENT OF PERSISTENT 
TOXIC SUBSTANCES IN SEDIMENTS FROM 
MASAN BAY, SOUTH KOREA: COMPARISON 

BETWEEN 1998 AND 2014 
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5.1. Introduction 

Integrated evaluations of benthic community structure together with chemistry and 

tests of toxic potencies of sediments can provide a more comprehensive assessment 

of PTS-induced contamination than the integration of only chemistry and toxicity 

data (McPherson et al., 2008). An adaptation of the ratio-to-reference (Long and 

Chapman, 1985) and ratio-to-maximum values (DelValls and Chapman, 1998) 

methods known as the ratio-to-mean (RTM) values method can be used to combine 

the chemical, toxicological, and ecological data (Chapman, 1990). The RTM values 

method is appreciated for its simplicity and visual presentation of data, despite 

simplification and loss of detail during reduction of data into a single index. The 

RTM values method is also useful for time-series monitoring, particularly in terms 

of enabling changes to be summarized by time and location (Cesar et al., 2009). 

Masan Bay, located on the southern coast of Korea, is a semi-enclosed bay with 

restricted water exchange (Figure 5.1). In the 1970s, large amounts of contaminants 

from nearby industrial complexes were discharged without appropriate treatment 

into Masan Bay. Thus, Masan Bay has been identified as a hot spot for coastal 

pollution from loading of land-driven pollutants. A doubling of the human population 

in the region from the 1990s to 2014 has further contributed to the pollution of Masan 

Bay (Figure 5.1). With the goal of improving local water quality, in 1982, the South 

Korean government designated Masan Bay as a special management area, dredged 

out contaminated sediments, and implemented the Total Pollution Load Management 

System (TPLMS) in 2007 (Figure 5.1) (Lee et al., 2016). As a result, water quality 

of Masan Bay has improved, but studies continue to report severe contamination 

with metals and PTSs, including polycyclic aromatic hydrocarbons (PAHs), 

alkylphenols (APs), and polychlorinated biphenyls (Hong et al., 2009; Yim et al., 

2014; Lee et al., 2016). In particular, PAHs and APs have long been identified as 

prominent contaminants in Masan Bay and considered as priority PTSs in coastal 

sediments to cause adverse effects on marine benthic organisms (Neff, 2002; Khim 

and Hong, 2014; Lee et al., 2016).  
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Figure 5.1.  
Map showing locations from which sediments were collected in the inner- (P1–P4) 
and outer- (P5–P9) region sediment sampling sites in 1998 and the inner- (R1–R3) 
and outer- (R4–R9) region sediment sampling sites in 2014 (a Data from Khim et al., 
1999a for chemical contamination, Khim et al., 1999b for toxic effects, and Ryu et 
al., 2016 for benthic community quality). 
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Prior studies of contamination of sediments by PTSs in Masan Bay have been 

focused on the diagnosis of causes of toxicity and monitoring of status and trends 

(Tables 5.1–5.3). Although there is some evidence of significant reductions in 

concentrations of PTS in sediments from Masan Bay (Jin et al., 2016), there has yet 

to be a comprehensive report on emerging PTSs and their potential adverse effects 

on organisms. For example, styrene oligomers (SOs) are emerging pollutants 

resulting from plastic degradation in marine environments and the usage of plastics 

has been increasing, bringing attention to SO pollutants (GBI, 2012). SOs have been 

reported to cause adverse effects on aquatic organisms (Tatarazako et al., 2002), 

while their occurrence and distribution in coastal sediments are seldom documented. 

In Chapter 2, the results demonstrated that SOs were widely distributed in sediments 

of coastal environments, with relatively great concentrations that comparable to 

PAHs (Hong et al., 2016). Accordingly, the historical occurrence and distributions of 

these chemicals remain question and would be of significant concern. 

The purpose of the present study was to assess ecotoxicological effects of PTSs 

in sediments from Masan Bay by use of an integrated approach, combining chemical 

analyses, in vitro bioassays, and in situ investigations of benthic communities. 

Specific aims were to: (1) investigate spatio-temporal changes in classic PTSs, 

namely PAHs and APs, and emerging chemicals, namely SOs, in the sediments from 

Masan Bay; (2) evaluate the aryl hydrocarbon receptor (AhR)- and estrogen receptor 

(ER)-mediated potencies associated with sediment extracts; (3) assess the risk for 

the benthic community being associated with residual contamination in the Masan 

Bay; and (4) seek common trends in integrated sediment assessment data over a 

recent 16-year period. 
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Table 5.1.  
Summary of reported PAH, AP, and SO concentrations in Masan Bay sediments. 
Region Sampling 

year 
# of 
sites 

Target  
chemicals 

Concentrations (ng g-1 dm) References 
Min. Max. Mean Median 

In land 2000 8 16 PAHs 33.4 481 216 157 Koh et al., 2005 
 2000 8 NP 84.7 1070 395 315 Koh et al., 2005 
Bay 1997 20 16 PAHs 207 2670 680 a - Yim et al., 2005 
 1998 28 16 PAHs 41.5 1100 354 312 Khim et al., 1999a 

 1998 28 NP+4-t-OP 122 4070 527 346 Khim et al., 1999a 
 1998 7 10 SOs 3110 10200 4940 3810 This study 
 2000 1 16 PAHs - - 55.4 - Moon et al., 2001 
 2004 18 NPs 131 2810 581 421 Li et al., 2008 
 2005 20 16 PAHs 123 1670 928 - Moon et al., 2008 
 2005 20 NP 39.7 1208 411 - Moon et al., 2008 
 2006 5 NP 24 504 248 206 Hong et al., 2009 
 2006-2007 5 NPs 49.4 124 71.1 63.0 Choi et al., 2009 
 2010 9 NP 28.4 589 245 157 Al-Odaini et al., 2015 
 2012 21 16 PAHs 171 707 309 292 Jung et al., 2012 
 2012 21 NPs 142 2190 574 483 Jung et al., 2012 
 2013 20 16 PAHs 47.9 151 83.7 - Jin et al., 2016 
 2014 29 16 PAHs - - 175 - Yim et al., 2014 
 2014 7 16 PAHs 58.1 191 90.7 80.2 This study 
 2014 7 APs 17.8 71.7 39.3 32.9 This study 
 2014 7 10 SOs 73.1 353 128 100 This study 

a No data. 
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Table 5.2.  
Summary of reported AhR- and ER-mediated potencies in Masan Bay sediments. 
Region 
 

Sampling 
year 

# of 
sites 

Endpoint AhR- or ER-mediated potencies References 
Min. Max. Mean 

In land 2000 8 %TCDDmax 37.8 93.5 64.6 Koh et al., 2005 

  8 %E2max 9.3 113 44.9 Koh et al., 2005 

 2003 15 %TCDDmax 0.1 93 35 Yoo et al., 2006 

Bay 1998 9 %TCDDmax 39.4 2080 594 Khim et al., 1999b 

  9 %E2max 51.4 221 99.7 Khim et al., 1999b 

 2014 7 TCDD-EQ 49.8 161 75.1 This study 

  7 E2-EQ 486 17000 3880 This study 
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Table 5.3.  
Summary of reported temporal occurrence of macrobenthos species found in Masan 
Bay. 

Phylum Species Year 
1980–
1981 

1987–  
1990 

1998 2004 2010– 
2012 

2014 

Annelida Paraprionospio 
patiens √ √ √ √ √ √ 

 Nectoneanthes 
latipoda √      

Chone sp. √  √    
Nephtys sp. √      
Capitella capitata  √  √ √ √ 
Chaetozone setosa  √ √ √   
Lumbrineris 
longifolia 

 √ √ √ √ √ 

Cirratulus cirratus   √    
Glycinde sp.   √    
Sigambra 
tentaculata 

  √    

Tharyx sp.   √ √  √ 
Euchone analis    √   
Glycera chirori    √   
Heteromastus 
filiformis 

   √ √ √ 

Prionospio cirrifera    √   
Magelona japonica      √ 
Polydora ligni      √ 
Spiochaetopterus 
koreana 

     √ 

Sternaspis scutata      √ 
Mollusca Theora lata      √ 
 Raetellops pulchella       

Macoma tokyoensis       
Amphipoda  Corophium sp.       
Urochordata Ciona intestinalis       
Reference  a b c d e f 

a Hong and Lee., 1983, b Lim and Hong., 1997, c Paik and Yun., 2000; Lim et al., 2007; Ryu et al., 
2016, d Choi et al., 2005, e KORDI., 2010; Seo et al., 2015, f This study. 
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5.2. Materials and Methods 

5.2.1. Sampling and sample preparation 

Two surveys of quality of sediments in Masan Bay were conducted 16 years apart; 

sediment samples were collected in May 1998 and in May 2014 at almost the same 

locations (Figure 5.1). At each time point, samples were collected from nine, 

including seven benthic community sites, termed P1–P7 and R1–R7, respectively. 

These sites represent both inner (P1–P4 and R1–R3; average water depth, ≤ 5 m) and 

outer (P5–P9 and R4–R9; average water depth, ≥ 5 m) regions of the bay. 

Results of analysis to identify and quantify chemicals (except for SOs), in vitro 

bioassay data, and benthic community data from 1998 were obtained from previous 

studies (Khim et al., 1999a and 1999b; Ryu et al., 2016). Although sampling sites 

were not exactly the same and bay dynamics can shift sediment and associated 

contaminants over time, it is useful to evaluate these data with respect to changes in 

chemical concentrations over time. To address historical occurrences of SOs as well 

as long-term changes in concentrations of SOs in this study, archived samples from 

1998 were re-analyzed for SOs levels together with samples collected in 2014. 

 All samples were transferred immediately to the laboratory, freeze-dried, and 

stored at - 20 °C until analyzed. Freeze-dried samples of 1988 were kept at - 20 °C 

in a freezer in our laboratory for 16 years. To avoid technical and/or methodological 

errors in chemical analyses for the use of archived samples collected in 1998, the 

1998 samples were newly extracted and analyzed together with the 2014 samples. 

Detailed descriptions of sample preparation for chemical and bioassay analyses have 

been published previously (Hong et al., 2012, 2015). In brief, 10 g of freeze-dried 

sediment samples were extracted by dissolving them in 350 mL of dichloromethane 

(Burdick & Jackson, Muskegon, MI) in a Soxhlet extractor for 16 h (see Chapter 2). 

To remove elemental sulfur, the extracts were treated with activated copper powder 

(Sigma Aldrich, Saint Louis, MO) and concentrated into 1 mL. For the in vitro assays, 

the aliquot of the extract was exchanged in dimethyl sulfoxide (DMSO, Sigma-

Aldrich) using differential volatilization.  
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5.2.2. Instrumental analysis  

Concentrations of PAHs, APs, and SOs in extracts of sediments were quantified by 

use of an Agilent 7890 gas chromatograph equipped with a 5975C mass-selective 

detector (MSD, Agilent Technologies, Santa Clara, CA); instrument settings used for 

the detection of PAHs, APs, and SOs are provided in Chapter 2. A total of 16 PAHs, 

6 APs, 4 styrene dimers (SDs), and 6 styrene trimers (STs) (full chemical names and 

abbreviations are provided in Table 2.1) were analyzed according to previously 

reported methods (Hong et al., 2016a) (see Chapter 2).  

For source appointment of sedimentary PAHs and SOs, principal component 

analysis (PCA) was performed based on the concentrations of 16 PAHs and 10 SOs, 

respectively. PCA was performed with normalized chemical concentrations of 

individual chemicals. The statistical analyses were conducted in SPSS 23.0. 

 

5.2.3. In vitro analyses 

H4IIE-luc bioassays were performed to detect AhR-mediated potencies according to 

previously reported methods (Hong et al., 2012). H4IIE-luc bioassay results 

(expressed as mean relative luminescence units) were converted to percentages of 

the maximum 2,3,7,8-tetrachlorodibenzo-p-dioxin response (% TCDDmax), where 

300 pM TCDD was considered 100% TCDDmax (see Chapter 2). AhR-mediated 

potencies were expressed as a TCDD equivalent concentration (pg TCDD-EQ g-1 dm) 

for direct comparison to instrumentally-derived TCDD equivalent concentrations 

(TEQs). All samples were assayed in triplicate. 

An MVLN bioassay was used to evaluate ER-mediated potencies in organic 

extracts of the sediments (Khim et al., 1999b). Luciferase activity was determined 

after 72 h of exposure as described previously (Villeneuve et al., 2002). MVLN 

bioassay responses were converted to relative response units expressed as the 

percentage of the maximum response (% E2max) observed for 1235 nM 17β-estradiol 

(E2). Significant responses were defined as those that were at least three times the 

standard deviation of the mean of the solvent controls. The E2 standard equivalent 

concentration (pg E2-EQ g-1 dm) was also calculated using the same method. All 

samples were assayed in triplicate (see Chapter 2). 
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5.2.4. Ecological quality (EcoQ) indices of macrobenthic community 
Duplicate sediment samples were collected with a van Veen grab (surface area, 0.1 

m2). Of note, pooled samples were used for species identification and individual 

organism counting to minimize site-specific variation or possible technical errors in 

grab sampling. Identification of macrobenthos was performed in Anyang University.  

For ecological quality (EcoQ) assessment, this study employed one simple index, the 

Shannon-Wiener diversity index (H´), and four multivariate indices, namely the 

Ecological Quality Ratio (EQR), Benthic Quality Index (BQI), Azti Marine Biotic 

Index (AMBI), and Multivariate-AMBI (M-AMBI). More details about these 

multivariate indices are provided in Table 5.4 and previous publications (Blanchet et 

al., 2008; Ryu et al., 2016). Pearson’s correlation coefficients were determined to 

assess potential correlations between PTS contamination and toxic effects on the 

benthic community. Statistical analyses were performed in SPSS 23.0. 

 

5.2.5. Integrated approach: Ratio-to-mean values method 
The RTM values method is an integrative approach wherein a data matrix is used to 

convert values for each variable of interest in each LOE to non-dimensional values 

by dividing the value obtained by the arithmetic mean obtained for all stations (Cesar 

et al., 2009). RTM values were combined through the calculation of a mean, thus 

producing a single new value for each LOE. These single new values were plotted 

in three-axis graphs to producing a triangular pyramid reflecting each class at each 

survey time point, providing a visual representation of sediment quality.  
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Table 5.4.  
Definition of benthic community quality index levels. 
Biotic indices Abbreviation Ecological status 
  Bad Poor Moderate Good Excellent 
Ecological index       
Shannon-Wiener 
diversity index H´a < 1 1–2 2–3 3–4 > 4 

Multivariate index       
Ecological Quality 
Ratio EQR < 0.2 0.2–0.43 0.43–0.65 0.65-0.80 > 0.80 

AZTI Marine 
Biotic Index AMBI > 5.5 4.3–5.5 3.3–4.3 1.2–3.3 0–1.2 
Multivariate- 
AMBI M-AMBI b < 0.2 0.20–0.41 0.41–0.62 0.62–0.83 > 0.83 

Benthic Quality 
Index BQI c < 3.6 3.6–7.2 7.2–10.8 10.8–14.4 > 14.4 

a Blanchet et al. (2008). 
b Muxika et al. (2007). 
c Rosenberg et al. (2004).  
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5.3. Results and Discussion 

5.3.1. Distributions of PTSs in sediments 

Mean concentrations of PAHs were 4.6 × 102 ng g-1 dm (range, 901.1 × 103 ng g-1 

dm) in 1998 and 91 ng g-1 dm (range, 58–1.9 × 102 ng g-1 dm) in 2014 (Figure 5.2a), 

demonstrating an 80.1% reduction and a statistically significant decline (p < 0.05). 

Reductions in concentrations of PAHs in sediments from outer regions (P5–P9 and 

R4–R9) were significantly more pronounced than those of the inner regions (P1–P4 

and R1–R3) (p < 0.05, Figure 5.2a). These decreasing trends seemed to be associated 

with South Korea’s implementation of pollution control measures and management 

of toxic substances. For example, new environmental quality and dioxin emission 

standards were established in 1998, waste incinerator flue gas has been regulated 

since 1999, and TPLMS has been implemented since 2007 (Chang et al., 2012; Lee 

et al., 2016). Although these environmental regulations and chemical controls do not 

manage PAHs levels directly, they control land-derived pollutants, which are major 

causes of coastal and marine pollution. The environmental regulations and pollution 

controls were apparently more effective for reducing contamination of outer regions, 

relative to inner regions of the bay. Greater concentration of PAHs was observed at 

both sampling time points, presumably due to the geographical characteristics (i.e., 

a long, narrow inlet) limiting flushing, thereby resulting in localized PAHs 

sedimentation in the inner regions (Li et al., 2008). 

Based on loadings of the 16 PAHs analyzed, the total variances of principal 

components (PCs) 1 and 2 were 67% and 16%, respectively (Figure 5.2d). PC 1 had 

a high positive loading for 4–6 ring PAHs [benzo[a]anthracene (BaA), chrysene 

(Chr), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), BaP, indeno[1,2,3-

cd]pyrene (IcdP), and benzo[g,h,i]perylene)] and was thus selected to represent 

vehicular emission sources (Li et al., 2015). PC 2 was heavily loaded with 

compounds related to coal combustion, including phenanthrene, fluoranthene, and 

pyrene (Li et al., 2015; Figure 5.3). The compositional profiles of PAHs were in 

principle similar for both sampling years but showed greater inner region variance 

in 1998. The predominant PAHs found in inner region sediments in 1998 were 
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consistent with coal combustion derivatives. Overall, industrial waste (combustion 

of diesel and gasoline engines) can be considered the major origin of PAHs in 

sediments from Masan Bay (Rogge et al., 1993). 

Patterns of distribution reductions in concentrations of APs in sediments of 

Masan Bay were similar to those of PAHs; and mean concentrations of APs in 

sediment likewise decreased from 1998 (5.8 × 102 ng g-1 dm; range, 1.8 × 102–1.1 × 

103 ng g-1 dm) to 2014 (39 ng g-1 dm; range, 18–72 ng g-1 dm) (Figure 5.2b). NPs 

were used as detergents, wetting agents, dispersing agents, and emulsifiers in various 

industrial, domestic, and household applications throughout the latter half of the 

twentieth century (Hong and Shin, 2011). The South Korean government named NPs 

as priority chemicals in 2001, banning their use in kitchen cleaners in 2002, and then 

designating them as restricted chemicals and prohibiting their use for all domestic 

applications in 2007. The use of NPs in paints and ink binders was banned in 2010 

(MOE, 2007). Our observation which means concentrations of APs declined by 93% 

between 1998 and 2014 (Figure 5.2b, p < 0.01) indicates that these regulations 

appear to have been quite effective. The mean concentrations of APs declined 

significantly between 1998 and 2014 in both inner and outer bay regions. Direct 

comparison of APs data with past levels was difficult because historical alkylphenol 

ethoxylate data are lacking. Nonetheless, the presence of NP precursors in sediments 

collected from inner regions in 2014 suggests that fresh APs input to the bay is still 

occurring. 

A dramatic reduction (97%) in mean concentrations of SOs in sediments was 

observed between 1998 (4.9 × 103 ng g-1 dm; range, 0.3 × 103–1.0 × 104 ng g-1 dm) 

and 2014 (1.3 × 102 ng g-1 dm; range, 73–3.5 × 102 ng g-1 dm) (Figure 5.2c). 

Concentrations of SOs in sediments from Masan Bay in the presently reported 1998 

and 2014 are greater than respective mean values from similar time points (1998 

mean, 2.2 × 102 ng g-1; 2015 mean, 34 ng g-1 dm) for sediments from Lake Sihwa in 

South Korea (Hong et al., 2016a; Lee et al., 2017).  
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Figure 5.2.  
Concentrations of (a) PAHs, (b) APs, and (c) SOs in sediment from Masan Bay in 
1998 and 2014. Cluster results from PCA of (d) PAH and (e) SO concentrations in 
sediments collected from 18 locations in Masan Bay. Percentages of variability in 
each data accounted for by PC 1 and PC 2 are shown in the graph (* p < 0.05). 
  



  

 
142 

 

 
 

Figure 5.3.  
PCA after Varimax rotation for selected PAHs in Masan Bay sediments.  
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Results of PCA indicated that environmental management practices, such as 

TPLMS, have been successful in reducing land-based pollution loads. PC 1 and PC 

2 accounted for 67.1% and 15.8% of the dataset variability, respectively (Figure 

5.2e), and when sites were ordinated based on PCA scores, all samples except P1 

were divided into sampling years 1998 and 2014. SD3 was the predominant (70%) 

chemical pollutant at P1, whereas STs were the predominant pollutants at other sites 

(Figure 5.4). Relatively large contributions of STs might indicate recent inputs of 

fresh materials because ST1 emerges early in polystyrene decomposition after 

mechanical breakdown (Saido et al., 2014). However, our understanding of SO 

compound is limited because few studies have been conducted on the distributions 

and relative compositions of SOs in coastal marine sediments (Kwon et al., 2014). 

Additional complementary studies are needed to identify the origins and fates of 

these compounds. Furthermore, continuous pollutant monitoring is needed and 

regulation of new materials should be considered.
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Figure 5.4.  
Comparison of the relative SOs compositions (10 component SOs) at each sampling 
site and inner-region versus outer-region sites within Masan Bay. 
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5.3.2. In vitro potencies in sediments 
Mean concentrations of TCDD-EQ in sediments of the Masan Bay decreased from 

5.9 × 102 pg g-1 dm (range, 39–2.1 × 103 pg g-1 dm) in 1998 to 75 pg g-1 dm (range, 

50–1.6 × 102 pg g-1 dm) in 2014 (Figure 5.5a); mean concentrations of AhR-mediated 

potencies in sediments also decreased significantly between 1998 and 2014 (p < 

0.05). These TCDD-EQs exceeded both US (< 25 pg g-1 dm, possible-effect level; 

USEPA, 1993) and Canadian (< 0.85 pg g-1 dm; CCME, 2002) sediment quality 

guidelines for dioxin-like compounds at both time points. In contrast to 

concentration distribution patterns of PAHs, AhR-mediated potencies in 1998 were 

greater in sediments from outer regions than in sediments from inner regions. Except 

for outer region samples in 1998, AhR-mediated potencies were generally well 

correlated with PAHs concentrations in sediments (Figure 5.5b). These results 

suggested that the aforementioned actions implemented to reduce the release of 

chemicals (including AhR agonists) into the bay have been effective. Indeed, dioxin 

emissions decreased by 88% from 2001 to 2011 (MOE, 2012).  

The results of a direct comparison between bioassay-derived TCDD-EQ and 

instrument-derived TEQ potency balance analyses conducted to identify chemical-

specific contributions to total induced AhR-mediated potencies in sediments are 

presented in Table 5.5. Known AhR agonists such as PAHs and SOs explained only 

a small portion of TCDD-EQs, ~ 2.7% in 1998, and ~ 2.2% in 2014 (Table 5.5), 

revealing the apparent presence of possible unknown AhR agonists in sediments. For 

instance, several untargeted Ah-R active agonists such as dioxins and furans, some 

co-planar PCBs and PCNs, four- to five-ring PAHs and/or their derivatives (e.g., 

oxy-, nitro-, sulfur-, alkyl-, cyano-, amino-, or methylated PAHs) in sediments of 

Masan Bay might explain the unidentified proportion of dioxin-like activities (Khim 

et al., 1999a; Kannan et al., 2000; Barron et al., 2004; Horii et al., 2009; Trilecova 

et al., 2011). 
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Figure 5.5.  
Spatiotemporal distributions of (a) TCDD-EQ and (c) E2-EQ biological responses 
in inner- and outer-region Masan Bay sediment samples for 1998 and 2014. (b) and 
(d) Scatter plots showing dose-response relationships between chemical contaminant 
levels and biological responses in sediment samples collected from Masan Bay (* p 
< 0.05).
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Table 5.5. 
Comparison of instrument-derived equivalents and bioassay-derived equivalents in 1998 and 2014 sediment samples from Masan Bay, South 
Korea. 

Sampling 
year 

Region # of 
sites 

Instrument-derived equivalents  a Bioassay-derived equivalents   b Potency balance analysis 

c TEQ d EEQ  TCDD-EQ E2-EQ  TEQ/TCDD-EQ EEQ/E2-EQ 

Min.–Max. (Mean)  Mean  Min.–Max. (Mean) 

(pg g-1 dm)  (pg g-1 dm)  (%) 

e 1998 Inner 7 0.3–5.7 (2.6) 9.8–14.8 (12.3)  159 127  0.9–2.7 (1.7) 6.1–21.9 (12.1) 

Outer 7 1.2–4.3 (2.1) 2.5–4.8 (4.0)  942 78.3  0.1–0.9 (0.4) 1.9–7.0 (5.7) 

2014 Inner 7 0.6–2.9 (1.5) 0.2–0.8 (0.4)  100 8,580  0.8–1.8 (1.4) f n.d.–0.1 (0.04) 

Outer 7 0.6–1.4 (0.8) 0.2–0.7 (0.4)  62.6 1,530  0.8–2.2 (1.4) n.d.–0.1 (0.02) 
a Bioassay-derived values obtained from sample dose-response relationships generated by testing samples at multiple dilution levels. 
b Values are the percentages of instrument-derived values relative to bioassay-derived values. 
c TEQ values of PAHs were summed from concentrations of BaA, Chr, BbF, BkF, BaP, IcdP, and DBahA multiplied by the ReP values reported in Villeneuve et al. (2002). 
d EEQ values of APs were summed from concentrations of NPs and 4-t-OP multiplied by the ReP values reported in Villeneuve et al. (1998). 
e Data from Khim et al. (1999a) and (1999b). 
f n.d.: Below detection limits. 
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Mean concentrations of E2-EQs in sediments were 1.0 × 102 pg g-1 dm (range, 

51–2.2 × 102 pg g-1 dm) in 1998 and 3.9 × 103 pg g-1 dm (range, 4.9 × 102–1.7 × 104 

pg g-1 dm) in 2014 (Figure 5.5c), evidencing an approximately 40-fold increase over 

about 16 years. Although concentrations of APs known to be ER agonists decreased, 

overall ER-mediated potencies increased between 1998 and 2014. Thus, the 

correlation between ER-mediated potencies and concentrations of APs showed an 

opposite tendency relative to AhR activity (Figure 5.5d). ER-mediated potencies 

expressed as instrument-derived EEQs were at 22% in 1998, but only 0.1% in 2014 

(Table 5.5). These results indicated that other untargeted ER agonists might exist in 

sediments of Masan Bay. For example, several unmeasured chemicals such as 

pesticides (DDT, o,p′-DDD, and o,p′-DDE), kepone, and parabens have been 

reported to show ER binding affinity, which might be present in sediments of Masan 

Bay (Gadio et al., 1997; Legler et al., 1998; Routledge et al., 1998). In other words, 

APs were not a major ER agonist in Masan Bay sediments. Overall, the portion of 

unknown AhR agonists and ER agonists increased over the sampling interval. 

Unknown toxic chemicals may contribute to the total induced toxicity in coastal 

sediments. Thus, complementary research, such as effect-directed analysis, may lead 

to a better understanding of new substances and the identification of appropriate 

countermeasures (Hong et al., 2016b).  
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5.3.3. Macrobenthic community 
The number of species (taxa) and species density differed between the two sampling 

years (p < 0.05, Figures 5.6 and 5.7). In 1998, a total of 14 taxa were found with a 

mean density of 241 ind. m-2, whereas in 2014, 45 taxa were found with a mean 

density of 1,800 ind. m-2. Few samples were collected in some sites and the range of 

mean densities in the inner region varied broadly in 1998 (Table 5.6). It seemed that 

contamination of PTSs was serious in sediments from 1998, potentially leading to 

deterioration of some inner-region sites. Outer regions presented greater diversity 

than inner regions, indicating that benthic biodiversity reflected the geographical and 

contamination gradients of the semi-enclosed Masan Bay system (Khim et al., 1999a; 

Khim and Hong, 2014). The aforementioned numbers of species observed in Masan 

Bay sediments were lower than values previously recorded for the southeastern 

coastal area (means in 1998 and 2014 were 43 and 123, respectively; MOF, 2014; 

Ryu et al., 2016), suggesting that the benthic community in Masan Bay had not yet 

fully recovered by 2014. Indeed, some polychaete species such as Capitella capitate 

and Lumbrineris longifolia, which are well-known opportunistic species and organic 

pollution indicators were dominant across our sampling sites (Tables 5.3, 5.6, and 

Figure 5.7) (Bae et al., 2017). 

The five EcoQ indices calculated based on our benthic community data showed 

some improvement in ecological quality over the study time interval. The H′ index 

results for all sites were moderate or bad in 1998, but good or poor in 2014 (Figure 

5.7c). Likewise, EQRs for the sites shifted from bad or poor in 1998 to poor or 

moderate in 2014 (Figure 5.7d). Among the five indices, these two indices best-

reflected contamination of PTSs in sediment (Figures 5.7 and 5.8). The AMBI, by 

comparison, seemed to be less sensitive than the other multivariate indicators to 

sedimentary pollution, yielding bad to good values in 1998, where other indicators 

indicated poor or bad outputs (Figure 5.8). Averaging of index grading indicated that 

the ecological qualities of the inner and outer regions in 1998 were 4.45 (poor) and 

3.87 (moderate), respectively, improving to 3.2 (moderate) and 2.54 (good), 

respectively, by 2014. These EcoQ assessment-based results indicated that Masan 

Bay sediment quality improved over time, albeit under the constraints of the 
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geographical setting and PTSs contamination of the bay. This conclusion is further 

reinforced by the increased biodiversity observed over the study time interval. 

Scatter plots and Pearson correlation analyses demonstrated a multitude of 

significant correlations among the presently developed chemical analysis, toxic 

effect, and benthic community quality variables (see Table 5.7 for coefficient values 

and significance levels) (Figure 5.9). Notably, all of the chemical concentration 

values correlated significantly with EQR and BQI (p < 0.05, Table 5.7), suggesting 

that these indices of benthic community composition are responsive to chemical 

concentration changes. However, the results of neither of the toxicity bioassays were 

correlated with any of the EcoQ indices. This pattern of greater sensitivity to 

sedimentary toxicants in resident benthos than in vitro toxicity bioassays is 

consistent with similar analyses of US estuaries (Hyland et al., 1999). Overall, the 

EcoQ results were useful for demonstrating general pollution of sediment.
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Figure 5.6.  
(a) Compositions each taxon of numbers of species and individuals and (b) dominant species in Annelida of benthic communities in Masan Bay 
between 1998 and 2014. n.o.: Not observed. 
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Figure 5.7.  
Recovery of benthic community health in Masan Bay. Comparisons of (a) numbers 
of taxa (species) and (b) distributions (density, ind. m-2) of benthic communities in 
Masan Bay between 1998 and 2014. Comparisons of EcoQ status as represented by 
(c) the Shannon-Wiener (H´) index and (d) the EQR in Masan Bay between 1998 
and 2014 (* p < 0.05).   
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Table 5.6.  
Faunal list of macrobenthos species with abundance found in Masan Bay. 

Pylum Scientific name 1998  2014 
P1 P2 P3 P4 P5 P6 P7  R1 R2 R3 R4 R5 R6 R7 

Annelida Amage sp.           12   1 9 
 Aricidea simplex           3  2   
 Capitella capitata 159    5  2   190 11 15    
 Chone teres              1  
 Cirratulus cirratus           1   1 1 
 Dorvillea sp.          4 15 1  4 1 
 Eteone sp.          1 6 1 1  1 
 Euchone sp.               5 
 Glycera chirori           1    1 
 Glycera convoluta               3 
 Glycera onomichensis           1     
 Glycinde sp.                
 Goniada sp.           3  1 1 6 
 Heteromastus filiformis               1 
 Lumbrineris heteropoda             1   
 Lumbrineris longifolia     1     1 152  16 10 31 
 Magelona japonica                
 Neanthes succinea     1     2 1     
 Nectoneanthes multignatha          5 5 1 6 2 9 
 Nectoneanthes oxypoda  12  9 5 10  8         
 Nephtys polybranchia     1      1     
 Nereis longior          1 4  2 1 6 
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Table 5.6.  
Faunal list of macrobenthos species with abundance found in Masan Bay (continued). 

Pylum Scientific name 1998  2014 
  P1 P2 P3 P4 P5 P6 P7   R1 R2 R3 R4 R5 R6 R7 
Annelida Ophiodromus sp.          1 10 1 15 7 8 

 Paraprionospio pinnata 1    15  3      5 11 117 
 Paraprionospio sp. 7    40 1 3    2  1 1 4 
 Parougia caeca  30               
 Polydora sp.              1  
 Polynoidae indet.              1  
 Prionospio elegantula          65 15 2 1 1 1 
 Prionospio membranacea           1   1 29 
 Scolelepis sp.           1    1 
 Sigambra tentaculata          1 5  31 14 5 
 Spiochaetopterus koreana          12 60 7 13  3 
 Thelepus sp.             1 2 1 

  indet.         2  3 1    
Sipunculida indet.         6  4 2  2 3 
Nemertina Lineus sp. 1     1      3 2  2 2 
Cnidaria Anthopleura kurogane 14               
Mollusca Arcidae indet.           1    1 
 Hastula sp.         4       
 Hydatina albocincta           1 1    
 Macoma sp.         39 2 10 4 1  3 
 Musculus senhausia         18  13 9  1  
 Philine orientalis 2               

https://en.wikipedia.org/wiki/Cnidaria
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Table 5.6.   
Faunal list of macrobenthos species with abundance found in Masan Bay (continued). 

  

Pylum Scientific name 1998  2014 
  P1 P2 P3 P4 P5 P6 P7   R1 R2 R3 R4 R5 R6 R7 
Mollusca Raetella pulchella               1 

 Ruditapes philippinarum         13       
 Scapharca broughtonii             1   
 Theora lata     1    20 12 184 276 61 18 100 

Arthropoda Chionidae indet.           2     
 Corophium sp.         457 7 123  3  26 
 Gaprella sp.         1       
 Grandidierella sp.           13  5 12 9 
 indet.             1   
Arthropoda Nebalia bipes 5          4 5  1 1 
 Oratosquilla oratoria 1                             
 Number of species 9 0 1 1 9 1 4  9 14 33 15 20 23 30 
 Total species 231 0 9 5 75 1 16  560 304 671 328 168 96 389 
  Mean density (ind. m-2) 1155 0 45 25 375 5 80   2800 1520 3355 1640 840 480 1945 
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Figure 5.8.  
Ecological quality (EcoQ) status as indicated by Benthic Quality Index (BQI), Azti 
Marine Biotic Index (AMBI), and Multivariate-AMBI (M-AMBI) indices. 
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Table 5.7.  
Pearson correlation analysis results for associations among chemical contamination levels, toxicity bioassay outcomes, and environmental quality 
parameters for Masan Bay benthic macrobenthic community. 

+ p < 0.05, ++ p < 0.01, two-tailed correlation.  
Acronyms for corresponding all parameters and criteria are as in Table 5.4.   

Component  Chemical Bioassay Macrobenthic Community 

Chemicals  PAH APs Sos TCDD-EQ E2-EQ # of species Density H' BQI AMBI M-AMBI EQR 

Chemical 

PAH  0.54  0.48  0.17  -0.26  -0.63  -0.56  0.72  0.74  -0.05  0.74  0.77  

APs +   0.95  -0.08  -0.38  -0.64  -0.50  0.74  0.74  0.21  0.55  0.74  

SOs   ++   0.09  -0.42  -0.64  -0.50  0.70  0.75  0.32  0.39  0.65  

Bioassay 
TCDD-EQ        -0.16  -0.19  -0.27  0.00  0.26  -0.15  -0.36  -0.16  

E2-EQ           0.63  0.64  -0.41  -0.47  -0.07  -0.17  -0.27  

Macrobenthic 
Community 

# of species + + +  +   0.82 -0.83  -0.89  -0.19  -0.58  -0.69  

Density +     + ++   -0.58  -0.69  -0.09  -0.46  -0.55  

H' ++ ++ ++    ++ +   0.91  0.28  0.80  0.89  

BQI ++ ++ ++    ++ ++ ++   0.20  0.62  0.75  

AMBI              0.16  0.29  

M-AMBI ++ +      +  ++ +    0.94  

EQR ++ ++ +     ++ + ++ ++   ++   
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Figure 5.9.  
Scatter plots of five EcoQ indices vs. concentrations of two persistent toxic 
substances (PAHs and APs) and AhR-, ER-mediated potencies in sediments of the 
Masan Bay, Korea. Yellow box indicated that p < 0.05. 
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5.3.4. Integrated approach: Ratio-to-mean values 

The data obtained from chemical contamination, toxicity effect, and benthic 

community (EQR and BQI) data were integrated by use of the RTM values method 

to identify how conditions within the sampled sites changed over the study time 

interval. Comparing RTM values calculated for samples with respect to time (1998 

vs. 2014) and region (inner vs. outer) revealed an overall decrease of RTM values 

from 1.34 in 1998 to 0.78 in 2014, a pronounced outer-region RTM values decrease 

from 1.28 in 1998 to 0.44 in 2014 (p < 0.01), and a no significant inner-region 

decrease from 1.39 in 1998 to 1.12 in 2014. It was demonstrating better and more 

improved conditions in the outer regions than in the inner regions. Chemical 

contamination, toxic potency, and benthic community index RTM values each 

decreased in the outer regions from 1998 to 2014; meanwhile, during the same time 

interval, only the chemical contamination and benthic community index RTM values 

decreased in the inner regions, while the inner-region toxicity RTM values rose 

sharply (Figure 5.8).  

Presumably, because of the geographical features of the semi-closed bay, it is 

taking more time for sediment quality to recover in the inner regions than in the outer 

regions. In the inner regions, chemical contamination was the most pressing aspect 

of bay pollution in 1998, whereas toxic effect had emerged as a more important 

concern in 2014. Meanwhile, in the outer regions, the values of three-factor were of 

similar magnitude in 1998, whereas benthic community quality and toxic effect 

RTM values were of notably greater magnitude than the chemical contamination 

RTM values in 2014. The inner-region and outer-region chemical contamination 

RTM values fell dramatically from 1998 (2.59 and 1.23, respectively) to 2014 (0.22 

and 0.14, respectively). The APs and SOs components of the chemical contamination 

RTM values showed more pronounced reductions than did the PAHs component in 

both the inner and outer regions (Figure 5.10), perhaps because PAHs continue to be 

generated and transported unceasingly through the atmosphere, whereas APs are 

now strictly controlled. Previous studies on PAHs and APs in sediments of Masan 

Bay also revealed that the RTM values exhibited a generally decreasing trend in both 

inner and outer regions during the last decade (Figure 5.11). Overall, these reduced 
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RTM values for chemical contamination reflect effective legislative actions. RTM 

values of toxic effect increased from 0.86 in 1998 to 1.40 in 2014, but opposite 

tendencies were observed for the inner versus outer regions.  

The RTM values obtained for sediments from inner regions increased about 

eight-fold over the ~16-year period, while those from outer regions decreased by 

almost two thirds. RTM values for E2-EQs were increased in both inner and outer 

regions. However, these increasing RTM values were offset by decreasing RTM 

values for TCDD-EQs in outer regions. These results indicate that unknown ER 

agonists have been, and likely are still, accumulating more in inner regions than in 

outer regions and/or that there are ER agonist sources near inner-region sites. The 

RTM values pattern of the benthic indices was similar to that observed for our 

chemical analysis, although less dramatic changes in the study time interval. These 

results show that while chemical concentrations can be reduced rapidly, it takes more 

time for benthic communities to recover. Other conditions such as metal 

contaminations and/or hypoxia in bottom water were considered as anthropogenic 

pressures on the benthic community. Results of a previous study conducted in Masan 

Bay indicated that benthic ecological quality generally reflected the pollution 

gradient of metals (Ryu et al., 2016). Similar to the temporal decrease of target 

organic PTSs, some metal concentrations, such as Cu, Zn, and Pb, reported in 

sediments of Masan Bay showed a decreasing trend during the last decade (Table 

5.8). Thus, in addition to the important work of regulating the use and emission of 

chemicals, ongoing assessments of environmental impact are also needed. Overall, 

RTM values of chemical contamination and benthic community were decreased 

while the toxicity RTM values increased, indicating that there are unmeasured 

chemicals or conditions with the potential to cause degradation of inner-region in 

Masan Bay ecology (Chapman, 1990). 
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Figure 5.10.  
Sediment quality triads of normalized to Ratio-to-mean (RTM) values obtained for 
chemical contamination, toxic effects, and benthic community quality of sediment 
samples from (a) inner and (b) outer regions in 1998 and 2014.  
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Figure 5.11.  
Comparisons of normalized Ratio-to-mean (RTM) values for (a) PAHs and (b) APs 
in sediments of inner and outer regions of Masan Bay obtained from this study and 
previous studies. Data from a Yim et al. (2005), b Khim et al. (1999b), c Moon et al. 
(2001), d Jung et al. (2012), e This study, f Li et al. (2008), g Hong et al. (2009), h Choi 
et al. (2009), and i Al-Odaini et al. (2005).   
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Table 5.8.  
Summary of concentrations of metals in sediments of Masan Bay reported previously. 

Sampling 
year 

Cr Co Ni Cu Zn Pb Hg References 

(mg kg -1) (ug kg-1) 

1998 68.0 14.0 32.0 97.0 360.0 67.0  Ryu et al., 2016 

2002 73.3   60.3 263.7 51.3  Woo et al., 2007 

2005 67.1 11.5 28.8 43.4 206.3 44.0  Hyun et al., 2007 

2006 79.8  29.6 75.1 314.5 66.5  Cho et al., 2015 

2010  14.8 32.4 25.3 218.3 48.4 109.1 Lim et al., 2013 

2010 71.4 13.4 32.5 39.4 232.0 55.4  Ra et al., 2013 
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CHAPTER 6. 
 

 

 

 

 

CONCLUSIONS   
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6.1. Summary 

In the present study, the multiple lines of evidence approach including triad approach 

with advanced EDA was adopted to address the ecotoxicological effects through 

comprehensive sediment assessments (Figure 6.1). One of the greatest challenges of 

present study was related to use of archived samples of sediments to assess long-

term changes (or differences) in distributions of absolute and relative concentrations 

of target chemicals and their ecotoxicological effects. Major findings of the present 

study are summarized below: 

In the Chapter 2, in vitro H4IIE-luc, MVLN bioassays and quantitative 

chemical analyses were performed to assess the current contamination and temporal 

changes in dioxin-like and estrogenic contaminants in sediments from Lake Sihwa. 

The results showed that: 1) sediment PAHs were most persistent toxic chemicals 

over 15-year period, particularly in inland, 2) sediment alkylphenols (APs) and 

styrene oligomers (SOs) generally declined over the past 15 years but hotspot still 

found, 3) SOs, recently reported emerging pollutants, were found to be significantly 

high in concentrations 15 years ago (Figure 6.1), and 4) in vitro activities were still 

high in sediments after 15 years, indicating continuing input of toxic chemicals. 

In the Chapter 3, five in vitro and in vivo bioassays with total of 13 endpoints 

to address potential toxicological effects associated with polluted sediments. In 

addition, sediment mixture samples were comprehensively assessed using targeted 

and non-targeted full-scan screening analyses in aspects of exposure and effect 

characterization. The results revealed that: 1) a novel AhR agonist, namely 

enoxolone, was found in the environmental samples containing chemical mixture, 

and it presents a new relative potency value (ReP) in the H4IIE-luc bioassay (Figure 

6.1), 2) enoxolone has a relative potency of 0.13 compared to benzo[a]pyrene (1.0) 

in the H4IIE-luc bioassay, 3) a sensitive novel microalgal bioassay using flow 

cytometry analysis was developed for assessment of potential physiological effects 

for fractionated samples in place of traditional algal population-based endpoint, 4) 

nonylphenols associated with membrane damage that influenced the viability of the 

microalgae were also observed, and 5) inhibitions of bioluminescence of V. fischeri 
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and lethality of D. rerio embryos were strongly related to nonpolar compounds 

(Figure 6.1). 

In the Chapter 4, microbial community structure as determined by eDNA was 

used along with classic assessments of exposure, such as chemistry and in vitro 

bioassays, to evaluate overall status of the benthic community. Two perspectives 

were highlighted in this work, strengthening logistics of a comprehensive assessment 

in time (long-term; 2010–14) and space (inland vs. coastal comparison; for 5 regions). 

The key findings included: 1) bacterial assemblages did not greatly vary over 4 years 

and along the 5 coastal regions (Figure 6.1), 2) some bacterial assemblages were 

explained by chemical and toxicological data, 3) Planctomycetes was indicative 

and/or sensitive taxa to PAHs and Hg pollution, and 4) ER-mediated potency was 

correlated with bacterial communities at Class level. 

In the Chapter 5, an integrated assessment was performed by, combining 

chemical analysis, in vitro bioassays, and in situ investigations of benthic 

communities, highlighting the relatively long-term changes in quality of sediments 

of Masan Bay. The results indicated that: 1) concentrations of target PTSs (PAHs, 

APs, and SOs) decreased over 16 years, 2) recently increased ER-mediated potency 

indicates ongoing inputs of unknown PTSs, 3) benthic community has been affected 

by sedimentary contamination history in Masan Bay, and 4) sediment quality of 

Masan Bay has been generally improved in association to reduced PTSs.  
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LOEs Key findings 

 

• SOs are emerging pollutants that have 

been present in sediments over 10 years 

 

• First reported novel AhR agonist, namely 

“enoxolone”  

 

• Addressed assay-, endpoint-specific     

variations, and sensitivities for potential 

toxicities 

 

• Confirmed multiple taxonomic rank and 

level in contaminant dependent manner 

 
Figure 6.1.  
Multiple lines of evidence (LOEs) approach for the integrated sediment assessment 
used in this study: for representative LOEs are presented by the selection of multiple 
data set from 1) chemical contamination (concentrations and composition), 2) 
biological effect (in vitro and in vivo bioassays), and 3) benthic community structure 
(in situ studies). Key findings for each LOE are highlighted.   
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To summarize the results of the above studies, sediment data from the Korean 

coasts were analyzed of which data collectively includes three LOEs of chemical, 

toxicological, and ecological measures. First, the results of chemistry data enhanced 

understanding of the long-term spatiotemporal differences of several PTSs of interest, 

including new PTSs such as SOs, which could be measured in archived samples of 

sediments from Lake Sihwa, Masan Bay, and west coast of Korea. Spatial 

distributions data indicated that presence of the multiple independent sources of 

PTSs, with hotspot areas (e.g., Lake Sihwa and Masan Bay) producing high 

pressures of certain PTSs. Temporal trends of sedimentary PTSs show decreases in 

recent years which seem to be associated with chemical controls and regulations.  

In addition, to improve the bioassay-based strategies (with five bioassays and 

13 end points involving a 2-step fractionation procedure) combined with target 

analysis and nontarget analyses to identify major AhR agonists. Such a multiple lines 

of evidence approach would enhance the accuracy in evaluation of the potential 

sediment toxicity in sediments. In parallel, quantification of selected PTSs was 

undertaken, thus allowing one to investigate the correlation between identified 

substances and observed biological effects. The target chemicals partly caused the 

effects, but mostly they were caused by a wide spectrum of untargeted substances 

present in the environmental samples. These results provided a better understanding 

of the toxicological signatures of contaminant mixtures that commonly exist in 

Masan Bay and elsewhere, showing different patterns of potential toxicity to the 

sediment raw extracts and fraction samples. 

The benthic community responses given by species occurrence and diversity 

also reflected the type and degree of sediment contamination, however, could not be 

fully explained by the known target chemicals. Overall, the triad assessment of PTSs 

in Korean coastal sediments seemed to be useful and much powerful when all the 

components are fully addressed. 
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6.2. Environmental implications and Limitations 

One of the greatest challenges of this study was related to the use of archived samples 

of sediments to assess long-term changes (or differences) in the distributions of 

absolute and relative concentrations of target PTSs. The results showed that, despite 

support by recent efforts from the Korean governmental pollution control, PTSs 

remain a major threat to the local ecosystem, especially in Sihwa Bay and Masan 

Bay. In particular, NP, which was demonstrated to adversely affect organisms in this 

study, was detected at high concentrations in the sediment. NP was banned from 

kitchen cleaners in 2002, and was designated a restricted-use chemical that was 

prohibited from domestic applications in 2007. The use of NP in paints and ink 

binders has been banned in Korea since 2010 (MOE, 2012). However, NP continues 

to be used in industrial cleaning agents, textile, and leather processing; consequently, 

it was detected in the coastal waters of Korea, and elsewhere (MOA, 2016). Thus, 

further restrictions, regulations, and monitoring of NP are immediately required. Of 

note, certain bioassays detecting NP exposure in the sediments were demonstrated 

in the present work; thus, rapid biological monitoring could be implemented to 

screen NP in the coastal environment. 

 The highlight of this study was integrating multiple LOEs for ERA. In 

particular, one newly identified AhR agonist (enoxolone) was determined by using 

EDA combined with FSA. This approach improved the explaining power of AhR-

mediated potency; however, a large portion of potency could not be explained. Thus, 

it is necessary to investigate other unknown AhR agonists that potentially exist in 

sediments. Evaluation of cell viability using flow cytometry analysis demonstrated 

the benefits of incorporating more sensitive and high-resolution toxicity screening 

of samples in the integrative sediment assessment. In addition, this study 

demonstrated that the sensitivity of toxicity tests is not only species and contaminant-

specific, but that it also varies depending on the endpoint of the measurement. It is 

important to assess the sensitivity of a biotest to evaluate responses and translate 

them into management decisions. If a biotest shows slight sensitivity, only the 

strongest effects could be determined. In contrast, the use of a highly sensitive test 
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system might be overprotective. Information on the responsiveness of a test system 

is, thus, highly important to interpret biotest responses and the degree of confidence 

in resulting management decisions. Assay- and end point-specific variations and 

sensitivities of the potential toxicity of mixed samples provide useful information 

for the selection and management of priority substances in coastal environments. 

Overall, the results of the present study are expected to provide baseline information 

for future monitoring studies and coastal management.  

 Nevertheless, this study had some limitations. First, a common response to 

varying physical factors was not considered, such as sediment grain size, water depth, 

redox potential, and biotic factors (including competition and predation). For 

advanced ERAs, both chemical and non-chemical stressors should be evaluated. 

However, ERAs rarely evaluate potential interaction among various non-

contaminants (physical or biological) or indirect effects (USEPA, 1998; Chariton et 

al., 2016). Whole-organism in vivo bioassays were used to evaluate the toxicity of 

the sediment; however, such bioassays tend to have limited sample throughput, and 

cannot distinguish the effects of pollutants from matrix components, such as salinity, 

and pH. 

 Second, the sediment EDA performed in this study was based on organic 

extracts, which might be limited with respect to bioavailability. To estimate the eco-

toxicological relevance of the identified compounds in respective sediments, 

additional data on their bioavailability are required in future studies (Brack, 2009; 

You and Li, 2017). Third, various statistical analyses were used to integrate the 

LOEs in this study. However, more site-specific diagnostic approaches and criteria 

are required, particularly with respect to identifying and confirming stressors that 

cause toxicity to sediment biota (Table 6.1). To generate ecological and 

environmentally relevant ERA, it is important to determine predicted no-effect 

concentrations (PNECs) and sediment quality guidelines (SQGs) of toxic chemicals 

in marine sediment. For these approaches, large data sets, constructed from data 

assimilated over a long period are required. Future research directions of the 

sediment assessment are suggested in the next section based on the current 

knowledge and limitations.  
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Table 6.1.  
Employed lines of evidence in this study and other approaches identified in the literature with strengths and weaknesses for ecological risk 
assessment (related in 1.1). 
Lines of 
evidence 

Ecological risk assessment 
(√ can be used for this purpose) 

Applied 
years 

Interpretation 

Problem 
Formulation 

Exposure 
Assessment 

Effects 
Assessment 

Causation Strength Weakness 

TIE    √ 1989 a To identify quickly and cheaply those 
chemicals causing toxicity 

Multiple toxicants are present, the proportion 
of the overall toxicity due to each toxicant 
often varies significantly over time and 
matrix will also changed 

Multivariate 
analyses 

   √ 1992 b To identify key stressors, which triggered the 
observed biological responses 

Not accept any missing data, and both 
biological response and stressor data could be 
concurrently obtained at the same time and 
space 

EDA    √ 2003 c To identify organic contaminants causing 
sediment toxicity 

Less consider the bioavailability and 
ecological relevance 

CBRs    √ 2005 d Tissue concentrations of a contaminant 
associated with toxic effects are the same 
irrespective of exposure pathways or 
bioavailability 

Ignores reactivity of contaminants once they 
are taken up by organisms 

Field based 
SQGs with 
f-SSD 

   √ 2005 e Environmentally relevant and realistic 
measurement of the biological community 
response to a specific chemical in the 
presence of other chemicals in the sediment 

Only work when at least some species have 
been impacted and cannot be used for 
predicting acceptable exposures for new 
chemicals 

Habitat 
morphology 

     √ 2005 f To distinguish between toxicity-induced and 
habitat morphology-induced alterations in the 
field 

Non-chemical stressors, both biotic and 
abiotic also need to be considered 

Grey TOPSIS    √ 2007 g Providing complete ranking results; more 
suitable to be combined with stochastic 
analysis 

Not being able to handle vague assessments 

TIE; Toxicity identification and evaluation, EDA; Effect-directed analysis, CBRs; Critical body residues, SQGs; sediment quality guidelines, f-SSD; field-based species 
sensitivity distributions, TOPSIS; Technique for order preference by similarity, a Burkhard and Ankley (1989), b Bocard et al. (1992), c Brack (2003), d Gust and Fleeger (2005),  
e Leung et al. (2005), f Burckhardt-Holm et al. (2005). g Critto et al. (2007). Orange box indicated that used approaches in this study.  
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6.3. Future research directions 

In this study, the multiple LOEs approach was implemented as an advanced 

assessment, including EDA with non-target analyses, multiple bioassays, and eDNA 

metabarcoding. The approach performed well at addressing ecotoxicological effects 

associated with contaminated coastal sediments. However, many areas require 

further research to extend current sediment assessments.  

 Future studies should investigate non-contaminant parameters, such as 

sediment oxygen demand, redox potential, total organic carbon, and particle size 

distribution. These parameters might cause the structure of benthic communities to 

change through regulating chemical bioavailability. Consequently, it is important to 

evaluate the risk these parameters present to sediment (Xu et al., 2015). Different 

species interact with each other in biological communities, with chemical 

contaminants and non-contaminant parameters generally affecting these interactions 

differently in natural habitats (Leung et al., 2014).  

 Furthermore, weighting multiple bioassays could provide useful 

information, such as effect-based trigger values, which represent acceptable risks for 

complex mixtures (Escher et al., 2018, 2020). Scores on the relevance and feasibility 

of various methods should be considered (Martin et al., 2018). In particular, 

overlooking the bioavailability of EDA could lead to biased, and even erroneous, 

identification of causative toxicants in mixed samples. It is important to consider 

bioavailability in the EDA approach to improve the accurate identification of key 

toxicants and to prevent overestimates of toxicity in the environments. Recently, 

various approaches were introduced to address these limitations, and to improve the 

integration of bioavailability in the EDA of abiotic samples, such as bioaccessibility-

based extraction with XAD resin and adverse outcomes pathway-directed EDA 

techniques and their combined application (Li et al., 2019; Cheng et al., 2020).  

 Moreover, SQGs were derived by concurrently collecting field data on benthic 

communities and contaminants loading with measurements of sediment samples 

from the Korean coastal waters (Figure 6.2). For example, it is important to 

discriminate the risks of the interaction between environmental stressors and biota 

from different sites with site-specific sediment quality guidelines. Such information 
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could be used to delineate ecological stress and identify the relative importance of 

causal stressors. The multiple LOEs approach in combination with the grey TOPSIS 

(technique for order preference by similarity) can be used to discriminate the relative 

magnitude of risks at different sites, and rate them as having high, moderate, or low 

ecological risk. This information guides us to take pertinent measures to combat 

polluted sediment (Jiang et al., 2015) (Table 6.1). In addition, species-sensitivity 

distribution approaches that are field-based allow the generation of sediment quality 

guidelines, for which the criteria are more environmentally relevant and realistic for 

use as site-specific guidelines (Leung et al., 2005) (Table 6.1). Although it is difficult 

to evaluate the biological effects of chemicals on various living organisms and 

species with differing sensitivity, it is necessary to evaluate the biological impacts 

of benthic organisms and to focus on marine ecosystem research (Figure 6.2).   
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Figure 6.2.  
Future strategies for multiple lines of evidence approach to address the 
ecotoxicological effects associated with contaminated coastal sediments. 
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ABSTRACT (IN KOREAN) 

 

해양 저서퇴적물은 육상기인오염물질의 최종 종착지이며, 퇴적물 내 장기간 

잔류하는 오염물질은 다양한 해양생물에게 해로운 영향을 미친다. 특히, 잔류성 

유기오염물질은 생물농축·확대 등을 통해 궁극적으로 인간의 건강까지 

위협한다는 점에서 오염퇴적물 생태위해성 평가는 매우 중요하다. 전통적으로 

오염퇴적물 평가는 1) 오염물질의 농도, 2) 생물학적 영향, 3) 저서군집 구조의 

세가지 측면에서 개별적으로 이루어졌다. 그러나 미지독성물질 또는 기물질의 

혼합 영향 등으로 인해 기존의 단편적 오염평가는 생태위해성을 종합적으로 

평가하는데 한계가 있었다. 본 연구에서는 생물영향동정 기반의 다중증거 

접근법을 이용하여 국내 연안퇴적물 내 유기오염물질의 생태위해성을 통합 

평가하였다. 특히, 유기오염물질의 시·공간 변화에 따른 생물영향 특성과 

생태위해성을 평가하고, 국내 연안의 우선관리대상물질을 제시하였다. 연구 

지역은 육상기인오염물질이 다량으로 유입되는 시화호, 마산만 인근의 

특별관리해역과 대도시, 산업단지 등이 밀집된 서해 연안역으로 하였다.  

첫째로, 특별관리해역의 저서퇴적물 오염도 평가를 위해 퇴적물 내 

다환방향족탄화수소, 알킬페놀류, 스티렌올리고머 화합물의 시·공간적인 

농도변화와 분포특성을 파악하였다. 1990년대 말 기채취 된 시료와 최근(2014–

15)에 채취한 시료를 동시분석한 결과, 다환방향족탄화수소와 알킬페놀류 

화합물 농도는 과거에 비해 최근에 현저히 감소한 것으로 나타났다. 또한 

2015년 국내 연안퇴적물에서 최초로 검출되었던 스티렌올리고머의 경우, 

과거에도 시화호와 마산만 퇴적물 내에 고농도로 존재했음이 확인되었다. 

대체로 지난 20년간 국내 연안퇴적물의 오염도는 감소 추세를 보였는데, 이는 

2000년대부터 시행한 ‘연안오염총량관리제’와 최근 정착된 ‘유해물질 배출 

규제’의 정책적 효과로 여겨진다. 한편, 대부분의 유기오염물질은 육상과 인접한 

정점에서 상대적으로 높게 검출되었는데, 이는 저서퇴적물의 오염을 저감하기 

위해서 육상기인오염물질의 우선관리가 시급함을 시사한다. 

둘째로, 저서퇴적물 내 잔류하는 유기오염물질의 생물학적 영향을 파악하기 

위해, 시화호와 마산만 퇴적물을 유기추출하고, 화합물의 극성에 따라 분액화 

한 후 다양한 생물을 대상으로 노출평가를 수행하였다. 유전자 재조합 
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세포(H4IIE-luc, MVLN)를 이용한 유기추출액(또는 분액)의 생물활성 반응은 

퇴적물 내 유기오염물질의 농도와 유의한 상관관계를 보였다. 하지만 두 

세포주의 등가농도 분석결과, 검출된 화합물의 등가농도는 전체 발현된 세포 

활성치 보다 매우 낮게 나타났다. 이는 퇴적물 시료 내 미지의 아릴 탄화수소 

수용체 또는 에스트로겐 수용체 활성 화합물이 다수 혹은 다량으로 존재함을 

시사한다. 해양박테리아의 발광저해도와 제브라피쉬 배아의 치사 영향은 퇴적물 

내 존재하는 무극성 화합물에 의한 것으로 확인되었다. 한편, 미세조류의 생리 

활성 영향 중, 효소활성은 중극성 화합물의 영향을 받는 것으로 나타났고, 

세포막 손상은 주로 극성 화합물(노닐페놀 등)에 기인한 것으로 확인되었다. 

퇴적물 내 노닐페놀 농도는 과거에 비해 감소했음에도, 여전히 미세조류의 

활성에 부정적인 영향을 미치고 있어 향후 지속적인 모니터링이 요구된다. 

종합적으로, 생물학적 영향은 화합물질(종류, 농도)-, 생물 종-, 메커니즘-

특이적으로 나타났다. 따라서, 오염퇴적물의 생태위해성을 정확히 평가하기 

위해서는 적합한 생물검정법을 선택하는 것이 매우 중요하다. 

셋째로, 생물영향동정법을 이용하여 아릴 탄화수소 수용체 활성을 매개하는 

미지의 화합물질을 검색하여 유의한 세포활성능을 보이는 물질을 선별하였다. 

본 실험을 위하여 비표적 기기분석과 H4IIE-luc 세포 활성 평가를 함께 

수행하였다. 그 결과, 퇴적물 내 잔류하는 에녹솔론(피부치료제 성분)이 아릴 

탄화수소수용체 활성에 기여했음을 새롭게 밝혀냈다. 에녹솔론은 아릴 탄화수소 

수용체와 가장 결합능이 높은 벤조에이피렌과 비교하여 약 10%의 결합능을 

가지는 것으로 확인되었다. 따라서 향후 오염퇴적물의 우선관리대상물질 선정에 

있어 에녹솔론류 물질의 포함 여부에 대한 검토가 요구된다.  

끝으로, 오염퇴적물의 생태위해성 평가를 위해 미생물과 대형저서동물의 

군집구조를 살펴보았다. 서해연안 퇴적물 내 미생물 군집구조의 경우, 

환경요인(지리적 위치, 염분) 보다는 오염물질 농도 변화에 따라 우점군이 

급변하였다. 대표적으로 Planctomycetes 미생물군의 경우, 카드뮴과 다환방향족 

탄화수소의 농도가 높아질수록 개체군 밀도(상대 풍부도)가 유의하게 감소하는 

것으로 나타났다. 마산만 퇴적물 내 대형저서동물 중 가장 우점하는 분류군은 

다모류였으며, 특히 내측 정점에서 과거(1998년)와 최근(2015년) 모두 

유기오염지시종인 등가시버들갯지렁이가 극우점하였다. 이는 오염원에 인접한 
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지역에서 일부 대형저서동물이 장기간 지속적인 영향을 받고 있음을 시사한다. 

한편 생태지수 분석 결과 마산만 저서퇴적물 오염도는 최근에, 특히 외해에서 

현저히 감소한 것으로 확인되었다. 그러나 대형저서동물 군집의 건강도는 

오염물질 농도의 급격한 감소 또는 생물학적 영향 저감에도 불구하고, 뚜렷한 

증가 추세를 보이지 않았다.  

이상의 연구결과를 종합 요약하면, 첫째, 국내 연안 저서퇴적물 내 

유기오염물질은 최근 전반적으로 감소했으나, 일부 핫스팟 지역에서 여전히 

유의한 생물 영향을 보였다. 둘째, 유기오염물질의 종류와 농도, 대상 생물의 

종류와 측정 항목에 따라 저서퇴적물의 오염도 및 생태위해성이 상이하게 

평가되었다. 본 연구에서 제시한 다중증거접근법은 기존 퇴적물 오염평가법을 

대체할 수 있는 효과적인 오염퇴적물 생태위해성 평가법으로 사료된다. 향후, 

저서 퇴적물의 오염도가 심각한 연안 해역을 체계적으로 관리하기 위해서는 

지속적인 생태위해성 평가 기법의 개발이 요구된다.  

 

주제어:  해양오염,  

오염퇴적물, 

잔류성오염물질, 
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