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Abstract

Generalization of continued
fraction: its number-theoretical,
geometrical, and combinatorial

properties

Seul Bee Lee
Department of Mathematical Sciences

The Graduate School
Seoul National University

Continued fraction is a formal expression of the iterated fraction which is inves-
tigated in various perspectives; metrical number theory, hyperbolic geometry,
and combinatorics on words. In this thesis, we consider three topics related to
continued fractions.

One of the important properties of continued fraction is that the classi-
cal continued fraction gives an algorithm to generate the best approximation
of every irrational as the principal convergents. We define a new continued
fraction which we call odd-odd continued fraction. We prove that the odd-
odd continued fraction gives best-approximations among the rationals whose
denominators and numerators are both odd.

The second topic is Lévy constants of real numbers whose continued frac-
tion expansions are Sturmian words. Lévy constant is the exponential growth
rate of denominators of principal convergents of a continued fraction. We prove
the existence of a real number whose continued fraction is a quasi-Sturmian
word. Also, we show that the set of the Lévy constants of real numbers whose
continued fractions are Sturmian words or periodic words is the whole spec-
trum of the Lévy constants.

The last topic is about quasi-Sturmian colorings of trees. We characterize
quasi-Sturmian colorings of regular trees by its quotient graph and its recur-
rence functions. We find an induction algorithm of quasi-Sturmian colorings
which is similar to the continued fraction algorithm of Sturmian words.

Key words: Continued fractions, Diophantine approximation, Symbolic dy-
namics, Sturmian words, Lévy constants, Colorings of trees
Student Number: 2013-30898
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Chapter 1

Introduction

The regular continued fraction is a formal expression of the iterated fraction:

(1.1) x = a0 +
1

a1 +
1

a2 +
1

. . . +

an +
1

. . .

.

The investigation of the continued fractions has evolved from various perspec-

tives, such as metrical number theory, hyperbolic geometry, and combinatorics

on words. We focus on a generalization of continued fractions and related prob-

lems with the above aspects.

I. Odd-odd continued fractions

Gauss map G is defined by

G(x) =

{
1

x

}
for x ∈ (0, 1]

where {t} is the fractional part of t. Its invariant measure is dx
log 2(1−x) which

is called Gauss measure. A continued fraction expansion is itself a sequence of

nonnegative integers and we denote the continued fraction expansion of (1.1)

1



CHAPTER 1. INTRODUCTION

by

[a0; a1, a2, · · · , an, · · · ].

Since G is the left shift map of the continued fraction expansion, we call G

the continued fraction map of the regular continued fraction.

Bowen and Series defined a map associated to a discrete subgroup Γ of

SL2(R) on the boundary of Poincaré disk called Bowen-Series map by edge

identifications of the fundamental domain of Γ. Bowen-Series map is used to

define the expansions of boundary points [15]. Bowen-Series map associated to

SL2(Z) is related to a slow down of Gauss map, i.e., the Farey map. In other

words, Gauss map is related to the cuspidal acceleration of Bowen-Series map

associated to SL2(Z) [50] (see Section 2.3 for the definitions of the Bowen-

Series map and its cuspidal acceleration).

The group Θ is an index-3 subgroup of SL2(Z) generated by(
0 1

−1 0

)
and

(
1 2

0 1

)
.

Bowen-Series map associated to Θ is related to the Romik dynamical system.

Romik examined a map on the first quadrant Q of the unit circle S1, which

we call Romik map, to study Pythagorean triples [57]. We conjugate Romik

map via the stereographic projection of Q from (−1, 0) onto the y-axis. Then,

we obtain the following map

R(x) =



x

1− 2x
, if 0 < x ≤ 1

3
,

1

x
− 2, if

1

3
< x ≤ 1

2
,

2− 1

x
, if

1

2
< x ≤ 1.

Romik map is related to Bowen-Series map associated to Θ.

Schweiger introduced the continued fraction with the even partial quo-

tients, which we call even integer continued fraction, and proved that its

corresponding continued fraction map is ergodic [59, 60]. Short and Walker

showed that the convergent of the even integer continued fraction is the best

approximation with the orbit Θ(∞) consisting of the rationals of the form even
odd

and odd
even , and the converse is also true [65]. Even integer continued fraction

corresponds to the cuspidal acceleration of Bowen-Series map associated to Θ

2



CHAPTER 1. INTRODUCTION

with respect to ∞.

In Chapter 2, we define a continued fraction whose convergents are in the

orbit Θ(1) which is the set of rationals of the form odd
odd . We call the continued

fraction odd-odd continued fraction. Odd-odd continued fraction is a counter-

part of the even integer continued fraction in the sense that odd-odd continued

fraction corresponds to the cuspidal acceleration of Bowen-Series map associ-

ated to Θ with respect to 1. We investigate properties of odd-odd continued

fraction expansions.

A traditional question in Diophantine approximation is to find rationals

a/b which minimize |bx − a| for bounded b. We call a rational number p/q a

best approximation if, for any a/b 6= p/q with 0 < b ≤ q,

|qx− p| < |bx− a|.

It is known that the regular continued fraction gives the best approximations.

Theorem (Theorem 16 and 17 in [36]). Every best approximation of x is a

principal convergent of the regular continued fraction of x, and if the fractional

part of x is not 1/2, then a principal convergent of x is its best approximation.

We prove that odd-odd continued fraction gives the best approximation

in Θ(1), i.e., p/q ∈ Θ(1) such that, for any a/b 6= p/q with a/b ∈ Θ(1) and

0 < b ≤ q,
|qx− p| < |bx− a|.

Theorem (Theorem 3.3.22). The convergents of odd-odd continued fractions

are the best approximations of an irrational with rationals whose numerators

and denominators are odd, and vice versa.

II. Lévy constants of Sturmian continued fractions

Words are sequences of finite or infinite letters. For a word with finite letters,

factor complexity is a function counting the number of distinct factors (or

subwords) of each length. Coven and Hedlund showed that a word is even-

tually periodic if and only if its factor complexity is bounded [23]. The least

complexity of aperiodic words is n+ 1. We call a word a Sturmian word if its

factor complexity is n + 1. Sturmian words have some dynamical properties

since Sturmian words can be defined by codings of orbits of irrational rotations

and cutting sequences of the billiard of the square.

3



CHAPTER 1. INTRODUCTION

On the other hand, certain words in a family of Sturmian words, which we

call Characteristic words, are constructed by an algorithm related to continued

fraction expansions. Characteristic words represent all Sturmian words since

there is exactly one characteristic word whose factor set is the same as the

factor set of a fixed Sturmian word.

In Chapter 5, we deal with Lévy constants. For a continued fraction ex-

pansion x = [a0; a1, a2, · · · ], the nth principal convergent of x is

Pn(x)

Qn(x)
:= [a0; a1, · · · , an].

Theorem (Lévy [47]). For almost every x ∈ R,

lim
n→∞

logQn(x)

n
=

π2

12 log 2
.

The limit of the equation above is called Lévy constant of x. Euler and La-

grange proved that x is a quadratic irrational if and only if x has an eventually

periodic continued fraction expansion. By using Euler and Lagrange’s theorem,

Jager-Liardet [34] found formulas of the Lévy constants for all quadratic irra-

tionals. Since Sturmian words have the lowest complexity of aperiodic words,

Lévy constant of a number whose continued fraction is Sturmian is a reason-

able next object to calculate Lévy constant.

Theorem (Theorem 5.2.8). There exists Lévy constant of a real number if its

continued fraction expansion is a Sturmian word.

Jun Wu investigated the spectrum of Lévy constants of quadratic irra-

tionals. Wu proved that the set of Lévy constants of quadratic irrationals is

dense in
[
log

√
5+1
2 ,∞

)
[66]. We examine the spectrum of Lévy constants of

real numbers whose continued fractions are Sturmian or periodic.

Theorem (Theorem 5.2.2). The set of Lévy constants of real numbers whose

continued fraction expansions are Sturmian words or periodic words is the

same as [
log

√
5 + 1

2
,∞

)
.

4



CHAPTER 1. INTRODUCTION

•

•

• • • • • • . . .
•
...•

. . . • • • • • • . . .

Figure 1.1: Quotient graphs of quasi-Sturmian colorings

III. Quasi-Sturmian colorings of trees

Dong Han Kim and Seonhee Lim studied vertex colorings of undirected reg-

ular trees which are the maps from the vertex set of a tree to a finite set

of letters. They defined factor complexity bφ(n) of a coloring φ, which is the

number of colored balls of radius n up to the isomorphisms preserving φ. They

proved the analog of Coven-Hedlund theorem and generalized Sturmian words

to Sturmian colorings on a regular tree [41]. Furthermore, they examined the

continued fraction algorithm of Sturmian colorings [42].

Let Aut(T ) be the group of automorphisms of a regular tree T and Γφ
be the group of color-preserving automorphisms of φ. Quasi-Sturmian words,

which are infinite words with factor complexity eventually n+ c, share many

properties with Sturmian words. There are analogs of quasi-Sturmian words

for colorings of trees. We characterize the quotient graph Γφ\T of a quasi-

Sturmian coloring φ.

Theorem (Theorem 6.2.10). The quotient graph of a quasi-Sturmian coloring

is a union of a finite graph and a geodesic ray or a bi-infinite geodesic as in

Figure 1.1.

The nth factor graph is the graph of which vertices are the non-equivalent

colored balls of radius n and edges connecting two factors whose centers are

adjacent in the underlying tree. Thus, factor graphs represent the relations

of colored balls of the same radius and we can see a pattern of a coloring by

observing the growth of factor graphs.

Theorem (Theorem 6.2.20). For a quasi-Sturmian colorings without cycles

on factor graphs, the factor graphs evolve as

(I) → (II) → · · · → (II) → (I) or

(I) → (II) → · · · → (II) → (III) → (I)

5



CHAPTER 1. INTRODUCTION

A B B A AB

(I) (II) (III)

Figure 1.2: Factor graphs of a quasi-Sturmian coloring

where (I), (II), (III) looks like the figures in Figure 1.2, respectively:

The thesis is organized as follows. In Chapter 2, we review some defini-

tions and properties of the regular continued fraction and the Bowen-Series

map. In Chapter 3, we consider the Romik dynamical system and even integer

continued fractions. We define the odd-odd continued fraction and investigate

its properties, following the paper [39]. This is joint work with Dong Han Kim

and Lingmin Liao.

In Chapter 4, we give some preliminaries of combinatorics on words and

Sturmian words. In Chapter 5, we study Lévy constants. We deal with the

history of Lévy constants in Section 5.1. Then, we examine the existence and

the spectrum of Lévy constants of a real number whose continued fraction

expansion is a Sturmian word in Section 5.2, which are from the paper [16].

This is joint work with Yann Bugeaud and Dong Han Kim.

In Chapter 6, we survey basic definitions of colorings of trees and known

results. We give the proof of the main theorems about the quasi-Sturmian

coloring. The contents are partly from the paper [40] which is the joint work

with Dong Han Kim, Seonhee Lim, and Deokwon Sim.

6



Chapter 2

Generalization of continued

fractions

In this chapter, we introduce the regular continued fraction and their proper-

ties. Then, we focus on a generalization of the continued fraction defined by

the Bowen-Series maps and their cuspidal accelerations.

2.1 Regular continued fraction

In this section, we recall some definitions and properties of the regular contin-

ued fraction, following [36], [56] and [31].

A regular continued fraction is an iterated fraction of the form

(2.1) a0 +
1

a1 +
1

a2 +
1

. . . +
1

an +
.. .

where a0 ∈ Z and an ∈ N for all n ≥ 1. We call an the nth partial quotient or

the nth digit. If the continued fraction is finite, then we write the continued

7



CHAPTER 2. GENERALIZATION OF CONTINUED FRACTIONS

fraction as

(2.2) a0 +
1

a1 +
1

a2 +
1

. . . +
1

an

.

We denote a continued fraction as in (2.1) and (2.2) by sequences

(2.3) [a0; a1, a2, · · · , an, · · · ] and [a0; a1, a2, · · · , an],

respectively, not only to save space but also to see the continued fraction as

a sequence of integers. More precisely, the set of the sequences determined by

the continued fractions is

(2.4) Ω :=

(
Z× NN

)
∪

(
Z×

∞⋃
n=1

Nn
)

where the former is the set of the infinite continued fractions and the latter is

the set of the finite continued fractions.

2.1.1 Basic properties of continued fractions

We define an approximated sequence of a continued fraction. We refer to the

readers to [36] and [56] for more details.

Definition 2.1.1. The principal convergents of [a0; a1, a2, · · · , an, · · · ] are the

truncated continued fractions

Pn
Qn

:= [a0; a1, a2, · · · , an] for all n ≥ 0.

The principal convergents Pn/Qn, n ∈ N are given by

(2.5)

(
Pn Pn−1

Qn Qn−1

)
=

(
a0 1

1 0

)(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
,

where P−1 = 1 and Q−1 = 0 by convention. Thus, there are recursive relations

8



CHAPTER 2. GENERALIZATION OF CONTINUED FRACTIONS

(2.6)

{
Pn = anPn−1 + Pn−2,

Qn = anQn−1 +Qn−2,
for n ≥ 1.

The determinant of the matrix of (2.5) is PnQn−1 − Pn−1Qn = (−1)n+1 and

hence

(2.7)
Pn
Qn
− Pn−1

Qn−1
=

(−1)−n+1

QnQn−1
.

Thus [a0; a1, a2, · · · , an, · · · ] have the value as the limit of principal conver-

gents lim
n→∞

Pn/Qn. If x = lim
n→∞

Pn/Qn, then we say that x has a continued

fraction expansion [a0; a1, a2, · · · , an, · · · ]. We denote an by an(x) and Pn/Qn
by Pn(x)/Qn(x) when we want to emphasize the value x.

Each real number x ∈ R has a continued fraction expansion. The process

to find the digits of the continued fraction expansion of x is related to the

Euclidean algorithm. The algorithm is to find the greatest common divisor of

two integers m0 and n0. We recall briefly the process to find the continued

fraction expansion of a rational. Without loss of generality, we assume that

|m0| ≥ n0 > 0. Then there are two integers a0 and r0 such that m0 = a0n0 +r0

with 0 ≤ r0 < n0. We set m1 = n0 and n1 = r0, then we find a1 and r1 such

that m1 = a1n1 + r1 with 0 ≤ r1 < n1. We can repeat the process by setting

mi = ni−1 and ni = ri−1. We end the process when ri = 0. By the above

expressions, we deduce the following form:

m0

n0
= a0 +

1
m1
n1

= a0 +
1

a1 + 1
m2
n2

= · · ·

We note that the sign of a0 is the same as the sign of m0 and ai > 0 for all

i ≥ 1. Thus, we have ai = bmi/nic, which is inductively defined by

(2.8)
mi

ni
=

1
mi−1

ni−1
− ai−1

.

The process is represented by an alternative sequence of the inversion and the

translation by ai.

The above process is only for the rationals, but it can be generalized to the

real numbers. Let t = t0 be a real number. Then, we take the integral part of

t as the 0th partial quotient a0. As the recurrence formula in (2.8), we define

9



CHAPTER 2. GENERALIZATION OF CONTINUED FRACTIONS

ti by

(2.9) ti =
1

ti−1 − ai−1
,

where ai−1 is the integral part of ti−1. We finish the process when ti is an

integer. Note that if t is a rational, then the process is finished in a finite time,

but if t is an irrational, then the process does not stop. The continued fraction

expansion that we obtain by the above process is the expression of the real

number t since

t = a0 +
1

t1
= a0 +

1

a1 +
1

t2

= a0 +
1

a1 +
1

a2 +
1

t3

= · · · .

We define a map Φ : Ω→ R by

(2.10) Φ({an}n≥0) := [a0; a1, · · · , an, · · · ].

Since 0 < [0; an+1, an+2, an+3, · · · ] < 1 for all n ≥ 1, the nth partial quotient

an is the integral part of tn. In other words, if t is an irrational, then the

process in (2.9) is a unique way to find the continued fraction expansion of

t. On the other hand, if t is a rational, then it has two continued fraction

expansions [a0; a1, · · · , an] and [a0; a1, · · · , an− 1, 1]. Then, Φ is a 1-1 map on

Z×NN and it is a 2-1 map on Z×
⋃
n∈Z

Nn. We remark the following property.

Proposition 2.1.2. The continued fraction is finite if and only if the corre-

sponding value is a rational.

Continued fractions, as we discussed above, is a tool to investigate the

properties of a real number. It can be compared with the decimal (or any

n-ary) system. A number with a finite decimal expansion is a rational, and

whose denominator of the irreducible form has only factors 2, 5. A number

with an infinite periodic decimal expansion is a rational, and vice versa. For

continued fraction expansions, Euler and Lagrange showed a property of the

periodic continued fraction expansions.

We denote by [a0; a1, · · · , an, an+1, · · · , an+k] a periodic continued fraction

with the periodic block an+1, · · · , an+k. We call the length of the minimal

repeated block the period.

10
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Theorem 2.1.3 (Euler). If x has a periodic continued fraction expansion,

then x is a quadratic irrational, i.e., an irrational solution of a quadratic

equation.

In order to show the Euler’s theorem, we need a relation between x and

the principal convergents Pn/Qn. We define the nth complete quotient

xn := [an; an+1, an+2, · · · ].

Since xn = an + 1/xn+1, we infer the following relation

Pnxn+1 + Pn−1

Qnxn+1 +Qn−1
=

Pn(an+1 + 1/xn+2) + Pn−1

Qn(an+1 + 1/xn+2) +Qn−1
=

Pn+1xn+2 + Pn
Qn+1xn+2 +Qn

.

By induction, we can express x by its complete quotients as

(2.11) x =
Pnxn+1 + Pn−1

Qnxn+1 +Qn−1
for n ≥ 0.

If x has a periodic continued fraction expansion, then xi+1 = xj+1 for some i

and j. By (2.11), we have

xi+1 = xj+1 =
Qi−1x− Pi−1

Qix− Pi
=
Qj−1x− Pj−1

Qjx− Pj
.

The above equation is equivalent to a quadratic equation and its discriminant

is not a square number. The converse of Theorem 2.1.3 holds.

Theorem 2.1.4 (Lagrange). A quadratic irrational has a periodic continued

fraction expansion.

Later, Charves gave a shorter proof. Let us consider a real number x and

the complete quotients x0, x1, x2, · · · . The idea of the Charves’ proof is that the

quadratic equations of xn, n ≥ 0 have bounded coefficients. Similarly, in the

Lagrange’s proof, he showed that there are finitely many complete quotients

by using the fact that the discriminants of complete quotients are the same.

See Theorem 28 in [36] and Theorem 1-3 in [56, Chapter III, §1] for more

details of Euler and Lagrange theorem.

In the rest of the section, we consider Diophantine approximation. Dio-

phantine approximation problem is to find a rational which is “close” to a

fixed irrational number. More precisely,

11
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Definition 2.1.5. We call a rational p/q a best approximation of x ∈ R if

|qx− p| < |bx− a| for all a/b 6= p/q such that 0 < q ≤ b.

In other words, |qx − p| is the distance ||qx|| of qx mod 1 from 0 on the

unit circle S1 whose circumference is normalized by 1. Thus, if p/q is a best

approximation of x, then ||qx|| < ||bx|| holds for any 0 < q ≤ b. Lagrange es-

tablished a connection between the best approximations and regular continued

fractions.

Theorem 2.1.6. Every best approximation of x is a principal convergent of

the regular continued fraction of x, and if the fractional part of x is not 1/2,

then a principal convergent of x is its best approximation.

The theorem tells us that the continued fraction gives an algorithm to find

the best approximations. There are several versions of proofs of the theorem.

In his monograph, Khinchin gave an arithmetic proof (see Theorem 16 and

Theorem 17 in [36]). Irwin proved the theorem using plane lattices in [32].

Short gave the proof using Ford circles in [64] (see Definition 3.3.10 for the

definition of Ford circles).

2.1.2 Gauss map and related dynamical systems

In this subsection, we deal with a dynamical system related to the regular

continued fraction.

Gauss map or The continued fraction map G : [0, 1]→ [0, 1] is defined by

G(x) =


1

x
−
⌊

1

x

⌋
if x 6= 0,

0 if x = 0,

where btc is the greatest integer not exceeding t. The Gauss map is piecewise

invertible and has infinitely many branches as in Figure 2.1. In (2.8) and

(2.9) of the previous section, we see that ni/mi = G(ni−1/mi−1) and 1/ti =

G(1/ti−1). More precisely, the Gauss map G is the left shift map of continued

fraction expansions:

G([0; a1, a2, · · · , an, · · · ]) = [0; a2, a3, · · · , an+1, · · · ].

12
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1

10 1
2

1
3

1
4

1
5

...

Figure 2.1: Gauss map

Using Gauss map, we obtain continued fraction expansions of real numbers in

(0, 1): the nth partial quotient an(x) is b(Gn−1(x))−1c.
The Gauss map G has an invariant measure µ = (log 2(1 + t))−1dt. Using

G−1([0, x)) =
∞⋃
n=1

[
1

x+ n
,

1

n

]
,

it follows that the measure µ(G−1([0, x))) is equal to µ([0, x)):

∞∑
n=1

∫ 1
n

1
x+n

1

log 2(1 + t)
dt =

1

log 2

∞∑
n=1

log
n+ 1

n
· x+ n

x+ n+ 1

=
1

log 2

∞∑
n=1

log
x
n + 1
x

n+1 + 1
=

1

log 2

∞∑
n=1

∫ x
n

x
n+1

1

t+ 1
dt =

1

log 2

∫ x

0

1

t+ 1
dt.

We denote again by Φ as the restriction of Φ in (2.10) to NN ∼= {0} × NN.

Let σ be the left shift map on NN. Then, the following diagram commutes:

(0, 1)\Q (0, 1)\Q

NN NN
σ

G

Φ Φ�

13
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1

10 1
2

1
3

1
4

1
5

1
2

1
3

Figure 2.2: Farey map

We can give the pullback measure Φ∗µ on NN. Then two measure preserving

dynamical systems (NN, σ,Φ∗µ) and ((0, 1)\Q, G, µ) are equivalent.

Ito introduced the Farey map to find intermediate convergents in [33] (see

Definition 3.3.26 for the definition of intermediate convergents). Let us denote

by F Farey map which is defined by

(2.12) F (x) =


x

1− x
if 0 ≤ x < 1

2
,

1− x
x

if
1

2
≤ x ≤ 1.

The Farey map is the same as the Gauss map on the subinterval [1/2, 1] and it

has a fixed point at 0 at which the derivative is 1 (see Figure 2.2). The Farey

map is a slow down of the Gauss map in the sense that

(2.13) F a1(x)(x) = G(x).

Schweiger introduced the notion of a jump transformation as an acceler-

ation of a transformation in [61, Chapter 19]. For a transformation T of a

domain X, let us define the first return time of x ∈ X to a subset Y ⊂ X by

nY (x) := min{n ≥ 1 : Tn(x) ∈ Y }.

Definition 2.1.7. We call J(x) = TnY (x)+1(x) the jump transformation as-

14
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sociated to T with respect to Y .

The Farey map sends the intrerval ( 1
n+1 ,

1
n) to the interval ( 1

n ,
1

n−1) for

n ≥ 2. Since a1(x) = n for x ∈ ( 1
n+1 ,

1
n), a1(x) − 1 is the first return time of

x to the subinterval (1
2 , 1) in the orbit of x under F . It means that the Gauss

map G is the jump transformation associated to the Farey map F with respect

to the subinterval (1
2 , 1) by (2.13).

2.2 Coding of geodesics on the modular surface

In this section, we investigate a connection between geodesics on SL2(Z)\H
and continued fractions, following [24], [52] and [62].

2.2.1 Hyperbolic surface

The hyperbolic plane H is a 2-dimensional Riemannian manifold with the con-

stant curvature −1. The hyperbolic plane can be represented by the upper-half

plane model consisting of complex numbers whose imaginary parts are posi-

tive:

H = {z ∈ C : Im z > 0}.

We identify its boundary with R ∪ {∞}. We consider the Poincaré metric

ds2 = dx2+dy2

y2
on the unit tangent bundle

T 1H = {(z,v) : z ∈ H, v · v = 1}.

The special linear group SL2(R) acts on H via the Möbius transformations

which are defined by

g(z) =
az + b

cz + d
for g =

(
a b

c d

)
∈ SL2(R).

The action extends to T 1H as g(z,v) = (g(z), g′(z)v). A geodesic is the short-

est path between two points. Geodesics on H are vertical lines or half circles

perpendicular to the real line. We refer the readers to Chapter 9 in [24] for

the details.

The modular surface M is obtained from H by quotienting it using the

15
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1−1 0 1
2−1

2

R Q

SQ S2Q

Figure 2.3: The standard fundamental domain R with the thick boundary and
the modified fundamental domain Q with the shaded face of SL2(Z)\H.

isometries in SL2Z. The group SL2Z is generated by the matrices

(2.14) τ =

(
1 1

0 1

)
and ι =

(
0 1

−1 0

)
.

A fundamental domain R, which is often called “the standard fundamental

domain”, is the region

(2.15) R =

{
z ∈ H : −1

2
< Re z <

1

2
and |z| > 1

}
.

See Figure 2.3.

The Möbius transformations corresponding to the generators in (2.14) are

z 7→ z + 1 and z 7→ −1

z
.

The first map maps the line from −1/2 to the line from 1/2. The second map

identifies the arc connecting i and (−1 +
√

3i)/2 with the arc connecting i

and (1 +
√

3i)/2. We can obtain another fundamental domain by modifying

the standard fundamental domain. After cutting R by the middle line and

pasting the left piece to the right-hand side, we have the quadrilateral Q (see

Figure 2.3).

16
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`

−1 0 1 2 3

∆

Figure 2.4: Farey tessellation. The geodesic line ` connecting 0 and ∞.

Now, let us consider a matrix

(2.16) S =

(
0 −1

1 −1

)

which sends z to −(z− 1)−1. The map S fixes 1/2 +
√

3/2i and sends ∞ to 0,

0 to 1 and 1 to ∞. It means that S rotates the modified fundamental domain

Q centered at 1/2 +
√

3/2i. Then, the union of Q, SQ and S2Q makes the

ideal triangle ∆ whose vertices are 0, 1 and ∞. We will see that the regular

continued fraction corresponds to the coding of the geodesic associated to the

tessellation of H with the images of ∆ under SL2(Z).

2.2.2 Cutting sequences with Farey tessellation

Farey tessellation is the tessellation consisting of the images of ∆ under SL2Z
(see Figure 2.4). Denote by ` the geodesic joining 0 and ∞. We call each

triangle an elementary triangle and each geodesic of the Farey tessellation an

elementary edge. The endpoints of γ(`) are p/q and p′/q′ where γ =

(
p p′

q q′

)
.

Thus for any endpoint p/q and p′/q′ of γ(`), we know that |pq′−p′q| = 1. The

map τ in (2.14) and S in (2.16) generate SL2(Z). The SL2(Z)-action preserves

the Farey tessellation since τ and S preserve the Farey tessellation.

Farey tessellation is named after a geologist J. Farey since the tessellation

is related to the Farey sequences. The Farey sequence of order n is the collec-

tion of all rationals whose denominators and numerators are at most n. For

17
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L
R

γ

Figure 2.5: Segments of the type L (left) and the type R (right).

example, the nonnegative entries of the Farey sequences are:

F1 : 0, 1, ∞, F2 : 0,
1

2
, 1, 2, ∞, F3 : 0,

1

3
,

1

2
,

2

3
, 1,

3

2
, 2, 3, ∞, · · · .

Two rationals p/q and p′/q′ are adjacent to each other in a Farey sequence if

and only if |pq′−p′q| = 1. In other words, two consecutive numbers in a Farey

sequence are connected by an elementary edge. In Section 3.3.1, we deal with

a relation between continued fractions and the collection of the elementary

edges which is called Farey graph (see Definition 3.3.8 in Section 3.3.1).

Let γ be an oriented geodesic of the modular surface M . Let us denote by

π the canonical projection from T 1H to T 1M (see Figure 2.6). Let γ be a lift

of γ, i.e., γ = π(γ). Let us denote by γ−∞ the backward endpoint of γ and by

γ∞ the forward endpoint of γ. We can find a lift γ of γ

−1 < γ−∞ < 0, γ∞ > 1, or −1 < γ−∞ < 0, γ∞ > 1.

By the condition, γ intersects iR at a point, say ξγ . We recall that the set of

the pure imaginary numbers iR is the y-axis of H.

The Farey tessellation divides γ into segments. For each segment, we give a

type L or R as follows. If there is only one vertex of the elementary triangle on

the left side of the segment, then we give the type L on the segment. Otherwise,

we give the type R on the segment (see Figure 2.5). See the geodesic γ in

Figure 2.6 for an example. The segment of γ between 0 and 1 is of type L and

the next segment is of type L also. The preceding segment is of type R.

Let us consider the sequence of the types of the segements of γ. We denote

by Rn (or Ln, respectively) the block repeating R (or L, respectively) n times.

Note that the types of the segment before ξγ and the segment after ξγ are

18
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R

L L

0 1 2

γ

•ξγ π

H

M

•π(i)

•π(1+
√

3i
2 )

•x γ

...

Figure 2.6: Projection from H to M . Corresponding Labels of an oriented
geodesic γ.

distinct. We can indicate ξγ between the types of segment before and after ξγ
in the sequence of the types.

Definition 2.2.1. The cutting sequence of γ is defined by the sequence of the

types of segments as

· · ·Ln−2Rn−1ξγL
n0Rn1Ln2 · · · or · · ·Rn−2Ln−1ξγR

n0Ln1Rn2 · · · ,

where ni is the number of repetitions of each type.

This labeling is invariant under SL2(Z)-action. It means that we can as-

sociate γ with the cutting sequence of γ. Let x := ξγ . Then, we have the

following cutting sequence of γ:

· · ·Ln−2Rn−1xLn0Rn1Ln2 · · · or · · ·Rn−2Ln−1xRn0Ln1Rn2 · · · .

Series clarified a connection between the cutting sequences and the regular

continued fractions of the endpoints of geodesics on M [62].

Theorem 2.2.2 ([62], Theorem A). Let γ be a geodesic on M . If γ has a

cutting sequence · · ·Ln−2Rn−1xLn0Rn1 · · · , then

γ∞ = [n0;n1, n2, · · · ] and γ−∞ = −[0;n−1, n−2, · · · ].
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· · ·

−1 0 1 n1

• •

•
ξγ

• ηγ

ρ1(γ−∞)ρ1(γ∞)

••

•
ρ1(ηγ)•ρ1(ξγ)

Figure 2.7: Geodesics γ (black) and ρ0(γ) (blue)

On the other hand, if γ has a cutting sequence · · ·Rn−2Ln−1xRn0Ln1 · · · , then

γ∞ = −[0;n0, n1, n2, · · · ] and γ−∞ = [n−1;n−2, n−3, · · · ].

Sketch of the proof. See Figure 2.7 for the procedure of the proof. Since the

segments of the type L after ξγ is iterated n0 times, the forward endpoint is

between n0 and n0 + 1. It means that the integral part of γ∞ is n0 which is

the 0th partial quotient.

The first partial quotient of γ∞ is the integral part of 1
γ∞−n0

. Consider

a Möbius transformation ρ0(z) = −1/(z − n0). It is enough to show that

b−ρ0(γ∞)c is equal to n1. Let ηγ be the point on γ such that Re(γ(t)) = n0.

Then ρ0(ηγ) lies in iR. The cutting sequence after ηγ of γ is the same as

the cutting sequence after ρ0(ηγ) of ρ0(γ) which starts from Rn1 . Thus the

integral part of −ρ0(γ∞) is n1. As a similar argument, we can show that

γ∞ = [n0;n1, n2, · · · ] inductively.

For the backward endpoint, we also use the previous argument. For the in-

version map ι in (2.14), the cutting sequence of ι(γ) is · · ·Rn−1ι(ξγ)Ln0Rn1 · · · .
If we reverse the direction of the geodesic ι(γ), then its cutting sequence is

· · ·Ln1Rn0ι(ξγ)L−1 · · · . By the previous argument, −1/γ−∞ has the continued

fraction expansion [n−1;n−2, n−3, · · · ].
We can prove the second assertion by the above arguments exchanging R

and L.
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2.3 Bowen-Series map

In this section, we deal with a generalization of the discussion in the previous

section to Fuchsian groups, i.e., discrete subgroups of SL2(Z).

In this section, we use the Poincaré disk model

D = {z ∈ C : |z| < 1}

for the hyperbolic plane instead of the upper-half plane model. We can identify

H with D by

ω :=

(
1 −i
−i 1

)
: z 7→ z − i

−iz + 1
.

Since Isom+(H) = PSL+
2 (R), Isom+(D) = ωPSL+

2 (R)ω−1 which is a subgroup

of PSL+
2 (C) consisting of oriented preserving maps preserving D. Let Γ be

a subgroup of PSL+
2 (R) and z ∈ H. By abuse of notation, we denote by Γ

the conjugation ωΓω−1 of the subgroup Γ and by z the image ω(z) of z for

simplification.

The limit set of a group is the set of the accumulation points of its orbits.

The limit set of a Fuchsian group is contained in the boundary ∂D. We say that

a Fuchsian group is of the first kind if its limit set is the same as whole ∂D.

Bowen and Series established a boundary map on ∂D by edge identifications

of the fundamental domain of a finitely generated Fuchsian group of the first

kind [15], which we briefly recall.

From now on, let Γ be a finitely generated Fuchsian group of the first kind.

Let F be a fundamental domain of Γ. Let us denote by a set of greek letters

A = {α, α−1, β, β−1, γ, γ−1, · · · } the set of elements of Γ identifying two sides

of F . We note that A is a finite set since F has finite sides. Let us consider a

pair of sides (s, s′) of F which are identified to each other by an element of Γ.

We denote by sα := s if α−1(s) = s′.

The isometric circle of γ =

(
a b

c d

)
is |cz + d| = 1, i.e., the set of the

points z such that |γ′(z)| = 1 in H. In the Poincaré disk D, the isometric circle

of γ ∼= ωγω−1 is the image of |cz+ d| = 1 in H under ω. We denote by Cα the

isometric circle of α in D. We label endpoints of Cα with vα and wα on ∂D
as in Figure 2.8. Bowen and Series constructed a fundamental domain F of Γ

such that
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[α]

[α−1]

[β]
[γ]

[γ−1]

[β−1]

vα

wα = vα−1

wα−1

vβ

wβvγ

wγ = vγ−1

wγ−1

vβ−1

wβ−1

F

sα

sα−1

sβ sγ
sγ−1

sβ−1

Figure 2.8: Labeling of the sides of a fundamental domain F and endpoints of
its isometric circles, the corresponding partition of the boundary.

the geodesic containing sα is Cα, and

Cα is contained in the tessellation consisting of
⋃
γ∈Γ

γ(∂F).(2.17)

We denote by the interval notations (v, w), [v, w), (v, w], [v, w] the arc of

∂D between v and w. We define a partition {[α]}α∈A of ∂D by [α] := [vα, vα′)

such that sα′ is the next side of sα in an anti-clockwise direction. Bowen and

Series defined a map associated to Γ by

(2.18) fΓ(x) = α−1(x) x ∈ [α].

The boundary expansion of x ∈ ∂D is defined by

[α0, α1, · · · , αn, · · · ] such that αn := α if fn−1
Γ (x) ∈ [α].

Then, fΓ is a left shift map of the boundary expansion. From now on, we

denote by the finite expansion form [α0, α1, · · · , αn] the subarc of ∂D whose

elements have the expansions starting with α0, α1, · · · , αn. Then, the arc is

exactly

[α0, α1, · · · , αn] = α0 ◦ α1 ◦ · · · ◦ αn−1([αn]).

Example 2.3.1. For example, let us consider the congruence subgroup of level
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2

3

[α, β−1]

[α, β]

[α, α] [α]
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[α−1,α−1][α−1]

1
2

1
3

[β, α−1]

[β, α]

[β, β] [β]

−1
2

−1
3

[β−1,α]

[β−1,α−1]

[β−1,β−1][β−1]

∞

−1
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1

•

•

•

•

•
•

•
•

•
•

•
•

sα−1 sα

sβ−1 sβ

•

•

• •

•
•

•
•

•
•

•
•

[α, β−1]

[α−1,β−1]

[α−1,β]

1
2

1
3

[β, α−1]

[β, α]

[β, β] [β]

−1
2

−1
3

[β−1,α]

[β−1,α−1]

[β−1,β−1][β−1]

Figure 2.9: Fundamental domain D of Γ(2) in D.

2

Γ(2) =

{(
a b

c d

)
:

(
a b

c d

)
≡

(
1 0

0 1

)
(mod 2)

}
.

Then the fundamental domain D of Γ(2) satisfying the condition 2.17 is as in

Figure 2.9. Let

α =

(
1 2

0 1

)
and β =

(
1 0

2 1

)
.

The group Γ(2) is generated by {α, β} and α, β identify the sides of D. The

arcs are [α−1] = [∞,−1), [β−1] = [−1, 0), [β] = [0, 1) and [α] = [1,∞).

The subarcs corresponding to the words of length 2 are

[α, α] = [3,∞), [β, α] =

[
1

3
,
1

2

)
, [β−1, α] =

[
−1,−1

2

)
,

[α−1, α−1] = [∞,−3), [β, α−1] =

[
1

2
, 1

)
, [β−1, α−1] =

[
−1

2
,−1

3

)
,

(2.19)

23



CHAPTER 2. GENERALIZATION OF CONTINUED FRACTIONS

[α, β−1] = [1, 2), [α−1, β−1] = [−3,−2), [β−1, β−1] =

[
−1

3
, 0

)
,

[α, β] = [2, 3), [α−1, β] = [−2,−1), [β, β] =

[
0,

1

3

)
.

(2.20)

We can modify the choice of the partition of [α]’s as long as [α] ⊂ [vα, wα)

and the disjoint union of [α]’s is ∂D. Let us consider the case of Γ = SL2(Z).

For the standard fundamental domain R in (2.15), ω(R) looks like the region

in Figure 2.10.

We will compare the following two choices of a partition of ∂D:

(i) [τ−1] = [∞,−1), [τ ] = [1,∞), [ι−1] = [−1, 1) and

(ii) [τ−1] = [∞,−1
2), [τ ] = [1

2 ,∞), [ι] = [−1
2 ,

1
2).

Example 2.3.2 (Farey map). We denote by f1 the Bowen-Series map asso-

ciated to fSL2(Z) with the partition (i). By (2.18), f1 is explicitly the following

map

f1 :=


x+ 1 if x ∈ (−∞,−1),

x− 1 if x ∈ [1,∞),

−1

x
if x ∈ [−1, 1).

The map f1 is related to the Farey map F in (2.12) since

F (x) =

{
ι ◦ f2

1 (x) if x ∈ [0, 1
2),

|f2
1 (x)| if x ∈ [1

2 , 1].

We observe that [ 1
n+1 ,

1
n) = [ι, τ−n] = [ι, τ−1, τ−1, · · · , τ−1] for n ∈ N where

the number of τ−1 is n. For x ∈ [1,∞], the boundary expansion of x is of the

form

[τ−n1 , ι, τn2 , ι, τ−n3 , · · · ].

We can see that the cutting sequence of a geodesic is · · ·Ln1Rn2Ln3 · · · if the

forward endpoint is x (see Definition 2.2.1).

Example 2.3.3. The nearest integer continued fraction map is

T (x) =

∣∣∣∣1x −
⌊

1

x
+

1

2

⌋∣∣∣∣ for x ∈
(

0,
1

2

)
,
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∞

−1

−1
2

1

1
2

•

• •

•
0

Rτ−1 τ

ι
•

•

•

• •

[τ−1] [τ ]

[ι]

Figure 2.10: Fundamental domain of SL2(Z) in D.

here,
⌊

1
x + 1

2

⌋
is the nearest integer of 1

x . For x ∈ R, the nearest integer con-

tinued fraction is

x = c0 +
κ0

c1 +
κ1

c2 +
κ2

. . .

where c0 is the nearest integer of x, the 0th numerator κ0 is the sign of x −
c0, each digit cn is the nearest integer of 1

Tn−1(x−c0)
and κn is the sign of

1
Tn−1(x−c0)

− cn. Then, T is a left shift map of the nearest continued fraction

expansions.

The Bowen-Series map associated to SL2(Z) with the partition (ii) is

f2(x) :=



x+ 1 if x ∈
(
−∞,−1

2

)
,

x− 1 if x ∈
[

1

2
,∞
)
,

−1

x
if x ∈

[
−1

2
,
1

2

)
.
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By iterating of f2, we can induce T such that

T (x) = −fn(x)
2 (x) for x ∈

(
0,

1

2

)
where n(x) is the first return time of x ∈ (0, 1/2) to (−1/2, 0) as an orbit

under T . We note that c1 = n(x) − 1. In this sense, we can say that f2 is a

slow down map of T .

By the above discussion, we can say that a continued fraction map cor-

responds to an acceleration of the Bowen-Series map in some sense. We deal

with such an acceleration of the Bowen-Series map.

Artigiani, Marchese and Ulcigrai investigated Lagrange spectra related to

Fuchsian groups in [5] and [6]. Marchese studied about bad sets for non-

uniform Fuchsian groups in [50]. In this investigation, they defined the cuspidal

acceleration of the Bowen-Series map. In the rest of this section, we introduce

the definition of the cuspidal acceleration, following [5], [6] and [50].

For a fixed Bowen-Series map fΓ, we call a finite word α1α2 · · ·αn over

A an admissible word if there is a corresponding arc [α1, α2, · · · , αn] on ∂D.

We say that an infinite word α1α2 · · ·αn · · · is admissible if there is x ∈ ∂D
whose boundary expansion is [α1, α2, · · · , αn, · · · ]. A finite word α1α2 · · ·αn
has no backtracking if αi+1 6= α−1

i for any 1 ≤ i < n. We can show that a word

is admissible if and only if a word has no backtracking. We say that a word

α1α2 · · ·αn is a cuspidal word if one of the endpoints of the corresponding

arc [α1, α2, · · · , αn] is a cusp of Γ\H. We note that all words of length 1 are

cuspidal. For example, the cuspidal word of length 2 of Γ(2) are

α−1α−1, α−1β, αα, αβ−1, β−1β−1, β−1α, ββ. and βα−1

since one of the endpoints of their corresponding arcs is 0, 1, −1 or ∞ (see

(2.19) and (2.20)).

Consider an admissible word α1α2 · · ·αn · · · . We can decompose a word by

cuspidal words such that

α1α2 · · ·αn · · · = W1W2W3 · · ·

where Wk = αn(k) · · ·αn(k+1)−1 is defined inductively by the maximal cuspidal

word from αn(k) for k ∈ N.

Definition 2.3.4. The cuspidal acceleration of fΓ is a map CΓ : ∂D → ∂D
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defined by

CΓ(x) = (α0 ◦ α1 ◦ · · · ◦ αn)−1(x) if W1 = α0α1 · · ·αn.

In Example 2.3.2, the cuspidal words are ι and τn for all n ∈ Z. A word

ιτ−n1ιτn1ιτ−n3 is decomposed by

(ι)(τ−n1)(ι)(τn1)(ι)(τ−n3) · · · .

For the cuspidal acceleration C1 induced by f1, the Gauss map G is

G(x) = C1 ◦ ι(x) = C2
1(x) for x ∈ [0, 1).

Similarly, for the cuspidal acceleration C2 induced by f2 in Example 2.3.3,

we can see that

T (x) = C2 ◦ ι(x) = C2
2(x) for x ∈

[
−1

2
,
1

2

)
.
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Chapter 3

Continued fraction related to

Θ-group

In this chapter, we focus on the Bowen-Series map associated to Θ-group. The

group Θ is an index-3 subgroup of SL2(Z) generated by(
0 1

−1 0

)
,

(
1 2

0 1

)
.

The group Θ is explicitly

Θ =

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
or

(
0 1

1 0

)
(mod 2)

}
.

3.1 Romik dynamical system

Romik introduced a dynamical system on the unit interval [0, 1] as follows

(3.1) R(x) =



x

1− 2x
, 0 ≤ x ≤ 1

3
,

1

x
− 2,

1

3
≤ x ≤ 1

2
,

2− 1

x
,

1

2
≤ x ≤ 1.

See [57] for the details. The graph of the Romik map is as in Figure 3.1. We

refer the reader to [19] and [20] for the investigation of number-theoretical
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1

10 1
2

1
3

Figure 3.1: Romik map R.

properties and the Lagrange spectrum of the Romik map.

We remark that, for the Farey map F , a real number x between 0 and 1 is

rational if and only if Fn(x) = 0 for some n ≥ 0. It is related to the fact that

SL2(Z)\H has the only one cusp and the cusp corresponding to Q ∪ {∞}.
The Romik map has two indifferent fixed points 0 and 1, i.e., the fixed

point with differential 1. By using the fixed points, we can classify rational

numbers into two classes such that

{x : Rn(x) = 0 for some n ≥ 0} or {x : Rn(x) = 1 for some n ≥ 0}.

Actually, the first set is Θ(∞) ∩ [0, 1] and the second set is Θ(1) ∩ [0, 1], thus,

each of them is related to the two cusps of the surface Θ\H corresponding to

∞ and 1.

Definition 3.1.1. We call a rational in the orbit Θ(∞) an ∞-rational and a

rational in the orbit Θ(1) a 1-rational.

Note that an ∞-rational is of the form even
odd or odd

even , but a 1-rational is of the

form odd
odd .

Romik originally introduced the Romik dynamical system R̂ as a dynamical

system on the first quadrant

Q = {(x, y) : x2 + y2 = 1, x ≥ 0, y ≥ 0}

of S1 to investigate an algorithm generating the Pythagorean triples by multi-

29



CHAPTER 3. CONTINUED FRACTION RELATED TO Θ-GROUP

••

•

D

D̃

•

•

•

(
3
5 ,

4
5

)(
4
5 ,

3
5

)

Figure 3.2: Romik map on the quadrant Q.

plying matrices (see [12] and also [4], [7], [22], [21]). More precisely, the Romik

map R̂ on Q

R̂(x, y) =

(
|2− x− 2y|
3− 2x− 2y

,
|2− 2x− y|
3− 2x− 2y

)
.

Let us define D : (0, 1)→ Q and D̃ : (0, 1)→ Q by

D(t) =

(
1− t2

1 + t2
,

2t

1 + t2

)
and D̃(t) =

(
2t

1 + t2
,
1− t2

1 + t2

)
.

The maps D and D̃ are the inverses of the stereographic projections of Q from

(−1, 0) and (0,−1) onto y-axis and x-axis, respectively (see Figure 3.2). Then

the Romik map R is a conjugation of R̂ such that

(3.2) R = D−1 ◦ R̂ ◦D = D̃−1 ◦ R̂ ◦ D̃.

See Theorem 4 in [57] for more details.

3.2 Even integer continued fraction

In this section, we introduce even integer continued fraction and the related

results, following [59], [60], [45], [65] and [14].

Schweiger investigated the continued fraction with even partial quotients
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which we call the even integer continued fraction in [59, 60]. We abbreviate the

even integer continued fraction to EICF. The EICF is related to the cuspidal

acceleration of Bowen-Series map associated to Θ with respect to ∞. The

cuspidal acceleration in here is not exactly the cuspidal acceleration of the

previous section, but it is obtained by accelerating for a class of cuspidal

words which corresponds to the arcs adjacent to ∞.

For b0 ∈ 2Z, bn ∈ 2N, n ≥ 1 and ηi ∈ {−1, 1}, an EICF expansion is

x = b0 +
η0

b1 +
η1

b2 +
η2

. . .

.

We write an EICF expansion as a sequence in a double angle bracket:

(3.3) 〈〈(b0, η0), (b1, η1), · · · , (bi, ηi), · · · 〉〉 .

The left shift map of EICF expansions is the EICF map Te on the unit interval

[0, 1] defined by

Te(0) = 0, and Te(x) =


1

x
− 2k, if

1

2k + 1
≤ x ≤ 1

2k
,

2k − 1

x
, if

1

2k
≤ x ≤ 1

2k − 1
,

for all k ∈ N.

See Figure 3.3 for the graph of Te.

As the Gauss map G is the jump transformation associated to the Farey

map F with respect to [1/2, 1], the EICF map Te is the jump transformation

associated to the Romik map R with respect to [1/3, 1), i.e.,

Te(z) = Rn[1/3,1)(x)+1(x)

where n[1/3,1)(x) = min{i ≥ 1 : Ri(x) ∈ [1
3 , 1)} (see Definition 2.1.7). Note that

Te has an invariant measure µe = (1−x2)−1dx which is absolutely continuous

with respect to Lebesgue measure. Schweiger showed that µe is an ergodic

measure of Te (see Theorem 2 in [59] for the proof).

The nth EICF principal convergent, denoted by pen/q
e
n, is the truncated
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Figure 3.3: Even integer continued fraction map Te.

continued fraction

pen
qen

:= 〈〈(b0, η0), (b1, η1), · · · , (bn, ηn) 〉〉 .

Before introducing the recursive formula for the EICF principal convergents,

let us see the following lemma for general continued fraction forms (see p.3 in

[44] for details).

Lemma 3.2.1. Let us consider a general continued fraction of the form

x = a0 +
b0

a1 +
b1

a2 +
b2

a3 +
. . .

,

where an, bn are integers. Let rn/sn be the finite continued fraction of the form

a0 +
b0

a1 +
b1

a2 +
b2

. . . +
bn−1

an

.
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Then the following matrix relation holds:(
rn bnrn−1

sn bnsn−1

)
=

(
a0 b0

1 0

)(
a1 b1

1 0

)
· · ·

(
an bn
1 0

)
.

Consequently, we deduce the following recursive formulas:{
rn = anrn−1 + bn−1rn−2,

sn = ansn−1 + bn−1sn−2,

where r−1 = 1, s−1 = 0, r0 = a0 and s0 = 1.

Thus, for EICF, the following matrix relation holds:

(3.4)

(
qn εnqn−1

pn εnpn−1

)
=

(
a0 ε1

1 0

)(
a1 ε1

1 0

)
· · ·

(
an εn
1 0

)
.

Kraaikamp-Lopes characterized the finite and eventually periodic EICF.

Proposition 3.2.2 ([45], Proposition 2 and Proposition 3). The following

statements hold:

(1) A rational p/q is an ∞-rational, i.e., p 6≡ q (mod 2), if and only if the

EICF expansion of p/q is finite.

(2) A real number x is a quadratic irrational or a 1-rational if and only if

its EICF expansion is eventually periodic.

Boca and Merriman gave geometrical proofs of the above propositions by

using the Farey graph in [14] (see Definition 3.3.8 for the definition of the

Farey graph). Kraaikamp and Lopes obtained the asymptotic growth number

of geodesics on Θ\H in [45].

Since each matrix in (3.4) belongs to Θ, we can easy to conclude that each

EICF principal convergent pen/q
e
n is an ∞-rational. Short and Walker showed

that an EICF principal convergent is a best approximation among the rationals

in the orbit Θ(∞) consisting of even
odd and odd

even , and also the converse holds.

Definition 3.2.3. A best ∞-rational approximation p/q of x is a rational

p/q ∈ Θ(∞) such that

|qx− p| < |bx− a| for any ∞-rational
a

b
6= p

q
such that 0 < b ≤ q.
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Figure 3.4: The graph of the Romik map R (left) and the graph of the OOCF
map To (right)

Proposition 3.2.4 ([65], Theorem 5). An ∞-rational is a best ∞-rational

approximation of x if and only if it is an EICF principal convergent of x.

They showed the proposition by using Ford circles (see Definition 3.3.10).

3.3 Odd-odd continued fraction

We define a continued fraction whose convergents are in the orbit Θ(1) which is

the set of rationals of the form odd
odd . We call the continued fraction the odd-odd

continued fraction. In this section, we define the odd-odd continued fraction

and properties.

3.3.1 Continued fraction with odd
odd

convergents

Let E = [1/3, 1] and E′ = [0, 1
2 ]. The odd-odd continued fraction map To is

defined by the jump transformation associated to R with respect to E′ such

that

To(1) = 1, and To(x) = RnE′ (x)+1(x)

34



CHAPTER 3. CONTINUED FRACTION RELATED TO Θ-GROUP

•
(3

5 ,
4
5)

•(
4
5 ,

3
5)

•

•

D

D̃
•1

3

•
1
2

•

•

t

(1−t2
1+t2

, 2t
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)

•
f(t) = 1−t

1+t

Figure 3.5: Continued fraction maps To and Te are conjugate via f(t) = 1−t
1+t .

where nE′(x) = min{i ≥ 0 : Ri(x) ∈ E′}. A simple computation shows that

To(1) = 1 and

(3.5) To(x) =


kx− (k − 1)

k − (k + 1)x
, if x ∈

[
k − 1

k
,
2k − 1

2k + 1

)
,

k − (k + 1)x

kx− (k − 1)
, if x ∈

[
2k − 1

2k + 1
,

k

k + 1

)
,

for all k ≥ 1.

We abbreviate the odd-odd continued fraction to OOCF. The map To has an

indifferent fixed point 0 (see Figure 3.4).

Let

(3.6) f(x) = D̃−1 ◦D(x) =
1− x
1 + x

.

We note that f = f−1. As in Figure 3.5,

D(E) =

{
(x, y) ∈ Q : 0 < x <

4

5

}
= D̃(E′),

where Q is the first quadrant of the unit circle.

Since the conditions Rj(f−1(t)) ∈ E and Rj(t) ∈ E′ are equivalent to

R̂jD̃(t) ∈ D(E) = D̃(E′) by (3.2), we can show that nE(f−1(t)) and nE′(t)
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are the same. Thus, To is conjugate to Te since

f ◦ To ◦ f−1(s) = D̃−1 ◦ R̂nE(f−1(s))+1 ◦ D̃(s) = RnE′ (s)+1(s) = Te(s).

The above arguments are summarized as the following theorem.

Theorem 3.3.1. The OOCF map To is conjugate to Te. More precisely, let

f be the function on the interval [0, 1] defined by x 7→ 1−x
1+x . Then

f ◦ To ◦ f−1 = Te.

To find an invariant measure, let y = f(x). Since dy = |f ′(x)|dx = 2dx
(1+x)2

,

dx

1− x2
=

(1 + x)2dy

2(1− x2)
=

(1 + x)dy

2(1− x)
=
dy

2y
.

Hence, we find an absolutely continuous invariant measure of To as follows:

Proposition 3.3.2. The map To : [0, 1]→ [0, 1] preserves the measure

1

x
dx.

Remark 3.3.3. Schweiger proved that Te admits an ergodic invariant measure

dµ := dx
1−x2 [59, Theorem 2]. By Theorem 3.3.1, we deduce that the measure

f−1
∗ µ is ergodic invariant with respect to TOOCF. By simple computation, one

can find that this measure f−1
∗ µ is nothing but the measure in Proposition

3.3.2.

By using To, we induce an expansion of a real number in [0, 1]. Denote by

(3.7) U :=
⋃
k≥1

{
2k − 1

2k + 1

}
, V :=

⋃
k≥1

{
k

k + 1

}
.

By (3.5), for k ≥ 1, for x ∈ (k−1
k , 2k−1

2k+1),

1− x =
Tox+ 1

(k + 1)Tox+ k
=

1

(k + 1) +
− 1

2− (1− Tox)

,(3.8)
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and, for x ∈ (2k−1
2k+1 ,

k
k+1),

1− x =
Tox+ 1

(k + 1) + kTox
=

1

k +
1

2− (1− Tox)

.(3.9)

Thus, for all x ∈ [0, 1] \
⋃
n≥0

T−no (U ∪ V ∪ {0}),

1− x =
1

a1 +
ε1

2−
1

. . .

. . .

an +
εn

2− (1− Tno x)

,

where

(3.10) (an, εn) =

{
(k + 1,−1), if Tn−1

o (x) ∈ (k−1
k , 2k−1

2k+1),

(k, 1), if Tn−1
o (x) ∈ (2k−1

2k+1 ,
k
k+1).

Hence we deduce an OOCF expansion of any x ∈ [0, 1]\
⋃
n≥0

T−no (U ∪V ∪{0}):

x = 1−
1

a1 +
ε1

2−
1

a2 +
ε2

2− . . .

,

where an ∈ N; and εn ∈ {1,−1} for an ≥ 2 and εn = 1 for an = 1. We denote

the OOCF expansion of x by a sequence in a double bracket

x = [[(a1, ε1), (a2, ε2), · · · , (an, εn), · · · ]].

We call (an, εn) the nth digit of x in its OOCF expansion.

Remark 3.3.4. While for x ∈
⋃
n≥0

T−no (U ∪ V ∪ {0}), the situation is more
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complicated. First, note that for any x ∈ U , To(x) = 1 and if x = 2k−1
2k+1 , we

deduce

1− x =
1

(k + 1) +
− 1

2− (1− Tox)

=
1

(k + 1) +
− 1

2

,

or

1− x =
1

k +
1

2− (1− Tox)

=
1

k +
1

2

.

Thus x = 2k−1
2k+1 has two finite OOCF expansions:

x = [[(k + 1,−1)]] and x = [[(k, 1)]].

Further, for x ∈ [0, 1] such that Tno (x) ∈ U , for some n ≥ 1, we can apply

the iteration (3.8) or (3.9) n times, and then we can write 1 − Tno (x) in two

different ways. Therefore, any x ∈
⋃
n≥0

T−no U has two finite OOCF expansions

which differ at the last digit.

If x = 0, then To(0) = 0 and we deduce

1− x =
1

2 +
− 1

2− (1− Tox)

.

Thus 0 has a unique infinite OOCF expansion:

0 = [[(2,−1), (2,−1), · · · ]] = [[(2,−1)∞]].

For x ∈ V, To(x) = 0 and if x = k
k+1 , we know

1− x =
1

(k + 2) +
− 1

2− (1− Tox)

=
1

(k + 2) +
− 1

2− (1− 0)

,

or

1− x =
1

(k + 1) +
1

2− (1− Tox)

=
1

(k + 1) +
1

2− (1− 0)

.
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Hence x = k
k+1 has two infinite OOCF expansions:

x = [[(k + 2,−1), (2,−1)∞]] and x = [[(k + 1, 1), (2,−1)∞]].

Similarly, any x ∈
⋃
n≥0

T−no V has two infinite OOCF expansions.

We consider three forms of truncated continued fractions which give us

three types of convergents. We investigate the basic properties of such conver-

gents and give geometrical interpretations.

Definition 3.3.5. We define three types of convergents. For n ≥ 1, the nth

OOCF principal convergent is defined by

pn
qn

= [[(a1, ε1), (a2, ε2), · · · , (an, εn)]] = 1−
1

a1 +
ε1

2−
1

. . .
εn−1

2−
1

an +
εn

2

.

We denote

p′n
q′n

:= 1−
1

a1 +
ε1

2−
1

. . .
εn−1

2−
1

an

and
p′′n
q′′n

:= 1−
1

a1 +
ε1

2−
1

. . .
εn−1

2−
1

an + εn

,

and call them the nth sub-convergent and nth pseudo-convergent, respectively.

Applying Lemma 3.2.1, we infer recursive relations of three types of con-

vergents.

Lemma 3.3.6. Let p′0 = 1, q′0 = 0, p0 = 1 and q0 = 1. We deduce the following

recursive formulas for n ≥ 1:{
p′n = anpn−1 − p′n−1,

q′n = anqn−1 − q′n−1,

{
p′′n = p′n + εnpn−1,

q′′n = q′n + εnqn−1,
and

{
pn = 2p′n + εnpn−1,

qn = 2q′n + εnqn−1.
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By the above recursive formulas, we further see

(3.11)

{
pn = p′n + p′′n,

qn = q′n + q′′n,
and

{
pn−1 = εn(p′′n − p′n),

qn−1 = εn(q′′n − q′n).

Proof. We see the lemma by plugging a0 = 1, b0 = −1, a2n = 2, a2n−1 = an,

b2n = −1, b2n−1 = εn in the formula in Lemma 3.2.1.

The recursive formulas for the principle convergents are given by the fol-

lowing lemma.

Lemma 3.3.7. We deduce{
pn = (2an + εn − 1)pn−1 + εn−1pn−2,

qn = (2an + εn − 1)qn−1 + εn−1qn−2,

where p−1/q−1 = −1/1, p0/q0 = 1/1 and ε0 = 1.

Proof. By Lemma 3.3.6,

pn = p′n + p′′n = 2(anpn−1 − p′n−1) + εnpn−1

= (2an + εn − 1)pn−1 + (pn−1 − 2p′n−1)

= (2an + εn − 1)pn−1 + εn−1pn−2

and

qn = q′n + q′′n = 2(anqn−1 − q′n−1) + εnqn−1

= (2an + εn − 1)qn−1 + (qn−1 − 2q′n−1)

= (2an + εn − 1)qn−1 + εn−1qn−2.

We use the same notations in Chapter 2. Let us consider the hyperbolic

plane H as the upper half-plane model. The boundary of H is R∞ = R∪{∞}.
Let ` be the vertical line whose endpoints are 0 and ∞.

Definition 3.3.8. Farey graph G is defined by

G =
⋃

γ∈SL2(Z)

γ(`).

The Farey graph G is a graph on H∪R∞ whose endpoints are all rationals or

∞ in R∞ (see Figure 3.6).
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Figure 3.6: Farey graph
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Figure 3.7: The corresponding path of 1+
√

5
2 in the Farey graph for the regular

continued fraction

Let γ =

(
a c

b d

)
∈ SL2(Z). Since γ(∞) = a/c and γ(0) = b/d, two ratio-

nals a/b and c/d are adjacent to each other in G if and only if |ad−bc| = 1. It is

known that a regular continued fraction is related to a path on the Farey graph.

By (2.5), |Pn+1Qn − PnQn+1| = 1 where Pn/Qn the nth principal convergent

of the regular continued fraction. For each x ∈ R, there is a path correspond-

ing to the sequence {Pn(x)/Qn(x)}n on G starting from bxc, passing through

all Pn/Qn consecutively.

Example 3.3.9. For example, let
√

5−1
2 = [0; 1, 1, 1, · · · ]. The principal con-

vergents of the regular continued fraction are

P1

Q1
= 1,

P2

Q2
=

1

2
,
P3

Q3
=

2

3
,
P4

Q4
=

3

5
, · · · .
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Figure 3.8: Ford circles: white circles are based at∞-rationals and gray circles
are based at 1-rationals

The corresponding path on Farey graph is as in Figure 3.7.

Definition 3.3.10. A Ford circle Ca/b is a horocycle of H whose base point

is a/b and Euclidean radius is (2b2)−1. We define C∞ as the line y = 1 (see

Figure 3.8).

We note that the collection of Ford circles is a dual of Farey graph in the

sense that two Ford circles are tangent to each other if and only if their base

points are adjacent to each other in the Farey graph.

Short and Walker examined a similar relation between EICF and a subtree

of the Farey graph and the Ford circles [65]. The Farey tree F is a subtree of

G defined by ⋃
γ∈Θ

γ(`).

The shaded lines in Figure 3.6 represent the Farey tree. Every vertex of F

on R∞ is ∞-rationals. We will see that each OOCF corresponds to a path

on G − F . The following lemma is on relations between the three distinct

convergents of OOCF.

Lemma 3.3.11. Each pn−1/qn−1 (and also each pn/qn) is adjacent to p′n/q
′
n

and p′′n/q
′′
n in Farey graph. Moreover, p′n/q

′
n and p′′n/q

′′
n are adjacent to each

other.
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Proof. Recall that p′0/q
′
0 = 0/1, p′′0/q

′′
0 = 1/0 and p0/q0 = 1/1. The first

convergents are

p′1
q′1

=
a1 − 1

a1
,

p′′1
q′′1

=
a1 + ε1 − 1

a1 + ε1
and

p1

q1
=

2a1 + ε1 − 2

2a1 + ε1
.

Clearly, p0/q0 and p1/q1 are adjacent to p′1/q
′
1 and p′′1/q

′′
1 . Let

(3.12) A(an,εn) =

(
1 −1

1 0

)(
1 an
0 1

)(
0 εn
1 1

)
=

(
an − 1 an + εn − 1

an an + εn

)
.

We see that

p0/q0 = A(a1,ε1)

(
−1

1

)
, p′1/q

′
1 = A(a1,ε1)

(
1

0

)
,

p′′1/q
′′
1 = A(a1,ε1)

(
0

1

)
and p1/q1 = A(a1,ε1)

(
1

1

)
.

By Lemma 3.3.6, we infer that{
p′n = (an − 1)p′n−1 + anp

′′
n−1 and p′′n = (an − 1 + εn)p′n−1 + (an + εn)p′′n−1,

q′n = (an − 1)q′n−1 + anq
′′
n−1 and q′′n = (an − 1 + εn)q′n−1 + (an + εn)q′′n−1.

Thus we have

(3.13)

(
pn−1 p′n p′′n pn
qn−1 q′n q′′n qn

)
= A(a1,ε1) · · ·A(an,εn)

(
−1 1 0 1

1 0 1 1

)
.

Since |det(A(an,εn))| = | − εn| = 1, the matrix A(an,εn), which is a linear

fractional map or an anti-linear fractional map on H ∪ R∞, preserves the

adjacency of the vertices in the Farey graph.

Example 3.3.12. Let x be in the subinterval [3/7, 1/2] which is the blue

segment in Figure 3.9 and Figure 3.10. The principal convergents and sub-

convergents of x are

p′0
q′0

=
1

0
,

p0

q0
=

1

1
,

p′1
q′1

=
0

1
,

p1

q1
=

1

3
,

p′2
q′2

=
2

5
,

p2

q2
=

3

7
, · · · .

The corresponding path of the OOCF expansion of x is the branch starting
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Figure 3.9: The collection of the red geodesics is the path corresponding to
the OOCF of x on G −F .

from ∞, going down to 1 and then going along with the arcs connecting p′n/q
′
n

and pn/qn, then the arcs connecting pn/qn and p′n+1/q
′
n+1, repeatedly. In Fig-

ure 3.9, the red arrows follow the convergents

pn−1/qn−1 → p′n/q
′
n → pn/qn → · · · .

From the duality between the Farey graph and the collection of the Ford circles,

there are Ford circles tangent to each other when their base points are p′n/q
′
n,

pn/qn or pn/qn, p′n+1/q
′
n+1. The Ford circles numbered from 1 to 5 in Fig-

ure 3.10 are the first five Ford circles corresponding to the OOCF expansion

of x.

For each OOCF digit (a, ε), we partition [0, 1] into the subintervals B(a, ε)

defined by

(3.14) B(k + 1,−1) =

[
k − 1

k
,
2k − 1

2k + 1

]
, B(k, 1) =

[
2k − 1

2k + 1
,

k

k + 1

]
.

Note that the set of endpoints of B(a, ε) is U ∪ V as in (3.7). The first OOCF

digit of x ∈ B(a, ε) is (a, ε) and the restriction of To to B(a, ε) is monotone
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Figure 3.10: The Ford circles numbered from 1 to 5 are Ford circles based at
principal convergents and sub-convergents of x consecutively.

(see Figure 3.4). Writing f(a,ε) = (To|B(a,ε))
−1, we have

(3.15) f(a,ε)(t) = 1−
1

a+
ε

1 + t

.

Lemma 3.3.13. For all x ∈ (0, 1), x is a point between pn/qn and p′′n/q
′′
n.

Proof. By (3.10), we deduce that 1−Tn−1
o (x) is between 1

an+(εn/2) and 1
an+εn

.

Let

g := f(a1,ε1) ◦ · · · ◦ f(an,εn).

Since g is monotone, g does not change the relative positions of points. From

this, it follows that g(1−Tn−1
o (x)) = x is a point between g( 1

an+(εn/2)) = pn/qn

and g( 1
an+εn

) = p′′n/q
′′
n, which is the desired conclusion.

By (3.12), it is easy to check that either A(an,εn) or

(
0 1

1 0

)
A(an,εn) be-

longs to the Θ-group according to det(A(an,εn)). Applying (3.13), we obtain a

property of the OOCF convergents.

Theorem 3.3.14. All principal convergents pn/qn are 1-rationals. All sub-

convergents p′n/q
′
n and all pseudo-convergents p′′n/q

′′
n are ∞-rationals.

45



CHAPTER 3. CONTINUED FRACTION RELATED TO Θ-GROUP

Now, we will discuss the relative positions of the different convergents. We

define the nth complete quotient by ζn = Tn−1
o (x), i.e.,

ζn = 1−
1

an +
εn

2−
1

an+1 +
εn+1

. . .

.

The following equality holds:

(3.16) x =
p′′n−1 + p′n−1ζn

q′′n−1 + q′n−1ζn
.

By (3.11), we have{
p′′n−1 = 1

2(pn−1 + εn−1pn−2),

p′n−1 = 1
2(pn−1 − εn−1pn−2).

and

{
q′′n−1 = 1

2(qn−1 + εn−1qn−2),

q′n−1 = 1
2(qn−1 − εn−1qn−2).

An easy computation shows that

x =
pn−1(1 + ζn) + εn−1pn−2(1− ζn)

qn−1(1 + ζn) + εn−1qn−2(1− ζn)

and

ζn = −(qn−1x− pn−1) + εn−1(qn−2x− pn−2)

(qn−1x− pn−1)− εn−1(qn−2x− pn−2)
.

Lemma 3.3.15. The following statements hold.

(1) The nth principal convergent pn/qn is between p′n/q
′
n and p′′n/q

′′
n.

(2) The (n− 1)th principal convergent pn−1/qn−1 is not between p′n/q
′
n and

p′′n/q
′′
n.

(3) The three distinct convergents pn/qn, p′n/q
′
n and p′′n/q

′′
n are in the half

closed interval whose endpoints are pn−1/qn−1 and p′′n−1/q
′′
n−1. The in-

terval contains p′′n−1/q
′′
n−1, but does not contain pn−1/qn−1.

We denote by In the half closed interval whose endpoints are pn/qn and

p′′n/q
′′
n.

46



CHAPTER 3. CONTINUED FRACTION RELATED TO Θ-GROUP

Proof. (1) By Lemma 3.3.6, pn = p′n + p′′n and qn = q′n + q′′n. Hence, pn/qn is

between p′n/q
′
n and p′′n/q

′′
n.

(2) There are only two elementary triangles that share the arc connecting

p′n/q
′
n and p′′n/q

′′
n. By Lemma 3.3.11, the other endpoints of the two

elementary triangles are pn−1/qn−1 and pn/qn. By (1), the (n − 1)th

principal convergent pn−1/qn−1 is not between p′n/q
′
n and p′′n/q

′′
n since

two elementary triangles of the Farey graph do not overlap each other.

(3) By Lemma 3.3.6, we deduce that{
p′n = (an − 1)pn−1 + p′′n−1,

q′n = (an − 1)qn−1 + q′′n−1,
and

{
p′′n = (an − 1 + εn)pn−1 + p′′n−1,

q′′n = (an − 1 + εn)qn−1 + q′′n−1.

Since an− 1 ≥ 0 and an + εn− 1 ≥ 0, both p′n/q
′
n and p′′n/q

′′
n are in In−1.

By (1), pn/qn is also in In−1.

Theorem 3.3.16. The infinite OOCF expansions converge.

Proof. Let x be a number whose OOCF expansion is infinite. By Lemma 3.3.15

(3), the intervals In are shrinking. By Lemma 3.3.13, we infer that∣∣∣∣x− pn
qn

∣∣∣∣ < ∣∣∣∣pnqn − p′′n
q′′n

∣∣∣∣→ 0 as n→∞.

Lemma 3.3.17. The denominators of principal convergents are increasing.

Proof. Since 2an+1 + εn+1 ≥ 3, we deduce that

qn+1 = (2an+1 + εn+1 − 1)qn + εnqn−1 > qn + (qn − qn−1).

Since q0 − q−1 = 1 > 0, inductively, the sequence {qn}n is increasing.

Example 3.3.18. As discussed above, any non-zero rational has exactly two

OOCF expansions. For example, a 1-rational 1/3 has such two finite OOCF

expansions:

1

3
= 1−

1

1 +
1

2

= 1−
1

2 +
− 1

2

.
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For the ∞-rational 2/3, there are two infinite OOCF expansions:

2

3
= 1−

1

4 +
− 1

2−
1

2 +
− 1

2− . . .

= 1−
1

2 +
1

2−
1

2 +
− 1

2− . . .

.

Theorem 3.3.19. The following properties hold.

(1) Any finite OOCF is a 1-rational.

(2) Each 1-rational has exactly two finite OOCF expansions which differ

only in the last digit.

(3) Any non-zero∞-rational has exactly two infinite OOCF expansions end-

ing with (2,−1)∞.

(4) An eventually periodic OOCF expansion converges to an ∞-rational or

a quadratic irrational.

(5) A quadratic irrational has an eventually periodic OOCF expansion.

(6) Every irrational has a unique infinite OOCF expansion.

Proof. (1) It follows directly from Theorem 3.3.14.

(2) & (3) The OOCF map To sends a 1-rational to a 1-rational and an ∞-rational

to an ∞-rational. For an irreducible rational a/b, the denominator of

To(a/b) is strictly less than b. Thus if a/b is a 1-rational, then Tno (a/b) =

1 for some n. We know that

Tn−1
o

(a
b

)
∈ T−1

o (1) =

{
2k − 1

2k + 1
: k ≥ 1

}
.

Thus, a/b has exactly two finite OOCF expansions which differ only at

the last digit.

If a/b is a non-zero ∞-rational, then Tno (a/b) = 0 for some n ≥ 1. Since

the OOCF expansion of 0 is [[(2,−1)∞]], the OOCF expansion of x ends
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with (2,−1)∞. Similar to the case of the 1-rationals, we know that

Tn−1
o

(a
b

)
∈
{

k

k + 1
: k ≥ 1

}
.

Then a/b has exactly two infinite OOCF expansions ending with (2,−1)∞.

(4) If x has an eventually periodic OOCF, then there exist n and m such

that ζn+1 = ζm+1. By (3.16), we have

(3.17) x =
p′′n + p′nζn+1

q′′n + q′nζn+1
=
p′′m + p′mζm+1

q′′m + q′mζm+1
.

Thus we know that either x = p′′n/q
′′
n, i.e, ζn+1 = 0, or

1

ζn+1
=
p′n − q′nx
q′′nx− p′′n

=
p′m − q′mx
q′′mx− p′′m

=
1

ζm+1
.

In the first case, x = p′′n/q
′′
n is an ∞-rational by Theorem 3.3.14. In the

second case, (3.17) implies

(q′nq
′′
m− q′mq′′n)x2 + (q′mp

′′
n + p′mq

′′
n− q′np′′m− p′nq′′m)x+ (p′np

′′
m− p′′np′m) = 0.

Since q′nq
′′
m − q′mq′′n 6= 0, x is a quadratic irrational.

(5) Let x be a quadratic irrational between 0 and 1 such that

a1x
2 + b1x+ c1 = 0.

By (3.16), we have

a1(p′′n + p′nζn+1)2 + b1(p′′n + p′nζn+1)(q′′n + q′nζn+1) + c1(q′′n + q′nζn+1)2 = 0.

We derive the following quadratic equation of ζn+1:

(a1p
′2
n + b1p

′
nq
′
n + c1q

′2
n )ζ2

n+1 + (2anp
′′
np
′
n + b1(p′′nq

′
n + p′nq

′′
n) + 2c1q

′′
nq
′
n)ζn+1

+ (a1p
′′2
n + b1p

′′
nq
′′
n + c1q

′′2
n ) = 0.
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Denote the coefficients of the above equation by

an+1 = a1(p′n)2 + b1p
′
nq
′
n + c1(q′n)2,

bn+1 = 2a1p
′′
np
′
n + b1(p′′nq

′
n + p′nq

′′
n) + 2c1q

′′
nq
′
n and

cn+1 = a1(p′′n)2 + b1p
′′
nq
′′
n + c1(q′′n)2.

(3.18)

Then an+1ζ
2
n+1 + bn+1ζn+1 + cn+1 = 0. Combining (3.13) and (3.13), we

have |q′np′′n − q′′np′n| = 1. By direct calculation, we have

b2n+1 − 4an+1cn+1 = b21 − 4a1c1,(3.19)

and also we have ∣∣∣∣(x− p′n
q′n

)
+

(
p′′n
q′′n
− x
)∣∣∣∣ =

1

q′nq
′′
n

.

By Lemma 3.3.13 and the fact that pn/qn is between p′n/q
′
n and p′′n/q

′′
n,

two distances x− p′n/q′n and x− p′′n/q′′n have opposite signs. Thus,

|q′nx− p′n| <
1

q′′n
and |p′′n − q′′nx| <

1

q′n
.

There are |α| < 1 and |β| < 1 such that

(3.20) p′n = q′nx+ α/q′′n and p′′n = q′′nx+ β/q′n.

By plugging (3.20) in (3.18), we derive that

an+1 = α

(
q′n
q′′n

(2a1x+ b1) + a1
α

(q′′n)2

)
,

bn+1 = (2a1x+ b1)(α+ β) + 2a1
αβ

q′nq
′′
n

and

cn+1 = β

(
q′′n
q′n

(2a1x+ b1) + a1
β

(q′n)2

)
.

Since

|bn+1| ≤ 2(|2a1|+ |b1|) + |2a1|,

the coefficient bn+1 is bounded. If q′′n ≥ q′n, then an+1 is bounded since

|an+1| < 2|a1|+ |b1|+ |a1|.
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Figure 3.11: The horocycle based at x tangent to Cp/q.

By (3.19), cn+1 is bounded. Similarly, if q′′n < q′n, then cn+1 is bounded

since

|cn+1| < 2|a1|+ |b1|+ |a1|.

Then an+1 is also bounded. Thus the sequence {ζn} has only finitely

many values, which means that ζn = ζm for some n and m. Therefore,

the OOCF expansion of x is eventually periodic.

(6) Note that

∞⋃
n=0

T−no (U ∪ V ∪ {0}) =

∞⋃
n=1

T−no ({0, 1}) = Q.

By the discussion in Remark 3.3.4, every irrational has a unique infinite

OOCF expansion.

Remark 3.3.20. From the proof of Theorem 3.3.19 (4), we see that if x is an

∞-rational, then its OOCF expansion ends with (2,−1)∞. Thus there exists

n0 ≥ 0 such that ζn+1 = 0 for all n ≥ n0. Hence, by (3.16), we have x = p′′n/q
′′
n

for all n ≥ n0.

3.3.2 Diophantine properties of odd-odd continued fraction

In this section, we prove that the OOCF gives “the best 1-rational approxi-

mations”.

Definition 3.3.21. Let x 6∈ Q. A best 1-rational approximation of x is a

rational p/q such that, for each 1-rational a/b 6= p/q,

|qx− p| ≤ |bx− a|.
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a/b p/q rx a/bp/q rx

Figure 3.12: Two possible relative locations of x, p/q, a/b and r in the proof
of Theorem 3.3.22. The dashed circles are the horocycles based at x tangent
to Cp/q and Ca/b.

Theorem 3.3.22. All principal convergents pn/qn are the best 1-rational ap-

proximations, and vice versa.

Proof. Let Ra/b(x) be the Euclidean radius of the horocycle based at x which

is externally tangent to Ca/b (see Figure 3.11). A simple computation gives

Ra/b(x) :=
1

2
|bx− a|2.

Let x be an irrational number and p/q be an OOCF convergent of x. Fix a 1-

rational a/b such that 1 ≤ b ≤ q. Combining Lemma 3.3.11, Lemma 3.3.13 and

Theorem 3.3.14, we can assert that there is an ∞-rational r which is adjacent

to p/q and x is between p/q and r. The radius Rp/q(x) is at most the radius

of Cr. Since the radius of Ca/b is at least the radius of Cp/q, the 1-rational a/b

is outside of the interval [p/q, r] (as shown in Figure 3.12). Thus Ra/b(x) is

at least the radius of Cr and the equality holds if and only if a/b = ∞. We

conclude that

Rp/q(x) ≤ Ra/b(x).

Conversely, let us assume that a/b is a 1-rational which is not a principal

convergent of the OOCF expansion of x. There are the consecutive principal

convergents pn/qn and pn+1/qn+1 such that qn ≤ b < qn+1. Both are adjacent

to p′n+1/q
′
n+1 and p′′n+1/q

′′
n+1 in the Farey graph, i.e., Cpn/qn and Cpn+1/qn+1

are tangent to Cp′n+1/q
′
n+1

and Cp′′n+1/q
′′
n+1

. Since the radius of Ca/b is larger

than the radius of Cpn+1/qn+1
, the 1-rational a/b is not between p′n+1/q

′
n+1

and p′′n+1/q
′′
n+1. Without loss of generality, as in Figure 3.13, we assume that

pn/qn < p′n+1/q
′
n+1 < p′′n+1/q

′′
n+1.
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(1) If a/b < pn/qn, then obviously

Ra/b(x) > Rpn/qn(x).

(2) Let us consider the case of a/b > p′′n+1/q
′′
n+1. We note that

|x− t| > |x′ − t| implies that Rt(x) > Rt(x
′).

Thus, Ra/b(x) > Ra/b(p
′′
n+1/q

′′
n+1) and Rpn/qn(x) is proportional to the

distance of x and pn/qn.

The radius Ra/b(p
′′
n+1/q

′′
n+1) is at least the radius of Cp′′n+1/q

′′
n+1

(they

are the same when Cp′′n+1/q
′′
n+1

is tangent to Ca/b). Since x is between

p′n+1/q
′
n+1 and p′′n+1/q

′′
n+1, the radius Rpn/qn(x) is between

Rpn/qn(p′n+1/q
′
n+1) = 1/2(q′n+1)2 and Rpn/qn(p′′n+1/q

′′
n+1) = 1/2(q′′n+1)2.

Thus we have Ra/b(x) > Rpn/qn(x).

(3) The last case is of a/b ∈ (pn/qn, p
′
n+1/q

′
n+1). Let us consider a horocycle

C based at x which is tangent to Ca/b. The thick dashed arc in Figure 3.13

is a part of C. The circle C intersects Cpn/qn since the tangent point of C

and Ca/b is an interior point of the shape bounded by Cpn/qn , Cp′n+1/q
′
n+1

and the real line.

Thus, for all the cases, Ra/b(x) > Rpn/qn(x), i.e., a/b is not a 1-rational

best approximation.

3.3.3 Relation with EICF and the regular continued fraction

Now, we discuss the relation between the OOCF convergents of a number x and

the EICF convergents of 1−x. Remark that pen(x)/qen(x) is an EICF convergent

of x. Observe that if pen(x)/qen(x) is of the form even
odd , then 1 − pen(x)/qen(x) is

1-rational. If pen(x)/qen(x) is of the form odd
even , then 1 − pen(x)/qen(x) is also of

the form odd
even .

Theorem 3.3.23. Let x ∈ (0, 1). All 1-rationals in {1− pen(1− x)/qen(1− x)}n∈N
are best 1-rational approximations of x, and hence they are OOCF principal

convergents of x.
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pn
qn

p′n+1

q′n+1

p′′n+1

q′′n+1

pn+1

qn+1

C

x
•

a
b

Figure 3.13: A possible relative position of x, a/b and the convergents. The
dashed circles are horocycles based at x tangent to Cpn/qn and Ca/b.

Proof. For each n ≥ 0, denote by An/Bn := 1 − pen(1− x)/qen(1− x). Since

An = qen(1− x)− pen(1− x) and Bn = qen(1− x), for any ∞-rational a/b such

that 1 ≤ b ≤ qen(1− x) and a/b 6= pen(1− x)/qen(1− x),

|An −Bnx| = |qen(1− x)− pen(1− x)− x · qen(1− x)|
= |(1− x) · qen(1− x)− pen(1− x)| < |(1− x)b− a|.

(3.21)

For any 1-rational c/d such that 1 ≤ d ≤ Bn and c/d 6= An/Bn, we deduce

that
d− c
d

= 1− c

d
∈ Θ(∞) and

d− c
d
6= pen(1− x)

qen(1− x)
.

By (3.21), we conclude that |An−Bnx| < |(1−x)d− (d− c)| = |c−dx|, which

completes the proof.

Example 3.3.24. Let x = 10 − π2 = 0.1303955989 · · · . The OOCF conver-

gents of x are:

(3.22)
1

3
,

1

5
,

1

7
,

3

23
,

287

2201
,

577

4425
,

867

6649
,

1157

8873
,

1447

11097
,

6945

53261
, · · · .

The sequence of 1− pen/qen where pen/q
e
n is the EICF convergent of 1− x is:

(3.23)
1

2
,

1

3
,

1

4
,

1

5
,

1

6
,

1

7
,

1

8
,

3

23
,

145

1112
,

1447

11097
,

2749

21082
,

6945

53261
, · · · .
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The subsequece consisting of rationals of the form odd
odd in (3.23) is a (strict) sub-

sequence of (3.22). However, the rational 287/2201 in (3.22) is not in (3.23)

since

|1112x− 145| = 0.0000940113 · · · < |2201x− 287| = 0.00071320 · · ·
< |23x− 3| = 0.00090122 · · · .

Theorem 3.3.25. The map f(x) = 1−x
1+x is in (3.6). The EICF principal

convergents of f(x) is f of the OOCF principal convergents of x, i.e.,

pen(f(x))

qen(f(x))
= f

(
pn(x)

qn(x)

)
.

Proof. We write an EICF expansion by

〈〈(b1, η1), (b2, η2), · · · , (bn, ηn), · · · 〉〉 = 〈〈(bn, ηn) 〉〉n∈N

as in (3.3). Denote by Ao and Ae, the sets of digits of OOCF and EICF

respectively. Explicitly, we have

Ao = {(a, ε) : a ∈ N, ε = ±1} \ {(1,−1)}, and

Ae = {(b, η) : b′ ∈ 2N, η = ±1}.

Recall the partition {B(a, ε)}(a,ε)∈Ao in (3.14). Then we have

f(B(k + 1,−1)) =

[
1

2k
,

1

2k − 1

]
and f(B(k, 1)) =

[
1

2k + 1
,

1

2k

]
.

Thus, f(B(k + 1,−1)) and f(B(k, 1)) are subintervals which correspond to

the EICF digits (2k, 1), (2k,−1) ∈ Ae. In other words, there is a natural

correspondence ϕ between Ao and Ae by

ϕ : (k + 1,−1) 7→ (2k, 1), (k, 1) 7→ (2k,−1).

Inductively, we define a subinterval corresponding to an OOCF expansion

[[(a1, ε1), · · · , (an, εn))]] by

B((a1, ε1), · · · , (an, εn)) =

n⋂
i=1

T−(i−1)
o B(ai, εi).
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Since f is 1-1 and onto,

f(B((a1, ε1), · · · ,(an, εn))) =

n⋂
i=1

f(T−(i−1)
o B(ai, εi))

=

n⋂
i=1

T−(i−1)
e f(B(ai, εi)) (by Theorem 3.3.1).

(3.24)

Since f(B(ai, εi)) is a subinterval corresponding to ϕ(ai, εi), the interval in

(3.24) is the subinterval corresponding to 〈〈ϕ(ai, εi) 〉〉ni=1. In other word, if

x = [[(ai, εi)]]i∈N, then the EICF expansion of f(x) is 〈〈ϕ(ai, εi) 〉〉i∈N and

pen(f(x))

qen(f(x))
= 〈〈ϕ(ai, εi) 〉〉ni∈N = f([[(ai, εi)]]

n
i∈N) = f

(
pn(x)

qn(x)

)
.

In their monograph [56], Rockett and Szüsz introduced “the best approxi-

mation of the first kind” and “the best approximation of the second kind”. Our

definition of the best approximation is the best approximation of the second

kind. The best approximation of the first kind of x is a rational p/q such that

|x− p/q| < |x− a/b| for any a/b 6= p/q and q ≤ b. Every best approximation

of the first kind is a form of

Pn,k
Qn,k

=
Pn−2 + kPn−1

Qn−2 + kQn−1

for 1 ≤ k ≤ an, n ≥ 1 (see [36, Section 6] and [56, p.36] for more details).

Definition 3.3.26. For the principal convergents Pn/Qn, The intermediate

convergents are
Pn,k
Qn,k

=
Pn−2 + kPn−1

Qn−2 + kQn−1

for 1 ≤ k ≤ an and for n ≥ 1.

Kraaikamp and Lopes showed that the EICF convergents are intermediate

convergents of the regular continued fraction (see [45] for the proof). We will

show that the OOCF principal convergents are also intermediate convergents

of the regular continued fraction.

Recall that [d0; d1, d2, · · · ] denotes a regular continued fraction as in (2.3).

We explain how the piecewise inverses f(a,ε) in (3.15) change the regular con-

tinued fraction expansions.

56



CHAPTER 3. CONTINUED FRACTION RELATED TO Θ-GROUP

Lemma 3.3.27. Let x = [0; d1, d2, · · · ]. Then, the regular continued fraction

expansion of f(a,ε)(x) is as follows:

f(a,ε)(x) =


[2, d1, d2, · · · ] if ε = 1, a = 1,

[1, (a− 1), 1, d1, d2, · · · ] if ε = 1, a ≥ 2,

[(d1 + 2), d2, · · · ] if ε = −1, a = 2,

[1, (a− 1), (d1 + 1), d2, · · · ] if ε = −1, a ≥ 3.

Proof. If ε = 1, then

f(a,ε)(x) = 1− [a, 1, d1, d2, · · · ] =

{
[2, d1, d2, · · · ] if a = 1,

[1, a− 1, 1, d1, · · · ] if a ≥ 2.

If ε = −1, then

f(a,ε)(x) = 1−
1

a− [1, d1, d2, · · · ]
= 1−

1

(a− 1) + 1− [1, d1, d2, · · · ]

= 1− [a− 1, d1 + 1, d2, · · · ] =

{
[d1 + 2, d2, · · · ] if a = 2,

[1, a− 1, 1, d1 + 1, d2, · · · ] if a ≥ 3.

Theorem 3.3.28. The OOCF principal convergents of x are intermediate

convergents of x.

Proof. Let x = [d1, d2, · · · ] = [[(a1, ε1), (a2, ε2), · · · ]]. Note that

x = f(a1,ε1) ◦ f(a2,ε2) ◦ · · · ◦ f(ak,εk)([[(ak+1, εk+1), · · · ]])

and
pk
qk

= f(a1,ε1) ◦ f(a2,ε2) ◦ · · · ◦ f(ak,εk)(1).

By Lemma 3.3.27, x and pk/qk have the same prefix in their regular contin-

ued fraction expansions, except for the last digit of pk/qk. Thus, pk/qk is an

intermediate convergent of x.

Recall that G is the Gauss map in Section 2.1.2. We use the following

notations:

(3.25)

{
x = [0; d1, · · · , dn, α] if Gn(x) = α,

x = [[(a1, ε1), (a2, ε2), · · · , (an, εn), γ]] if Tno (x) = γ.
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Note that

(3.26)
1

1 + α
= 1− 1

1 + 1
α

.

Theorem 3.3.29. There is a conversion from the regular continued fractions

into the OOCFs such that

x = [0; d1, d2, α]

=


[[(2,−1)

d1−1
2 , (d2 + 1, 1), F (α)]] if d1 is odd and α ∈ [1

2 , 1),

[[(2,−1)
d1−1

2 , (d2 + 2,−1), F (α)]] if d1 is odd and α ∈ [0, 1
2),

[[(2,−1)
d1
2
−1, (1, 1), G(x)]] if d1 is even.

Proof. By (3.26), we have

[0; 1, d2, α] =
1

1 + 1
d2+α

= 1− 1

(d2 + 1) + α
.

Since α = 1
[α−1]+G(α)

, if α ∈ [1
2 , 1), then α = 1

1+G(α) . If α ∈ [0, 1
2), then

α = 1− 1

1 + 1
[α−1]−1+G(α)

.

If α ∈ [0, 1
2), F (α) = 1

[α−1]−1+G(α)
, or otherwise, F (α) = G(α). Thus we have

[0; d1, d2, α] =

{
[[(d2 + 1, 1), F (α)]], if α ∈ [1

2 , 1),

[[(d2 + 2,−1), F (α)]], if α ∈ [0, 1
2).

Similarly, we have

x = [0; 2, G(x)] =
1

2 +G(x)
= 1− 1

1 + 1
1+G(x)

= [[(1, 1), G(x)]].

If d1 ≥ 3, then

x = [0; d1, G(x)] =
1

d1 +G(x)
= 1− 1

1 + 1
1+(d1−2)+G(x)

= 1− 1

2− 1
1+ 1

(d1−2)+G(x)

= [[(2,−1), γ]]
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where γ = [0; d1 − 2, G(x)] = R(x). Thus, by induction, we complete the

proof.

By Theorem 2.1.6, if Pn/Qn is a 1-rational, then Pn/Qn is a 1-rational best

approximation. Thus Pn/Qn is an OOCF convergent by Theorem 3.3.22. Now

we check when an intermediate convergent is an OOCF convergent. Keita [35]

proved the following proposition.

Proposition 3.3.30 ([35], Proposition 1.2). We have

Qn,0 = Qn−2 < Qn−1 ≤ Qn,1 < · · · < Qn,dn = Qn and

|Qn,dnx− Pn,dn | = |Qnx− Pn| < |Qn−1x− Pn−1|
≤ |Qn,dn−1x− Pn,dn−1| < · · · < |Qn,0x− Pn,0| = |Qn−2x− Pn−2|.

By the above proposition and Theorem 3.3.28, if Pn−1/Qn−1 is a 1-rational,

then Pn,j/Qn,j is not an OOCF principal convergent for any 1 ≤ j < dn. If

Pn−1/Qn−1 is an ∞-rational and Pn,j/Qn,j is a 1-rational, then Pn,j/Qn,j is

an OOCF principal convergent.
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Chapter 4

Combinatorics on words

One of the strategies to deal with mathematical objects is to encode the objects

and to find some connections between properties of codings and the properties

of the original objects. Continued fraction and coding of geodesics are good

examples as we discussed in Section 2.2.2.

In this chapter, we will see some preliminaries of combinatorics on words

and an important object, which is a Sturmian word, following [48] and [27].

4.1 Factor complexity

Let us consider a finite or countably infinite set A. We call A the alphabet

and the elements of A the letters. A word is a finite or an infinite sequence of

letters. By convention, we define the empty word ε. We define the set of finite

words of length n, for n ∈ N, by

A0 = {ε} and An = {α1α2 · · ·αn |αi ∈ A for 1 ≤ i ≤ n}.

The collection of all finite words over A is A∗ =
∞⋃
n=0
An. We denote the set of

one-sided infinite words over A by AN and the set of bi-infinite words over A
by AZ.

A factor (or a subword) of a word u = (ui) is u = uiui+1 · · ·ui+k for some

i, k. We call a factor starting the first letter of u a prefix and a factor ending

the last letter of u a suffix. The set of factors of u of length n is denoted by
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Fn(u). The set of every factor of u is

F (u) =

∞⋃
i=0

Fn(u).

We denote by |u| the length of u.

Definition 4.1.1. Let u = (ui) be a word.

(1) A word u = (ui) is purely periodic if there exists ` ∈ N (or Z) such that

ui = ui+` for all i.

(2) (a) For a one-sided infinite word, if there is n such that ui = ui+` for

all i ≥ n, then we say that u is eventually periodic.

(b) For a bi-infinite word, if there is n such that ui = ui+` for all i ≥ n
and i ≤ −n, then u is eventually periodic.

We call a word u admissible in u if u is a factor of u. For a word u =

u1u2 · · ·un−1un, the reverse of u is ū = unun−1 · · ·u2u1. If u = ū, then we call

u a palindrome. We denote the collection of the reverse of the factors by

F (u) := {ū : u ∈ F (u)}.

Definition 4.1.2. We say that a word u is reversible if F (u) = F (u).

For a word over finite letters, factor complexity is a function counting the

number of distinct factors of each length.

Definition 4.1.3. Let u be an infinite word. The factor complexity of u is

the function pu assigning to each positive integer n, the number of distinct

subwords of u of length n, i.e.,

pu(n) = |Fn(u)|.

If v ∈ Fn(u), then there is va ∈ Fn+1(u) for some a ∈ A. Thus, pu(n) ≤
pu(n + 1) and thus pu is a non-decreasing function. The factor complexity is

an invariant measuring the randomness of words.

Theorem 4.1.4 ([23], Theorem 2.14 and 2.15). The following statements hold.

(1) A one-sided infinite word is eventually periodic if and only if it has

bounded factor complexity.
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u1

u2 · · · ui−1

ui

ui+1

ui+2· · ·

uN−1

uN

u1

u2

u3

u4· · ·

uN−2

uN−1

uN

Figure 4.1: Graph composed with Fn(u) in the proof of Theorem 4.1.4 (Rauzy
graph) of a one-sided infinite word (left) and a bi-infinite word (right).

(2) A bi-infinite word is purely periodic if and only if it has bounded factor

complexity.

For a word u, the factor set Fn(u) = {ui}1≤i≤pu(n) of level n composes

a graph whose vertices are ui’s. We give an edge between ui and uj if the

length n−1 suffix of ui is the same as the length n−1 prefix of uj . The graph

is called Rauzy gaph. The theorem can be shown by the fact that the Rauzy

graph has a cycle if pu is bounded (see Figure 4.1). See also Proposition 1.3.13

in [48] for more detail.

Remark 4.1.5. (1) If pu(n) = pu(n+ 1), then pu(n) = pu(n+ k) for all k.

(2) For the second assertion of the above theorem, we remark that there are

many eventually periodic words with unbounded factor complexity. The

word

u = · · · b b b a b b b · · ·

is one of the simplest examples which has pu(n) = n+ 1.

If pu(n + 1) > pu(n), then there is a factor of u of length n which is

extended to two distinct factors of length n+ 1.

Definition 4.1.6. Let u be an infinite word over A. A factor u is a right

special word (or a left special word, respectively) if there are distinct letters

a, b ∈ A such that both ua and ub (or au and bu, respectively) are admissible.
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4.2 Sturmian words

Note that if u is aperiodic, i.e., non-eventually periodic, then

pu(n) ≥ n+ 1.

Definition 4.2.1. A Sturmian word is a word u with pu(n) = n+ 1.

Sturmian words are composed with only two letters, say a and b. From now

on, let A = {a, b}. We will see that Sturmian words are related to a dynamical

system and the continued fraction.

Example 4.2.2. Let us define a sequence of finite words fn by fn = fn−1fn−2

where f−1 = b and f0 = a. Let f = lim
n→∞

fn. Then, we have

f = abaababaabaababaababaabaababaabaab · · · .

We call f Fibonacci word. The Fibonacci word is Sturmian.

The first characterization of Sturmian words is that the factors of the same

length contain a similar number of b. We define the height h(u) of a finite word

u by the number of b in u.

Definition 4.2.3. We call u ∈ A∗ ∪ AN ∪ AZ a balanced word if

|h(u)− h(v)| ≤ 1

for all u, v ∈ F (u) such that |u| = |v|.

Recall that a word is reversible if the reverses of all factors are also its

factora (see Definition 4.1.2).

Proposition 4.2.4 ([51]; see also Theorem 2.1.19. in [48]). Sturmian words

are reversible.

We define the slope π(u) of a finite word u by

π(u) =
h(u)

|u|
.

The slope of an infinite word u = (ui)i∈N is defined by the limit of the slopes

of the prefixes such that

π(u) = lim
i→∞

π(u1 · · ·ui−1ui).
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Lemma 4.2.5 ([48], Proposition 2.1.11). Let u be an infinite balanced word.

Then, u is eventually periodic if and only if π(u) is rational.

Another characterization of Sturmian words is in terms of the coding of

irrational rotations.

Definition 4.2.6. For an irrational θ ∈ [0, 1] and a real number c, let

sn =

{
a if bθ(n+ 1) + cc − bθn+ cc = 0,

b if bθ(n+ 1) + cc − bθn+ cc = 1,

and let

s′n =

{
a if dθ(n+ 1) + ce − dθn+ ce = 0,

b if dθ(n+ 1) + ce − dθn+ ce = 1,

We call sθ,c = (sn) a lower mechanical word. We call sθ,c = (s′n) an upper

mechanical words.

Morse and Hedlund characterized Sturmian words [53].

Proposition 4.2.7 ([53]; see also Theorem 2.1.13. in [48]). For an infinite

word u, the following statements are equivalent:

(1) u is Sturmian,

(2) u is balanced and aperiodic, and

(3) u is irrational mechanical.

Irrational mechanical words are generated by irrational rotations. Let S1

be a circle identified with [0, 1]/0∼1. Let Rθ : S1 → S1 be a rotation defined by

x 7→ x+ θ (mod 1).

The following proposition tells us that a Sturmian word is a coding of an orbit

of a point on S1 under Rθ.

Proposition 4.2.8 ([48], p.56). If sθ,c = (sn) and s′θ,c = (s′n), then

sn =

{
a, if Rnθ (c) ∈ [0, 1− θ),
b, if Rnθ (c) ∈ [1− θ, 1),

and s′n =

{
a, if Rnθ (c) ∈ (0, 1− θ],
b, if Rnθ (c) ∈ (1− θ, 1].

Now, we introduce an algorithm to attain a class of Sturmian words.
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Definition 4.2.9. A characteristic word cθ with a slope θ is defined by

cθ := sθ,θ = s′θ,θ.

A characteristic word is a representation of Sturmian words with the same

slope because the factor sets of two Sturmian words are the same if they have

the common slope.

Proposition 4.2.10 ([48], Proposition 2.1.18). Let s and t be Sturmian words

with the same slope θ. Then F (s) = F (t).

Proposition 4.2.11 ([29]; see also Proposition 2.2.24. in [48]). Let θ = [0; 1+

d1, d2, · · · , di, · · · ]. We define a sequence of words Mn by

Mn = Mdn
n−1Mn−2

where M−1 = b and M0 = a. Then

cθ = lim
n→∞

Mn.

Definition 4.2.12. We define two functions Γ and ∆ from A∗ ×A∗ to itself

by

Γ(u, v) = (u, uv) and ∆(u, v) = (vu, v).

Starting with (a, b), we can generate pairs of finite words by iterating Γ and ∆

such that

(u, v) = Γn1 ◦∆n2 ◦ Γn3 ◦ · · · ◦∆ni(a, b)

where each nj, for 1 ≤ j ≤ i, is a positive integer. We call the pairs the

standard pairs. We call any component of a standard pair a standard word.

We can see that each Mn in Proposition 4.2.11 is a standard word (see

Section 2.2.1 in [48] for more details).
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Chapter 5

Lévy constants of Sturmian

continued fraction expansions

Recall that Pn(x)/Qn(x), for n ∈ N, is a regular continued fraction principal

convergent of x as in Definition 2.1.1. Paul Lévy showed that

lim
n→∞

logQn(x)

n
=

π2

12 log 2

for almost every x [47]. The above limit value is called the Lévy constant of x.

In this section, we give some historical remarks of the Lévy constants in

Section 5.1. In Section 5.2, we show our main result of Lévy constants of real

numbers whose continued fraction expansions are Sturmian words.

5.1 History

An important property of continued fraction is that the convergents of the

regular continued fraction give the best Diophantine approximations of a real

number. We define a norm of t ∈ R by ||t|| := inf{|t − n| : n ∈ Z}, which is

the distance between 0 and t (mod 1) on the unit circle S1 indentified with

the unit interval. From Definition 2.1.5 and Theorem 2.1.6, we recall that

||Qnx|| < ||bx|| for any 0 < q ≤ b.

Let us choose a non-increasing function ψ : N → R>0. We say that x is ψ-

approximable if ||qx|| < ψ(q) for infinitely many positive integers q. Dirichlet
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showed that every irrational number is 1/q-approximable. Khintchine showed

that a stronger result hold.

Theorem 5.1.1 ([37]). The following statements hold.

(1) If
∑
n∈N

ψ(n) diverges, then x is ψ-approximable for almost every x ∈ R.

(2) If
∑
n∈N

ψ(n) converges, then x is not ψ-approximable for almost every

x ∈ R.

This theorem is called Khintchine theorem or Khintchine-Groshev Theo-

rem since Groshev proved a higher dimensional version of this theorem. In

order to show the theorem, Khintchine proved that there exists a constant C

such that, for almost every x,

logQn(x)

n
< C,

asymptotically. Later, he showed there exists γ such that

lim
n→∞

logQn(x)

n
= γ for almost every x ∈ R [38].

We denote by

L(x) := lim
n→∞

logQn(x)

n
.

Lévy found that

L(x) =
π2

12 log 2
for almost every x ∈ R [47].

Thus, L(x) is called Lévy constant or Khintchine-Lévy constant of x. We can

see the expression using Birkhoff ergodic theorem. Moreover, this theorem

implies that, for almost every x ∈ R,

lim
n→∞

1

n
log

∣∣∣∣∣x− Pn(x)

Qn(x)

∣∣∣∣∣ = −
π2

6 log 2
.

By using the Euler-Lagrange theorem (see Theorem 2.1.3 and 2.1.4), Jager-

Liardet found formulas of the Lévy constants for all quadratic irrationals [34].
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Theorem 5.1.2 ([34], [11]). If x is quadratic irrational whose continued frac-

tion expansion is [a0; a1, · · · , ai, ai+1, · · · , ai+n]. Then,

L(x) =
1

n
log

t+
√
t2 − (−1)n4

2
.

where t is the trace of the matrix

(5.1)

(
0 1

1 ai+1

)(
0 1

1 ai+2

)
· · ·

(
0 1

1 ai+n

)
.

We note that
t+
√
t2−(−1)n4

2 is the spectral radius of the matrix in (5.1),

i.e., the largest eigenvalue of the matrix. Belova and Hazard showed the same

formula by using generating functions whose coefficients are Pn and Qn [11].

Queffelec showed the existence of Lévy constant of a real number whose

continued fraction is a fixed point of a primitive morphism [55].

Let L be the set of Lévy constants. The minimum of L is

L([0; 1]) = log
1 +
√

5

2
.

Faivre showed that, for all β ≥ log 1+
√

5
2 , there exists x ∈ R \ Q such that

L(x) = β, i.e., L =
[
log 1+

√
5

2 ,∞
)

[26]. Let

B := {L(x) : x is a quadratic irrational}.

Golubeva showed that π2

12 log 2 is a limit point of B [30]. Jun Wu proved that B

is dense in
[
log 1+

√
5

2 ,∞
)

[66]. Baxa proved the same theorem by showing a

slightly stronger statement [10]: the following set

{L(x) : x is a quadratic irrational with partial quotients in {a, b}}

is dense in
[
L([0; a]),L([0; b])

]
=
[
log a+

√
a2+4
2 , log b+

√
b2+4
2

]
for two distinct

integers a, b such that a < b.
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5.2 Lévy constants of Sturmian continued fraction

By Euler-Lagrange theorem (Theorem 2.1.4), we know that a quadratic irra-

tional has an eventually periodic continued fraction. Coven-Hedlund theorem

(Theorem 4.1.4) tells us that an eventually periodic continued fraction has

a bounded factor complexity. Combining above areguments, we can say that

Jager-Liardet theorem (Theorem 5.1.2) means that [0;w1, w2, · · · ] has a Lévy

constant if w = w1w2 · · · has bounded factor complexity.

Let w = w1w2 · · · be a word. A natural question arises: how slow should

grow the sequence (pw(n))n≥1 to ensure that [0;w1, w2, · · · ] has a Lévy con-

stant? In particular, for a Sturmian word w, does the real number [0;w1, w2, · · · ]
have a Lévy constant? The following result answers positively the second ques-

tion.

Theorem 5.2.1. Let w = w1w2 · · · be an infinite word over the positive

integers. If there exists an integer k such that

pw(n) ≤ n+ k, for n ≥ 1,

then the real number [0;w1, w2, · · · ] has a Lévy constant.

Secondly, we show the following refinement of Faivre’s result. A Sturmian

(resp., mechanical) continued fraction is a continued fraction whose sequence of

partial quotients is a Sturmian (resp., mechanical) sequence. Recall that any

mechanical continued fraction is either Sturmian, or represents a quadratic

number.

Theorem 5.2.2. Let a, b be integers with 1 ≤ a < b. The set of Lévy constants

of mechanical continued fractions with intercept 0 and written over the alphabet

{a, b} is equal to the whole interval [L([0; a]),L([0; b])].

5.2.1 Existence: Proof of Theorem 5.2.1.

Let w be an infinite word. Recall the definition of the characteristic words cθ
in Definition 4.2.9.

Notation 5.2.3. We use the following notations.

(1) The words are written over the alphabet {a, b}, where a, b are distinct

integers.
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(2) For w = w1w2 · · · with wj in N for j ≥ 1, we set

x = [0; w] = [0;w1, w2, · · · , wj , · · · ].

(3) We denote by x = [0; s] the real number whose sequence of partial quo-

tients is given by the Sturmian word s = s1s2 · · · . The slope of the Stur-

mian word s is the irrational real number θ = [0; 1 + d1, d2, · · · ].

We denote the principal convergents of x = [0; s1, s2, · · · ] by Pn/Qn and

the principal convergents of θ = [0; 1 + d1, d2, · · · ] by pn/qn.

(4) For a finite word M = b1b2 · · · bn, we denote by M− its prefix b1 · · · bn−1

of length n− 1.

LetK(a1, · · · , an) be the denominator of the rational number [0; a1, a2, · · · , an].

Then we have(
a1 1

1 0

)
· · ·

(
an 1

1 0

)
=

(
K(a1, · · · , an) K(a1, · · · , an−1)

K(a2, · · · , an) K(a2, · · · , an−1)

)
.

Therefore, we have

K(a1, · · · , an+m)

= K(a1, · · · , an)K(an+1, · · · , an+m) +K(a1, · · · , an−1)K(an+2, · · · , an+m).

Thus,

K(a1, · · · , an)K(an+1, · · · , an+m) < K(a1, · · · , an+m)

≤ 2K(a1, · · · , an)K(an+1, · · · , an+m).

Let us write K(M) = K(b1, b2, · · · , bn) for a word M = b1b2 · · · bn.

Remark 5.2.4. We claim that, for k ≥ 2,

MkM
−−
k−1 = Mk−1M

−−
k .

For k = 1,

M1M
−−
0 = ad1 = M0M

−−
1

(a0 is the empty word ε). By the induction hypothesis,

MkM
−−
k−1 = Mdk

k−1Mk−2M
−−
k−1 = Mdk

k−1Mk−1M
−−
k−2 = Mk−1M

−−
k .
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Let M ∈ Fqk−1(cθ). By Proposition 4.2.11, the characteristic word cθ can

be written as the concatenation of words Mk and Mk−1, without two consecu-

tive copies of Mk−1. Combined with the claim, we have the fact that

(5.2) any factor M of length qk − 1 of s is a factor of Mk(Mk)
−−.

Lemma 5.2.5. Let M be a factor of s of length n with qk ≤ n ≤ qk+1 − 1.

Then,

(a) M is a factor of MkMk · · ·MkMk−1, or

(b) M = UV , where U is a suffix of Mk+1 and V is a prefix of Mk+1 with

|V | ≥ qk − 1.

Proof. By (5.2), M is a factor of Mk+1 or M = UV where U is a suffix of

Mk+1 and V is a prefix of Mk+1. If |V | ≤ qk − 2, then V is a prefix of M−−k .

Thus, M = UV is a factor of Mk+1Mk
−− = MkMk+1

−− and also a factor of

MkMk · · ·MkMk−1.

We recall that F (cθ) = F (sθ,ρ) = F (s′θ,ρ) for any intercept ρ from Propo-

sition 4.2.10.

Proposition 5.2.6. Let s be a Sturmian word of slope θ = [0; 1 + d1, d2, · · · ],
where d1 ≥ 1. Let k be a nonnegative integer. Let n be an integer with qk ≤
n ≤ qk+1 − 1. Let c = max{b/a, a/b}. For any factor M , M ′ of s of length n,

we have

K(M) ≤ 22kcK(M ′).

Proof. Suppose first that k = 0. Recall that q0 = 1 and q1 = d1 + 1. Let n

be an integer with q0 ≤ n ≤ q1 − 1. A factor of s of length n is a factor of

M1M
−−
1 = ad1bad1−1. Then any factor of s of length n is either an, or an1ban2

with n1 + n2 = n− 1.

Assume that a < b. Clearly, K(an) < K(an1ban2). Since

aK(an1b) = a(bK(an1) +K(an1−1))

≤ b(aK(an1) +K(an1−1)) = bK(an1+1),

it is easy to check that,

aK(an1ban2) ≤ bK(an).
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Thus, aK(an1ban2) ≤ bK(an) ≤ bK(an
′
1ban

′
2) with n′1 + n′2 = n− 1. Similarly,

for the case of a > b, we check that bK(an1ban2) ≤ bK(an) ≤ aK(an
′
1ban

′
2).

Hence, the proposition holds for every positive integer n at most equal to

q1 − 1.

We argue by induction. Let k be a positive integer and suppose that the

proposition holds for every positive integer n at most equal to qk − 1. Let n

be an integer with qk ≤ n ≤ qk+1 − 1. Let M,M ′ be two factors of s of length

n. By Lemma 5.2.5, we distinguish the following cases:

Case (i): Both of M,M ′ are factors of MkMk · · ·MkMk−1.

Since MkMk · · ·MkMk−1 is a periodic word with period qk, there exist

factors N,N ′ of s such that NM = M ′N ′ and |N | = |N ′| < qk. Therefore,

K(M) =
K(N)K(M)

K(N)
≤ K(NM)

K(N)

≤ c22(k−1)K(M ′N ′)

K(N ′)

≤ c22k−1K(M ′)K(N ′)

K(N ′)
≤ c22k−1K(M ′).

Case (ii): Let M = UV and M ′ = U ′V ′ where U,U ′ are (possibly empty)

suffixes of Mk+1 and V, V ′ are (possibly empty) prefixes of Mk+1. We may

assume that |U | < |U ′|. Define the words N,N ′ by U ′ = NU and V = V ′N ′.

It follows from Case (i) that

K(N ′) ≤ c · 2 · 4k−1K(N).

Therefore,

K(M) =
K(N)K(UV )

K(N)
≤ K(NUV )

K(N)
≤ c22k−1K(U ′V ′N ′)

K(N ′)

≤ c22k−1 2K(U ′V ′)K(N ′)

K(N ′)
= c22kK(M ′).

Case (iii): Assume that M is a factor of Mk · · ·MkMk−1 and M ′ = UV , where

U is a suffix of Mk+1 and V is a prefix of Mk+1 with |V | ≥ qk − 1. Write

M = NMk · · ·MkN
′ where N is a nonempty prefix of Mk and N ′ is a possibly

empty suffix of Mk.

(1) If |N ′| ≥ qk−1, then N ′ = Mk−1N
′′ is a prefix of (MkMk−1)−− =
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(Mk−1Mk)
−−. Hence,

M = NMk · · ·MkN
′ = NMk · · ·MkMk−1N

′′,

where NMk · · ·MkMk−1 is a suffix of Mk+1 and N ′′ is a prefix of Mk,

which is a prefix of Mk+1. We apply the argument of Case (ii).

(2) If |N ′| ≤ qk−1−2, thenMkN
′ is a prefix of (MkMk−1)−− = (Mk−1Mk)

−−.

Define N ′′ by

MkN
′ = Mk−1N

′′.

Since n ≥ qk, we get that N ′′ is a suffix of M . We write M = WN ′′,

where W is a suffix of Mk · · ·MkMk−1. Since N ′′ is a prefix of Mk, which

is a prefix of Mk+1, we apply the argument of Case (ii).

(3) Suppose that |N | ≥ 2. Put Mk = V ′N . Then V ′ is a prefix of V . Let

V ′′,W be the words defined by V = V ′V ′′ and M = V ′′W . Since UV ′ is

a factor of Mk+1M
−−
k = MkM

−−
k+1 and MkM

−−
k+1 is periodic with period

qk, we have

K(W ) ≤ c22k−1K(UV ′),

in a similar way as in Case (i). Thus,

K(M) ≤ 2K(V ′′)K(W ) ≤ 2K(V ′′) · c22k−1K(UV ′)

≤ c22kK(UV ′V ′′) = c22kK(M ′).

(4) The remaining case is the case where |N | = 1 and |N ′| = qk−1−1. Then,

for some d ≥ 0,

M =

{
a(Mk)

d+1(Mk−1)−, if k is even,

b(Mk)
d+1(Mk−1)−, if k is odd,

since Mk is ending with a if k is even and with b otherwise. Note that

|M ′| = |M | = (d+ 1)qk + qk−1. Since U is a suffix of (Mk)
dk+1Mk−1 and

V is a prefix of (Mk)
dk+1(Mk−1)−−, we have

V U = (Mk)
d+1Mk−1.
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If k is even, then

K(M) ≤ 4K(a)K(V )K(U−)

≤ 4cK(b)K(V )K(U−) ≤ 4cK(U−bV ) = 4cK(M ′).

The case of odd k is symmetric.

Before concluding the proof, we recall Fekete’s lemma.

Lemma 5.2.7 (Fekete). If a sequence (an)n≥1 of positive real numbers is

subadditive, that is, if it satisfies an+m ≤ an + am for any integers n and m,

then the sequence (an/n)n≥1 converges and

lim
n→∞

an
n

= inf
n≥1

an
n
.

We have now all the material to establish the following theorem.

Theorem 5.2.8. Let x = [0; s1, s2, · · · ] be a Sturmian continued fraction.

Then, x has a Lévy constant L(x).

Proof. We apply Proposition 5.2.6. Let θ = [0; 1 + d1, d2, · · · ], where d1 ≥ 1,

denote the slope of x. For k ≥ 1, let qk denote the denominator of θ. Let k be

a nonnegative integer. Let n be an integer with qk ≤ n ≤ qk+1− 1. Let M,M ′

be factors of s of length n. Since qk ≥ 2k/2−1, we have

(5.3) K(M) ≤ c4k−1K(M ′) ≤ 4c(qk)
4K(M ′) ≤ 4cn4K(M ′).

Set An = 27cn4K(s1, s2, · · · , sn). Then for m ≤ n we have

An+m = 27c(n+m)4K(s1, s2, · · · , sn+m)

≤ 27c(2n)42K(s1, s2, · · · , sn)K(sn+1, sn+2, · · · , sn+m)

≤ 27cn4K(s1, s2, · · · , sn)27cm4K(s1, s2, · · · , sm) = AnAm.

By Fekete’s lemma, the following limits exist and are equal

lim
n→∞

1

n
logAn = lim

n→∞

1

n
log (27cn4Qn(x)) = lim

n→∞

1

n
logQn(x).

This proves that x has a Lévy constant, which, by (5.3) and the fact that two

Sturmian words with the same slope have the same set of factors, does not

depend on the intercept.
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Completion of the proof of Theorem 5.2.1. Let w = w1w2 · · · be an infinite

word defined over the positive integers such that the sequence (pw(n)−n)n≥1

is bounded and w is not ultimately periodic. Since the function n 7→ pw(n) is

non-decreasing, the sequence (pw(n)− n)n≥1 of positive integers is eventually

constant. Thus, there exist positive integers k and n0 such that

(5.4) py(n) = n+ k, for n ≥ n0.

Infinite words satisfying (5.4) are called quasi-Sturmian words. It follows from

a result of Cassaigne [17, Proposition 8] that there are a finite word W , a

Sturmian word s defined over {a, b} and a morphism ϕ from {a, b}∗ into the

set of positive integers such that ϕ(ab) 6= ϕ(ba) and

w = Wϕ(s).

We briefly explain that Proposition 5.2.6 can be suitably extended to the word

w.

Put cϕ = max{K(ϕ(a))/K(ϕ(b)),K(ϕ(b))/K(ϕ(a))}. For any nonnegative

integers n1, n2, n
′
1, n
′
2 with n1 + n2 = n′1 + n′2 = n− 1, we have

K(ϕ(an1ban2)) ≤ 4K(ϕ(an1))K(ϕ(b))K(ϕ(an2))

≤ 4cϕK(ϕ(an)) ≤ 42cϕK(ϕ(an
′
1ban

′
2))

or

K(ϕ(an1ban2)) ≤ 4K(ϕ(an)) ≤ 42cϕK(ϕ(an
′
1ban

′
2)),

depending on the fact that K(ϕ(a)) ≤ K(ϕ(b)) or K(ϕ(b)) ≤ K(ϕ(a)).

Therefore, by replacing K(M),K(M ′) with K(ϕ(M)) and K(ϕ(M ′)) in the

proof of Proposition 5.2.6, we conclude that, for any factors N,N ′ of s with

qk ≤ |N | = |N ′| ≤ qk+1 − 1, we get

K(ϕ(N)) ≤ 4k+2cϕK(ϕ(N ′)).

Set h = max{|ϕ(a)|, |ϕ(b)|}. Let M,M ′ be factors of the same length of ϕ(s).

Let L (resp., N) be the word of minimal (resp., maximal) length such that M

is a factor of ϕ(L) (resp., ϕ(N) is a factor of M ′). Since s is a balanced word

(see Proposition 4.2.7), we have |L| − |N | ≤ 6. Setting c̃ = max{K(M) |M =
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ϕ(N) for |N | = 6}, we get

K(M) ≤ K(ϕ(L)) ≤ 2c̃ · 4k+2cϕK(ϕ(N)) ≤ 2c̃ · 4k+2cϕK(M ′),

and we conclude as in the proof of Theorem 5.2.8. We observe that the Lévy

constant of [0;w1, w2, · · · ] depends only on the slope of the Sturmian word

s.

We end this section with an example that the real number has no Lévy

constant.

Example 5.2.9. We remark that there is a real number that does not have

Lévy constant. Let us consider a word w = abaabbbbaa · · · whose (2n + 1)th

up to (2n+1)th letters are b if n is even and a if n is odd. Let x = [0; w]. By

the definition of w, we have{
Q2m(x)K(a2m) ≤ Q2m+1(x) ≤ 2Q2m(x)K(a2m), if m is odd,

Q2m(x)K(b2m) ≤ Q2m+1(x) ≤ 2Q2m(x)K(b2m), if m is even.

If L(x) exists, then 2L = L+ L([0; a]) = L+ L([0; b]). It contradicts to a 6= b.

Then x = [0; w] has no Lévy constant.

The real numbers x = [0; w] defined above show that we cannot hope for a

much better result than Theorem 5.2.1. Indeed, it is easy to see that the factor

complexity of the infinite word w formed by the concatenation of its partial

quotients satisfies 2n ≤ pw(n) ≤ 3n, for n ≥ 1.

Note that the set of real numbers which do not have a Lévy constant has

full Hausdorff dimension [54, Theorem 3]; see also [8].

5.2.2 Spectrum: Proof of Theorem 5.2.2.

In this section, we will show that the set of Lévy constants of Sturmian con-

tinued fractions and quadratic irrationals is
[
log 1+

√
5

2 ,∞
)

. From now on,

the words are written over the alphabet {a, b}, where a, b are integers with

1 ≤ a < b. For brevity, we define some notations about the trace of matrices.
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Notation 5.2.10. (1) For positive integers a1, · · · , an, let

T (a1, · · · , an) = Tr

((
a1 1

1 0

)
· · ·

(
an 1

1 0

))

= Tr

((
K(a1, · · · , an) K(a1, · · · , an−1)

K(a2, · · · , an) K(a2, · · · , an−1)

))
= K(a1, · · · , an) +K(a2, · · · , an−1).

(2) We define polynomials Tn(x) for n ≥ 1 by

Tn(x) = Tr (Xn) = T (xn)

where

X =

(
x 1

1 0

)
, I =

(
1 0

0 1

)
.

Observe that

T1(x) = x, T2(x) = x2 + 2, T3(x) = x3 + 3x, · · ·

Since all coefficients of Tn(x) is positive, T′n(x) > 0 for all positive x. If n is

even, then T (a1, · · · , an) > 2 and Tn(0) = 2. If n is odd, then T (a1, · · · , an) >

0 and Tn(0) = 0. Thus, there is a unique positive µ such that Tn(µ) =

T (a1, · · · , an). This real number µ can be seen as being a mean of a1, · · · , an.

Proposition 5.2.11. If α is the quadratic irrational whose continued fraction

expansion is given by [a0; a1, · · · , ar, ar+1, · · · , ar+s], then

L(α) = log
µ+

√
µ2 + 4

2
,

where µ is the positive real number such that

Ts(µ) = T (ar+1, · · · , ar+s).

Proof. For a nonnegative integer n, define the polynomials An and Bn by

(5.5)

(
x+
√
x2 + 4

2

)n
=

An(x) + Bn(x)
√
x2 + 4

2
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where A0 = 2, A1 = x, B0 = 0, B1 = 1 and B2 = x. We have(
An+1(x)

Bn+1(x)

)
=

1

2

(
x x2 + 4

1 x

)(
An(x)

Bn(x)

)
.

Then (
An−1(x)

Bn−1(x)

)
=

1

2

(
−x x2 + 4

1 −x

)(
An(x)

Bn(x)

)
.

Since

An+1(x)− x

2
An(x) =

x2 + 4

2
Bn(x) =

x

2
An(x) + An−1(x)

and

Bn+1(x)− x

2
Bn(x) =

1

2
An(x) =

x

2
Bn(x) + Bn−1(x),

we have the following recurrence forms

An+1(x) = xAn(x) + An−1(x), Bn+1(x) = xBn(x) + Bn−1(x).

Since A0(x) = T0(x) and A1(x) = T1(x), we have An(x) = Tn(x).

Recall that the norm of a quadratic irrational is equal to the product

of itself by its Galois conjugate. The norm of (An(x) + Bn(x)
√
x2 + 4)/2 is

(An(x)2 −Bn(x)2(x2 + 4))/4 and the norm of x+
√
x2 + 4/2 is −1. By (5.5),

Bn(x)
√
x2 + 4 =

√
An(x)2 − (−1)n4.

It follows from Theorem 5.1.2 and the definition of µ that

L(α) =
1

s
log

T (ar+1, · · · , ar+s) +
√
T (ar+1, · · · , ar+s)2 − (−1)s4

2

=
1

s
log

Ts(µ) +
√

Ts(µ)2 − (−1)s4

2
.

Since As(µ) = Ts(µ) and Bs(µ)
√
x2 + 4 =

√
Ts(µ)2 − (−1)s4, this proves the

proposition.

Definition 5.2.12. We define the lower Christoffel word with slope p/q by a

prefix of sp/q,0 of length q. Let wp/q be the lower Christoffel word with slope

p/q.
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For example,

w0/1 = a, w1/1 = b, w1/2 = ab, w1/3 = aab, w3/8 = aabaabab.

We have

|wp/q| = q, |wp/q|a = q − p, |wp/q|b = p

where | · |a is the number of a and | · |b is the number of b. Note that, for p/q

in [0, 1), the word wp/q can be written as

wp/q = aub, where u is a palindrome.

We refer the reader to [13] and [2] for additional results on Christoffel words.

For shorten the notation, for a finite word v = v1 · · · vn over the positive

integers, we write

[0; v] := [0; v1, · · · , vn] and T (v) := T (v1, · · · , vn).

We define αθ by

αθ :=

{
[0;wp/q] if θ = p/q,

[0; cθ] if θ is irrational.

Then L(αp/q) is uniquely defined for each rational p/q. Note that each rational

p/q has a unique continued fraction expansion if we allow the last partial

quotient is bigger than 1.

To show Theorem 5.2.2, we need more statements. We define the function

f on [0, 1] by

(5.6) f(θ) := L(αθ).

Proposition 5.2.11 and Theorem 5.1.2 imply that f is well-defined. We aim to

prove that f is monotone and continuous.

We introduce further notation.

Notation 5.2.13. (1) We denote by xp/q the positive real solution of

(5.7) Tq(xp/q) = T (wp/q).

It has been shown just above Proposition 5.2.11 that xp/q is well-defined.
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(2) We define a function ϕ(x) and ϕ′(x) by

(5.8) ϕ(x) :=
x+
√
x2 + 4

2
and ϕ′(x) :=

x−
√
x2 + 4

2
.

Proposition 5.2.11 shows that

L(αp/q) = logϕ(xp/q).

(3) Let

Xp/q =

(
xp/q 1

1 0

)
.

By (5.7), we have

Tr(Xq
p/q) = T (wp/q).

Example 5.2.14. (1) For n = 1, we have that

L([0; a]) = log
a+
√
a2 + 4

2
= logϕ(a).

(2) For n = 2. we have that

L([0; a, b]) =
1

2
log

ab+ 2 +
√

(ab+ 2)2 − 4

2
=

1

2
log

ab+ 2 +
√
ab(ab+ 4)

2
.

Since

logϕ(
√
ab) = log

√
ab+

√
ab+ 4

2
=

1

2
log

(√
ab+

√
ab+ 4

2

)2

=
1

2
log

2ab+ 4 + 2
√
ab(ab+ 4)

4
,

We have

L([0; a, b]) = logϕ(
√
ab)

and x1/2 =
√
an.

Lemma 5.2.15. Let U, V be 2 × 2 matrices. If U = WV or VW , then we

have

Tr(V U) = Tr(UV ) = Tr(U) Tr(V )− det(V ) Tr(W ).
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CHAPTER 5. LÉVY CONSTANTS OF STURMIAN CONTINUED
FRACTION EXPANSIONS

In particular, for any integers q and q′ such that q ≥ q′ > 0, we have the

following relation:

(5.9) Tr(Xq+q′) = Tr(Xq) Tr(Xq′) + (−1)q
′+1 Tr(Xq−q′).

Proof. By a direct calculation, we get

Tr(UV ) = Tr(U) Tr(V ) + det(U − V )− det(U)− det(V )

and

det(W − I) = det(W )− Tr(W ) + 1

where I is the 2× 2 identity matrix. Therefore, if U = WV , we have

Tr(UV ) = Tr(U) Tr(V ) + det(WV − V )− det(WV )− det(V )

= Tr(U) Tr(V ) + det(W − I) det(V )− det(W ) det(V )− det(V )

= Tr(U) Tr(V )− det(V ) Tr(W ).

If U = VW , then Tr(UV ) = Tr(VWV ) = Tr(V U ′), with U ′ = WV , and

we use the previous calculation. Finally, taking U = Xq and V = Xq′ , we

immediately derive (5.9).

By the previous lemma, we have the following relation between the traces

of matrices associated to Chritoffel words.

Lemma 5.2.16. Let p/q and p′/q′ be rational numbers in [0, 1] with q > q′

and

det

(
p p′

q q′

)
= ±1.

Then the following relation holds:

(5.10) T (w(p+p′)/(q+q′)) = T (wp/q)T (wp′/q′) + (−1)q
′+1T (w(p−p′)/(q−q′)).

Example 5.2.17. The lower Christoffel word with slope 0/1, 1/4, 1/3, 2/7

are

w0/1 = a, w1/4 = aaab, w1/3 = aab, w2/7 = aaabaab,

respectively. Their corresponding traces are

T (w0/1) = a, T (w1/4) = a3b+ 2a2 + 2ab+ 2, T (w1/3) = a2b+ 2a+ b,
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T (w2/7) = a5b2 + 4a4b+ 3a3b2 + 4a3 + 8a2b+ 2ab2 + 5a+ 2b.

By direct calculation, we can check that

T (w2/7) = T (w1/4)T (w1/3) + T (w0/1).

Lemma 5.2.18. Let p/q and p′/q′ be rational numbers in [0, 1] such that

q > q′ and

det

(
p p′

q q′

)
= ±1.

Then we have the following four relations:

Tr(Xq+q′

p/q )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq′

p/q)− Tr(Xq′

p′/q′)

= Tr(Xq
p/q) + (−1)q

′+1
Tr(Xq−q′

p/q )− Tr(Xq−q′
(p−p′)/(q−q′))

Tr(Xq′

p/q)− Tr(Xq′

p′/q′)
,

(5.11)

Tr(Xq+q′

p′/q′ )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)

= Tr(Xq′

p′/q′) + (−1)q
′+1

Tr(Xq−q′
p′/q′ )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)
,

(5.12)

Tr(Xq′

(p+p′)/(q+q′))− Tr(Xq′

p′/q′)

Tr(Xq
p/q)− Tr(Xq

(p+p′)/(q+q′))
=

Tr(Xq′

(p+p′)/(q+q′))

Tr(Xq
p/q)

+ (−1)q
′+1

Tr(Xq−q′
(p+p′)/(q+q′))− Tr(Xq−q′

(p−p′)/(q−q′))

(Tr(Xq
(p+p′)/(q+q′))− Tr(Xq

p/q)) Tr(Xq
p/q)

(5.13)

and

Tr(Xq
(p+p′)/(q+q′))− Tr(Xq

p/q)

Tr(Xq′

p′/q′)− Tr(Xq′

(p+p′)/(q+q′))
=

Tr(Xq
(p+p′)/(q+q′))

Tr(Xq′

p′/q′)

+ (−1)q
′+1

Tr(Xq−q′
(p−p′)/(q−q′))− Tr(Xq−q′

(p+p′)/(q+q′))

(Tr(Xq′

p′/q′)− Tr(Xq′

(p+p′)/(q+q′))) Tr(Xq′

p′/q′)
.

(5.14)
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Proof. By Lemma 5.2.16, we have

(5.15) Tr(Xq+q′

(p+p′)/(q+q′)) = Tr(Xq
p/q) Tr(Xq′

p′/q′) + (−1)q
′+1 Tr(Xq−q′

(p−p′)/(q−q′)).

By applying (5.9) with X = Xp/q, X = Xp′/q′ , and X = X(p+p′)/(q+q′), we

get three equalities. By combining these four equalities, we derive the four

equations (5.11), (5.12), (5.13) and (5.14).

Proposition 5.2.19. Let p/q and p′/q′ be rational numbers [0, 1] with q > q′

and det

(
p p′

q q′

)
= ±1. Then we have

xp/q < x(p+p′)/(q+q′) < xp′/q′ or xp′/q′ < x(p+p′)/(q+q′) < xp/q.

Proof. Since Tn(x) is an strictly increasing function, for all n ≥ 1 and every

rational numbers p/q and r/s between 0 and 1,

Tr(Xn
p/q) < Tr(Xn

r/s) if and only if xp/q < xr/s.

We will show the proposition inductively. Suppose that xp/q is a point between

xp′/q′ and x(p−p′)/(q−q′).

(i) Assume that q′ is even. Since xp/q is between xp′/q′ and x(p−p′)/(q−q′), we

have
Tr(Xq−q′

p/q )− Tr(Xq−q′
(p−p′)/(q−q′))

Tr(Xq′

p/q)− Tr(Xq′

p′/q′)
< 0.

By (5.11),

(5.16)
Tr(Xq+q′

p/q )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq′

p/q)− Tr(Xq′

p′/q′)
> Tr(Xq

p/q) > 0.

Assume that q′ is odd. If p/q < p′/q′, then (p−p′)/(q−q′) < p/q < p′/q′.

Note that the traces are integers. Thus

(5.17)
Tr(Xq−q′

p/q )− Tr(Xq−q′
(p−p′)/(q−q′))

Tr(Xq′

p′/q′)− Tr(Xq′

p/q)
< Tr(Xq−q′

p/q ) < Tr(Xq
p/q).
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If p′/q′ < p/q and q − q′ < q′, then

2p′ − p
2q′ − q

<
p′

q′
<
p

q
<
p− p′

q − q′
,

thus by (5.13),

Tr(Xq−q′
p/q )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq′

p′/q′)− Tr(Xq′

p/q)

is equal to

Tr(Xq−q′
p/q )

Tr(Xq′

p′/q′)
+ (−1)q−q

′+1
Tr(X2q′−q

p/q )− Tr(X2q′−q
(2p′−p)/(2q′−q))

(Tr(Xq′

p/q)− Tr(Xq′

p′/q′)) Tr(Xq′

p′/q′)
.

For an odd q, we have

Tr(Xq−q′
p/q )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq′

p′/q′)− Tr(Xq′

p/q)

=
Tr(Xq−q′

p/q )

Tr(Xq′

p′/q′)
−

Tr(X2q′−q
p/q )− Tr(X2q′−q

(2p′−p)/(2q′−q))

(Tr(Xq′

p/q)− Tr(Xq′

p′/q′)) Tr(Xq′

p′/q′)

<
Tr(Xq−q′

p/q )

Tr(Xq′

p′/q′)
< Tr(Xq

p/q).

(5.18)

For an even q, we have

Tr(Xq−q′
p/q )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq′

p′/q′)− Tr(Xq′

p/q)

=
Tr(Xq−q′

p/q )

Tr(Xq′

p′/q′)
+

Tr(X2q′−q
p/q )− Tr(X2q′−q

(2p′−p)/(2q′−q))

(Tr(Xq′

p/q)− Tr(Xq′

p′/q′)) Tr(Xq′

p′/q′)

< Tr(Xq−q′
p/q ) + Tr(X2q′−q

p/q )

< Tr(Xq′

p/q) Tr(Xq−q′
p/q ) + (−1)q−q

′+1 Tr(X2q′−q
p/q ) = Tr(Xq

p/q).

(5.19)
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If p′/q′ < p/q and q − q′ > q′, then

p′

q′
<
p

q
<
p− p′

q − q′
<
p− 2p′

q − 2q′
.

By (5.14),

Tr(Xq−q′
p/q )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq′

p′/q′)− Tr(Xq′

p/q)

=
Tr(Xq−q′

p/q )

Tr(Xq′

p′/q′)
+

Tr(Xq−2q′

(p−2p′)/(q−2q′))− Tr(Xq−2q′

p/q )

(Tr(Xq′

p′/q′)− Tr(Xq′

p/q)) Tr(Xq′

p′/q′)

<
Tr(Xq−q′

p/q )

Tr(Xq′

p′/q′)
< Tr(Xq

p/q).

(5.20)

Therefore, using (5.17), (5.18), (5.19), (5.20) and (5.11), we have

Tr(Xq+q′

p/q )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq′

p/q)− Tr(Xq′

p′/q′)
> 0.

Thus, we have established that

xp/q < x(p+p′)/(q+q′) if xp/q < xp′/q′ , and

xp/q > x(p+p′)/(q+q′) if xp/q > xp′/q′ ,

regardless of the parity of q′.

(ii) Suppose that q′ is odd. Since xp/q is between xp′/q′ and x(p−p′)/(q−q′), we

have
Tr(Xq−q′

p′/q′ )− Tr(Xq−q′
(p−p′)/(q−q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)
> 0.

By (5.12)

Tr(Xq+q′

p′/q′ )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)
> Tr(Xq′

p′/q′) > 0.
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Suppose that q′ is even. Using (5.12), we have to show that

Tr(Xq−q′
p′/q′ )− Tr(Xq−q′

(p−p′)/(q−q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)
< Tr(Xq′

p′/q′).

Let m ≥ 1 be the integer satisfying that mq′ < q < (m+ 1)q′. Note that

q is odd. By (5.11),

Tr(X
q−(m−1)q′

p′/q′ )− Tr(X
q−(m−1)q′

(p−(m−1)p′)/(q−(m−1)q′))

Tr(Xq−mq′
p′/q′ )− Tr(Xq−mq′

(p−mq′)/(q−mq′))

= Tr(Xq′

p′/q′)−
Tr(X

(m+1)q′−q
((m+1)p′−p)/((m+1)q′−q))− Tr(X

(m+1)q′−q
p′/q′ )

Tr(Xq−mq′
p′/q′ )− Tr(Xq−mq′

(p−mq′)/(q−mq′))

< Tr(Xq′

p′/q′).

Here we use the fact that p′/q′ is between (m+1)p′−p
(m+1)q′−q and p−mp′

q−mq′ . By (5.12),

for each 0 ≤ n < m,

Tr(X
q−(n−1)q′

p′/q′ )− Tr(X
q−(n−1)q′

(p−(n−1)p′)/(q−(n−1)q′))

Tr(Xq−nq′
p′/q′ )− Tr(Xq−nq′

(p−nq′)/(q−nq′))

= Tr(Xq′

p′/q′)−
Tr(X

q−(n+1)q′

p′/q′ )− Tr(X
q−(n+1)q′

(p−(n+1)p′)/(q−(n+1)q′))

Tr(Xq−nq′
p′/q′ )− Tr(Xq−nq′

(p−nq′)/(q−nq′))
.

Therefore, inductively we have

Tr(Xq+q′

p′/q′ )− Tr(Xq+q′

(p+p′)/(q+q′))

Tr(Xq
p′/q′)− Tr(Xq

p/q)

> Tr(Xq′

p′/q′)−
1

Tr(Xq′

p′/q′)−
1

Tr(Xq′

p′/q′)−
. . .

> 0.

Thus, we have established that

xp′/q′ < x(p+p′)/(q+q′) if xp′/q′ < xp/q, and

xp′/q′ > x(p+p′)/(q+q′) if xp′/q′ > xp/q,
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regardless of the parity of q′. We conclude that

xp′/q′ < x(p+p′)/(q+q′) < xp/q or xp/q < x(p+p′)/(q+q′) < xp′/q′

holds.

Proposition 5.2.20. Let p/q and p′/q′ be rational numbers [0, 1] with p/q <

p′/q′. Then

L(αp/q) < L(αp′/q′).

Proof. It is enough to show the monotonicity for rationals p/q and p′/q′ with

det

(
p p′

q q′

)
= −1 and p/q < p′/q′. By Proposition 5.2.11,

L(αp/q) < L(α(p+p′)/(q+q′)) < L(αp′/q′),

is equivalent to

xp/q < x(p+p′)/(q+q′) < xp′/q′ ,

which is established by Proposition 5.2.19.

The above proposition shows that f is monotone increasing on the ratio-

nals. From now on, we will discuss the continuity of f .

Lemma 5.2.21. For a given rational p/q ∈ [0, 1], there exists a sequence of

rational numbers (rn) which converges to p/q such that xrn converges to xp/q.

Proof. Let p′/q′ be a rational such that p′q − pq′ = ±1. Let

rn :=
p′ + np

q′ + nq
.

We observe that rn tends to p/q as n tends to infinity, and rn 6= p/q, for n ≥ 1.

Since Tm(x) = xTm−1(x)+Tm−2(x) for m ≥ 3, we can show inductively that

(5.21) Tm(x) = ϕ(x)m + ϕ′(x)m, for m ≥ 1,

where ϕ and ϕ′ are defined in (5.8).

By Lemma 5.2.16, we have

(5.22) T (wrn) = T (wp/q)T (wrn−1) + (−1)q+1T (wrn−2) for n ≥ 3.
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Thus, the sequence (T (wrn))n≥1 is a binary recurrence sequence and there

exist constants C1, C2 such that

T (wrn) = C1u
n + C2v

n, n ≥ 1,

where

u=
T (wp/q)+

√
T (wp/q)2+(−1)q+14

2
and v=

T (wp/q)−
√
T (wp/q)2+(−1)q+14

2
.

Since the integer T (wp/q)
2 + (−1)q+14 cannot be a positive perfect square, we

deduce that C1 and C2 are nonzero.

For any ε > 0, we have

1

q
log u = L(αp/q) = logϕ(xp/q) ∈

(
logϕ(xp/q − ε), logϕ(xp/q + ε)

)
.

Thus,

0 < ϕ(xp/q − ε)q < u < ϕ(xp/q + ε)q.

Since |ϕ′(xp/q− ε)| < ϕ(xp/q− ε) and |v| < u, by combining (5.21) and (5.22),

we deduce that

Tq′+nq(xp/q − ε)
Tq′+nq(xrn)

→ 0 and
Tq′+nq(xp/q + ε)

Tq′+nq(xrn)
→∞,

as n→∞. There exists N depending on ε such that for any n > N ,

Tq′+nq(xp/q − ε) < Tq′+nq(xrn) < Tq′+nq(xp/q + ε).

Since Tq′+nq is monotone increasing, we conclude that

xp/q − ε < xrn < xp/q + ε.

Since ε can be taken arbitrarily small, this shows that xrn goes to xp/q as n

goes to infinity.

Lemma 5.2.22. Let α = [0; s1, s2, · · · , sn, · · · ] where s1s2 · · · sn · · · is a char-

acteristic Sturmian word with slope θ. Then

L(α) = lim
k→∞

L(αpk/qk),
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where pk/qk is the principal convergnet of θ.

To show the lemma, we use the following result of Baxa [10].

Lemma 5.2.23 ([10]). For all α = [0; b1, b2, · · · ] ∈ R \Q, we have

lim
n→∞

logQn(α)

n
= lim

n→∞

1

n

n∑
i=1

log ([bi; bi+1, · · · ])

and

lim
n→∞

logQn(α)

n
= lim

n→∞

1

n

n∑
i=1

log ([bi; bi+1, · · · ])

where Qn(α) is the denominator of the nth principal convergent of α.

Proof of Lemma 5.2.22. By Theorem 5.2.1 and the above lemma,

L(α) = lim
n→∞

1

n

n∑
i=1

log ([si; si+1, · · · ]).

The prefix s1 · · · sqk−1sqk is a standard word. It is known that a standard word

is a permutation of a lower Christoffel word. More precisely, if sqk−1sqk = ba,

then sqks1 · · · sqk−1 is wpk/qk and if sqk−1sqk = ab, then sqk−1sqk−2 · · · s2s1sqk
is wpk/qk . Thus,

L(αpk/qk) =
1

qk

qk∑
i=1

log ([si; si+1, · · · , si+qk−1]) = L([0; s1 · · · sqk ]).

Let r ≥ 3 and γ = [0; cr, cr+1, · · · ], δ = [0; dr, dr+1, · · · ] be continued

fractions with partial quotients in {a, b}. Let b0, · · · , br−1 be integers in {a, b}.
We denote by

Rr−2/Tr−2 = [b0; b1, · · · , br−2], Rr−1/Tr−1 = [b0; b1, · · · , br−1].

Then, we infer

|[b0; b1, · · · , br−1, cr, cr+1, · · · ]− [b0; b1, · · · , br−1, dr, dr+1, · · · ]|

=

∣∣∣∣Rr−1γ +Rr−2

Tr−1γ + Tr−2
− Rr−1δ +Rr−2

Tr−1δ + Tr−2

∣∣∣∣ =
|γ − δ|

(Rr−1γ +Rr−2)(Tr−1δ + Tr−2)

≤ L([0; b])− L([0; a])

2r−2
.
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Since | log x− log y| < |x− y| if x, y > 1,∣∣∣∣∣ 1

qk

qk∑
i=1

log ([si; si+1, · · · ])−
1

qk

qk∑
i=1

log ([si; si+1, · · · , si+qk−1])

∣∣∣∣∣
≤ L([0; b])− L([0; a])

2qk−2
→∞ as k →∞.

Thus, L(α) = lim
n→∞

L(αpk/qk).

Proof of Theorem 5.2.2. By Proposition 5.2.19, the function f is monotone

increasing on the rationals in [0, 1]. By Lemma 5.2.22, f is monotone increasing

on [0, 1]. By Lemmas 5.2.21 and 5.2.22, f([0, 1]) is dense in

[L([0; a]),L([0; b])].

Therefore, f has no jump discontinuities, thus f is continuous on [0, 1].
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Chapter 6

Colorings of trees

6.1 Preliminaries

6.1.1 Colorings of trees

In this section, we give definitions and properties of graphs and trees, following

[63]. Then, we introduce colorings of trees, following [41] and [42].

A graph G is a structure consisting of a set of vertices V G and a set of

edges EG. The vertex set V G is a finite or countably infinite set and the edge

set EG is a subset of ordered pairs of two distinct vertices

V G × V G − {(v, v) : v ∈ V G}

where (v, w) is the edge starting from v ending to w. For each edge e ∈ EG,

we denote by ∂0(e) the initial vertex of e and denote by ∂1(e) the terminal

vertex of e. The reversed edge ē of e is an edge such that and ∂0(ē) = ∂1(e)

and ∂1(ē) = ∂0(e).

The degree of a vertex v is the number of edges starting from v. A k-

regular graph is a graph whose vertices have the same degree k. A tree is a

graph without cycles. In this section, let T be a k-regular tree.

We identify an edge e with the unit interval [0, 1]. One can identify G with

V G t (EG × [0, 1]) / ∼

with the equivalece relation generated by

(e, t) ∼ (ē, 1− t), (e, 0) ∼ ∂0(e), (e, 1) ∼ ∂1(e) for e ∈ EG, t ∈ [0, 1].
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Then there is an induced metric d on G.

A coloring of a tree is a vertex coloring which is defined by a map

φ : V T → A,

where A is an alphabet. Let T1 and T2 be subtrees of T . A color-preserving

map f : T1 → T2 is a map such that φ(v) = φ(f(v)) for v ∈ V T . Let Aut(T )

be the group of automorphisms of T . Let Γφ be the set of color-preserving

automorphisms of T . Since the composition of two color-preserving automor-

phisms is also a color-preserving automorphism, Γφ is a subgroup of Aut(T ).

We say that v, w ∈ V T are in the same class if there is a color-preserving

automorphism g such that g(v) = w.

We define a quotient graph Γφ\T . The vertex set and the edge set of Γφ\T
are

V (Γφ\T ) = {Γφ.v : v ∈ V T } and E(Γφ\T ) = {Γφ.e : e ∈ ET }.

The induced graph structure is defined by ∂i(Γφ.v) = Γφ.∂i(v) for i = 0, 1.

Then, we have a graph which we call the quotient graph Γφ\T . The covering

map is denoted by

π : T → Γφ\T .

Let e ∈ ET . If g(e) = ē for some g ∈ Γφ, then π(e) is a loop of Γφ\T .

We call (G, i) an edge-indexed graph equipped with an edge index map

i : EG → N.

In order to construct the universal cover of (G, i), let us start with a vertex x̃

which will be a lift of x ∈ V G. Choose ` ∈ EG such that ∂0(`) = x. We attach

i(`) edges `j , j = 1, · · · , i(`) at x̃. Each `j is considered as a lift of `. For `′ ∈ G
such that ∂0(`′) = ∂1(`), we attach again i(`′) edges `′j , j = 1, · · · , i(`′) at `j .

Repeating this process, we have a tree which is the universal cover of (G, i).
The quotient graph Γφ\T is equipped with an edge index map. Let ` be

an edge of Γφ\T . Then there is e ∈ ET such that Γφ.e = `. Define i(`) by the

number of edges contained in the orbit Γφ.e emitting the same vertex of T .

Then, the universal cover of (Γφ\T , i) is T .

Dong Han Kim and Seonhee Lim defined the factor complexity (or subword

complexity) of colorings of trees [41]. The factor complexity is a generalization
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of the factor complexity of words in Section 4.1.

Definition 6.1.1. (1) An n-ball around x is defined by

Bn(x) := {y ∈ V T ∪ ET : d(x, y) ≤ n}.

(2) An n-sphere around y is defined by

Sn(x) := {y ∈ V T : d(x, y) = n}.

We say that two balls Bn(x) and Bn(y) are equivalent if there exists a

color-preserving isomorphism f : Bn(x)→ Bn(y). We call such an equivalence

class a colored n-ball and denote it by [Bn(x)]. The set of colored n-balls is

denoted by Bφ(n).

Definition 6.1.2. The factor complexity bφ of a coloring φ is a function that

assigns each nonnegative integer n to the number of non-equivalent colored

n-balls in the tree colored by φ, i.e.,

bφ(n) := |Bφ(n)|.

As a special word in Definition 4.1.6, we define a special colored n-ball.

Definition 6.1.3. We call a colored n-ball [Bn(x)] a special n-ball if there are

distinct vertices x and y such that

[Bn(x)] = [Bn(y)], but [Bn+1(x)] 6= [Bn+1(y)].

In this case, we call [Bn+1(x)] and [Bn+1(y)] extensions of [Bn(x)].

The type set Λu of a vertex u ∈ V T is the set of integers n such that

[Bn(u)] is special. A vertex u is said to be of bounded type if Λu is a finite set.

For a vertex u of bounded type, the maximal type τ(u) of u is the maximum

of elements in Λu. We say that a coloring φ is of bounded type if each vertex

(or equivalently a vertex) of T is of bounded type. Otherwise, we say that a

coloring φ is of unbounded type.

One of the motivations for studying colorings of trees is to investigate tree

lattices. Let Γ be a subgroup of Aut(T ). If Γ\T has a finite volume, then we

say that Γ is a tree-lattice (see [9] for more detail). Note that Γφ may or may

not be a discrete subgroup of Aut(T ) even if Γφ\T is a finite graph.
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Another motivation is that factor complexity gives an invariant of an au-

tomorphism of a tree as a Cayley graph. Let

Γ := 〈a1, · · · , ak | a2
i = 1 for 1 ≤ i ≤ k〉.

Then, the Cayley graph of Γ is a k-regular tree T and Γ is a discrete subgroup

of Aut(T ). Lubotzky, Mozes and Zimmer defined a coloring φg associated to

g ∈ Γ and they proved that φg has bounded factor complexity if and only if g

is a commensurator of Γ [49].

6.1.2 Sturmian colorings of trees

Let (T , φ) be a coloring of a tree and Γ := Γφ is the group of color-preserving

automorphism.

Definition 6.1.4. We say that φ is periodic if Γ\T is a finite graph.

Dong Han Kim and Seonhee Lim studied colorings of trees with factor

complexity. They proved the analogous theorem of Coven-Hedlund theorem

(Theorem 4.1.4) and generalized Sturmian words to Sturmian colorings on a

regular tree [41].

Theorem 6.1.5 ([41], Theorem 2.7). The following statements are equivalent.

(1) The coloring φ is periodic.

(2) The factor complexity satisfies bφ(n) = bφ(n+ 1) for some n.

(3) The factor complexity bφ(n) is bounded.

Assume that bφ is unbounded. Then, bφ(0) is at least 2 and it is strictly

increasing. Thus the minimal factor complexity of non-periodic colorings is

n+ 2.

Definition 6.1.6. A coloring is called a Sturmian coloring if b(n) = n+ 2.

Theorem 6.1.7 ([41], Theorem 3.9). The quotient graph of a Sturmian col-

oring is a graph that looks like a half-line or a 2-regular tree with possibly

attached loops on the vertices (see Figure 6.1).
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• • • • • • • · · ·

· · · • • • • • • • • · · ·

Figure 6.1: The quotient graph of a Sturmian coloring in Theorem 6.1.7.

The factor graph Gn is defined as the graph whose vertices are the colored

n-balls. Its edges are pairs of colored n-balls whose centers are adjacent to

each other, i.e., (Dn, En) such that

[Bn(v)] = Dn and [Bn(w)] = En for some v, w ∈ V T with d(v, w) = 1.

By definition of Sturmian coloring, there is a unique special n-ball for each

n. We denote by Sn the special n-ball. We denote by Cn the centered colored

n-ball of Sn+1. The special ball Sn has exactly two extensions to (n+ 1)-balls.

Denote by An+1 and Bn+1 the extensions of Sn. Then we can choose {An}
and {Bn} such that An+1 contains more An than Bn as a factor. We define

subgraphs GAn and GBn of Gn. The subgraphs GAn , GBn are composed by the

colored n-balls connected with Sn in An+1, Bn+1, respectively.

The following theorem explains the evolution of GAn and GBn . In the theorem,

./ is a concatenation defined as follows: If Cn 6= Sn, then

V (GAn ./ GBn ) = V GAn ∪ V GBn and E(GAn ./ GBn ) = EGAn ∪ EGBn

where Cn in GAn and Cn in GBn are identified and the loops at Cn in GAn ,GBn
are identified. If Cn = Sn, then we consider Cn in GAn and Cn in GBn as the

distinct vertices such that

V (GAn ./ GBn ) = V GAn t V GBn and E(GAn ./ GBn ) = EGAn t EGBn ∪ {e}

where e is the edge connecting Cn’s.

Theorem 6.1.8 ([42], Theorem 1.2). Let φ be a Sturmian coloring.

(1) If φ is such that Gn does not have any cycle for all n, then there exists
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K ∈ [0,∞] and a sequence (nk)k such that nk = k for 0 ≥ k ≥ K and

GAn ∼= GAn−1, GBn ∼= GAn−1 ./ GBn−1, if 0 ≤ n < K,

GAn ∼= GAn−1 ./ GBn−1, GBn ∼= GAn−1 ./ GBn−1, or

GAn ∼= GAn−1 ./ GBn−1, GBn ∼= GBn−1,

 if 0 ≤ n = K,

GAn ∼= GAn−1, GBn ∼= GBn−1, if n 6= nk, n > K,

GAn ∼= GAn−1 ./ GBn−1, GBn ∼= GBn−1, or

GAn ∼= GAn−1, GBn ∼= GAn−1 ./ GBn−1,

 if n = nk, n > K.

(2) If a factor graph Gn of φ has a cycle, for some n, then φ is of bounded

type. The coloring φ is of bounded type if and only if either GAn or GBn
eventually stabilizes.

6.1.3 Linear, intermediate and exponential complexities

In this section, we introduce constructions of colorings with linear, intermedi-

ate and exponential factor complexities, following [46].

For a bi-infinite word w = (wn), we can induce the natural coloring of a

2-regular tree. Let X be a 2-regular tree. We label V X with vn, n ∈ Z. Then

the coloring φw : V T → A defined by vn 7→ wn is a natural coloring induced

by w.

For a given one-sided sequence v = (vn)n∈N, we define a bi-infinite sequence

w = (wn)n∈Z such that

wn := vn and w−n+1 := vn for n ∈ N.

Then v and w has the same asymptotic growth type since

pv(n) ≤ pw(n) ≤ 2pv(n) + n− 2.

Note that a ball of radius n in X corresponds to a subword of length 2n+ 1 of

a word, and two distinct subwords u and v of length 2n + 1 can be the same

as an n-ball in X if u = v. Thus, we have

(6.1)
pv(2n+ 1)

2
≤ bφw(n) ≤ pv(2n+ 1) + n.

Let φ0 be a coloring of X and let i be an index map of X. Let T be the
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universal covering of (X, i) and π : T → X be the covering map. We can

obtain the coloring φ = φ0 ◦ π of a tree T .

Theorem 6.1.9 ([46], Theorem 3.6). Let φ0 be a coloring of X. There exists

an index map i of X such that

(1) the universal covering T of (X, i) is a k-regular tree and

(2) for any n, bφ(n) = bφ0(n) where φ = φ0 ◦ π.

Rote investigated a class of words with p(n) = 2n. The word w = (wn)n∈N
is generated by

(6.2) wn =

{
1, if (c+ nθ) mod 1 ∈ [0, λ),

0, if (c+ nθ) mod 1 ∈ [λ, 1),

where c, λ ∈ R and θ ∈ R\Q such that

0 < λ < 1, 0 < θ < min{λ, 1− λ} and mθ 6≡ λ (mod 1)

for any m ∈ Z [58]. We define a bi-infinite word w = (wn)n∈Z by the same

process as in (6.2). Then the factor complexity is pw(n) = 2n and w is

non-eventually periodic. Note that the word w is reversible. The factor set

F2n+1(w) has exactly two palindrome words. Thus, bφw(n) = 2n+ 2.

Corollary 6.1.10 ([46], Theorem 4.9). There are colorings of k-regular trees

with factor complexity 2n+ 2.

We say that a function has an intermediate growth if it grows faster than

any polynomial and slower than any exponential function. One-sided infinite

words with intermediate factor complexity have been constructed (see [18],

[43]). By (6.1), a coloring of a 2-regular tree induced by a word of intermediate

factor complexity has intermediate factor complexity.

Corollary 6.1.11 ([46], Corollary 3.7). There are colorings of k-regular trees

with intermediated factor complexity.

On the other hand, we define an index map that establishes a coloring with

exponential factor complexity.

Theorem 6.1.12 ([46], Theorem 5.1). Let (X,φ0) be a non-periodic coloring

of a 2-regular tree whose 1-balls colored by [aaa] occur only finitely many times
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A B B A AB

A B B A AB

Figure 6.2: The evolution of Rauzy graphs of a quasi-Sturmian word (above)
and the evolution of Gn of a quasi-Sturmian coloring on a tree (below)

for any a ∈ A. Then, there is an edge index map i of X such that its universal

cover T is a k-regular tree and bφ(n) grows exponentially where φ = φ0 ◦ π.

There are many classes of words on which aaa occurs finitely many times

for all a ∈ A including Sturmian words and the words in (6.2).

Corollary 6.1.13. There are colorings of k-regular trees with exponential

factor complexity.

6.2 Quasi-Sturmian colorings

Quasi-Sturmian words, which are infinite words with factor complexity even-

tually n + c, share many properties with Sturmian words. In this section, we

will study quasi-Sturmian colorings of trees.

Definition 6.2.1. We say that a coloring is quasi-Sturmian if there exists a

pair of integers c and N0 such that b(n) = n+ c for n ≥ N0, i.e.,

(6.3) b(n+ 1)− b(n) = 1 for each n ≥ N0.

We assume that N0 is the minimal integer satisfying (6.3). Similar to the

Sturmian colorings, a quasi-Sturmian coloring has a unique special n-ball for

all n ≥ N0 which we denote by Sn.

For a coloring of bounded type, we define the subgraph G of X as the

graph consisting of the vertices whose lifts are of maximal type less than or

equal to N1 (see the equation (6.4) for the definition).
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6.2.1 Quotient graphs of quasi-Sturmian colorings

In this section, we characterize the quotient graphs of quasi-Sturmian color-

ings.

For u ∈ V T , τ(u) ≤ m if and only if [Bm+1(u)] = [Bm+1(v)] implies that u

and v are in the same class. If two vertices u and v are in the same class, then

u and v have the same maximal type. Kim and Lim proved that the converse

is also true in the case of a Sturmian coloring (see Proposition 3.2 in [41]).

We observe that the same proof holds in quasi-Sturmian colorings as long as

b(n+ 1)− b(n) = 1.

Lemma 6.2.2. Suppose that b(n) is a strictly increasing function. If

b(n+ 1)− b(n) = 1

and two vertices u and v have maximal type n, then u and v are in the same

class.

Proof. Suppose that b(n + 1) − b(n) = 1 and there exist two vertices u and

v not in the same class such that τ(u) = τ(v) = n. Since the alphabet A is

finite, there is a number N such that BN (w) contains a special n-ball for each

w ∈ V T .

Fix a vertex w and let z be the center of a special n-ball contained in

BN (w). Since the special n-ball is unique and it has only two extensions of

radius n + 1, either [Bn+1(z)] = [Bn+1(u)] or [Bn+1(z)] = [Bn+1(v)], thus z

is in the same class of u or v. Since w ∈ BN (z), the tree T is covered by

N -balls whose centers are in the same class of u or v. Thus, the maximal

types of vertices of T is bounded by M = max{τ(p) : p ∈ BN (u) ∪ BN (v)}. It

contradicts that b(n) is strictly increasing.

Corollary 6.2.3. Let (T , φ) be a quasi-Sturmian coloring of bounded type

with factor complexity b(n) = n + c for n ≥ N0. If two vertices u and v of

(T , φ) have the same maximal type greater than or equal to N0, then u and v

are in the same class.

Lemma 6.2.4. If a vertex u of a quasi-Sturmian coloring (T , φ) is of maximal

type m, then the following hold.

(1) If m ≥ N0, its neighboring vertices are of maximal type m−1, m, m+1.

If m = N0 − 1, its neighboring vertices are of maximal type at most N0.
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If m ≤ N0 − 2, its neighboring vertices are of maximal type at most

N0 − 1.

(2) If m ≥ N0, one of its neighboring vertices is of maximal type m+ 1.

(3) If m ≥ N0 is not minimum among maximal types of vertices, one of its

neighboring vertices is of maximal type m− 1.

Proof. Let {ui}i=1,··· ,d be the neighboring vertices of u, where d is the degree

of T .

(1) Let τ = max{τ(ui)}i=1,··· ,d. Choose uk such that τ(uk) = τ . There

is a vertex v such that [Bτ (uk)] = [Bτ (v)] but [Bτ+1(uk)] 6= [Bτ+1(v)]. Let

f : Bτ (uk) → Bτ (v) be a color-preserving isometry. Let w = f(u). Suppose

that τ > m + 1. Since Bm+1(u) ⊂ Bτ (uk), [Bm+1(u)] = [Bm+1(w)]. Thus, u

and w are in the same class. Since d(w, v) = 1, uj and v are in the same class

for some j. We have

[Bτ (uj)] = [Bτ (v)] = [Bτ (uk)] and [Bτ+1(uj)] = [Bτ+1(v)] 6= [Bτ+1(uk)],

thus τ(uj) ≥ τ . By the maximality of τ , τ(uj) = τ . By Corollary 6.2.3, if

τ ≥ N0, then uk and uj are in the same class. It contradicts [Bτ+1(uk)] 6=
[Bτ+1(uj)]. Hence, τ < N0.

We conclude that τ > m+1 implies τ < N0. If m ≥ N0−1, then τ ≤ m+1.

If m < N0−1, then τ ≤ N0−1. In other words, for u, v such that d(u, v)=1, if

|τ(u)−τ(v)| ≥ 2, then τ(u), τ(v) ≤ N0−1. Thus if m ≥ N0, then τ(ui) ≥ m−1.

(2) Let m ≥ N0. Suppose that there is no ui such that τ(ui) = m+ 1. By

(1), m− 1 ≤ τ(ui) ≤ m for each i. If τ(ui) = m− 1, then there is no vertices

on B1(uj) of maximal type greater than m. Even if τ(ui) = m, since u and ui
are in the same class by Corollary 6.2.3, we have the same conclusion. Thus,

there is no vertex on B2(u) of maximal type greater than m. Inductively, every

vertex is of maximal type less than m+ 1. It contradicts the fact that b(n) is

strictly increasing.

(3) We can show it by a similar argument of the proof of (2).

For a quasi-Sturmian coloring of bounded type, we define

(6.4) N1 := max{N0, min{τ(x) : x ∈ V T }}.

For a coloring of bounded type, we define the subgraph G of X as the graph

consisting of the vertices of maximal type less than or equal to N1. The next
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proposition follows from Corollary 6.2.3 and Lemma 6.2.4.

Proposition 6.2.5. For the quotient graph X = (X, i) of a quasi-Sturmian

coloring φ of bounded type, the quotient graph X is a union of G and a geodesic

ray (see Figure 6.3). The quotient graph X is linear from the vertex of maximal

•

•
• • • • • • . . .

•
...• xN1

xN1+1
xN1+2

xN1+3
xN1+4

xN1+5

G

Figure 6.3: Quotient graphs of quasi-Sturmian colorings of bounded type.

type N1 + 1. In the figure, the vertex labeled by xk is of maximal type k.

In the rest of the section, we provide examples of quasi-Sturmian colorings.

The following examples are quasi-Sturmian colorings. The alphabet A is {•, ◦,
⊗⊗⊗} for the following examples.

Example 6.2.6 (The quotient graph is not a geodesic ray and N0 6= 0).

X :

•

•
◦ • ⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ . . .

1

2

1

1

2

1

1 2 2 2 2 21 1 1 1 1 Z : ⊗⊗⊗
3

G

The factor complexity is

b(n) =

{
3, if n = 0

n+ 5, if n ≥ 1

and N0 = N1 = 1

Example 6.2.7 (A cycle in the compact part G).

X :

⊗⊗⊗

◦
•

•
⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ ⊗⊗⊗ . . .

1

2

1

1

1

1
2

1
1

3

1 2 2 2 2 21 1 1 1 1 Z : ⊗⊗⊗
3

G
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It has the factor complexity

b(n) =


3, if n = 0

5, if n = 1

n+ 5, if n ≥ 2

and N0 = N1 = 2.

Example 6.2.8 (an example with N0 6= N1).

X : ⊗⊗⊗ • ◦ • ⊗⊗⊗ • ◦ • ⊗⊗⊗ • ◦ · · ·3 1 1 1 1 1 1 1 1 1 12 2 2 2 2 2 2 2 2 2

Z :

• ◦

•⊗⊗⊗

2
1 2

1

2
12

1

G

The factor complexity is

b(n) =

{
1, if n = −1

n+ 3, if n ≥ 0

and N0 = 0, N1 = 1.

The quotient graph of a Sturmian coloring of unbounded type is a geodesic

ray or an infinite geodesic (see Theorem 6.1.7). In this section, we show that

a similar property holds for quasi-Sturmian colorings of unbounded type.

Proposition 6.2.9. For a quasi-Sturmian coloring of unbounded type, the

vertices of a 1-ball have at most three distinct type sets.

Proof. Let us assume that there are three neighboring vertices u1, u2, u3 of u

such that the type sets of u, u1, u2, u3 are all distinct. Since each special n-ball

is unique for n ≥ N0, if there is n ∈ Λu ∩Λv such that n ≥ N0, then [Bn(u)] =

[Bn(v)]. Thus, if Λu ∩ Λv is infinite, then Λu = Λv. Let N = max Λu ∩ Λv.

Note that Λu∩Λv is non-empty since every type set contains −1. Choose such

N for each pair of vertices from different classes in B2(u) and let M be the

maximum of such N ’s. Then, the type sets of two non-equivalent vertices in

B2(u) intersected with {M + 1,M + 2, · · · } are all mutually disjoint.
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Now let l > M + 1 be in the type set Λu. Such l exists since the coloring

is of unbounded type. At least one of u1, u2, u3 has a type set disjoint from

{l − 1, l, l + 1}, say ui. Since l ∈ Λu, there is v such that [Bl(u)] = [Bl(v)] but

[Bl+1(u)] 6= [Bl+1(v)]. Let f : Bl(u) → Bl(v) be a color-preserving isometry.

Then [Bl−1(ui)] = [Bl−1(f(ui))].

Let p = min{k ≥ l − 1 : k ∈ Λui}. Since p > l + 1, [Bl−1(ui)] has a

unique extension to [Bp(ui)]. Thus, [Bp(ui)] and [Bp(f(ui))] are equivalent

by a color-preserving isometry g. Since [Bp−1(g−1(v))] = [Bp−1(v)] and p −
1 > l, [Bl(g−1(v))] = [Bl(v)] = [Bl(u)] and [Bl+1(g−1(v))] = [Bl+1(v)] 6=
[Bl+1(u)]. Thus, g−1(v) 6= u and Λg−1(v) ∩ Λu contains l > M + 1. However,

since d(g−1(v), u) ≤ 2, it contradicts that Λg−1(v) ∩ Λu ∩ {M + 1,M + 2, · · · }
is empty.

Let (T , φ) be a quasi-Sturmian coloring of a tree and X = (X, i) be its

quotient graph. If two vertices u, v have the same type set, they have the same

colored n-balls for every n, i.e. u, v are equivalent (see Lemma 2.4 in [41]). By

Proposition 6.2.9, there are at most 2 adjacent vertices of each vertex x ∈ V X.

For a quasi-Sturmian coloring of unbounded type, we define G as the set

of vertices that have only one adjacent vertex in X. Since factor complexity of

φ is unbounded, X is an infinite graph. Since X is connected, G is empty or G

has a single element. Thus, we obtain the quotient graphs of quasi-Sturmian

colorings of trees.

Theorem 6.2.10. If φ is a quasi-Sturmian coloring, then its quotient graph

is one of graphs in Figure 6.4. More precisely, the quotient graph of a coloring

•

•

• • • • • • . . .
•
...•

G

. . . • • • • • • . . .

Figure 6.4: Quotient graphs of quasi-Sturmian colorings

of bounded type is the first graph, where the quotient graph of a coloring of

unbounded type is a geodesic ray or a biinfinite geodesic.
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6.2.2 Evolution of factor graphs

In this section, we look into quasi-Sturmian colorings of unbounded type in

detail. Let us begin by explaining an induction algorithm for quasi-Sturmian

colorings of bounded type. For n ≥ N0, Sn denotes a unique special n-ball, Cn
denotes a centered n-ball of Sn+1, and An+1, Bn+1 denote two types of exten-

sions of Sn. For a class of n-balls B = [Bn(x)], denote the class of [Bn+1(x)]

by B and the class of [Bn−1(x)] by B. Note that if B is not special, then B is

well-defined.

Recall from the introduction that for a given quasi-Sturmian coloring φ,

for n ≥ N0 + 1, the factor graph Gn has Bφ(n) as its vertex set. There is an

edge between two colored n-balls D, E if there exist n-balls centered at x, y

in the classes D, E, respectively, such that d(x, y)=1.

Cyclic quasi-Sturmian colorings

We gather preliminaries of cyclic quasi-Sturmian colorings.

Definition 6.2.11. We say that D is weakly adjacent to E if there exist

v, w ∈ V T such that d(v, w) = 1 and [Bn(v)] = D and [Bm(w)] = E for some

n,m.

We also say that D is strongly adjacent to E if for any Bn(x) in the class

D, there exists a vertex y such that Bm(y) ∈ E and d(x, y) = 1. If D is

strongly adjacent to E and vice versa, then we say that D and E are strongly

adjacent.

We remark the following fact. If [Bn+1(u)] = [Bn+1(v)] and [Bn+2(u)] 6=
[Bn+2(v)], then there exist neighboring vertices u′ and v′ of u and v, respec-

tively, such that [Bn(u′)] = [Bn(v′)] and [Bn+1(u′)] 6= [Bn+1(v′)] (see Lemma

2.11 in [41] for details). Thus, Sn+1 is strongly adjacent to Sn for n ≥ N0.

Lemma 6.2.12. Let (T , φ) be a quasi-Sturmian coloring and n ≥ N0.

(1) We can choose {An}n≥N0+1, {Bn}n≥N0+1 so that An+1, Bn+1 are strongly

adjacent to An, Bn, respectively. Moreover, An+1, Bn+1 are uniquely de-

termined if we give the condition that An+1 contains more balls of the

class An than Bn+1 does.

(2) For each vertex x in T − G̃ and n ≥ N0 + 1, the n-balls with centers

adjacent to x belong to at most two classes of n-balls apart from [Bn(x)].
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Thus, for any class D 6= Sn of n-balls with centers in T − G̃, each vertex

of Gn has degree at most 2.

(3) If An 6= Sn (respectively Bn 6= Sn), then An (respectively Bn) is strongly

adjacent to Sn.

(4) The two classes Sn, Cn are strongly adjacent.

We will specify the choice of AN0+1 from the two extensions of SN0 for

acyclic quasi-Sturmian colorings later.

Lemma 6.2.13. Let φ be a quasi-Sturmian coloring and n be greater than

N0. Let D be a colored n-ball other than An, Bn and Sn. Assume that Sn and

D are weakly adjacent. Then, we have that

(1) the special ball Sn and D are strongly adjacent, and

(2) if D 6= Cn, then Sn 6= Cn.

Proposition 6.2.14. If there are two vertices of degree at least three in Gn
for some n > N0, then the quasi-Sturmian coloring (T , φ) is of bounded type.

Proof. If φ is of unbounded type, Sn is the unique vertex adjacent to the

distinct three classes of n-balls in Gn by Lemma 6.2.12 (2). Thus, there is at

most one vertex of degree at least three in Gn.

Definition 6.2.15. A quasi-Sturmian coloring is cyclic if there is a cycle

containing Sn in Gn for some n > N0. If not, we say that a quasi-Sturmian

coloring is acyclic.

Lemma 6.2.16. Suppose that Gn has a cycle whose lift in X is not contained

in G for some n ≥ N0 + 1. The following statements hold.

(1) The special ball Sn is in the cycle.

(2) If D 6= An, Bn, Cn, Sn, then D is not weakly adjacent to Sn.

Lemma 6.2.17. For n > N0, suppose that Gn has a cycle whose lift in X is

not contained in G.

(1) If Cn is not contained in the cycle, then Gn+l has a cycle containing Cn+l

for some l ≥ 1.

(2) If Cn = Sn, then Gn+1 has a cycle containing Cn+1 and Cn+1 6= Sn+1.
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Proposition 6.2.18. (1) Let n ≥ N0 + 1. If there is a ball D which is weakly

adjacent to Sn and different from An, Bn, Cn, and Sn, then Gn+1 has a cycle

containing D.

(2) Any cyclic quasi-Sturmian coloring is of bounded type.

Acyclic quasi-Sturmian colorings

Lemma 6.2.19. Let φ be an acyclic quasi-Sturmian coloring. If AN = SN =

CN for some N > N0 + 1, then An = Sn = Cn for all N0 + 1 ≤ n < N .

We choose An as Sn = Cn = An if there exists n > N0 such that Sn = Cn
is identical to An or Bn. Define

K = min{n > N0 : An, Sn, Cn are not all identical}

as in [42]. Note that K may be infinity.

For an acyclic quasi-Sturmian coloring, for each n ≥ K, neither An, Sn, Cn
nor Bn, Sn, Cn are identical. Therefore, the colored n-balls Sn, An, Bn, Cn
satisfy one of the following conditions.

(I) Sn, Cn are distinct, but one of Sn, Cn is identical to An or Bn.

(II) Sn, An, Bn, Cn are all distinct.

(III) Sn, An, Bn are distinct, but Sn = Cn.

Case (I) is divided into three subcases:

(I-a) An, Bn, Sn are distinct and Cn = An or Bn,

(I-b) An, Bn, Cn are distinct and Sn = An or Bn,

(I-c) An = Sn, Bn = Cn are distinct,

By Lemma 6.2.16 and Lemma 6.2.18, we deduce that Sn is a vertex of

degree 3 in Gn for Case (II), but for Case (I) and (III), Gn is a linear graph

and Sn is of degree 1 or 2.

Theorem 6.2.20. Suppose that Gn corresponds to Case (I). Then Sn is a

vertex of degree 2 or 1 in Gn. Thus Gn is a linear graph. Let m be the number

of vertices connected to Sn through Cn. Note that m ≥ 1 since Cn is not

identical to Sn. Then we have Gn+k belongs to Case (II) for all 0 < k < m and

either Gn+m belongs to Case (I) or Gn+m belongs to Case (III) and Gn+m+1

belongs to Case (I).

106



CHAPTER 6. COLORINGS OF TREES

Gnk • · · · ◦
Snk •

Cnk • · · · •

Gnk+2 • · · · ◦

◦
•
• •

Snk+2
· · · •

Gnk+1 • · · · ◦ • • · · · •
Snk+1

•
Cnk+1

· · · ◦

Figure 6.5: The evolution of Gnk along the path (I) → (II) → · · · → (II) → (I)
where the vertex ◦ represents either Snk or the extensions of Snk

Proof. If Sn and Cn are distinct, then Gn belongs to Case (I) or (II). We

deduce that Sn+1, An+1, Bn+1 are distinct. If Cn is of degree 2, then there

exists D neighboring Cn which is not Sn. Thus D is weakly adjacent to Sn+1

but different from Sn+1, An+1, Bn+1, which implies that D = Cn+1, which

corresponds Case (II). In this case, the number of vertices connected to Sn+1

through Cn+1 decreases by 1.

If Cn is of degree 1, then m = 1. In this case, Sn+1 is connected to only

two extensions An+1, Bn+1 of Sn in Gn+1, which implies that Cn+1 = Sn+1,

i.e. Case (III) or Cn+1 = An+1 or Bn+1, i.e. Case (I-a).

If Gn belongs to Case (III), then Sn = Cn, thus we have either Sn+1 =

An+1 or Sn+1 = Bn+1, say Sn+1 = An+1. Since An is weakly adjacent to

An+1 = Sn+1 and An cannot be An+1 nor Bn+1, we deduce that Cn+1 = An.

Therefore, Gn+1 belongs to the Case (I-b).

We remark that Case (I-c) can happen only for n = K.

We denote by (nk) the subsequence for which Gnk is of Case (I). The

evolution of Gn from n = nk to n = nk+1 is shown in Figure 6.5. Compare

with Sturmian words (see Figure 6.2): there are infinitely many n’s such that

the Rauzy graph has disjoint two cycles starting from a common bi-special

word (see e.g. [1]). It corresponds to the factor graph Gn belongs to Case (I).

6.2.3 Quasi-Sturmian colorings of bounded type

In this section, we investigate a necessary and sufficient condition for a quotient

graph to be a quotient graph of a quasi-Sturmian coloring of bounded type.

Let x be a vertex of the quotient graph X. For the two lifts x̃ and x̃′ of x,

[Bn(x̃)] = [Bn(x̃′)] for all n. Then, τ(x̃) = τ(x̃′). By abuse of notation, define

[Bn(x)] as a class [Bn(x̃)]. Define the maximal type τ(x) of x as τ(x̃).
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Recall the examples in Section 6.2.1. Let X = (X, i) be the quotient graph

for each of them. We obtain a periodic edge-indexed subgraph X ′ of X by

removing a finite subgraph G in Proposition 6.2.5. Then, a lift of (X ′, i|EX′)
can be extended to a periodic coloring of a tree. It is natural to guess that the

property holds for every quasi-Sturmian coloring.

From now on, let (T , φ) be a quasi-Sturmian coloring of bounded type. By

Proposition 6.2.5, the quotient graph X of (T , φ) is the graph in Figure 6.3.

Let G̃ be the union of lifts of G. A connected component of T − G̃ is a lift of

(X − G, i|E(X−G)). Thus, all connected components of T − G̃ are equivalent

to each other. Let Y be a connected component of T − G̃.

Lemma 6.2.21. If u, v are vertices of Y with [BN1(u)] = [BN1(v)], where N1

is as in (6.4), then we have [BN1+1(u)] = [BN1+1(v)].

Proof. It suffices to consider the case of [BN1(u)] = SN1 . Every vertex of

maximal type N1 is the center of either AN1+1 or BN1+1, say AN1+1. Since

vertices of X − G are of maximal type bigger than N1, if u is a vertex of Y

and [BN1(u)] = SN1 , then [BN1+1(u)] = BN1+1.

We define an edge-indexed graph Z = (Z, iZ) as follows: the vertices of Z

are of the form [BN1(u)] for a vertex u in Y or X − G, and any two vertices

D,E of Z are adjacent if D and E are weakly adjacent. The index iZ(D,E)

is the number of E which are adjacent to D. The indices are well-defined by

Lemma 6.2.21. Since any vertex in X −G is adjacent to at most two vertices

besides itself, the graph Z is a line segment or a cycle.

Lemma 6.2.22. A restriction of φ on any connected component of T − G̃ has

a periodic extension to T .

Proof. Let u be the vertex of Y . Define a coloring ψk on Bk(u) with the

alphabet V Z = {[BN1(v)] | v ∈ Y } recursively: Put ψ0(u) = [BN1(u)] ∈ V Z.

Define ψk+1(v) = ψk(v) for v ∈ Bk(u). Choose w ∈ V T with d(u,w) = k and

let wα (α = 0, · · · d−1) be the neighboring vertices of w with d(u,wα) = k+1

for α ≥ 1 and d(u,w0) = k− 1. We define ψk+1(wα) for α ≥ 1 in the following

ways.

If w /∈ Y , then wα /∈ Y for all α ≥ 1. Let D0 = ψk(w0) and Dj be a colored

N1-ball satisfying iZ(ψk(w), Dj) > 0 with j = 0, 1, 2 or j = 0, 1. We assign

108



CHAPTER 6. COLORINGS OF TREES

ψk+1(wα) as D0 for 1 ≤ α < iZ(ψk(w), D0) and, for ` 6= 0,

ψk+1(wα) = D` for
`−1∑
j=0

iZ(ψk(w), Dj) ≤ α ≤
∑̀
j=0

iZ(ψk(w), Dj)− 1.

Then we have

(6.5) iZ(ψk+1(w), D) = #{0 ≤ α ≤ d |ψk+1(wα) = D}

for each D ∈ V Z.

If w ∈ Y , then we put ψk+1(wα) = [BN1(wα)] for all α ≥ 1. Using the

fact that Y is an infinite subgraph of T , Lemma 6.2.21 implies that there

exists a vertex v such that BN1+1(v) ⊂ Y and [BN1+1(v)] = [BN1+1(w)], thus

ψk+1(wα) = [BN1(wα)] ∈ V Z and (6.5) is satisfied.

Since ψk+`|Bk(u) = ψk for ` ≥ 1, the coloring ψ = limk→∞ ψk on T with

alphabet V Z exists. By (6.5), we deduce that Z is the quotient graph of ψ.

Since ψ(u) = [BN1(u)] on Y , by the coloring which gives the color of the center

of ψ(u), we complete the proof.

Theorem 6.2.23. Let X = (X, i) be the quotient graph of a coloring (T , φ).

The following statements are equivalent.

(1) The coloring φ is a quasi-Sturmian coloring of bounded type.

(2) There is a finite connected subgraph G of the quotient graph X such that

X−G is a connected infinite ray and any connected component of T −G̃
has a periodic extension to T where G̃ is the union of lifts of G.

Proof. By Lemma 6.2.21 and Lemma 6.2.22, (1) implies (2). Now we assume

(2) holds. Let A be the alphabet of φ. Let x̃ be a lift of x ∈ V X. Define a new

coloring ψ with an alphabet A t V G as

ψ(v) =

{
x if v = x̃ for some x ∈ V G,
φ(v) otherwise.

Denote by [Bn(u)]ψ a ψ-colored n-ball. As ever [Bn(u)] means a φ-colored

n-ball. A map Bψ(n)→ Bφ(n) which defined by [Bn(x)]ψ 7→ [Bn(x)] is surjec-

tive. It implies bφ(n) ≤ bψ(n). Since X is not a finite graph, bφ(n) is strictly

increasing. Thus, it is enough to show that bψ is linear.
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Let us denote by d(x,G) = min{d(x, g) : g ∈ V G} for x ∈ V X. Fix a

positive integer n. If d(x,G) ≤ n, then [Bn(x)]ψ 6= [Bn(y)]ψ for any other y ∈
V X. If x is a vertex such that d(x,G) > n+ 1, then [Bn+1(x)]ψ = [Bn+1(x)].

Thus, [Bn(x)] has a unique extension to a colored (n + 1)-ball. Since X is

not finite, ψ has at least one special n-ball for each n. Thus, for x such that

d(x,G) = n + 1, [Bn(x)] is the unique special n-ball and it has exactly two

extensions to colored (n+ 1)-balls. It means that bψ(n) = n+ |A|+ |V G| for

all n.

6.2.4 Recurrence functions of colorings of trees

In this section, we will extend the notion of recurrence functions R(n), R′′(n)

for words to colorings of trees. We will show that the quasi-Sturmian col-

orings of trees satisfy a certain inequality between R′′(n) and b(n). We also

explain that the existence of R(n) is related to the unboundedness of the

quasi-Sturmian colorings of trees.

Let us briefly recall recurrence functions of words (see Section 10.9 in [3]

for definitions and details). Recurrence functions are important objects related

to symbolic dynamics. We recall that A∗ be the set of finite words and AN be

the set of infinite words over A. For u ∈ A∗ ∪AN, we denote by Fn(u) the set

of factors of length n.

A recurrence function Ru(n) is defined as the smallest integer m ≥ 1 such

that every factor of length m contains all factors of length n. It is known that

such an integer Ru(n) exists for all n if and only if the word is uniformly

recurrent, i.e. any subword of the word infinitely occurs with bounded gaps.

Another recurrence function R′′u(n) is defined by

R′′u(n) = min{m ∈ N | Fn(u) = Fn(v) for some v ∈ Fm(u)},

i.e. it is the length of the smallest factor of u that contains all factors of length

n of u. From the definition, the following fact immediately holds.

Remark 6.2.24. For all n ≥ 0, R′′u(n) ≥ pu(n) + n− 1 for any word u.

Recall that a word u is said to have grouped factors if, for all n ≥ 0, it

satisfies R′′u(n) = pu(n) + n− 1. If there is n0 such that the equality holds for

all n ≥ n0, we say that u has ultimately grouped factors. Cassaigne suggested

some conditions that guarantee equality.
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Theorem 6.2.25 ([17]). A word u is Sturmian if and only if R′′u(n) = 2n for

every n ≥ 0. A uniformly recurrent word on a binary alphabet has ultimately

grouped factors if and only if it is periodic or quasi-Sturmian.

We want analogous results for quasi-Sturmian colorings of trees. Let (T , φ)

be a quasi-Sturmian coloring of a tree and X = (X, i) be the quotient graph of

(T , φ). We define Rφ(n) as the smallest radius m such that every colored n-ball

of φ occurs in [Bm(x)] for all x ∈ V T . We define R′′φ(n) as the smallest radius

m such that every colored n-ball of φ occurs in [Bm(x)] for some x ∈ V T .

Definition 6.2.26. A coloring of a tree (T , φ) is said to be recurrent if, for

any compact subtree T ′, every colored ball appears in T − T ′. A coloring of a

tree is said to be uniformly recurrent if Rφ(n) <∞ for all n.

Proposition 6.2.27. Let (T , φ) be a quasi-Sturmian coloring of a tree. The

following conditions are equivalent.

(1) (T , φ) is of unbounded type.

(2) (T , φ) is uniformly recurrent.

(3) For any colored ball, it appears in T − π−1(S) for any finite set S ⊂ X.

Proof. (1) implies (2) : Suppose (T , φ) is of unbounded type. Let n ≥ N0. For

each colored n-ball E = [Bn(w)], we define mE to be the smallest element of

Λw ∩ {n, n + 1, · · · } which is not empty since Λw is infinite. Note that mE

depends only on E and not on w.

Choose a vertex v ∈ V T and a colored n-ball E which is distinct from

[Bn(v)]. Let m = mE . Denote F 1 = [Bm(v)] which is not Sm. Let [F 1 − F 2 −
· · ·−F l−Sm] be the shortest path from F 1 to Sm in Gm. For arbitrary colored

m-balls F and F ′, if F 6= Sm, then F has the unique extension. Thus, if F is

weakly adjacent to F ′, then F is strongly adjacent to F ′. Therefore, there is

a path [v − v2 − v3 − · · · − vl −w′] in T such that [Bm(vi)] = F i, i = 2, · · · , l,
and [Bm(w′)] = Sm.

Since Sm occurs in [Bm+l(v)], E occurs in [Bn+l(v)]. Since l ≤ |V Gm| =

m + c, E occurs in [Bn+m+c(v)]. Every colored n-ball occurs in [Bn+M+c(v)]

where M = max{mE : E ∈ Bφ(n)}. Thus, Rφ(n) ≤ n+M + c.

(2) implies (3) : Suppose that Rφ(n) exists for all n. Since the quotient

graph X is infinite, for any finite S ⊂ X, there is x such that BRφ(n)(x) ⊂
T − π−1(S).
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(3) implies (1) : Assume that (T ,φ) is of bounded type. Let v be a vertex

of maximal type N1. By Proposition 6.2.5, all vertices in X−G are of maximal

type larger than N1. Therefore, [BN1+1(v)] does not appear in T −π−1(G).

Recall that we denote by Z the quotient graph of T − G̃ with respect to

the coloring φ. By abuse of notation, let d be the metric on X or Gn induced

by d on T . Let us denote by

r(x,G) := max{d(x, y) : y ∈ V G}.

Proposition 6.2.28. Let (T , φ) be a quasi-Sturmian coloring.

(1) Let φ be of unbounded type. As in Theorem 6.2.20, the factor graph Gn
is of Case (I) on n = nk. Then, we have

R′′φ(n) = n+
⌊bφ(nk)

2

⌋
for nk−1 < n ≤ nk.

(2) Let φ be of bounded type. Let xN1
be the vertex of X which is of maximal

type N1.

(a) If Z is acyclic, then we have

R′′φ(n) = n+
⌊1

2
(bφ(nk)−|V G|+r(xN1

, G)+1)
⌋

for nk−1 < n ≤ nk.

(b) If Z is cyclic, then we have

R′′φ(n) = n+
⌊1

2
(bφ(n)− |V G|+ r(xN1

, G) + 1)
⌋

for all n ≥ N1.

Proof. (1) In the case of a quasi-Sturmian coloring of unbounded type, the

evolution of the factor graph follows Theorem 6.2.20. Let D and E be nk-balls

that are weakly adjacent. If D 6= Snk or if D = Snk , E = Cnk , then D and

E are strongly adjacent by Lemma 6.2.12 (3), (4). If D = Snk and E 6= Cnk ,

then there exist vertices v, u and w in T with d(v, u) = d(v, w) = 1 such that

D = [Bnk(v)], E = [Bnk(u)] and Cnk = [Bnk(w)]. Therefore, we can take a

path with length bφ(nk)− 1 consisting of centers of all the colored nk-balls in

T . Thus, we have

R′′φ(nk) ≤ nk +
⌊bφ(nk)

2

⌋
.
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Let Dnk , Enk be the colored nk-balls which are the endpoints of the graph

Gnk . The distance between Dnk and Enk in Gnk is bφ(nk) − 1, thus for any

vertices z, z′ in T such that [Bnk(z)] = Dnk and [Bnk(z′)] = Enk , we have

d(z, z′) ≥ bφ(nk)− 1. Therefore, it follows that

R′′φ(nk) = nk +
⌊bφ(nk)

2

⌋
.

Now, let us consider the case nk−1 < n < nk, then Gn is of Case (II) or Case

(III). We define Dn, En and Fn as the colored n-balls which are the vertices

of degree 1 and connected to Sn through An, Bn, Cn in Gn, respectively. Note

that if Sn = Cn, then we define Fn = Cn. Any vertex of the center of special

ball Sn in T is adjacent to either centers of An and Cn or centers of Bn and

Cn. Thus, the distance between the centers of Dn and En in T is at least

d(Dn, Fn) + d(En, Fn).

If Gn is of Case (II) for all nk−1 < n < nk, then d(Dn, Fn) + d(En, Fn) =

bφ(nk) − 1. Otherwise, Gn is of Case (III) for n = nk − 1 and Gn is of Case

(II) for nk−1 < n < nk − 1. Then, d(Dn, Fn) + d(En, Fn) = bφ(nk − 1) − 1.

However, on T , a path from a center of Dn to a center of En has at least

two vertices which are centers of Fn where they are extended to two distinct

colored nk-balls Cnk and Snk . It means that the length of the path is at least

bφ(nk − 1)− 1 + 1 = bφ(nk)− 1. Thus,

R′′φ(n) ≥ n+
⌊bφ(nk)

2

⌋
for nk−1 < n < nk.

On the other hand, since each n-ball is the restriction of an nk-ball, there

exists a path with length bφ(nk) − 1 consisting of centers of all the colored

nk-balls in T . Thus we have a conclusion.

(2)-(a) If Z is acyclic and n ≥ N1, then the evolution of the factor graph

Gn also follows Theorem 6.2.20. Hence, we apply the argument similar to the

argument in (1). The difference between (1) and (2)-(a) is the existence of

the compact part G of the quotient graph X. Take a finite graph G′ in Gnk
isomorphic to G. Since every vertex in Gnk − G′ has at most degree 2, the

maximal distance between any two vertices in Gnk is bφ(nk)−|V G|+r(xN1
, G).

Thus, by the similar argument with (1), we have for nk−1 < n ≤ nk

R′′φ(n) = n+
⌊1

2
(bφ(nk)− |V G|+ r(xN1

, G) + 1)
⌋
.
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(2)-(b) Let Z be cyclic and assume that n ≥ N1. Let G′ be the subgraph of

Gn, which is isomorphic toG. Then Gn−G′ consists of a cyclic graph isomorphic

to Z and a finite linear graph with a common vertex Sn which is the unique

vertex of degree 3 in Gn−G′. We may assume that An belongs to the cycle in

Gn − G′. Consider the path P = [An − · · · − Cn − Sn − Bn − · · · − [Bn(x̃N1
)]]

in Gn, where a vertex x̃N1
is a lifting of xN1

in T . Since a vertex in T which

is the center of Bn+1 is a center of Sn and adjacent to centers of Bn, Cn
(Lemma 6.2.12), there exists a lifting of a path P in T . Since the length of

the path P is bφ(n)− |V G|, the maximal distance between any two vertices in

Gn is also bφ(n)− |V G|+ r(xN1
, G). By a similar argument before, we have the

third assertion.

We note that the converse of the proposition does not hold. Consider a

sequence of words

Xk =

{
aLkaLkbLka, if k is odd,

bLkaLkbLkb, if k is even,

where Lk is given by L1 = ε, the empty word and Lk+1 = LkaLk for odd k,

Lk+1 = LkbLk for even k recursively. Then Lk is a palindrome and we get

X1 = aaba, X2 = baaabab, X3 = aabaaabababaa, · · ·

Since Xk is a factor of Xk+1, we have a coloring φ of a 2-regular tree by

the limit of Xk. Let nk = |LkakLk| = 2k − 1. Then we can check that for

nk−1 < n ≤ nk, we have

R′′φ(n)− n =
⌊ |Xk|

2

⌋
and

bφ(nk) = |Xk|.

Thus, we have

R′′φ(n) = n+
⌊bφ(nk)

2

⌋
for nk−1 < n ≤ nk.
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국문초록

연분수는 무한히 반복되는 분수 꼴로서 측도론적 정수론, 쌍곡 기하, 문자열

조합론과 같은 수학의 다양한 학문적 관점에서 연구되어 왔다. 본 연구는 연분수

와 관련된 다음 세 가지 주제에 대해서 다룬다.

연분수의 중요한 성질 중 하나는 고전적인 연분수가 모든 무리수에 대해서

가장 좋은 유리수 근사를 생성하는 알고리즘을 준다는 것이다. 이는 연분수의

근사 분수라는 형태로 표현된다. 우리는 분모와 분자가 모두 홀수인 유리수 중에

서 가장 좋은 근사를 만들어내는 새로운 연분수인 홀수-홀수 연분수를 정의하고,

이의 성질에 대해서 다룬다.

두 번째 연구 주제는 스터미안 단어를 연분수 전개로 가지는 실수인 스터미

안 연분수의 레비 상수에 대한 것이다. 근사 분수의 분모가 지수적으로 얼마나

빠르게 증가하는지 그 지수적 증가율을 레비 상수라고 한다. 우리는 스터미안 연

분수의 레비 상수가 존재한다는 것을 증명하고, 그들의 스펙트럼이 무엇인지에

대해서 규명한다.

마지막 연구 주제는 정규 나무 위에서의 준-스터미안 채색의 성질이다. 정규

나무 위에서의 준-스터미안 채색을 그것의 몫 그래프와 재귀 함수로 어떻게 특징

지을수있는가에대해서다룬다.또,스터미안단어의연분수알고리즘과유사한

준-스터미안 채색의 귀납적 알고리즘을 제시한다.

주요어휘:연분수,디오판틴근사,기호동역학,스터미안단어,레비상수,나무의

채색

학번: 2013-30898
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