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Abstract

Generalization of continued
fraction: its number-theoretical,
geometrical, and combinatorial

properties

Seul Bee Lee
Department of Mathematical Sciences

The Graduate School
Seoul National University

Continued fraction is a formal expression of the iterated fraction which is inves-
tigated in various perspectives; metrical number theory, hyperbolic geometry,
and combinatorics on words. In this thesis, we consider three topics related to
continued fractions.

One of the important properties of continued fraction is that the classi-
cal continued fraction gives an algorithm to generate the best approximation
of every irrational as the principal convergents. We define a new continued
fraction which we call odd-odd continued fraction. We prove that the odd-
odd continued fraction gives best-approximations among the rationals whose
denominators and numerators are both odd.

The second topic is Lévy constants of real numbers whose continued frac-
tion expansions are Sturmian words. Lévy constant is the exponential growth
rate of denominators of principal convergents of a continued fraction. We prove
the existence of a real number whose continued fraction is a quasi-Sturmian
word. Also, we show that the set of the Lévy constants of real numbers whose
continued fractions are Sturmian words or periodic words is the whole spec-
trum of the Lévy constants.

The last topic is about quasi-Sturmian colorings of trees. We characterize
quasi-Sturmian colorings of regular trees by its quotient graph and its recur-
rence functions. We find an induction algorithm of quasi-Sturmian colorings
which is similar to the continued fraction algorithm of Sturmian words.

Key words: Continued fractions, Diophantine approximation, Symbolic dy-
namics, Sturmian words, Lévy constants, Colorings of trees

Student Number: 2013-30898
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Chapter 1

Introduction

The regular continued fraction is a formal expression of the iterated fraction:

1
(1.1) T =ag+

a1 +

as +
SO
1
ap + —

The investigation of the continued fractions has evolved from various perspec-
tives, such as metrical number theory, hyperbolic geometry, and combinatorics
on words. We focus on a generalization of continued fractions and related prob-
lems with the above aspects.

I. Odd-odd continued fractions

Gauss map G is defined by

1
G(z) = {} for x € (0,1]

x
where {t} is the fractional part of ¢. Its invariant measure is logféﬁ which
is called Gauss measure. A continued fraction expansion is itself a sequence of
nonnegative integers and we denote the continued fraction expansion of (1.1)
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by

[a0§a1aa2a"' 7am"']-

Since G is the left shift map of the continued fraction expansion, we call G
the continued fraction map of the regular continued fraction.

Bowen and Series defined a map associated to a discrete subgroup I' of
SL2(R) on the boundary of Poincaré disk called Bowen-Series map by edge
identifications of the fundamental domain of I'. Bowen-Series map is used to
define the expansions of boundary points [15]. Bowen-Series map associated to
SL2(Z) is related to a slow down of Gauss map, i.e., the Farey map. In other
words, Gauss map is related to the cuspidal acceleration of Bowen-Series map
associated to SLa(Z) [50] (see Section 2.3 for the definitions of the Bowen-
Series map and its cuspidal acceleration).

The group O is an index-3 subgroup of SLy(Z) generated by

(58) = )

Bowen-Series map associated to © is related to the Romik dynamical system.
Romik examined a map on the first quadrant Q of the unit circle S', which
we call Romik map, to study Pythagorean triples [57]. We conjugate Romik
map via the stereographic projection of Q from (—1,0) onto the y-axis. Then,
we obtain the following map

x 1

f < =

95’ 10<a:_3,

1 1 1

R(z) = ;—27 1f§<$§§a
1 1

2— =, if-<zx<1
T 2

Romik map is related to Bowen-Series map associated to ©.

Schweiger introduced the continued fraction with the even partial quo-
tients, which we call even integer continued fraction, and proved that its
corresponding continued fraction map is ergodic [59, 60]. Short and Walker

showed that the convergent of the even integer continued fraction is the best

approximation with the orbit ©(occ) consisting of the rationals of the form 3}

odd

even’
corresponds to the cuspidal acceleration of Bowen-Series map associated to ©

and and the converse is also true [65]. Even integer continued fraction
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with respect to oo.

In Chapter 2, we define a continued fraction whose convergents are in the
orbit ©(1) which is the set of rationals of the form %. We call the continued
fraction odd-odd continued fraction. Odd-odd continued fraction is a counter-
part of the even integer continued fraction in the sense that odd-odd continued
fraction corresponds to the cuspidal acceleration of Bowen-Series map associ-
ated to © with respect to 1. We investigate properties of odd-odd continued
fraction expansions.

A traditional question in Diophantine approximation is to find rationals
a/b which minimize |bx — a| for bounded b. We call a rational number p/q a
best approximation if, for any a/b # p/q with 0 < b < g,

gz — p| < |bx —al.
It is known that the regular continued fraction gives the best approximations.

Theorem (Theorem 16 and 17 in [36]). Every best approzimation of x is a
principal convergent of the reqular continued fraction of x, and if the fractional
part of x is not 1/2, then a principal convergent of x is its best approximation.

We prove that odd-odd continued fraction gives the best approximation
in ©(1), i.e., p/q € ©(1) such that, for any a/b # p/q with a/b € O(1) and
0<b<gq,

lgz — p| < |bz — al.

Theorem (Theorem 3.3.22). The convergents of odd-odd continued fractions
are the best approximations of an irrational with rationals whose numerators

and denominators are odd, and vice versa.

II. Lévy constants of Sturmian continued fractions

Words are sequences of finite or infinite letters. For a word with finite letters,
factor complexity is a function counting the number of distinct factors (or
subwords) of each length. Coven and Hedlund showed that a word is even-
tually periodic if and only if its factor complexity is bounded [23]. The least
complexity of aperiodic words is n 4+ 1. We call a word a Sturmian word if its
factor complexity is n + 1. Sturmian words have some dynamical properties
since Sturmian words can be defined by codings of orbits of irrational rotations
and cutting sequences of the billiard of the square.
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On the other hand, certain words in a family of Sturmian words, which we
call Characteristic words, are constructed by an algorithm related to continued
fraction expansions. Characteristic words represent all Sturmian words since
there is exactly one characteristic word whose factor set is the same as the
factor set of a fixed Sturmian word.

In Chapter 5, we deal with Lévy constants. For a continued fraction ex-

pansion x = [ag; a1, az, - - - |, the nth principal convergent of z is
P, (x
Qn((x)) = lag; a1, -+, an).
n

Theorem (Lévy [47]). For almost every x € R,

. log Qu(2) m
lim = .
n—00 n 12 log 2

The limit of the equation above is called Lévy constant of x. Euler and La-
grange proved that x is a quadratic irrational if and only if z has an eventually
periodic continued fraction expansion. By using Euler and Lagrange’s theorem,
Jager-Liardet [34] found formulas of the Lévy constants for all quadratic irra-
tionals. Since Sturmian words have the lowest complexity of aperiodic words,
Lévy constant of a number whose continued fraction is Sturmian is a reason-
able next object to calculate Lévy constant.

Theorem (Theorem 5.2.8). There ezists Lévy constant of a real number if its
continued fraction expansion is a Sturmian word.

Jun Wu investigated the spectrum of Lévy constants of quadratic irra-

tionals. Wu proved that the set of Lévy constants of quadratic irrationals is

V541
2 bl

real numbers whose continued fractions are Sturmian or periodic.

dense in [log oo> [66]. We examine the spectrum of Lévy constants of

Theorem (Theorem 5.2.2). The set of Lévy constants of real numbers whose
continued fraction expansions are Sturmian words or periodic words is the

)
log ,00 | .

same as

2
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7

Figure 1.1: Quotient graphs of quasi-Sturmian colorings

ITI. Quasi-Sturmian colorings of trees

Dong Han Kim and Seonhee Lim studied vertex colorings of undirected reg-
ular trees which are the maps from the vertex set of a tree to a finite set
of letters. They defined factor complexity by(n) of a coloring ¢, which is the
number of colored balls of radius n up to the isomorphisms preserving ¢. They
proved the analog of Coven-Hedlund theorem and generalized Sturmian words
to Sturmian colorings on a regular tree [41]. Furthermore, they examined the
continued fraction algorithm of Sturmian colorings [42].

Let Aut(7) be the group of automorphisms of a regular tree 7 and I'y
be the group of color-preserving automorphisms of ¢. Quasi-Sturmian words,
which are infinite words with factor complexity eventually n + ¢, share many
properties with Sturmian words. There are analogs of quasi-Sturmian words
for colorings of trees. We characterize the quotient graph I'y\7 of a quasi-
Sturmian coloring ¢.

Theorem (Theorem 6.2.10). The quotient graph of a quasi-Sturmian coloring
s a union of a finite graph and a geodesic ray or a bi-infinite geodesic as in
Figure 1.1.

The nth factor graph is the graph of which vertices are the non-equivalent
colored balls of radius n and edges connecting two factors whose centers are
adjacent in the underlying tree. Thus, factor graphs represent the relations
of colored balls of the same radius and we can see a pattern of a coloring by
observing the growth of factor graphs.

Theorem (Theorem 6.2.20). For a quasi-Sturmian colorings without cycles
on factor graphs, the factor graphs evolve as

(1) — (II) = - — (II) — (I) or
(1) — (1) — ---— (1I) = (1) — (1)
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Figure 1.2: Factor graphs of a quasi-Sturmian coloring

where (1), (II), (III) looks like the figures in Figure 1.2, respectively:

The thesis is organized as follows. In Chapter 2, we review some defini-
tions and properties of the regular continued fraction and the Bowen-Series
map. In Chapter 3, we consider the Romik dynamical system and even integer
continued fractions. We define the odd-odd continued fraction and investigate
its properties, following the paper [39]. This is joint work with Dong Han Kim
and Lingmin Liao.

In Chapter 4, we give some preliminaries of combinatorics on words and
Sturmian words. In Chapter 5, we study Lévy constants. We deal with the
history of Lévy constants in Section 5.1. Then, we examine the existence and
the spectrum of Lévy constants of a real number whose continued fraction
expansion is a Sturmian word in Section 5.2, which are from the paper [16].
This is joint work with Yann Bugeaud and Dong Han Kim.

In Chapter 6, we survey basic definitions of colorings of trees and known
results. We give the proof of the main theorems about the quasi-Sturmian
coloring. The contents are partly from the paper [40] which is the joint work
with Dong Han Kim, Seonhee Lim, and Deokwon Sim.



Chapter 2

(Generalization of continued
fractions

In this chapter, we introduce the regular continued fraction and their proper-
ties. Then, we focus on a generalization of the continued fraction defined by
the Bowen-Series maps and their cuspidal accelerations.

2.1 Regular continued fraction

In this section, we recall some definitions and properties of the regular contin-
ued fraction, following [36], [56] and [31].

A regular continued fraction is an iterated fraction of the form

1
(2.1) ag +

a1 +

as +
-

1

an + -

where ag € Z and a,, € N for all n > 1. We call a,, the nth partial quotient or
the nth digit. If the continued fraction is finite, then we write the continued
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fraction as

(2.2) ag +

SO
Qan

We denote a continued fraction as in (2.1) and (2.2) by sequences
(2.3) lag; a1, a2, ,an,---] and  [ag;ar,az, -, anl,

respectively, not only to save space but also to see the continued fraction as
a sequence of integers. More precisely, the set of the sequences determined by
the continued fractions is

(2.4) Q:= (Z X NN> U (Z X G N”)
n=1

where the former is the set of the infinite continued fractions and the latter is
the set of the finite continued fractions.
2.1.1 Basic properties of continued fractions

We define an approximated sequence of a continued fraction. We refer to the
readers to [36] and [56] for more details.

Definition 2.1.1. The principal convergents of [ag; a1, a2, ,an, - -| are the
truncated continued fractions

P

I =lag;a1,az, -+ ,a,] forall n>0.
Qn

The principal convergents P,,/Q,, n € N are given by

P, P, ag 1 a; 1 a, 1
eo(qan) (0 o) () ()

where P_1 =1 and )_; = 0 by convention. Thus, there are recursive relations
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(2.6)

P,=a,P,_ P,_
{n antp—1+ Fr—2, for n > 1.

Qn = ananl + an27

The determinant of the matrix of (2.5) is P,Qn_1 — Pn_1Qn = (—1)"T! and
hence

&_ P, B (_1)fn+1
Qn Qn—l B QnQn—l ‘

Thus [ag;a1,a2, - ,an, -] have the value as the limit of principal conver-

(2.7)

gents lim P,/Q,. If x = lim P,/Q,, then we say that z has a continued
n—oo n—oo

fraction expansion [ag;ai,ag,- - ,an, - -]. We denote ay,, by a,(z) and P,/Qy,

by P, (z)/Qn(z) when we want to emphasize the value z.

Each real number x € R has a continued fraction expansion. The process
to find the digits of the continued fraction expansion of x is related to the
Euclidean algorithm. The algorithm is to find the greatest common divisor of
two integers mg and ng. We recall briefly the process to find the continued
fraction expansion of a rational. Without loss of generality, we assume that
|mo| > ng > 0. Then there are two integers ag and 7y such that mg = agno+ro
with 0 < rg < ng. We set m; = ng and ny = rg, then we find a1 and r; such
that m; = ainy +r1 with 0 < r; < ny. We can repeat the process by setting
m; = nj—1 and n; = r;_1. We end the process when r; = 0. By the above
expressions, we deduce the following form:

mo 1 1
7:a0+m71:a0+7:"'

1
no ai + my
ng

ni

We note that the sign of ag is the same as the sign of mg and a; > 0 for all
i > 1. Thus, we have a; = |m;/n;|, which is inductively defined by
mip 1

2.8 = =\
(2:8) ng ek —aion

The process is represented by an alternative sequence of the inversion and the
translation by a;.

The above process is only for the rationals, but it can be generalized to the
real numbers. Let ¢ = £y be a real number. Then, we take the integral part of
t as the Oth partial quotient ag. As the recurrence formula in (2.8), we define
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t; by

1

2.9 fp=—
(2.9) Yot —ai

where a;_1 is the integral part of ¢;_;. We finish the process when ¢; is an
integer. Note that if ¢ is a rational, then the process is finished in a finite time,
but if £ is an irrational, then the process does not stop. The continued fraction
expansion that we obtain by the above process is the expression of the real

number t since

1 1 1
t=ag+—=ag+ —qg+——m—— =
t1 1
a1+ — ap +
to 1
az + E
We define a map @ : @ — R by
(2.10) @({an}nzo) = [ao;al,--~ ,an,-~-].
Since 0 < [0; apt1, Gnt2,anis, -+ -] < 1 for all n > 1, the nth partial quotient

an is the integral part of ¢,. In other words, if ¢ is an irrational, then the
process in (2.9) is a unique way to find the continued fraction expansion of
t. On the other hand, if ¢ is a rational, then it has two continued fraction
expansions [ag; a1, - ,a,] and [ag; a1, -+ ,a, — 1,1]. Then, ® is a 1-1 map on

Z x NN and it is a 2-1 map on Z x U N™. We remark the following property.
nez

Proposition 2.1.2. The continued fraction is finite if and only if the corre-
sponding value is a rational.

Continued fractions, as we discussed above, is a tool to investigate the
properties of a real number. It can be compared with the decimal (or any
n-ary) system. A number with a finite decimal expansion is a rational, and
whose denominator of the irreducible form has only factors 2, 5. A number
with an infinite periodic decimal expansion is a rational, and vice versa. For
continued fraction expansions, Fuler and Lagrange showed a property of the
periodic continued fraction expansions.

We denote by [ag; a1, ,an, Gnt1, ", Anik) @ periodic continued fraction
with the periodic block apy1,- - ,an1k. We call the length of the minimal
repeated block the period.

10
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Theorem 2.1.3 (Euler). If x has a periodic continued fraction expansion,
then x is a quadratic irrational, i.e., an irrational solution of a quadratic
equation.

In order to show the Euler’s theorem, we need a relation between z and
the principal convergents P,,/Q,. We define the nth complete quotient

Ty 1= [ Ang1s Gpg2, -0 ]
Since z,, = a,, + 1/xp41, we infer the following relation

inn-‘rl + Pn—l _ Pn(an—H + 1/$n+2) + Pn—l _ Pn+1xn+2 + P’rz
ann—l-l + Qn—l Qn(an+1 + 1/xn+2) + Qn—l Qn+1xn+2 + Qn '

By induction, we can express x by its complete quotients as

_ annJrl + Pha
annJrl + anl

(2.11) x for n > 0.

If x has a periodic continued fraction expansion, then x;;1 = ;11 for some %
and j. By (2.11), we have

B Qi-1x— P11 Qj 1z — Pj
i+1 = Tj41 = = :
‘ g Qiz — P, Qjzr — P

The above equation is equivalent to a quadratic equation and its discriminant
is not a square number. The converse of Theorem 2.1.3 holds.

Theorem 2.1.4 (Lagrange). A quadratic irrational has a periodic continued
fraction expansion.

Later, Charves gave a shorter proof. Let us consider a real number x and
the complete quotients zq, x1, 2, - - - . The idea of the Charves’ proof is that the
quadratic equations of z,, n > 0 have bounded coefficients. Similarly, in the
Lagrange’s proof, he showed that there are finitely many complete quotients
by using the fact that the discriminants of complete quotients are the same.
See Theorem 28 in [36] and Theorem 1-3 in [56, Chapter III, §1] for more
details of Euler and Lagrange theorem.

In the rest of the section, we consider Diophantine approximation. Dio-
phantine approximation problem is to find a rational which is “close” to a
fixed irrational number. More precisely,

11
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Definition 2.1.5. We call a rational p/q a best approximation of z € R if
lgz — p| < |bx — a| for all a/b+# p/q such that 0 < ¢ <b.

In other words, |gx — p| is the distance ||gz|| of gz mod 1 from 0 on the
unit circle S' whose circumference is normalized by 1. Thus, if p/q is a best
approximation of z, then ||gz|| < ||bx|| holds for any 0 < ¢ < b. Lagrange es-
tablished a connection between the best approximations and regular continued
fractions.

Theorem 2.1.6. FEvery best approximation of x is a principal convergent of
the regular continued fraction of x, and if the fractional part of x is not 1/2,

then a principal convergent of x is its best approximation.

The theorem tells us that the continued fraction gives an algorithm to find
the best approximations. There are several versions of proofs of the theorem.
In his monograph, Khinchin gave an arithmetic proof (see Theorem 16 and
Theorem 17 in [36]). Irwin proved the theorem using plane lattices in [32].
Short gave the proof using Ford circles in [64] (see Definition 3.3.10 for the
definition of Ford circles).

2.1.2 Gauss map and related dynamical systems

In this subsection, we deal with a dynamical system related to the regular
continued fraction.

Gauss map or The continued fraction map G : [0,1] — [0, 1] is defined by

1 1 .
0 ifz =0,

where [t] is the greatest integer not exceeding ¢. The Gauss map is piecewise
invertible and has infinitely many branches as in Figure 2.1. In (2.8) and
(2.9) of the previous section, we see that n;/m; = G(n;—1/m;_1) and 1/t; =
G(1/ti—1). More precisely, the Gauss map G is the left shift map of continued
fraction expansions:

G([O;CL]_,CLQ,"' 7an»"']) - [O;(I?)a?n"' 7an+1""]-

12
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1 1
3 2

=
NI

Figure 2.1: Gauss map

Using Gauss map, we obtain continued fraction expansions of real numbers in
(0,1): the nth partial quotient a,(x) is [(G"1(z))~t].
The Gauss map G has an invariant measure yu = (log2(1 +t))~'dt. Using

0=t

it follows that the measure u(G~1([0,))) is equal to u([0,)):

= [a 1 1 — n+1 x+n
>/ = s D log ™
=) log 2(1 +t) log 2 £~ n x+n+l

 — z

T+ 1 1 & [n 1 I
log = = / dt = / dt.
log2ng1 a1 108;27;1 ni1t+1 log2 Jy t+1

We denote again by ® as the restriction of ® in (2.10) to NY = {0} x NN,
Let o be the left shift map on NN, Then, the following diagram commutes:

NN NN
o O )
(0,1)\Q (0,1\Q
13
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N

W=

1 1
3 2

Ut
=

Figure 2.2: Farey map

We can give the pullback measure ®*; on NN, Then two measure preserving
dynamical systems (N, o, ®* 1) and ((0,1)\Q, G, 1) are equivalent.

Ito introduced the Farey map to find intermediate convergents in [33] (see
Definition 3.3.26 for the definition of intermediate convergents). Let us denote
by F' Farey map which is defined by

] ifo<zx< =,
. -
(2.12) F(x) = |- 1
f-<z<1
x 2

The Farey map is the same as the Gauss map on the subinterval [1/2, 1] and it
has a fixed point at 0 at which the derivative is 1 (see Figure 2.2). The Farey
map is a slow down of the Gauss map in the sense that

(2.13) Fu@(z) = G(x).

Schweiger introduced the notion of a jump transformation as an acceler-
ation of a transformation in [61, Chapter 19]. For a transformation 7" of a
domain X, let us define the first return time of x € X to a subset’Y C X by

ny (z) :=min{n >1:T"(x) € Y}.

Definition 2.1.7. We call J(x) = T™ ®)+1(z) the jump transformation as-

14
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sociated to T" with respect to Y.

The Farey map sends the intrerval (n%q, 1) to the interval (%, 1;) for
1

n > 2. Since ay(z) = n for z € (517, 1), ay(x) — 1 is the first return time of
x to the subinterval (3,1) in the orbit of 2 under F. It means that the Gauss
map G is the jump transformation associated to the Farey map F with respect

to the subinterval (3,1) by (2.13).

2.2 Coding of geodesics on the modular surface

In this section, we investigate a connection between geodesics on SLy(Z)\H
and continued fractions, following [24], [52] and [62].

2.2.1 Hyperbolic surface

The hyperbolic plane H is a 2-dimensional Riemannian manifold with the con-
stant curvature —1. The hyperbolic plane can be represented by the upper-half
plane model consisting of complex numbers whose imaginary parts are posi-
tive:

H={z€C:Imz > 0}.

We identify its boundary with R U {oo}. We consider the Poincaré metric

ds? = Ltdyz on the unit tangent bundle

T'H={(z,v):2€H, v-v=1}

The special linear group SLo(R) acts on H via the Mdbius transformations
which are defined by

g(z) = az 0 for g = (Z Z) € SLy(R).

cz+d

The action extends to T H as g(z,v) = (g(z),¢'(2)v). A geodesic is the short-
est path between two points. Geodesics on H are vertical lines or half circles
perpendicular to the real line. We refer the readers to Chapter 9 in [24] for
the details.

The modular surface M is obtained from H by quotienting it using the

15
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Figure 2.3: The standard fundamental domain R with the thick boundary and
the modified fundamental domain Q with the shaded face of SLa(Z)\H.

isometries in SLoZ. The group SLoZ is generated by the matrices

(2.14) T= ((1] 1) and ¢ = (_01 (1)> .

A fundamental domain R, which is often called “the standard fundamental
domain”, is the region

1 1
(2.15) R:{ZGH:—2<Rez<2 and |z|>1}.
See Figure 2.3.
The Mobius transformations corresponding to the generators in (2.14) are

1
z—z+1 and z+— ——.
z

The first map maps the line from —1/2 to the line from 1/2. The second map
identifies the arc connecting i and (—1 + /3i)/2 with the arc connecting i
and (1 + v/3i)/2. We can obtain another fundamental domain by modifying
the standard fundamental domain. After cutting R by the middle line and
pasting the left piece to the right-hand side, we have the quadrilateral Q (see
Figure 2.3).

16
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-1 0 1 2 3

Figure 2.4: Farey tessellation. The geodesic line ¢ connecting 0 and co.

Now, let us consider a matrix

0 —1
(2.16) S:(1 _1>

which sends z to —(z —1)"1. The map S fixes 1/2 4+ /3/2i and sends oo to 0,
0 to 1 and 1 to co. It means that S rotates the modified fundamental domain
Q centered at 1/2 + \/§/2z Then, the union of Q, SQ and S?Q makes the
ideal triangle A whose vertices are 0, 1 and co. We will see that the regular
continued fraction corresponds to the coding of the geodesic associated to the
tessellation of H with the images of A under SLa(Z).

2.2.2 Cutting sequences with Farey tessellation

Farey tessellation is the tessellation consisting of the images of A under SLoZ
(see Figure 2.4). Denote by ¢ the geodesic joining 0 and oco. We call each
triangle an elementary triangle and each geodesic of the Farey tessellation an

/
elementary edge. The endpoints of v(¢) are p/q and p'/q’ where v = (p p/) )
qa q

Thus for any endpoint p/q and p'/q’ of y(£), we know that |pg’ —p'q| = 1. The
map 7 in (2.14) and S in (2.16) generate SLa(Z). The SLa(Z)-action preserves
the Farey tessellation since 7 and S preserve the Farey tessellation.

Farey tessellation is named after a geologist J. Farey since the tessellation
is related to the Farey sequences. The Farey sequence of order n is the collec-
tion of all rationals whose denominators and numerators are at most n. For

17
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=2

Figure 2.5: Segments of the type L (left) and the type R (right).
example, the nonnegative entries of the Farey sequences are:

3
7177

1
Fi1:0, 1, o0, F5:0, = >

27 17 27 o0, F3:07 ’ ’ 27 37 o0,

Wl
N =
wl N

Two rationals p/q and p’/q" are adjacent to each other in a Farey sequence if
and only if |pg’ —p’'q| = 1. In other words, two consecutive numbers in a Farey
sequence are connected by an elementary edge. In Section 3.3.1, we deal with
a relation between continued fractions and the collection of the elementary
edges which is called Farey graph (see Definition 3.3.8 in Section 3.3.1).

Let v be an oriented geodesic of the modular surface M. Let us denote by
7 the canonical projection from T H to T'M (see Figure 2.6). Let ¥ be a lift
of v, i.e., v = w(7¥). Let us denote by 7__ the backward endpoint of 7 and by
Yo the forward endpoint of 7. We can find a lift 7 of ~

1<y o <0,7%,>1, or —-1<75_<0,7,>1

By the condition, 7 intersects iR at a point, say &. We recall that the set of
the pure imaginary numbers ¢R is the y-axis of H.

The Farey tessellation divides 7 into segments. For each segment, we give a
type L or R as follows. If there is only one vertex of the elementary triangle on
the left side of the segment, then we give the type L on the segment. Otherwise,
we give the type R on the segment (see Figure 2.5). See the geodesic 7 in
Figure 2.6 for an example. The segment of 7 between 0 and 1 is of type L and
the next segment is of type L also. The preceding segment is of type R.

Let us consider the sequence of the types of the segements of 7. We denote
by R™ (or L™, respectively) the block repeating R (or L, respectively) n times.
Note that the types of the segment before {5 and the segment after {5 are

18
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<)

Figure 2.6: Projection from H to M. Corresponding Labels of an oriented
geodesic 7.

distinct. We can indicate {5 between the types of segment before and after &5
in the sequence of the types.

Definition 2.2.1. The cutting sequence of 7 is defined by the sequence of the
types of segments as

S LP2RUIEG LM RML™ - or - RPT2LTTUGRM™LM R -
where n; is the number of repetitions of each type.

This labeling is invariant under SLs(Z)-action. It means that we can as-
sociate v with the cutting sequence of 7. Let x := &. Then, we have the
following cutting sequence of ~:

S LM2RM1gLMORMIM2 ... op ... RM-2[M-1pRMOLMRE ...

Series clarified a connection between the cutting sequences and the regular
continued fractions of the endpoints of geodesics on M [62].

Theorem 2.2.2 ([62], Theorem A). Let v be a geodesic on M. If v has a
cutting sequence --- L"2R"-1gL™R™ ... | then

VYoo = [no;n17n27” ] and Voo = _[O;n_hn_Q’. ]

19
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p1(&) p1(1y) o
l o Y A
T -1 0 T 1 ni
p1(Yso) P1(V-c0)

Figure 2.7: Geodesics 7 (black) and po(%) (blue)

On the other hand, if v has a cutting sequence - -+ R*2L"1gR™ L™ ... | then

Yoo = —[O, no, N1, N2, ] and Veoo = [n71;n72,n,3, .. ]

Sketch of the proof. See Figure 2.7 for the procedure of the proof. Since the
segments of the type L after {5 is iterated ng times, the forward endpoint is
between ng and ng + 1. It means that the integral part of 75 is ng which is
the Oth partial quotient.

Consider

The first partial quotient of 7 is the integral part of .
a Mobius transformation pg(z) = —1/(z — ng). It is enough to show that
| —po(Too)] is equal to ni. Let 75 be the point on 7 such that Re(%(t)) = no.
Then po(ny) lies in iR. The cutting sequence after ny of 7 is the same as
the cutting sequence after po(ny) of po(¥) which starts from R™. Thus the
integral part of —po(7a0) is m1. As a similar argument, we can show that
Yoo = [n0;n1,n2,- -] inductively.

For the backward endpoint, we also use the previous argument. For the in-
version map ¢ in (2.14), the cutting sequence of ¢(3) is - - - R"~14(&) L™ R™ - - -
If we reverse the direction of the geodesic ¢(7y), then its cutting sequence is
- LM Ry ()L™ . By the previous argument, —1/9- has the continued
fraction expansion [n_1;n_9,m_3,--].

We can prove the second assertion by the above arguments exchanging R
and L. O

20
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2.3 Bowen-Series map

In this section, we deal with a generalization of the discussion in the previous
section to Fuchsian groups, i.e., discrete subgroups of SLo(Z).

In this section, we use the Poincaré disk model
D={zeC:|z| <1}

for the hyperbolic plane instead of the upper-half plane model. We can identify

H with D by
1 — zZ—1
w = . T2 - .
<—z 1) —iz+1

Since Isom™ (H) = PSL (R), Isom™ (D) = wPSL3 (R)w~! which is a subgroup
of PSL;r (C) consisting of oriented preserving maps preserving . Let I be

a subgroup of PSLJ (R) and z € H. By abuse of notation, we denote by I'
the conjugation wl'w™! of the subgroup I' and by z the image w(z) of z for
simplification.

The limit set of a group is the set of the accumulation points of its orbits.
The limit set of a Fuchsian group is contained in the boundary dD. We say that
a Fuchsian group is of the first kind if its limit set is the same as whole 0D.
Bowen and Series established a boundary map on 0D by edge identifications
of the fundamental domain of a finitely generated Fuchsian group of the first
kind [15], which we briefly recall.

From now on, let I' be a finitely generated Fuchsian group of the first kind.
Let F be a fundamental domain of I'. Let us denote by a set of greek letters
A={a,a!,38,871,v,77,---} the set of elements of I" identifying two sides
of F. We note that A is a finite set since F has finite sides. Let us consider a
pair of sides (s, s’) of F which are identified to each other by an element of T
We denote by s, 1= s if a71(s) = 5.

The isometric circle of v = is |cz +d| = 1, i.e., the set of the

points z such that |7/(z)| = 1 in H. In the Poincaré disk D, the isometric circle
of ¥ = wyw™! is the image of |cz +d| = 1 in H under w. We denote by C, the
isometric circle of o in D. We label endpoints of C, with v, and w, on 0D
as in Figure 2.8. Bowen and Series constructed a fundamental domain F of T’
such that
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'U»Y wﬁ

Figure 2.8: Labeling of the sides of a fundamental domain F and endpoints of
its isometric circles, the corresponding partition of the boundary.

the geodesic containing s, is Cy, and

(2.17) C, is contained in the tessellation consisting of U v(OF).

vyel
We denote by the interval notations (v,w), [v,w), (v,w], [v,w] the arc of
0D between v and w. We define a partition {[a]}aeca of 0D by [¢] := [va, Vo)
such that s,/ is the next side of s, in an anti-clockwise direction. Bowen and
Series defined a map associated to I' by

(2.18) fr(z) =a Yz) = €lal
The boundary expansion of x € JD is defined by
[ag, a1, + Q- - -] such that ay, == aif f(2) € [o].

Then, fr is a left shift map of the boundary expansion. From now on, we

denote by the finite expansion form [ag, a1, -+ ,ay] the subarc of 9D whose
elements have the expansions starting with ag, aq,---, a,. Then, the arc is
exactly

[ag, 1, -+ o] =agoai oo ap_1([an)).

Example 2.3.1. For example, let us consider the congruence subgroup of level

22
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Figure 2.9: Fundamental domain D of I'(2) in D.

{9+ )

Then the fundamental domain D of T'(2) satisfying the condition 2.17 is as in

Figure 2.9. Let
o= L2 and = Lo .
0 1 2 1

The group T'(2) is generated by {a, B} and «, B identify the sides of D. The
arcs are [oa~Y] = [o0, 1), [61] = [~1,0), [8] = [0, 1) and [a] = [1, ).

The subarcs corresponding to the words of length 2 are

.0 = 3,00, ol = 5.5 ) « (37l = | -1.-3).

(2.19) @t a7 = [00,—3), [B,a7 ] = B 1> 87 el = [_; _;> 7

23 : o
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o = [1L2), [0, 871 = [-8,-2), 34,57 = [—1 o) ,
(2.20)

0.8 = 2:3), [ 8 = [-2.-). (8.8 = 0.3

We can modify the choice of the partition of [a]’s as long as [a] C [va, Wa)
and the disjoint union of [a]’s is OD. Let us consider the case of I' = SLa(Z).
For the standard fundamental domain R in (2.15), w(R) looks like the region
in Figure 2.10.

We will compare the following two choices of a partition of JD:

©) [ =[o0, 1), [r] =[1,00), 7] =[-1,1) and
(i) [r7'] = lo0,—3), [ =[3,00), [ =[-3,3)-

Example 2.3.2 (Farey map). We denote by f1 the Bowen-Series map asso-
ciated to fsr,(z) with the partition (i). By (2.18), f1 is explicitly the following
map

)

N[
N[

z+1 if x € (—o0,—1),
fii=Lx—1 if x€[l,00),

1
—— if —1,1).
. if ze[-1,1)

The map f1 is related to the Farey map F in (2.12) since

Fla) {Lc;ff(w) it oey)
| f7 ()] if = el[5,1]

We observe that [n%rl,%) =, 7" = [t,r L7 77Y for n € N where
the number of 7=1 is n. For x € [1,00], the boundary expansion of x is of the
form

[T7™ e, 72 0,77 ).
We can see that the cutting sequence of a geodesic is «-- L™ R™ L™ - .. if the

forward endpoint is x (see Definition 2.2.1).

Example 2.3.3. The nearest integer continued fraction map is
1 1 1 1

—— =4+ f el0,=

S LR )]

24
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Figure 2.10: Fundamental domain of SLy(Z) in D.

here, L% + %J is the nearest integer of % For x € R, the nearest integer con-
tinued fraction is
Ko
T=cpt—
K1
g+ ——
K2
c2+ —

where ¢y is the nearest integer of x, the 0th numerator kg is the sign of x —
co, each digit ¢, is the nearest integer of m and kK, 1s the sign of
m — ¢n. Then, T is a left shift map of the mearest continued fraction
eTPansions.

The Bowen-Series map associated to SLy(Z) with the partition (ii) is

r+1 if 336( oo,)

f2(;1;) = r—1 if x €

25
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By iterating of fo, we can induce T such that

T(@) = -2 (2) for z € <0, ;)

where n(x) is the first return time of v € (0,1/2) to (—1/2,0) as an orbit
under T'. We note that ¢y = n(x) — 1. In this sense, we can say that fy is a
slow down map of T.

By the above discussion, we can say that a continued fraction map cor-
responds to an acceleration of the Bowen-Series map in some sense. We deal
with such an acceleration of the Bowen-Series map.

Artigiani, Marchese and Ulcigrai investigated Lagrange spectra related to
Fuchsian groups in [5] and [6]. Marchese studied about bad sets for non-
uniform Fuchsian groups in [50]. In this investigation, they defined the cuspidal
acceleration of the Bowen-Series map. In the rest of this section, we introduce
the definition of the cuspidal acceleration, following [5], [6] and [50].

For a fixed Bowen-Series map fr, we call a finite word ajae - - - ay, over
A an admissible word if there is a corresponding arc [aq, a9, - , ] on ID.
We say that an infinite word ajag -« -y -+ - is admissible if there is x € JD
whose boundary expansion is [a1, a9, - ,ap,---]. A finite word ajas---ay,
has no backtracking if a;11 # a;l for any 1 <4 < n. We can show that a word
is admissible if and only if a word has no backtracking. We say that a word
a1Qg - oy, 18 a cuspidal word if one of the endpoints of the corresponding
arc [aq, o, -+ ,ay] is a cusp of I'\H. We note that all words of length 1 are
cuspidal. For example, the cuspidal word of length 2 of I'(2) are

a~tat a8, aa, af! BTITY Ba, BB and o

since one of the endpoints of their corresponding arcs is 0, 1, —1 or oo (see
(2.19) and (2.20)).

Consider an admissible word ayag - - - o, - - - . We can decompose a word by
cuspidal words such that

Q1 -y = Wi WoWs - - -

where Wy = au(x) -+ p(ry1)—1 1s defined inductively by the maximal cuspidal
word from ay,y) for k € N.

Definition 2.3.4. The cuspidal acceleration of fr is a map Cr : 0D — 0D
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defined by
CI‘(I’) = (CMO owjo0---0 an)il(x) if Wl = Q1 - Q.

In Example 2.3.2, the cuspidal words are ¢ and 7" for all n € Z. A word

LTy 7™ i decomposed by
T (F") -
For the cuspidal acceleration C; induced by f1, the Gauss map G is
G(z) =Cyouz) =Ci(z) for z €0,1).

Similarly, for the cuspidal acceleration Co induced by fo in Example 2.3.3,
we can see that

T(z) = Cyou(x) = C5(x) for x € [—;, ;) .

27
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Chapter 3

Continued fraction related to
O-group

In this chapter, we focus on the Bowen-Series map associated to ©-group. The
group O is an index-3 subgroup of SLy(Z) generated by

0 1 1 2
-1 0)’ 0 1)
The group O is explicitly

92{(2 Z) € SLy(Z) - (Z Z) = ((1) ?) or <(1) (1)> (mon)}.

3.1 Romik dynamical system

Romik introduced a dynamical system on the unit interval [0, 1] as follows

x 1

70§$§77

1—2x 3

1 1 1

3.1 Rz)=¢--2, -<z<-

(31) @={:-2 s<e<y,
1 1

2—— — <z <l
T 2

See [57] for the details. The graph of the Romik map is as in Figure 3.1. We
refer the reader to [19] and [20] for the investigation of number-theoretical
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1 1
3 2

Figure 3.1: Romik map R.

properties and the Lagrange spectrum of the Romik map.

We remark that, for the Farey map F', a real number x between 0 and 1 is
rational if and only if F"(x) = 0 for some n > 0. It is related to the fact that
SL2(Z)\H has the only one cusp and the cusp corresponding to Q U {oo}.

The Romik map has two indifferent fized points 0 and 1, i.e., the fixed
point with differential 1. By using the fixed points, we can classify rational
numbers into two classes such that

{z:R"(z) =0 for some n >0} or {z: R"(z) =1 for some n > 0}.

Actually, the first set is ©(c0) N[0, 1] and the second set is ©(1) N[0, 1], thus,
each of them is related to the two cusps of the surface ©\H corresponding to
oo and 1.

Definition 3.1.1. We call a rational in the orbit ©(co) an oco-rational and a
rational in the orbit ©(1) a l-rational.

Note that an co-rational is of the form ¢33 or :\i?l, but a 1-rational is of the
form %.

Romik originally introduced the Romik dynamical system Rasa dynamical
system on the first quadrant

Q={(zy):2* +y*=1,2>0,y >0}
of S! to investigate an algorithm generating the Pythagorean triples by multi-
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Figure 3.2: Romik map on the quadrant Q.

plying matrices (see [12] and also [4], [7], [22], [21]). More precisely, the Romik

map R on Q
5 2—x—2y| |22z —y|
R(z,y) = .
(z,9) (32x2y’32x2y

Let us define D : (0,1) = Q and D : (0,1) — Q by

D(t):<1—t2 zt) and D(t):( 2t 1—t2>‘

1427 141¢2 1427 1+4+1¢2

The maps D and D are the inverses of the stereographic projections of Q from
(—1,0) and (0,—1) onto y-axis and x-axis, respectively (see Figure 3.2). Then
the Romik map R is a conjugation of R such that

(3.2) R:D_IOEOD:D_loéob.

See Theorem 4 in [57] for more details.

3.2 Even integer continued fraction

In this section, we introduce even integer continued fraction and the related
results, following [59], [60], [45], [65] and [14].

Schweiger investigated the continued fraction with even partial quotients
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which we call the even integer continued fraction in [59, 60]. We abbreviate the
even integer continued fraction to EICF. The EICF is related to the cuspidal
acceleration of Bowen-Series map associated to © with respect to oco. The
cuspidal acceleration in here is not exactly the cuspidal acceleration of the
previous section, but it is obtained by accelerating for a class of cuspidal
words which corresponds to the arcs adjacent to oo.

For by € 2Z, b, € 2N, n > 1 and 7; € {—1, 1}, an EICF expansion is

1o
m

r=by+
b +

2
by + —
We write an EICF expansion as a sequence in a double angle bracket:

(3.3) (b0, m0), (b1sm1)s ==+ 5 (bisymi)y ==+ )) -

The left shift map of EICF expansions is the EICF map T, on the unit interval
[0,1] defined by

1 . 1 1
*—2]{7 if 2 Smgfk,
T.(0) =0, and Tu(z)=<{7 1 21+1 12 for all k£ € N.
=, i <<
e Ty stsgor

See Figure 3.3 for the graph of 7.

As the Gauss map G is the jump transformation associated to the Farey
map F' with respect to [1/2,1], the EICF map T is the jump transformation
associated to the Romik map R with respect to [1/3,1), i.e.,

To(z) = Rn[1/3,1)($)+1(x)
where 1} /3.1)(2) = min{i > 1: R'(x) € [£,1)} (see Definition 2.1.7). Note that
T, has an invariant measure p. = (1 — 22)~'dz which is absolutely continuous
with respect to Lebesgue measure. Schweiger showed that p. is an ergodic
measure of T, (see Theorem 2 in [59] for the proof).
The nth EICF principal convergent, denoted by p¢ /¢S, is the truncated
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1 1
3 2

=
NI

Figure 3.3: Even integer continued fraction map 7.

continued fraction
(4
Pn

¢ = <<(b07 770)a (b1>771)’ ) (bm"’]n) >> :

Before introducing the recursive formula for the EICF principal convergents,
let us see the following lemma for general continued fraction forms (see p.3 in
[44] for details).

Lemma 3.2.1. Let us consider a general continued fraction of the form

+ bo
T = ap 3
by
aq+—-

ba
az +

as+ -
where a,, b, are integers. Let v, /s, be the finite continued fraction of the form

bo
by

ag +

a; +

ba
o+ ————
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Then the following matrixz relation holds:

Tn bntnfl [ a0 b0 a1 E)1 o an bn
s, bps,—1/ \1 0)\1 0 1 0)°
Consequently, we deduce the following recursive formulas:

Ty = Optp—1 + bn—ltn—Qv
Sp = OpSp—1 + bn—lsn—%

wheret_1 =1,5_1 =0, tg = ag and s = 1.

Thus, for EICF, the following matrix relation holds:

(3.4) qn Endn—1 _ apg €1 ayp €1 [ On En .
n €nPn—1 1 0 1 0 1 0

Kraaikamp-Lopes characterized the finite and eventually periodic EICF.

Proposition 3.2.2 ([45], Proposition 2 and Proposition 3). The following
statements hold:

(1) A rational p/q is an oco-rational, i.e., p Z q (mod 2), if and only if the
EICF expansion of p/q is finite.

(2) A real number x is a quadratic irrational or a 1-rational if and only if
its EICF expansion is eventually periodic.

Boca and Merriman gave geometrical proofs of the above propositions by
using the Farey graph in [14] (see Definition 3.3.8 for the definition of the
Farey graph). Kraaikamp and Lopes obtained the asymptotic growth number
of geodesics on O\H in [45].

Since each matrix in (3.4) belongs to ©, we can easy to conclude that each
EICF principal convergent p¢ /¢S is an oco-rational. Short and Walker showed

that an EICF principal convergent is a best approximation among the rationals
odd

even’

en

in the orbit ©(oco) consisting of 3¢ and and also the converse holds.

Definition 3.2.3. A best oo-rational approximation p/q of z is a rational
p/q € ©(c0) such that

lqz — p| < |bx —a|  for any oco-rational % # % such that 0 < b <gq.
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Figure 3.4: The graph of the Romik map R (left) and the graph of the OOCF
map 7T, (right)

Proposition 3.2.4 ([65], Theorem 5). An oco-rational is a best co-rational
approximation of x if and only if it is an FICF principal convergent of x.

They showed the proposition by using Ford circles (see Definition 3.3.10).

3.3 0Odd-odd continued fraction

We define a continued fraction whose convergents are in the orbit ©(1) which is
the set of rationals of the form %. We call the continued fraction the odd-odd
continued fraction. In this section, we define the odd-odd continued fraction
and properties.

3.3.1 Continued fraction with % convergents

Let E = [1/3,1] and E' = [0,3]. The odd-odd continued fraction map T, is
defined by the jump transformation associated to R with respect to E’ such
that

To(1) =1, and Ty(z) = R"='@+ ()
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1 2 2t )
1+t2’ 1+t2

Figure 3.5: Continued fraction maps T, and T, are conjugate via f(t) = }—jﬂf

where ng(z) = min{i > 0 : R'(z) € E'}. A simple computation shows that
T5(1) =1 and

kx — (k—1) £ [k—l 2k—1>
k—(k+ )z’ k 2k+1)’
. (x) = > 1.
(3.5)  To(x) k= (k+1)o o ok — 1 & for all k > 1
kx — (k—1) 2k+1"k+1

We abbreviate the odd-odd continued fraction to OOCF. The map T, has an
indifferent fixed point 0 (see Figure 3.4).
Let

(3.6) f(z) = D 'o D(z) =

We note that f = f~!. As in Figure 3.5,

D(E) = {(x,y) €EQ:0<z< ;1} = D(E'),

where Q is the first quadrant of the unit circle.
Since the conditions R(f~1(t)) € E and R/(t) € E' are equivalent to
RID(t) € D(E) = D(E') by (3.2), we can show that ng(f~(t)) and ng(t)
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are the same. Thus, T, is conjugate to T, since
foTyo fﬁl(s) —D1lo fan(ffl(s))+1 o D(S) _ RnE/(s)Jrl(s) = T.(s).
The above arguments are summarized as the following theorem.

Theorem 3.3.1. The OOCF map T, is conjugate to T.. More precisely, let

f be the function on the interval [0,1] defined by x — L‘r—; Then

foToofilzTe-

2dx
(1+z)2

To find an invariant measure, let y = f(x). Since dy = |f'(z)|dz =

de  (L+a)3dy (14a)dy dy
1—22  2(1—-22) 2(1-x) 2y

Hence, we find an absolutely continuous invariant measure of T}, as follows:

Proposition 3.3.2. The map T, : [0,1] — [0, 1] preserves the measure

1

—dx.

x

Remark 3.3.3. Schweiger proved that T, admits an ergodic invariant measure

dp = 4z, [59, Theorem 2]. By Theorem 3.3.1, we deduce that the measure
11—z

1 is ergodic invariant with respect to Toocr. By simple computation, one

can find that this measure o'y is nothing but the measure in Proposition

By using 75, we induce an expansion of a real number in [0, 1]. Denote by

(3.7) Lhz[J{iZli}, v::LJ{kil}.

Tox +1 1
(k+V)Tox+k 1
k4+1) 4+ ———
(k+ )+2—(1—T0:L‘)

(3.8) 1—x=
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and, for z € (g’,ﬁﬁ,kil)
39 . Tox +1 1
(39) TP T ) + kTox 1
Eo -
Ty (0T

Thus, for all x € [0,1]\ U T, ™(U UV U{0}),
n>0

1l—x= )

a +

ap +

where

(k + 17 _1), if Tc:l_l(x) € (kTa 2]&%)
2k

(3.10) (onr2n) = {(k,l), if 70 Y(2) € (351, 259)-

Hence we deduce an OOCF expansion of any x € [0,1]\ U 7, " (UL UV U{0}):
n>0

£2
as +

2-"

where a,, € N; and ¢, € {1,—1} for a,, > 2 and ¢, = 1 for a,, = 1. We denote
the OOCF expansion of z by a sequence in a double bracket

r = [(a1,€1), (a2,€2), -, (an,€n), -]

We call (ap,ey,) the nth digit of x in its OOCF expansion.

Remark 3.3.4. While for x € |J T, (UL UV U{0}), the situation is more
n>0
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2k—1

complicated. First, note that for any x € U, T,(z) = 1 and if * = 573,

deduce

we

1 1
l—z= = ,
Dt —— 1)+ —
(k + )+2_(1_Tox) (k+1)+ 5
or
1 1
1—1': =
k _ k !
+2—u—1m) 3

Thus x = % has two finite OOCF expansions:

z=[k+1,-1)] and = = [(k,1)].

Further, for x € [0,1] such that T)'(x) € U, for some n > 1, we can apply
the iteration (3.8) or (3.9) n times, and then we can write 1 — T3 (x) in two

different ways. Therefore, any x € |J T, "U has two finite OOCF expansions
n>0
which differ at the last digit.

If £ =0, then T,(0) = 0 and we deduce

1
—1
T

l—z=

2

Thus 0 has a unique infinite OOCF expansion:

0=102-1,2 -1, -] =12 -D]

Forxz eV, To(x) =0 and if x = ﬁ, we know

L 1 - 1
T -1 1
(k+2)+ 5oy kD4 5oy
or ) .
l—z= = 1
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Hence x = kLH has two infinite OOCF expansions:

x=[(k+2,-1),(2,-1)>] and = = [(k+1,1),(2,—1)*].

Similarly, any x € |J T,™V has two infinite OOCF expansions.
n>0

We consider three forms of truncated continued fractions which give us
three types of convergents. We investigate the basic properties of such conver-

gents and give geometrical interpretations.

Definition 3.3.5. We define three types of convergents. For n > 1, the nth
OOCF principal convergent is defined by

Pn 1
o H(a1’€1)7 (a27€2)7 T 7(ana€n)]] =1-
qn o
a1+
1
9 _
En—1
1
9 _
En
i+
We denote
, 1 " ]
pf? =1- and p—z = 1— ’
qn &1 qn £
ot ar +
1 1
2—-— 92—
- L En1
1 1
2 - — 9_
Cn an+€n

and call them the nth sub-convergent and nth pseudo-convergent, respectively.

Applying Lemma 3.2.1, we infer recursive relations of three types of con-

vergents.

Lemma 3.3.6. Letp, =1, ¢{, = 0, po = 1 and gqo = 1. We deduce the following

recursive formulas forn > 1:

P = AnPn—1 — Dl_1, Py =P+ EnbPn-1, and 4 Pn = 2p), + €npPn—1,
q = andn-1—q_1, 4 = q, + €ndn-1, In = 2¢;, + Engn-1.
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By the above recursive formulas, we further see

/ Z // /
- + I -1 =€ - ’
qn qn qn? %171 5n (qn Qn) .

Proof. We see the lemma by plugging ag = 1, bg = —1, ag,, = 2, dgp—1 = ap,
bo, = —1, bo,_1 = &, in the formula in Lemma 3.2.1. O

The recursive formulas for the principle convergents are given by the fol-

lowing lemma.

Lemma 3.3.7. We deduce

Pn = (2an +en — 1)pn—1 + €n_1Pn—2,
an = (2an +éen — 1)%—1 + En—1Gn-2,

where p_1/q-1 = —1/1, po/qo = 1/1 and gy = 1.
Proof. By Lemma 3.3.6,

Pn = P + P = 2(@nPn-1 — Py—1) + EnPn1
= (2(171 +éen — 1)pn—1 + (pn—l - 2]7;1,1)
= (2an +en — 1)pn—1 + En—1Pn—2

and

Gn = @ + d) = 2(angn-1 — ¢_1) + Endn—1
(2an +en — )aqn-1 + (qn-1 — 2¢),_1)
(2an +en — 1)Qn—1 + En—1qn—2. U

We use the same notations in Chapter 2. Let us consider the hyperbolic
plane H as the upper half-plane model. The boundary of H is R, = RU {o0}.
Let ¢ be the vertical line whose endpoints are 0 and co.

Definition 3.3.8. Farey graph ¢ is defined by

= J 0.

YESL2(Z)

The Farey graph 94 is a graph on HUR. whose endpoints are all rationals or
00 in Roo (see Figure 3.6).
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L
0 1112 1 32 34 1 65 47 3 85 79 2
1 54 35 2 53 45 1 54 35 2 53 45 1
Figure 3.6: Farey graph
00
K\r
0 11 1 23 1 3 2 34 1
1 54 3 357 2 5 3 45 1
: : : 1+V5
Figure 3.7: The corresponding path of =5 in the Farey graph for the regular

continued fraction

Let v = € SLy(Z). Since y(oc0) = a/c and v(0) = b/d, two ratio-

a c
b d
nals a/b and ¢/d are adjacent to each other in ¢ if and only if |ad—bc| = 1. It is
known that a regular continued fraction is related to a path on the Farey graph.
By (2.5), |Pr+1Qn — PoQnt1| = 1 where P, /Q,, the nth principal convergent
of the regular continued fraction. For each € R, there is a path correspond-
ing to the sequence {P,(z)/Qn(z)}n on ¥ starting from |z |, passing through
all P, /@, consecutively.

Example 3.3.9. For example, let ‘/52_1 = 1[0;1,1,1,---]. The principal con-

vergents of the reqular continued fraction are

Py P Ps 2 P 3

Il 22— 2 242 _°2

Q1 Qs 2 Qs 3 Qi 5
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0 11
1

o

Figure 3.8: Ford circles: white circles are based at oo-rationals and gray circles
are based at 1-rationals

The corresponding path on Farey graph is as in Figure 3.7.

Definition 3.3.10. A Ford circle C,, is a horocycle of H whose base point
is a/b and Buclidean radius is (2b*)~!. We define Cuo as the line y = 1 (see
Figure 3.8).

We note that the collection of Ford circles is a dual of Farey graph in the
sense that two Ford circles are tangent to each other if and only if their base
points are adjacent to each other in the Farey graph.

Short and Walker examined a similar relation between EICF and a subtree
of the Farey graph and the Ford circles [65]. The Farey tree . is a subtree of

G defined by
GRIGE

YEO

The shaded lines in Figure 3.6 represent the Farey tree. Every vertex of .%#
on Ry, is oco-rationals. We will see that each OOCF corresponds to a path
on ¥4 — .%. The following lemma is on relations between the three distinct
convergents of OOCF.

Lemma 3.3.11. Each pp—1/qn—1 (and also each p,/qyn) is adjacent to pl,/q),
and pl'/ql in Farey graph. Moreover, pl,/q., and pl/q! are adjacent to each
other.
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Proof. Recall that py/q, = 0/1, pi/q0 = 1/0 and po/qo = 1/1. The first
convergents are

pi_a—1 ﬁ:a1+51—1 and pL_ 20146 -2
a ar g ai + €1 q1 2a1 +¢e1

Clearly, po/qo and p1/q1 are adjacent to p}/q} and pf/q{. Let
1 -1 1 a, 0 e, anpn—1 ap+e,—1
G, Ay + En
We see that
-1 ;) 1
pO/QO = A(a1,51) 1 ) pl/Ql = A(al,sl) o]’

0 1
P4 = Aaren) <1> ad 2/ = e (1> |

By Lemma 3.3.6, we infer that

Py = (an —1)p),_y +anpy,_y and py = (an — L+ e0)p),_1 + (an +en)p)_1,
gy = (an = 1)q,_y +ang, ; and q, = (an—1+¢cn)q, 1 + (an+en)qy_;.

Thus we have

/ /!
Pn-1 Pn Pn D -1 101
(3']‘3) " 7 Z " = A((ll,El) U A(an)sn) :

Since [det(A(,, ¢,))| = | — en| = 1, the matrix A, .,), which is a linear
fractional map or an anti-linear fractional map on H U R.,, preserves the
adjacency of the vertices in the Farey graph. O

Example 3.3.12. Let = be in the subinterval [3/7,1/2] which is the blue
segment in Figure 3.9 and Figure 3.10. The principal convergents and sub-
convergents of x are

pp_1 po_1 Py 0O p 1 ph 2 p

@ 0 q@ 1 ¢ 1 @ 3 ¢ 5 @
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X
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3
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1
I

[

1 2
2 3

(S]]
~Jlw

11 1
5 4 3

Figure 3.9: The collection of the red geodesics is the path corresponding to
the OOCF of x on ¥ — %

from oo, going down to 1 and then going along with the arcs connecting pl,/q,,
and py/qn, then the arcs connecting pn/qn and pj,1/q), ., repeatedly. In Fig-
ure 3.9, the red arrows follow the convergents

Pn—1/dn—1 = P/ dy = Pn/an —> -+ -

From the duality between the Farey graph and the collection of the Ford circles,
there are Ford circles tangent to each other when their base points are pl,/q.,,
Pn/dn O Pn/Gns Pry1/dpyr- The Ford circles numbered from 1 to 5 in Fig-
ure 3.10 are the first five Ford circles corresponding to the OOCF expansion

of .
For each OOCF digit (a,¢), we partition [0, 1] into the subintervals B(a, ¢)
defined by

(3.14) B(k+1,—1)=[k_12k_1], (,):[2’“_1 k}

kE 72k+1 2k+1" k+1

Note that the set of endpoints of B(a,¢) is/ UV as in (3.7). The first OOCF
digit of x € B(a,¢) is (a,e) and the restriction of T, to B(a,¢) is monotone
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—=lo

Figure 3.10: The Ford circles numbered from 1 to 5 are Ford circles based at
principal convergents and sub-convergents of x consecutively.

(see Figure 3.4). Writing f(, ¢ = (T0|B(a,a))_1> we have

1
(3.15) fao® =1— —

g
i

Lemma 3.3.13. For all xz € (0,1), x is a point between p,/qn and pl/q..

1 1
an+(5n/2) and an+en”

Proof. By (3.10), we deduce that 1 — T~ !(z) is between
Let

g = f(al,sl) ©---0 f(an,sn)'

Since g is monotone, g does not change the relative positions of points. From

this, it follows that g(1—T"~!(x)) = x is a point between g(W) =pn/n

and g(ani =) = P/, Which is the desired conclusion. O
. . 0 1
By (3.12), it is easy to check that either A(,, ..y or Lo Alapen) De-

longs to the ©-group according to det(A(q, c,))- Applying (3.13), we obtain a
property of the OOCF convergents.

Theorem 3.3.14. All principal convergents p,/q, are 1-rationals. All sub-
convergents pl,/q., and all pseudo-convergents pll /ql are oo-rationals.
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Now, we will discuss the relative positions of the different convergents. We
define the nth complete quotient by (, = T !(z), i.e.,

1

anl_

En

an +
1
2 _
En+1

ap+1 +

The following equality holds:

. p;’i—l + p;L—ICn

3.16 _ Pno1 T Pn-ibn
( ) q;{—l + (L/—L—lCn

By (3.11), we have

{plé—l =
/ _
Pp—1 =

An easy computation shows that

(pn—l + 5n—1pn—2)a and {qz—l = (Qn—l + 5n—1Qn—2)7

(pn—l - 5n—1pn—2)- !

NI N~
NI N~

dn—1 = (Qn—l - 5n—1qn—2).

_ pn—l(l + Cn) + 5n—1pn—2(1 - Cn)
Qn—l(l + Cn) + €n—1Q1ﬁ,—2(1 - Cn)

and
(Gn—1% — ppn—1) + en—1(gn—2 — pn—2)

(Qn—lx - pn—l) - 5n—1(‘]n—2x - pn—Z) ’

(= —
Lemma 3.3.15. The following statements hold.
(1) The nth principal convergent p,/q, is between pl,/q., and pll /q).
(2) The (n — 1)th principal convergent pn—1/qn—1 is not between pl, /q,, and
Pn/dn-
(3) The three distinct convergents pn/qn, Ph/q, and pl/q. are in the half

closed interval whose endpoints are pn—1/qn—1 and plr_1/q!_,. The in-

terval contains p’!_,/q!_,, but does not contain pn_1/qn_1.
Prn—1/9 -1

We denote by I, the half closed interval whose endpoints are p,, /¢, and
/! /"
Pu/dn-
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Proof. (1) By Lemma 3.3.6, p, = p,, +p!! and ¢, = ¢, + q/. Hence, p,,/qn is
between p/, /q}, and p!!/q..

(2) There are only two elementary triangles that share the arc connecting
p.,/q, and pl'/q!. By Lemma 3.3.11, the other endpoints of the two
elementary triangles are p,—1/¢n—1 and p,/q,. By (1), the (n — 1)th
principal convergent p,_1/gn—1 is not between p/ /q), and p!' /g since
two elementary triangles of the Farey graph do not overlap each other.

(3) By Lemma 3.3.6, we deduce that

{pln = (an - 1)pn—1 +p;;,1, and {p’é = (an -1+ 5n)pn—1 +p;;717
Gn = (an = 1) gn-1+ ¢, Gy = (an —1+en)gn1+q, 1.

Since ap, —1 > 0 and a,, +¢&, —1 > 0, both p), /q}, and p/q/! are in I),_;.
By (1), pn/gn is also in I,,_. O

Theorem 3.3.16. The infinite OOCF expansions converge.

Proof. Let  be a number whose OOCF expansion is infinite. By Lemma 3.3.15
(3), the intervals I, are shrinking. By Lemma 3.3.13, we infer that

/!
Prn_Ph
1!

Qn qR

Pn
€r— —

an

< —0 as n— oo. O

Lemma 3.3.17. The denominators of principal convergents are increasing.

Proof. Since 2a,41 + €nt1 > 3, we deduce that

n+1 = (2@n+1 +Ent1 — 1)qn +engn-1 > qn + <Qn - Qn—l)-
Since g — g—1 = 1 > 0, inductively, the sequence {gy} is increasing. O

Example 3.3.18. As discussed above, any non-zero rational has exactly two
OOCF expansions. For example, a 1-rational 1/3 has such two finite OOCF
eTpansions:

1 1 1

Z=1- =1—

1
1+ = 24—
+2 +2
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For the oco-rational 2/3, there are two infinite OOCF expansions:

2 1 1
Z_1- —1-
3 -1 1
4+ 24+
1 1
2 — 2 —
-1 -1
2+ 24
2 — 2 —

Theorem 3.3.19. The following properties hold.
(1) Any finite OOCF is a 1-rational.

(2) FEach 1-rational has exactly two finite OOCF expansions which differ
only in the last digit.

(3) Any non-zero oo-rational has exactly two infinite OOCF expansions end-
ing with (2, —1).

(4) An eventually periodic OOCF expansion converges to an co-rational or

a quadratic irrational.
(5) A quadratic irrational has an eventually periodic OOCF expansion.
(6) Every irrational has a unique infinite OOCFE expansion.
Proof. (1) It follows directly from Theorem 3.3.14.

(2) & (3) The OOCF map T sends a 1-rational to a 1-rational and an co-rational
to an oo-rational. For an irreducible rational a/b, the denominator of
To(a/b) is strictly less than b. Thus if a/b is a 1-rational, then T7'(a/b) =
1 for some n. We know that

s = k> .
To (b)ETO (1) {2k+1 k—l}

Thus, a/b has exactly two finite OOCF expansions which differ only at
the last digit.

If a/b is a non-zero oo-rational, then T}'(a/b) = 0 for some n > 1. Since
the OOCF expansion of 0 is [(2, —1)*°], the OOCF expansion of = ends
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with (2, —1)°°. Similar to the case of the 1-rationals, we know that

Tg‘l(Z)e{kil:kzl}.

Then a/b has exactly two infinite OOCF expansions ending with (2, —1)°°.

If « has an eventually periodic OOCF, then there exist n and m such
that (41 = (my1- By (3.16), we have

p/ri + p%(nﬂ . p',r/n + pImCm—H
qn + 4Cn+1 qm + Q;nCm—&-l.

(3.17) xr =

Thus we know that either x = p!/ /q/, i.e, (441 =0, or

1 Pp=® D= dm® 1
Cnt1  ane =D @ =D Gl

In the first case, x = p{/ /¢l is an oo-rational by Theorem 3.3.14. In the
second case, (3.17) implies

AN/ /) i

(Todlty — A )T 4 (@Dl + Donls — QoD — Dl )T + (DDl — Papl,) = 0.

!

ql — q),qn # 0, z is a quadratic irrational.

Since q
Let x be a quadratic irrational between 0 and 1 such that
a1x2 +bix+¢1 =0.

By (3.16), we have

a1 (P + PlyCng1)? + b1 (P + PjuCnr1) (@ + @oGnr1) + c1(d) + @y Cnr1)* = 0.

We derive the following quadratic equation of (,41:
(a1py + b1p,a, + c10,7) Gy + (2anpyp), + b1(pds, + Pran) + 261676,)Gntt

+ (ap)? + bipligl + c1q)?) = 0.
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Denote the coefficients of the above equation by

ans1 = a1(p,)” + bivna, + c1(q,)?,
(3.18) b1 = 2a1 PPy, + b1 (Prdn + Pady) + 2¢1¢,4;, and
Cny1 = a1 (p))® + bipig) + c1(q))’.
Then an+1CTQL+1 + bn11Gut1 + cny1 = 0. Combining (3.13) and (3.13), we

have |¢),pl» — ql'pl,| = 1. By direct calculation, we have

(3.19) b2, — daniicns1 = b} — daser,

/ 7
1
'(ml)?>+<p;x)': ndn
dn dn 4n9n

By Lemma 3.3.13 and the fact that p, /g, is between p! /q), and p/q.,
two distances x — pl,/q}, and x — p!! /q/! have opposite signs. Thus,

and also we have

1 1
|qn® — pp| < o nd Pl — an] < 7

n n
There are |a| < 1 and |3] < 1 such that
(3-20) P = @p@ + /gy and p; = gua + B/q,.

By plugging (3.20) in (3.18), we derive that

d a
ap41 = & (%’;(2(113& +b1) + a1,,> )

an (an)?
o
bn+1 = (2@1:13 + bl)(a + ﬁ) + 2@1 q/ m and

0 B
Cpn+1 = ,3 <q,(2a1£€ + bl) + CL1W> .

n

Since
bn+1] < 2([2a1] + [b1]) + [2a4],

the coefficient by, is bounded. If ¢/ > ¢/,, then a,,11 is bounded since

lan+1] < 2|ai| + |b1] + |aq].
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S
QI3

Figure 3.11: The horocycle based at = tangent to C, /.

By (3.19), ¢p41 is bounded. Similarly, if ¢!/ < ¢, then ¢, 41 is bounded
since
’Cn—i—l’ < 2\a1| + |b1| + |a1\.

Then ay41 is also bounded. Thus the sequence {(,} has only finitely
many values, which means that {, = (,, for some n and m. Therefore,
the OOCF expansion of x is eventually periodic.

(6) Note that

UT UUYU{0}) = UT ({0,1}) =
By the discussion in Remark 3.3.4, every irrational has a unique infinite
OOCF expansion. O

Remark 3.3.20. From the proof of Theorem 3.3.19 (4), we see that if x is an
oo-rational, then its OOCF expansion ends with (2,—1)°°. Thus there exists
no > 0 such that (1 = 0 for all n > ng. Hence, by (3.16), we have x = pl! /q/!
for all n > nyg.

3.3.2 Diophantine properties of odd-odd continued fraction

In this section, we prove that the OOCF gives “the best 1-rational approxi-
mations”.

Definition 3.3.21. Let z ¢ Q. A best l-rational approximation of x is a
rational p/q such that, for each 1-rational a/b # p/q,

lgx — p| < |bx — al.
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a p/q xr T

Figure 3.12: Two possible relative locations of x, p/q, a/b and r in the proof
of Theorem 3.3.22. The dashed circles are the horocycles based at = tangent
to Cp/q and Ca/b‘

Theorem 3.3.22. All principal convergents p,/q, are the best 1-rational ap-
prorimations, and vice versa.

Proof. Let R,,(z) be the Euclidean radius of the horocycle based at z which
is externally tangent to C,, (see Figure 3.11). A simple computation gives

Rop(x) = %]lm —al%
Let x be an irrational number and p/q be an OOCF convergent of z. Fix a 1-
rational a/b such that 1 < b < ¢g. Combining Lemma 3.3.11, Lemma 3.3.13 and
Theorem 3.3.14, we can assert that there is an oo-rational » which is adjacent
to p/q and z is between p/q and r. The radius R,
of C;.. Since the radius of C,; is at least the radius of C,,/,, the 1-rational a/b

/q(z) is at most the radius

is outside of the interval [p/q,7] (as shown in Figure 3.12). Thus R, () is
at least the radius of C) and the equality holds if and only if a/b = co. We
conclude that

Rp/q(x) < Ra/b(x)'

Conversely, let us assume that a/b is a 1-rational which is not a principal
convergent of the OOCF expansion of z. There are the consecutive principal
convergents py, /g, and pp+1/gn+1 such that g, < b < ¢,4+1. Both are adjacent
to pr. 1/ and p1/q) ., in the Farey graph, ie., C, /,. and Cp, . g
are tangent to Cp - and Cp’,{H Jall - Since the radius of C,;, is larger
than the radius of C, . /q..,, the 1-rational a/b is not between pf ,,/q;,
and p), ,/qn ;. Without loss of generality, as in Figure 3.13, we assume that

i

Pn/dn < P;z+1/q;+1 < p/r/L+1/Qn+1-
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(1) If a/b < pp/qn, then obviously
Ryp(7) > Ry, /g, (7).
(2) Let us consider the case of a/b > pl,/q) ;. We note that

|z —t| > |2’ — t| implies that Ry(x) > R(z').
Thus, Ro/(®) > Rapp(Py1/dne1) and R, /g () is proportional to the
distance of x and p,,/qp.

The radius R, ,(p)41/d5.1) is at least the radius of Co 14l (they
are the same when CPZ+1 /gty is tangent to Cg). Since x is between
Pri1/@ne1 and py /gy, the radius R, /q (2) is between

Ry, /4 (p;wl/q;url) = 1/2(Q;1+1)2 and Ry, /q, (PZH/Q;{H) = 1/2(Q;{+1)2-
Thus we have R, ,(z) > R, /q, (7).

(3) The last case is of a/b € (pn/Gns Ppys1/ @4 1)- Let us consider a horocycle
C based at x which is tangent to C, ;. The thick dashed arc in Figure 3.13
is a part of C. The circle C intersects C,, /,, since the tangent point of C

C

and C, is an interior point of the shape bounded by C, 1/ a1

n/Qn7
and the real line.

Thus, for all the cases, R,/(7) > Ry, /g, (), ie., a/b is not a 1-rational
best approximation. O

3.3.3 Relation with EICF and the regular continued fraction

Now, we discuss the relation between the OOCF convergents of a number z and
the EICF convergents of 1—x. Remark that p¢ (z)/q¢(x) is an EICF convergent

of z. Observe that if p¢(z)/q¢(x) is of thedfdorm o, then 1 — pf (2) /gy, () is
O

even’

1-rational. If pS(x)/q5(x) is of the form then 1 — pt(z)/q5(z) is also of
odd

the form von

Theorem 3.3.23. Letxz € (0,1). All 1-rationals in {1 — p§,(1 — ) /¢ (1 — )}, cn
are best 1-rational approximations of x, and hence they are OOCF principal
convergents of x.
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/ 1/
Pni1 Pntl Prt1

Pn a
dn b q;H_l dn+1 dnt1

Figure 3.13: A possible relative position of z, a/b and the convergents. The
dashed circles are horocycles based at z tangent to C), /. and C,y,.

Proof. For each n > 0, denote by A, /B, :=1—pf(1—xz)/q5(1 —x). Since
Apn=q¢(1—2)—p5(1 —x) and B, = ¢5(1 — z), for any oo-rational a/b such
that 1 <b<¢5(1 —x) and a/b # p5(1 — x)/q5(1 — x),

|Ap, — Bpx| = |¢5(1 —z) —pi(1 —2) — 2 - ¢, (1 — z)|

(3.21)
=|1-2)-q(1-2)—p,(1 —2)| <|1—-2)b—al

For any l-rational ¢/d such that 1 < d < B,, and ¢/d # A,,/B,, we deduce
that

d—c c d—c |, pt(1—x)

o 1-fco d n .

d g € Oo)and == %
By (3.21), we conclude that |4, — Bpz| < |(1 —x)d — (d —¢)| = |¢ — dz|, which
completes the proof. ]

Example 3.3.24. Let © = 10 — 72 = 0.1303955989 - - - . The OOCF conver-
gents of x are:

—

1 1 3 287 577 867 1157 1447 6945

22) =, =, o, —
(3:22) 3’ 57 77 237 22017 4425’ 6649’ 8873’ 11097 53261’

The sequence of 1 — pS /qS where p,/qS, is the EICF convergent of 1 — x is:

1 1 3 145 1447 2749 6945
7787 237 11127 110977 210827 53261’ ’

(3.23)

[N

Y

O =

1
) 47

W=

1
27
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The subsequece consisting of rationals of the form Z—Cdlg in (3.23) is a (strict) sub-

sequence of (3.22). However, the rational 287/2201 in (3.22) is not in (3.23)
since

|1112x — 145| = 0.0000940113 - - - < |2201x — 287| = 0.00071320 - - -
< |23z — 3| = 0.00090122 - - - .

Theorem 3.3.25. The map f(x) = % is in (3.6). The EICF principal

convergents of f(x) is f of the OOCF principal convergents of x, i.e.,

Palf (@) _ <pn(:v)> _

qn(T)

Proof. We write an EICF expansion by

«(bla 771)7 (b27 772)7 Ty (bm nn)a T >> = <<(bm 77”) >>n€N

as in (3.3). Denote by A, and A., the sets of digits of OOCF and EICF
respectively. Explicitly, we have

Ao ={(a,e) :a e N,e ==£1}\ {(1,-1)}, and
Ao ={(b,n): b € 2N,n = £1}.

Recall the partition {B(a,€)}(q,e)ca, in (3.14). Then we have

1 1

f(B(k+1,-1)) = [%’ 1

] and f(B(k,1)) = {21-:1“2114 .

Thus, f(B(k + 1,—1)) and f(B(k,1)) are subintervals which correspond to
the EICF digits (2k,1), (2k,—1) € Ac. In other words, there is a natural
correspondence ¢ between A, and A, by

e:(k+1,-1)— (2k,1), (k,1)— (2k,—1).

Inductively, we define a subinterval corresponding to an OOCF expansion
II(CL17 61)7 R (an7 8”))]] by

B((ahel)a T (an,sn))

I
Ji
i~
Z
sy
—
&
o
<.
~
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CHAPTER 3. CONTINUED FRACTION RELATED TO ©-GROUP

Since f is 1-1 and onto,

n

f(B((ahgl)a e ’(amgn))) = m f(To_(i_l)B(aiagi))
(3.24) =l

= ﬂ T =Y f(B(aj,e;))  (by Theorem 3.3.1).
i=1

Since f(B(ai,e;)) is a subinterval corresponding to ¢(a;,€;), the interval in
(3.24) is the subinterval corresponding to ((¢(a;,¢;) )i ;. In other word, if
x = [(as,€i)]ien, then the EICF expansion of f(z) is ({¢(as,€i)));cn and

P (f(x))
q5,(f(x))

In their monograph [56], Rockett and Sziisz introduced “the best approxi-

= ((elai, ) Dien = f(I(ai, €)lien) = f (2:&2) ' .

mation of the first kind” and “the best approximation of the second kind”. Our
definition of the best approximation is the best approximation of the second
kind. The best approximation of the first kind of x is a rational p/q such that
|z —p/q| < |z — a/b| for any a/b # p/q and ¢ < b. Every best approximation
of the first kind is a form of

Pn,k: _ Pno+ kP,
Qn,k Qn—2 + an—l

for 1 <k < ap, n>1 (see [36, Section 6] and [56, p.36] for more details).

Definition 3.3.26. For the principal convergents P, /@y, The intermediate

convergents are
Pn,k . Py o+ kP,

Qn,k B anQ + anfl
for1 <k <ay, and forn > 1.

Kraaikamp and Lopes showed that the EICF convergents are intermediate
convergents of the regular continued fraction (see [45] for the proof). We will
show that the OOCF principal convergents are also intermediate convergents
of the regular continued fraction.

Recall that [do; dy,da, - - -] denotes a regular continued fraction as in (2.3).
We explain how the piecewise inverses f(4) in (3.15) change the regular con-
tinued fraction expansions.
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Lemma 3.3.27. Let x = [0;dy,da,---]. Then, the regular continued fraction
expansion of f(a.e)(z) is as follows:

[2,dy1,da, -] if e=1, a=1,

[1,(a—1),1,d1,dz,- -] if e=1, a>2,
f(a,s)(x): )

[(d1 +2),da, -] if e=-1, a=2,

1,(a—1),(d1 +1),dg,---] if e=—-1, a>3.

Proof. If e =1, then

2.dy. dy, - ifa=1,
f(a,a)(x):1_[a717d17d27"']: [ b ] .
[l,a—1,1,dy,---] if a>2.
If e = —1, then
1 ! 1 !
fae (@) = T a—[l,dy,da, -] (a—1)+1—[l,dy,dg,- ]
dy +2,do, - -+ if a=2,
1o L L] = R e
[1,&—1,1,d1+1,d2,"'] if a>3. O

Theorem 3.3.28. The OOCF principal convergents of x are intermediate
convergents of x.

Proof. Let © = [d1,da,---] = [(a1,€1), (a2,e2), - -]. Note that

T = f(a1,51) © f(az,ag) ©---0 f(ak,ak)<[[(ak+17€k+l)a o ]])

and

Pk
qik = fal,sl f(a2,€2 -0 f(ak,sk)(]')'

By Lemma 3.3.27, = and py/qr have the same prefix in their regular contin-
ued fraction expansions, except for the last digit of py/qr. Thus, pr/qx is an
intermediate convergent of x. O

Recall that G is the Gauss map in Section 2.1.2. We use the following
notations:

(3.25) {w = (01, ;dn, ) if G"(z) = o,
T = [[(a1>51)7(a2752)7"' a(an>€n)a7]] if Tc?(aj) =7
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Note that

1 1
(3.26) —1-—.
1+Oé ]."‘a

Theorem 3.3.29. There is a conversion from the reqular continued fractions
into the OOCFs such that

x = [0;d1,ds,
[2.-1)"T (da+1,1), F(a)]  if dy is odd and o € [}, 1),

d
=4102,-1) : l,(d2+2,—1),F(a)]] if dy is odd and a € [0, 5),

[2.-1) 7' (1,1), G(a)] if dy is even.

2

N[ —=

Proof. By (3.26), we have

1 1

0:1,dsa] = —— =1-——~
Bta (d2+1) + o

Sincea:m, if a € [3,1), then a = Ifa€[0,1), then

1
1+G(a)

1

T .
AN S ()
Ifael0,3), Fla)= m, or otherwise, F'(a) = G(«). Thus we have

[(d2 +1,1),F(a)], ifae[3,1),

0;dy,da, ] =
[0; d1, d2, @ {[[(d2+2,—1),F(a)]]7 if a €0, 7).

N~

Similarly, we have

1 1
2 =[02,G)] = =1— ——— = [(1,1), G(z)].
0:2,60] = 55 rm—— [(1,1),G(2)]
If di > 3, then
1 1
z=100;d1,G(z))] = —F+—~=1—
h+G@) 1+ pEmem
1
:1_2_ 1 :[[(27_1)771]
I arsrem
58
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CHAPTER 3. CONTINUED FRACTION RELATED TO ©-GROUP

where v = [0;d; — 2,G(z)] = R(x). Thus, by induction, we complete the
proof. O

By Theorem 2.1.6, if P,,/@Q,, is a 1-rational, then P, /@, is a 1-rational best
approximation. Thus P, /@, is an OOCF convergent by Theorem 3.3.22. Now
we check when an intermediate convergent is an OOCF convergent. Keita [35]
proved the following proposition.

Proposition 3.3.30 ([35], Proposition 1.2). We have
QH,U = Qn—2 < Qn—l < Qn,l <0< Qn,dn = Qn and

’Qn,dnx - Pn,dn‘ = ‘an - Pn’ < |Qn—1$ - Pn—l‘
<|@Qndp—12 — Prd,-1| < -+ < |Qnor — Pppo

= ‘anQx - Pn72|-

By the above proposition and Theorem 3.3.28, if P,_1/Q,—1 is a 1-rational,
then P, ;j/Qpn; is not an OOCF principal convergent for any 1 < j < d,. If
P,_1/Qn—1 is an oo-rational and P, j/Q. ; is a l-rational, then P, ;/Q, ; is
an OOCF principal convergent.
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Chapter 4

Combinatorics on words

One of the strategies to deal with mathematical objects is to encode the objects
and to find some connections between properties of codings and the properties
of the original objects. Continued fraction and coding of geodesics are good
examples as we discussed in Section 2.2.2.

In this chapter, we will see some preliminaries of combinatorics on words
and an important object, which is a Sturmian word, following [48] and [27].

4.1 Factor complexity

Let us consider a finite or countably infinite set A. We call A the alphabet
and the elements of A the letters. A word is a finite or an infinite sequence of
letters. By convention, we define the empty word . We define the set of finite
words of length n, for n € N, by

.Aoz{e} and A" = {ajag-ap|a; € Afor 1 <i<n}.

o0

The collection of all finite words over A is A* = |J A". We denote the set of
n=0

one-sided infinite words over A by AN and the set of bi-infinite words over A

by AZ.

A factor (or a subword) of a word w = (u;) is u = u;u;41 - - - u;1 for some
i, k. We call a factor starting the first letter of u a prefir and a factor ending
the last letter of u a suffiz. The set of factors of u of length n is denoted by
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CHAPTER 4. COMBINATORICS ON WORDS

F,(u). The set of every factor of u is
o
F(u) = Fu(u).
i=0

We denote by |u| the length of w.
Definition 4.1.1. Let u = (u;) be a word.

(1) A word u = (u;) is purely periodic if there exists ¢ € N (or Z) such that

Uy = Uite for all 1.

(2) (a) For a one-sided infinite word, if there is n such that u; = u;1¢ for
all i > n, then we say that u is eventually periodic.
(b) For a bi-infinite word, if there is n such that u; = u;y¢ for alli >n
and © < —n, then u is eventually periodic.

We call a word u admissible in u if u is a factor of u. For a word u =
ULUY * * * Up—1Un, the Teverse of u is U = UpUp—1 - - - uou1. If u = @, then we call
u a palindrome. We denote the collection of the reverse of the factors by

F(u):={u:ue€ F(u)}.

Definition 4.1.2. We say that a word u is reversible if F'(u) = F(u).

For a word over finite letters, factor complexity is a function counting the
number of distinct factors of each length.

Definition 4.1.3. Let u be an infinite word. The factor complexity of u is
the function py assigning to each positive integer n, the number of distinct
subwords of u of length n, i.e.,

pu(n) = ‘Fn(u)|

If v € F,,(u), then there is va € Fy41(u) for some a € A. Thus, py(n) <
pu(n + 1) and thus p, is a non-decreasing function. The factor complexity is
an invariant measuring the randomness of words.

Theorem 4.1.4 ([23], Theorem 2.14 and 2.15). The following statements hold.

(1) A one-sided infinite word is eventually periodic if and only if it has
bounded factor complexity.
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Uy —— -+ —> Uj—1 un uy
“ uf’ T UN—1 U2
UN-1 Ujt1 UN_o uz
s oe— Uit2 \...<_U4/

Figure 4.1: Graph composed with F,(u) in the proof of Theorem 4.1.4 (Rauzy
graph) of a one-sided infinite word (left) and a bi-infinite word (right).

(2) A bi-infinite word is purely periodic if and only if it has bounded factor
complezity.

For a word u, the factor set Fy,(u) = {u;}i1<i<p,(n) of level n composes
a graph whose vertices are u;’s. We give an edge between u; and u; if the
length n — 1 suffix of u; is the same as the length n —1 prefix of u;. The graph
is called Rauzy gaph. The theorem can be shown by the fact that the Rauzy
graph has a cycle if p, is bounded (see Figure 4.1). See also Proposition 1.3.13
in [48] for more detail.

Remark 4.1.5. (1) If pu(n) = pu(n+1), then pu(n) = pu(n+k) for all k.

(2) For the second assertion of the above theorem, we remark that there are
many eventually periodic words with unbounded factor complexity. The
word

u=---bbbabbb ---

is one of the simplest examples which has py(n) = n + 1.

If pu(n + 1) > pu(n), then there is a factor of u of length n which is
extended to two distinct factors of length n + 1.

Definition 4.1.6. Let u be an infinite word over A. A factor u is a right
special word (or a left special word, respectively) if there are distinct letters
a,b € A such that both ua and ub (or au and bu, respectively) are admissible.
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4.2 Sturmian words

Note that if u is aperiodic, i.e., non-eventually periodic, then
pu(n) >n+ 1.

Definition 4.2.1. A Sturmian word is a word u with py(n) =n + 1.

Sturmian words are composed with only two letters, say a and b. From now
on, let A = {a,b}. We will see that Sturmian words are related to a dynamical
system and the continued fraction.

Example 4.2.2. Let us define a sequence of finite words £, by £, = £,,_1f,_o

where £_1 =b and fy = a. Let f = ILm f,. Then, we have

f = abaababaabaababaababaabaababaabaab - - - .

We call £ Fibonacci word. The Fibonacci word is Sturmian.

The first characterization of Sturmian words is that the factors of the same
length contain a similar number of b. We define the height h(u) of a finite word
u by the number of b in u.

Definition 4.2.3. We call u € A* U AN U A% a balanced word if
[h(u) = h(v)] <1

for all u,v € F(u) such that |u| = |v|.

Recall that a word is reversible if the reverses of all factors are also its
factora (see Definition 4.1.2).

Proposition 4.2.4 ([51]; see also Theorem 2.1.19. in [48]). Sturmian words
are reversible.

We define the slope 7(u) of a finite word u by

The slope of an infinite word u = (u;);en is defined by the limit of the slopes
of the prefixes such that

m(u) = llg& m(ug - ui—1u;).
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Lemma 4.2.5 ([48], Proposition 2.1.11). Let u be an infinite balanced word.
Then, u is eventually periodic if and only if w(u) is rational.

Another characterization of Sturmian words is in terms of the coding of

irrational rotations.
Definition 4.2.6. For an irrational 6 € [0,1] and a real number ¢, let

S_{aﬁwm+n+q—wqua
" |0+ 1) ) — [Ontc) =1,

and let
) {aﬁwm+n+d—wn+d_m
bif [O(n+1)+c|—[n+c|]=1,

We call sg. = (sn) a lower mechanical word. We call sgp. = (s),) an upper

mechanical words.
Morse and Hedlund characterized Sturmian words [53].

Proposition 4.2.7 ([53]; see also Theorem 2.1.13. in [48]). For an infinite
word u, the following statements are equivalent:

(1) u is Sturmian,
(2) u is balanced and aperiodic, and
(8) u is irrational mechanical.

Irrational mechanical words are generated by irrational rotations. Let S!
be a circle identified with [0,1]/o~1. Let Ry : S' — S! be a rotation defined by

r—x+6 (modl).

The following proposition tells us that a Sturmian word is a coding of an orbit
of a point on S! under Ry.

Proposition 4.2.8 ([48], p.56). If sg,c = (sn) and sp . = (sy,), then

I if Ry(c) €[0,1—86), and & =4 @ if Ry (c) € (0,1 —4],
"] b, ifRE(c)€[1-6,1), ") b, if RE(c) € (1-6,1].

Now, we introduce an algorithm to attain a class of Sturmian words.
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Definition 4.2.9. A characteristic word cg with a slope 0 is defined by
Cp:=Sgp = s’gﬂ.

A characteristic word is a representation of Sturmian words with the same
slope because the factor sets of two Sturmian words are the same if they have
the common slope.

Proposition 4.2.10 ([48], Proposition 2.1.18). Lets and t be Sturmian words
with the same slope . Then F(s) = F(t).

Proposition 4.2.11 ([29]; see also Proposition 2.2.24. in [48]). Let 0 = [0; 1+
dy,da, -+ ,d;,---]. We define a sequence of words My, by

M, = Mi" M, _,
where M_1 =b and My = a. Then
Cyp = lim Mn.
n—oo

Definition 4.2.12. We define two functions T’ and A from A* x A* to itself
by
[(u,v) = (u,uv) and A(u,v) = (vu,v).

Starting with (a,b), we can generate pairs of finite words by iterating I' and A
such that
(u,v) =T™ o A™ o T™ o --- 0 A" (a,b)

where each nj, for 1 < j < i, is a positive integer. We call the pairs the
standard pairs. We call any component of a standard pair a standard word.

We can see that each M, in Proposition 4.2.11 is a standard word (see
Section 2.2.1 in [48] for more details).
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Chapter 5

Lévy constants of Sturmian
continued fraction expansions

Recall that P,(z)/Qn(x), for n € N, is a regular continued fraction principal
convergent of x as in Definition 2.1.1. Paul Lévy showed that

. log Qn(z) m°
lim =
n—o00 n 12 log 2

for almost every x [47]. The above limit value is called the Lévy constant of z.
In this section, we give some historical remarks of the Lévy constants in
Section 5.1. In Section 5.2, we show our main result of Lévy constants of real

numbers whose continued fraction expansions are Sturmian words.

5.1 History

An important property of continued fraction is that the convergents of the
regular continued fraction give the best Diophantine approximations of a real
number. We define a norm of ¢ € R by ||t|| := inf{|t — n| : n € Z}, which is
the distance between 0 and ¢ (mod 1) on the unit circle S! indentified with

the unit interval. From Definition 2.1.5 and Theorem 2.1.6, we recall that
[|Qnzx|| < ||bz]| for any 0 < ¢ < b.
Let us choose a non-increasing function ¢ : N — Ryg. We say that x is -

approximable if ||qz|| < 1(q) for infinitely many positive integers g. Dirichlet
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showed that every irrational number is 1/g-approximable. Khintchine showed
that a stronger result hold.

Theorem 5.1.1 ([37]). The following statements hold.

(1) If > 1(n) diverges, then x is -approzimable for almost every x € R.
neN

(2) If > ¢¥(n) converges, then x is not -approzimable for almost every
neN
x € R.

This theorem is called Khintchine theorem or Khintchine-Groshev Theo-
rem since Groshev proved a higher dimensional version of this theorem. In
order to show the theorem, Khintchine proved that there exists a constant C'
such that, for almost every x,

log Qn ()

n

<C,

asymptotically. Later, he showed there exists v such that

log Qn
lim 10g On() =~ for almost every = € R [38].
n— o0 n
We denote by
log Qn
£(x) = lim 198 @n(@).
n—o0o n
Lévy found that
2
L(x)= Dlog2 for almost every z € R [47].

Thus, L£(x) is called Lévy constant or Khintchine-Lévy constant of z. We can
see the expression using Birkhoff ergodic theorem. Moreover, this theorem
implies that, for almost every z € R,

7T2

6log2

P, ()

lim —log
n—oo n

x —

By using the Euler-Lagrange theorem (see Theorem 2.1.3 and 2.1.4), Jager-
Liardet found formulas of the Lévy constants for all quadratic irrationals [34].
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Theorem 5.1.2 ([34], [11]). If z is quadratic irrational whose continued frac-
tion expansion is [ag; a1, -+ ,Q;, iyl -, Gitn)- Lhen,

t+/t2—(-1)"4
5 :

1
L(x) = - log

where t is the trace of the matrix

- 0 1 0 1 0 1
(5.1) 1oain ) \1 ai2)  \1 aipn)’

We note that Hivﬂ;(_l)ml is the spectral radius of the matrix in (5.1),
i.e., the largest eigenvalue of the matrix. Belova and Hazard showed the same
formula by using generating functions whose coefficients are P, and @Q,, [11].

Queffelec showed the existence of Lévy constant of a real number whose
continued fraction is a fixed point of a primitive morphism [55].

Let L be the set of Lévy constants. The minimum of L is

Faivre showed that, for all 5 > log 1+—2‘/5, there exists z € R\ Q such that
L(x)=p,ie,L= [log H“[ ) [26]. Let

B := {L(x) : x is a quadratic irrational}.

Golubeva showed that
f

1210g2 is a limit point of B [30]. Jun Wu proved that B

is dense in [log ) [66]. Baxa proved the same theorem by showing a

slightly stronger statement [10]: the following set

{L(z) : = is a quadratic irrational with partial quotients in {a,b}}

is dense in [£([0;a]), £([0;8])] = [log aJ”a 4 Jog D for two distinct
integers a, b such that a < b.
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5.2 Lévy constants of Sturmian continued fraction

By Euler-Lagrange theorem (Theorem 2.1.4), we know that a quadratic irra-
tional has an eventually periodic continued fraction. Coven-Hedlund theorem
(Theorem 4.1.4) tells us that an eventually periodic continued fraction has
a bounded factor complexity. Combining above areguments, we can say that
Jager-Liardet theorem (Theorem 5.1.2) means that [0;wy, wg, - - -] has a Lévy
constant if w = wiws - -- has bounded factor complexity.

Let w = wjws - -- be a word. A natural question arises: how slow should
grow the sequence (pw(n)),>1 to ensure that [0;w;,ws,---]| has a Lévy con-
stant? In particular, for a Sturmian word w, does the real number [0; w1, wo, - - - |
have a Lévy constant? The following result answers positively the second ques-
tion.

Theorem 5.2.1. Let w = wijws--- be an infinite word over the positive

integers. If there exists an integer k such that
pw(”) <n+k, forn=>1,

then the real number [0;wy,we, -] has a Lévy constant.

Secondly, we show the following refinement of Faivre’s result. A Sturmian
(resp., mechanical) continued fraction is a continued fraction whose sequence of
partial quotients is a Sturmian (resp., mechanical) sequence. Recall that any
mechanical continued fraction is either Sturmian, or represents a quadratic

number.

Theorem 5.2.2. Let a,b be integers with 1 < a < b. The set of Lévy constants
of mechanical continued fractions with intercept 0 and written over the alphabet

{a,b} is equal to the whole interval [L([0;a]), L£([0;8])].

5.2.1 Existence: Proof of Theorem 5.2.1.

Let w be an infinite word. Recall the definition of the characteristic words ¢y
in Definition 4.2.9.

Notation 5.2.3. We use the following notations.
(1) The words are written over the alphabet {a,b}, where a,b are distinct

integers.
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(2) For w = wiws--- withwj in N for j > 1, we set

T = [O;W] = [0;w1,’w2,"' 7wj7"']-

(3) We denote by x = [0;8] the real number whose sequence of partial quo-
tients is given by the Sturmian word s = s189---. The slope of the Stur-
mian word s is the irrational real number 6 = [0;1 + dy,da, - - ].

We denote the principal convergents of © = [0; s1, S2,- | by P,/Qn and
the principal convergents of 0 = [0;1 4 dy,da, -] by pn/qn.

(4) For a finite word M = bibs - - - b,, we denote by M~ its prefix by -+ by
of length n — 1.

Let K(ay,- - ,ay) be the denominator of the rational number [0; a1, ag, - - - , a,].
Then we have

ap 1) fan 1) _(K(ay, - ,an) K(ai, -, ap-1)
1 0 1 0 - K(a27"'7an) K(CLZ;"‘;an—l) '

Therefore, we have

K(ala e ;an+m)

- K(ala e 7an)K(an+17 e 7an+m) + K(ah o 7an—1)K(an+27 T 7an+m)'
Thus,

K(alv"' aan)K(an+17"' aan+m) < K(CL]_,“’ 7an+m)
S 2K<a17"' uan)K(an+17' o 7an+m)-

Let us write K (M) = K(by,ba, -+ ,b,) for a word M = bibg - - - by,.
Remark 5.2.4. We claim that, for k > 2,
Al\fkjwl;ii1 = Mk_leif.

For k=1,
MMy~ =a™ = MMy~

(a® is the empty word ). By the induction hypothesis,
MMy = Mk My o My = Mk My My = My My~
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Let M € Fy,_1(cg). By Proposition 4.2.11, the characteristic word cg can
be written as the concatenation of words My and My_1, without two consecu-
tive copies of My_1. Combined with the claim, we have the fact that

(5.2) any factor M of length qx, — 1 of s is a factor of My(My) .

Lemma 5.2.5. Let M be a factor of s of length n with qi < n < qgy1 — 1.
Then,

(a) M is a factor of MMy, --- My My_1, or

(b) M =UV, where U is a suffic of M1 and V is a prefix of Myy1 with
V[ >qr—1.

Proof. By (5.2), M is a factor of Myy; or M = UV where U is a suffix of
My41 and V' is a prefix of M. If [V| < qg — 2, then V' is a prefix of M, ™.
Thus, M = UV is a factor of My 1 M™~ = MMy~ and also a factor of
MM, - - My M. 0

We recall that F(cg) = F(sy,,) = F(sp ,) for any intercept p from Propo-
sition 4.2.10.

Proposition 5.2.6. Let s be a Sturmian word of slope 6 = [0;1 4 dy,da, - -],
where di > 1. Let k be a nonnegative integer. Let n be an integer with q; <
n < qg+1 — 1. Let ¢ = max{b/a,a/b}. For any factor M, M’ of s of length n,
we have

K(M) < 2%kcK(M").

Proof. Suppose first that k£ = 0. Recall that qo = 1 and q; = d; + 1. Let n
be an integer with qo < n < q; — 1. A factor of s of length n is a factor of
MM~ = a®ba® 1. Then any factor of s of length n is either a™, or a™ ba™?
with ny +no =n — 1.
Assume that a < b. Clearly, K(a™) < K(a™ba™?). Since
aK (a™b) = a(bK (a™) + K (a™™1))
< b(aK(a™) 4+ K(a™ 1)) = bK (a™ 1),

it is easy to check that,

aK(a"™ba"?*) < bK(a").
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Thus, aK (a™ba™) < bK (a™) < bK (a™ba™) with n} 4+ nb = n — 1. Similarly,
for the case of a > b, we check that bK (a™ba"?) < bK(a™) < aK (a"1ba").
Hence, the proposition holds for every positive integer n at most equal to
q — L.

We argue by induction. Let k be a positive integer and suppose that the
proposition holds for every positive integer n at most equal to q; — 1. Let n
be an integer with qx < n < qgi1 — 1. Let M, M’ be two factors of s of length
n. By Lemma 5.2.5, we distinguish the following cases:

Case (i): Both of M, M' are factors of MyMj, --- My Mj_.

Since MMy, --- M My_q is a periodic word with period qi, there exist

factors N, N’ of s such that NM = M’N’" and |N| = |[N'| < gi. Therefore,

_ K(N)K(M) _ K(NM)
K@M)= K(N) = K(N)
K (M'N")
< 22k UiK(N’)
< 02%1[((]\;/()]—5,;]\[,) < 022k71K(M/)_

Case (ii): Let M = UV and M’ = U'V’' where U,U’ are (possibly empty)
suffixes of Mjy1 and V, V' are (possibly empty) prefixes of My, 1. We may
assume that |U| < |U’|. Define the words N, N’ by U' = NU and V = V'N".
It follows from Case (i) that

K(N')<c¢-2-4F1K(N).

Therefore,

K(N)E(UV) _ K(NUV) _ o K(U'V'N)
K(N) ~ K{N) K(N')
2K (U'V') K (N')
K(N')

K(M) =

< 2%~ = 2% K (M.

Case (iii): Assume that M is a factor of My --- MpMy_1 and M’ = UV, where
U is a suffix of My, and V is a prefix of My with |[V| > g, — 1. Write
M = NMj, --- M N’ where N is a nonempty prefix of M and N’ is a possibly
empty suffix of M.

(1) If IN'| > qg_1, then N' = My _N" is a prefix of (MjMy_ )"~ =
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(M1 M)~ . Hence,
M = NM---MpN'"= NM,, --- MpM_N",

where NMy, - - M My_q is a suffix of My, and N” is a prefix of Mj,
which is a prefix of Mj1. We apply the argument of Case (ii).

(2) I |N'| < qr—1—2, then My N’ is a prefix of (MpMy_1)"~ = (Mp_1 M) .
Define N” by
MN' = M;,_1N".

Since n > qg, we get that N” is a suffix of M. We write M = WN",
where W is a suffix of Mj, - - - M, Mj,_;. Since N is a prefix of Mj,, which
is a prefix of M1, we apply the argument of Case (ii).

(3) Suppose that [N| > 2. Put My = V'N. Then V' is a prefix of V. Let
V" W be the words defined by V = V'V"” and M = V"W. Since UV’ is
a factor of My M, ~ = MkMk_+_1 and MkMkjr_l is periodic with period
qx, we have
K(W) < 2* KUV,

in a similar way as in Case (i). Thus,
K(M) <2K(VYK(W) < 2K (V") - 21K (UV")
< 2*KUV'V") = 22K (M),

(4) The remaining case is the case where |[N| = 1 and |N'| = qx_1 — 1. Then,
for some d > 0,

M- a( M) (M_y)~, if k is even,
(M) (My_1)~, it k is odd,

since M}, is ending with a if k is even and with b otherwise. Note that
|M'| = |M| = (d+ 1)qi + qx_1. Since U is a suffix of (M},)%+1 My_, and
V is a prefix of (My)%+1(Mj,_1)~~, we have

VU = (M) M.
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If k£ is even, then

K(M) < 4K(a)K(V)K(U™)
< 4K (WK (V)K(U™) < 4cK(UbV) = 4cK (M').

The case of odd k is symmetric. O

Before concluding the proof, we recall Fekete’s lemma.

Lemma 5.2.7 (Fekete). If a sequence (an)n>1 of positive real numbers is
subadditive, that is, if it satisfies anim < an + ay for any integers n and m,
then the sequence (an/n)p>1 converges and

. (279 . an
lim — = inf —.
n—oo 1 n>1 n

We have now all the material to establish the following theorem.

Theorem 5.2.8. Let x = [0;s1,82, -] be a Sturmian continued fraction.
Then, x has a Lévy constant L(x).

Proof. We apply Proposition 5.2.6. Let 0 = [0;1 + dy,da,- -], where d; > 1,
denote the slope of z. For k > 1, let q; denote the denominator of . Let k be
a nonnegative integer. Let n be an integer with qx < n < qgy1 — 1. Let M, M’
be factors of s of length n. Since q; > 2¥/271, we have

(5.3) K(M) < cAF 1K (M') < de(qp)* K(M') < 4en* K (M).
Set A, = 2"en*K (s1,52, - ,5,). Then for m < n we have
An+m = 27C(n + m)4K(317 82, 73n+m)
< 270(2n)42K(31, S92, Sp) K (Snt1, Snt2, "+ » Sntm)
< 27cn4K(31, S9, - ,sn)27cm4K(sl, S92,y Sm) = ApAm.

By Fekete’s lemma, the following limits exist and are equal

.1 o1 74 o1
lim —log 4, = nlggloﬁlog (2'en"*Qn(z)) = nh—>Holoﬁ10g Qn(z).

n—oo n

This proves that = has a Lévy constant, which, by (5.3) and the fact that two
Sturmian words with the same slope have the same set of factors, does not
depend on the intercept. ]
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Completion of the proof of Theorem 5.2.1. Let w = wjwsy--- be an infinite
word defined over the positive integers such that the sequence (pw(n) —n)p>1
is bounded and w is not ultimately periodic. Since the function n — pw(n) is
non-decreasing, the sequence (pw(n) —n)p>1 of positive integers is eventually
constant. Thus, there exist positive integers k£ and ng such that

(5.4) py(n) =n+k, forn > ny.

Infinite words satisfying (5.4) are called quasi-Sturmian words. It follows from
a result of Cassaigne [17, Proposition 8] that there are a finite word W, a
Sturmian word s defined over {a,b} and a morphism ¢ from {a,b}* into the
set of positive integers such that ¢(ab) # ¢(ba) and

w = Wp(s).

We briefly explain that Proposition 5.2.6 can be suitably extended to the word
w.

Put ¢, = max{K (¢(a))/K(p(b)), K(p(b))/K(¢(a))}. For any nonnegative
integers ny, ng, ny, nh with ny + ng = n} + nb, =n — 1, we have

K(p(a™ba™)) < 4K (p(a™)) K (p(b)) K (p(a™))
< de K (p(am) < 4%c, K (p(a™ba™2))

or
/

K(p(a™ba™)) < 4K (p(a")) < 42, K (p(a"iba")),
depending on the fact that K(p(a)) < K(p(b)) or K(p(b)) < K(p(a)).
Therefore, by replacing K(M), K(M') with K(p(M)) and K(o(M')) in the
proof of Proposition 5.2.6, we conclude that, for any factors N, N" of s with
dx < [N| = |N'| < qp41 — 1, we get

K(p(N)) < 42, K(p(N)).

Set h = max{|p(a)|,|¢(b)|}. Let M, M’ be factors of the same length of ¢(s).
Let L (resp., N) be the word of minimal (resp., maximal) length such that M
is a factor of ¢(L) (resp., ¢(N) is a factor of M’). Since s is a balanced word
(see Proposition 4.2.7), we have |L| — |[N| < 6. Setting ¢ = max{K(M)|M =
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@(N) for |[N| =6}, we get
K(M) < K(p(L)) < 2 42, K (p(N)) < 26 442, KO,

and we conclude as in the proof of Theorem 5.2.8. We observe that the Lévy
constant of [0;wy,ws,---] depends only on the slope of the Sturmian word
S. O

We end this section with an example that the real number has no Lévy
constant.

Example 5.2.9. We remark that there is a real number that does not have
Lévy constant. Let us consider a word w = abaabbbbaa - - - whose (2" + 1)th
up to (2T N)th letters are b if n is even and a if n is odd. Let x = [0;w]. By
the definition of w, we have

Qo (2) K (a*™) < Qomr (v) < 2Qom ()K (a®™),  if m is odd,

Qam (2) K (0*™) < Qomi1(x) < 2Qom () K (b®™), if m is even.
If L(z) exists, then 2L = L+ L([0;@]) = L + L([0;b]). It contradicts to a # b.
Then x = [0; w| has no Lévy constant.

The real numbers x = [0; w] defined above show that we cannot hope for a
much better result than Theorem 5.2.1. Indeed, it is easy to see that the factor
complexity of the infinite word w formed by the concatenation of its partial
quotients satisfies 2n < pw(n) < 3n, forn > 1.

Note that the set of real numbers which do not have a Lévy constant has
full Hausdorff dimension [54, Theorem 3]; see also [8].

5.2.2 Spectrum: Proof of Theorem 5.2.2.

In this section, we will show that the set of Lévy constants of Sturmian con-
1+v5

tinued fractions and quadratic irrationals is [log T,oo). From now on,

the words are written over the alphabet {a,b}, where a,b are integers with
1 < a < b. For brevity, we define some notations about the trace of matrices.
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Notation 5.2.10. (1) For positive integers ay,--- ,an, let

T(a1,--- ,a,) =Tr <<a11 é) (aln é))
- Tr K(alf"aa’n) K(alv'”7an—1)
K(az, -+ ,an) K(az, - ,an_1)
:K(ah... ,an)+K(a2’... 7an_1)'
(2) We define polynomials Ty, (x) forn >1 by
T, (x) =Tr(X") =T(2")

where

Observe that
Ti(z) =2, To(z)=2>+2, Tsx)=2"+3z, -

Since all coefficients of T, (z) is positive, T}, (x) > 0 for all positive z. If n is
even, then T'(a1, -+ ,a,) > 2 and T,,(0) = 2. If n is odd, then T'(ay,--- ,a,) >
0 and T,(0) = 0. Thus, there is a unique positive p such that T, (u) =
T(ay,--- ,ay). This real number p can be seen as being a mean of aj,--- , ay.

Proposition 5.2.11. If « is the quadratic irrational whose continued fraction
expansion is given by [ap; a1, -+ ,ap, Gri1, -, Gris), then

V2 +4
£(a):log%,

where 1 is the positive real number such that
Ts(p) =T(ars1, -, ars)-

Proof. For a nonnegative integer n, define the polynomials A,, and B,, by

(:c +vValt 4)” _ Au(2) + By (2)Va? +4

(5.5) ; :
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where Ag =2, A1 =z, Bo =0, By =1 and By = z. We have

Appi(z)) 1 (= 2244\ (A, ()
B,1(z)] 2\1 x B.(z) )

Then

Ana(x)\ 1 (-2 2®+4)\ [An(z)

B, ()] 2\1 -z B, (z)
Since

T x? T
Ani(®) — 2 An() = T IBA(w) = S AM@) + Ana ()
and - 1 -
Bpii(z) - §Bn($) = §An(x) = §Bn($> +Bn_1(2),

we have the following recurrence forms
Apii(z)=2An(z) + Ap_1(z), Bpti(zr) =2By(z) + Byoi1(x).

Since Ag(x) = To(z) and Aq(z) = Ti(x), we have A, (x) = Ty (z).

Recall that the norm of a quadratic irrational is equal to the product
of itself by its Galois conjugate. The norm of (A, (z) + B,(z)vVa? +4)/2 is
(A, (7)? — Bp(7)%(2% 4+ 4)) /4 and the norm of z + V22 +4/2 is —1. By (5.5),

B, (z)V22 +4 = /A, (2)2 — (—1)"4.

It follows from Theorem 5.1.2 and the definition of u that

1 T r+1," "y Urts T T 7"’;7‘52_ —1)%4
L(a):flog (a+1 CL+)+\/ (2CL+1 a+> ( )
S

Ts(p) + v/ Ts(u)? — (—1)*4
5 .

= —log
s

Since As(u) = Ts(p) and B (p)vVaZ + 4 = /Ts(u)2 — (—1)4, this proves the
proposition. O

Definition 5.2.12. We define the lower Christoffel word with slope p/q by a
prefix of s,/40 of length q. Let wy,, be the lower Christoffel word with slope

p/q-
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For example,
wo/1 = a, wyjp = b, wyp = ab, wysz = aab, wzz = aabaababd.

We have
|wp/q| =dq, ’wp/q|a =q—-p, |wp/q|b =P

where | - |, is the number of a and | - | is the number of b. Note that, for p/q

in [0,1), the word w,,/, can be written as

q

w,,, = aub, where u is a palindrome.

P/q

We refer the reader to [13] and [2] for additional results on Christoffel words.
For shorten the notation, for a finite word v = vy - - - v, over the positive

integers, we write
[0;7] :=[0;01, - ,0,] and T(v):=T(vy, - ,vp).
We define ay by

g 1= [O;wp/q] if 0= p/Qv
[0; cp] if 6 is irrational.

Then L(ay,/,) is uniquely defined for each rational p/q. Note that each rational
p/q has a unique continued fraction expansion if we allow the last partial
quotient is bigger than 1.

To show Theorem 5.2.2, we need more statements. We define the function
f on [0,1] by

(5.6) f(0) := L(ap).

Proposition 5.2.11 and Theorem 5.1.2 imply that f is well-defined. We aim to
prove that f is monotone and continuous.
We introduce further notation.

Notation 5.2.13. (1) We denote by x,,, the positive real solution of

p/q
(5.7) Tq(xp/q) = T(wp/q).

It has been shown just above Proposition 5.2.11 that x,,, is well-defined.
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(2) We define a function (x) and ¢'(x) by

T+ Va2 +4 x— Va2 +4
(5.8) o(z) = — and () := —
Proposition 5.2.11 shows that
L(oy/q) = logp(@y)q)-
(8) Let
T 1
Xpjg = ( q/q O) :
By (5.7), we have
Tr(Xz/q) = T(wp/q)-
Example 5.2.14. (1) For n =1, we have that
_ a+vVa?+4
£([0;@]) = log ————— = log p(a).

(2) For n = 2. we have that

5 0}

2

1 ab+2++/(ab+2)2 -4 1 ab+ 2+ \/ab(ab+ 4
£((0; ) =  log DR =8 Diog vablabtd)

Since

2
vab++vab+4 1 vab+vab+ 4
logcp(\/ab):logfzilog —
11 2ab + 4+ 2+/ab(ab + 4)
= ;5 log )
2 4

We have
L([0; a,b]) = log p(Vab)

and x1/9 = \/an.

Lemma 5.2.15. Let U,V be 2 x 2 matrices. If U = WV or VW, then we
have

Te(VU) = Te(UV) = Te(U) Te(V) — det(V) Te(W).
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In particular, for any integers q and ¢ such that ¢ > ¢ > 0, we have the
following relation:

(5.9) Tr(XTH7) = Tr(X%) Tr(X7) + (~1)7H Tr(x7).
Proof. By a direct calculation, we get
Tr(UV) = Te(U) Te(V) + det(U — V) — det(U) — det(V)

and
det(W —I) = det(W) — Te(W) + 1

where [ is the 2 x 2 identity matrix. Therefore, if U = WV, we have
Tr(UV) =Te(U) Te(V) + det(WV — V) — det(WV') — det (V)

= T(U) Te(V) + det(W — I) det(V) — det(W) det(V) — det(V)
= T(U) Te(V) — det(V) Te(W).

c

If U = VW, then Tr(UV) = Tr(VWV) = Tr(VU'), with U' = WV, and
we use the previous calculation. Finally, taking U = X9 and V = X ‘1/, we
immediately derive (5.9). O

By the previous lemma, we have the following relation between the traces
of matrices associated to Chritoffel words.

Lemma 5.2.16. Let p/q and p'/q be rational numbers in [0,1] with ¢ > ¢

/
det (P P ) = +1.
g q

Then the following relation holds:

and

(5.10)  T(Wpap)/(g+a)) = T(wp/g) T (wp /q) + (_1)ql+1T(w(p—p’)/(Q—q’))'

Example 5.2.17. The lower Christoffel word with slope 0/1, 1/4, 1/3, 2/7
are
wo/1 =a, wiy = aaab, w3 =aab, wy; = aaabaabd,

respectively. Their corresponding traces are

T(wop) =a, T(wyy)=a’b+2a®+2ab+2, T(wis3)=a’b+2a+D,
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T(wy/7) = a’b® + 4a’b + 3a®b* + 4a® + 8a®b + 2ab® + 5a + 2b.

By direct calculation, we can check that

T(wyy7) = T(wy4)T(w1y3) +T(wo/)-

Lemma 5.2.18. Let p/q and p'/q be rational numbers in [0,1] such that

q>q and
/
det (1; Z,) =41,

Then we have the following four relations:

a+q’ q+q’
Tr(Xp/q ) - Tr(X(erp’)/(quq/))
(5.11) Tr(Xz/q) — Tr(X;’,/q,)
' a—q q—q
= Tr(X? )+ (_1)q’+1 Tr(Xp/q ) — Tr(X(p*p’)/(qfq/))
- e (X% )~ Te(X2,,)
R/ r'/d
q+q’ q+q
Tr(Xp’/q’) B Tr(X(erp/)/(quq,))
Tr(XY, ) —Tr(X?) )
(5.12) P'/q p/q Y o
x4 ey ) = T o )
P/ Tr(x%, ) - Tr(X9 )
P'/q p/a
q q q
T X e sara)) = T Epsg) _ T X i (a0
q q q
(5.13) Tr(Xp/q) N Tr(X(z>+p’)/(q+q’)) Tr(Xp/q)
_ q_q/
+ ey ) = o) 0-)
(Tr(X(qurp’)/(quq’)) B Tr(Xs/q)) Tl"(Xz/q)
and
q q q
X e tara)) ~ T Epre) _ T i jiaar)
q q q’
(X ) = T X ) p(a4ar)) Tr(Xy )
(5.14)
a—q q—q'
+ (-1 q+1 Tr(X(pfp/)/(qfq’)) B Tr(X(erp’)/(quq’))
q q’ q
(Tr(X5 ) = TGy ) T X 10)
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Proof. By Lemma 5.2.16, we have

(5.15) Tr(X4+ ) = Tr(X?

/ /41 v
(p+p')/(g+4') )Tr(Xq’/q’) + (1) Tr(XE, )-

p/q P (p—p")/(a—q")

By applying (5.9) with X = X, X = Xy, and X = X(,1p)/(g+q)> W
get three equalities. By combining these four equalities, we derive the four
equations (5.11), (5.12), (5.13) and (5.14). O

Proposition 5.2.19. Let p/q and p'/q" be rational numbers [0, 1] with ¢ > ¢’

/
and det <p p/) = =+1. Then we have
q q

Tplg < T(p+p)/(a+q) < Tp'/g OT Tp'/q < T(p+p')/(g+q') < Tp/q-
Proof. Since T,,(z) is an strictly increasing function, for all n > 1 and every

rational numbers p/q and r/s between 0 and 1,

Tr(X"

p/q) < Tr(Xf/S) if and only if )/, < x, /5.

We will show the proposition inductively. Suppose that z,,/, is a point between

Tyt jg A0 L) ) (g—q')-

(i) Assume that ¢’ is even. Since x,/, is between 2,/ and z(,_p/(g—q'), We

have ) )
4—q -
TrXpyq ) = T X0y _
q q ’
Te(Xp/q) = Tr(Xp )
By (5.11),
Tr(X2HY) - Tr(X2H0 )

(516) p/q (p+p )/(Q+q ) > Tr<Xg/q) > 0

Te(X7, ) — Tr(XY

p/ p/q’)

Assume that ¢’ is odd. If p/q < p'/¢, then (p—p')/(q—¢') <p/a <D’/
Note that the traces are integers. Thus

Tr(X979) — Tr(X77,

/q (p—p )/(q—Q’)) q—q' q
(5.17) P~ L < Tr(X97) < Tr(X?, ).
Tr(X%, ) = Te(X2) p/a p/a
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Ifp'/¢’ < p/qand ¢ — ¢ < ¢, then

w-p_v _p_p-1

2¢ —q ¢ q q—¢"

thus by (5.13),

q—q q—q
(X, ) = DX 5 )

p/q
q q
TY(X]a /q) Tr(Xp/q)
is equal to
q9—q 2q'—q q
Tr (Xp/q ) (71)q—q’+1 Tr(Xp/q ) - Tr(X(2p —p)/(2¢’ q))'
Tr(Xg,/q,) (TY(X;Z/ ) — Tr(Xq,/ ))Tr(Xp /q)

For an odd ¢, we have

(5.18)
q—q q—q
Tr (Xp/q ) — Tr(X(p p’)/(q q’))
Te(XT, )~ Te(X7 )
X9 2¢'—q 2¢'—q
Tr( p/q ) Tl"(Xp/q )_TI‘(X(QP/*I?)/(QQ/*Q))
Tr(Xz,/ /) (TI"(X;]/ ) Tr(Xq//q ))Tr(Xg,/q,)
Tr(X? 1)
< < Te(X)).
Tr(XY ) pra
P'/q
For an even ¢, we have
(5.19)
q—q -
Tr(Xp/q ) — Tr(X(p p)/(q q))
q
T(X7,) — Tr(X7) )
q—q 2¢'—q 2¢'—q
Tr(Xp/q ) Tr(Xp/q )_TY(X(Zp’fp)/(Zz’fq))
T(X7,)  (T(X7,)— T(X7, ) Tr(X, )
Te(XT.7) 4 Te(X 2 )
< Tr(X7, ) Tr(X! /qq )+ (=) TR(X2 ) = Tr(X?) ).
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Ifp'/¢’ < p/q and ¢ — ¢ > ¢, then

p _p _p—p _p—2p
— < =< < .
¢ q q—q¢ q—2¢
By (5.14),
(5.20)
Tr <X;/ ! ) — Tr(X(p —p’ )/(q—tI’))
q
Tr (Xp /q) Tr(Xp/q)
q—q q—24¢' q—24¢'
Tr(Xp/q ) Tr(X(p 2p’)/(q—2q’)) _Tr(Xp/q )
Tr(Xp/ ) (Tr(Xq,/ ) — Tr(Xz/q))Tr(XZ,/q,)
Tr(X% ¢ ¢
X p{ ) <Tr(Xq/ ).
Tr(X ,/q,) p/a

Therefore, using (5.17), (5.18), (5.19), (5.20) and (5.11), we have

q+q q+q
Tr (Xp/q ) — rﬁa(X(pﬂv)/(quq’)) ~ 0
7 .
T]r(XJa/q) Tr(Xp '/d 2

Thus, we have established that

Tplg < L(ptp)/(g+q) I Tprqg < Ty g, and

Tp/q > T(pp)/(a+a) I Tpjg > Tpryqrs
regardless of the parity of ¢'.

(ii) Suppose that ¢’ is odd. Since x,/, is between x,, /, and we

p—p')/(a—q')
have )
q—q q—q

Tr (Xp '/q’ )~ rﬁa(X(pf}v/)/(qfq’))

T ( p’/q’) - Tr(X,

> 0.
p/q)

By (5.12)

atdq’ q+q’
Ty 0) = T iy ava) | oy
Tr(Xq,/ ) —Tr(X? ) r/d
p/q

) > 0.

85



CHAPTER 5. LEVY CONSTANTS OF STURMIAN CONTINUED
FRACTION EXPANSIONS

Suppose that ¢’ is even. Using (5.12), we have to show that

q—q 9—q
TI‘(Xp//q/) - Tr(X(p—P')/(q_q/)) < Tr(qu )
Tr(Xq/ /) — Tr(Xq ) p//ql .
P'/q p/q

Let m > 1 be the integer satisfying that mq¢’ < ¢ < (m+1)q¢’. Note that
q is odd. By (5.11),

() = TG o)
TT(XE’;;?q/) N Tr(Xgpirz?;’)/(q—mq’))
- P
, Tr(Xp’/Q’ )~ Tr(X(p—mQ’)/(q—WQ’))
< Tr(Xg,/q,).

Here we use the fact that p’/¢’ is between EZE%{;:Z and Z;:%Z: . By (5.12),
for each 0 < n < m,

(X0 )~ TN )
Tr(X§’7Z’ q’) N Tr(ng::%qt;’)/ (q—nq’))
—TH(XY,,) - Tr(Xz'/g’H:)an Tr(Xfp;(?ng})fpo/(q—<n+1>q/>).
Te(Xp ) = T(X gy f(g—na))

Therefore, inductively we have

q+q q+q’
Tr(Xp’/Q’) B Tr(X(p+p’)/(q+q’))
q q
Tr(Xp’/q’) B Tln(Xp/q)
/ 1
> Tr(Xz,/q,) — n > 0.
Tr(Xz’/q’) - ’
Tr(Xg’/q’) o

Thus, we have established that

Ty fg < Tptp)/(q+q’) E Ty s < Tpjq,  and

Ty fq > Tptp)/(a+a’) K Ty jqr > Tpjgs
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regardless of the parity of ¢’. We conclude that

Ly g < T(ptp')/(g+q") < Tplqg OF Tp/q < T(ptp)/(g+q') < Tp//q'

holds. O

Proposition 5.2.20. Let p/q and p'/q’ be rational numbers [0, 1] with p/q <
p'/q'. Then

L(ay/q) < L0y -

Proof. Tt is enough to show the monotonicity for rationals p/q and p'/q¢’ with

/

/
det (p p> = —1and p/q < p'/q’. By Proposition 5.2.11,
q g

Losq) < L(Oppy /(g+a)) < L(pqr),

is equivalent to
Tp/q < T(p+p')/(a+a') < Tp'/q'>

which is established by Proposition 5.2.19. O

The above proposition shows that f is monotone increasing on the ratio-
nals. From now on, we will discuss the continuity of f.

Lemma 5.2.21. For a given rational p/q € [0, 1], there exists a sequence of
rational numbers (1) which converges to p/q such that x,, converges to x, .
Proof. Let p'/q be a rational such that p'q — p¢’ = +1. Let
S p' 4 np
g +ng

We observe that r, tends to p/q as n tends to infinity, and r,, # p/q, for n > 1.
Since Ty, (x) = 2T py—1(z) + T—2(x) for m > 3, we can show inductively that

(5.21) T(x) = p(x)™ + ' ()™, form >1,

where ¢ and ¢ are defined in (5.8).
By Lemma 5.2.16, we have

(5.22) T(wr,) = T(wy )T (wr,_,) + (1) T (wy,_,) for n > 3.
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Thus, the sequence (T'(wy,))n>1 is a binary recurrence sequence and there
exist constants C7, Cs such that

T(wy,) = Ciu" + Cv™, n>1,

where

T(wp/q) + \/T(wp/q)2+ (—1)Q+14

U= and v=

2

Since the integer T(wp/q)2 + (—1)9"14 cannot be a positive perfect square, we
deduce that C1 and Cy are nonzero.
For any € > 0, we have

1
6logu = L(0y)y) =logp(z,,) € (logp(z,/, —€),1og p(z,/, +€)) -
Thus,
0 < @(Tpg —€)! <u<p(ry,y+e)
Since [’ (24 —€)| < p(2p)4 —¢) and [v] < u, by combining (5.21) and (5.22),
we deduce that

Ty ng(Tp/q — €) 0 and Ty tng(Tp/q +€)
Tq’-i-nq(xrn) Tq/-l—nq(xrn)

— 00,

as n — 00. There exists IV depending on ¢ such that for any n > N,
Tyring(@prqg — ) < Tying(@r,) < Typng(@psq +€)-
Since Ty yyq is monotone increasing, we conclude that

Zplg — € < Ty, < Tp/q+E.

Since € can be taken arbitrarily small, this shows that z,, goes to z,/,, as n
goes to infinity. O
Lemma 5.2.22. Let o = [0; 81,82, ,Sn, -] where s182-++ 8y -+ is a char-

acteristic Sturmian word with slope 6. Then

L(a) = lim £(apk/qk)7

k—o0
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where Py /qg is the principal convergnet of 6.
To show the lemma, we use the following result of Baxa [10].

Lemma 5.2.23 ([10]). For all a = [0;b1,b2,---] € R\ Q, we have

T loan(a)_ . 1 - .

T = g 2 oe (b )
and

. log Qn(a)

lim —o=m®) 751 [bi; biga, -+

BT Ty et

where Qn () is the denominator of the nth principal convergent of c.

Proof of Lemma 5.2.22. By Theorem 5.2.1 and the above lemma,
L — 1 & | o
(@) = Jim 3 tog ([sisisn )

The prefix s1 - - - 84, —154,, is a standard word. It is known that a standard word
is a permutation of a lower Christoffel word. More precisely, if sq, —154, = ba,
then sq, 51+ 5q,-1 is Wy /aw and if sq, 15, = ab, then sq, _15q, 252515,
is wy, /q,- Thus,

E apk/% - Z log 31? Sit+1," 7Si+CIk—1]) = E([(); S1-0 5%])-
Let r > 3 and v = [0;¢r,¢41,-++], 6 = [0;dy,dry1,---] be continued
fractions with partial quotients in {a, b}. Let by, - - - ,b,—1 be integers in {a, b}.

We denote by
Ry 2/T:—2 = [bo;b1,--- ,br—2], Ry_1/T—1 = [bo;b1, -+ ,br_1].
Then, we infer

I[boi b1, br—1 ¢y Crgty -] — [bos b1, -+ s b1, dpy dpger, -+ -]
o Rr—17+Rr—2 RT—16+R7‘—2 o |’Y_5|

Troay +Tr—2 B Tr10+ T2 B (Rr—lry + Rr—2)<Tr—15 + Tr—2)

< £([05]) — £([0;@)
— 2r72 :
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Since |logx —logy| < |z —y| if x,y > 1,

1 & 1 I
% ZIOg([Si?SiHv o)) = . ;log([siasiﬂ, T Sitar—1))
- £([0;8]) — £([0;3])

< a2 — 00 as k — oo.

Thus, L(a) = lim L(ay, /q,)- O

n—o0

Proof of Theorem 5.2.2. By Proposition 5.2.19, the function f is monotone
increasing on the rationals in [0, 1]. By Lemma 5.2.22, f is monotone increasing
on [0,1]. By Lemmas 5.2.21 and 5.2.22, f([0,1]) is dense in

1£([0;a]), £([0; 0])]-

Therefore, f has no jump discontinuities, thus f is continuous on [0, 1]. O
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Chapter 6

Colorings of trees

6.1 Preliminaries

6.1.1 Colorings of trees

In this section, we give definitions and properties of graphs and trees, following
[63]. Then, we introduce colorings of trees, following [41] and [42].

A graph G is a structure consisting of a set of vertices VG and a set of
edges FG. The vertex set VG is a finite or countably infinite set and the edge
set F'G is a subset of ordered pairs of two distinct vertices

VG xVG—{(v,v):veVG}

where (v, w) is the edge starting from v ending to w. For each edge e € EG,
we denote by 0y(e) the initial vertex of e and denote by 0i(e) the terminal
vertex of e. The reversed edge € of e is an edge such that and dy(€) = 04 (e)
and 01(€) = 9y(e).

The degree of a vertex v is the number of edges starting from v. A k-
reqular graph is a graph whose vertices have the same degree k. A tree is a
graph without cycles. In this section, let T be a k-regular tree.

We identify an edge e with the unit interval [0, 1]. One can identify G with

VGU(EG x[0,1])/ ~
with the equivalece relation generated by
(e,t) ~ (e,1—1t), (e,0) ~dp(e), (e,1) ~ i(e) for e € EG, t € [0,1].
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Then there is an induced metric d on G.
A coloring of a tree is a vertex coloring which is defined by a map

VT = A,

where A is an alphabet. Let 7; and 75 be subtrees of 7. A color-preserving
map f:T1 — T2 is a map such that ¢(v) = ¢(f(v)) for v € VT. Let Aut(T)
be the group of automorphisms of 7. Let I'y be the set of color-preserving
automorphisms of 7. Since the composition of two color-preserving automor-
phisms is also a color-preserving automorphism, I'y is a subgroup of Aut(7).
We say that v,w € V7T are in the same class if there is a color-preserving
automorphism g such that g(v) = w.

We define a quotient graph I'y\ 7. The vertex set and the edge set of I'y\T
are

V(IC\T) ={Tgv:veVT} and E(T'y\T) ={T'g.e:ec ET}.

The induced graph structure is defined by 0;(I'4.v) = I'y.0;(v) for i = 0, 1.
Then, we have a graph which we call the quotient graph T'y\T. The covering
map is denoted by

m:T = Te\T.

Let e € ET. If g(e) = € for some g € I'y, then 7(e) is a loop of I'y\T.
We call (G,i) an edge-indexed graph equipped with an edge index map

1: EG — N.

In order to construct the universal cover of (G, 1), let us start with a vertex &
which will be a lift of z € VG. Choose ¢ € EG such that 9y(¢) = x. We attach
i(¢) edges ¢;, j = 1,--- ,i(¢) at . Each ¢; is considered as a lift of £. For ¢’ € G
such that do(¢') = 01(£), we attach again i(¢') edges £}, j = 1,--- ,i({') at £;.
Repeating this process, we have a tree which is the universal cover of (G, 7).

The quotient graph I';\7 is equipped with an edge index map. Let £ be
an edge of I',\ 7. Then there is e € ET such that I'y.e = £. Define i(¢) by the
number of edges contained in the orbit I'y.e emitting the same vertex of 7.
Then, the universal cover of (y\T,1) is 7.

Dong Han Kim and Seonhee Lim defined the factor complexity (or subword
complexity) of colorings of trees [41]. The factor complexity is a generalization
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of the factor complexity of words in Section 4.1.

Definition 6.1.1. (1) An n-ball around z is defined by

Bp(x) :={y € VT UET :d(z,y) < n}.

(2) An n-sphere around y is defined by
Sp(z) ={y e VT : d(z,y) = n}.

We say that two balls B, (z) and B,(y) are equivalent if there exists a
color-preserving isomorphism f : B, (z) — B,(y). We call such an equivalence
class a colored n-ball and denote it by [B,(z)]. The set of colored n-balls is
denoted by By(n).

Definition 6.1.2. The factor complexity by of a coloring ¢ is a function that
assigns each nonnegative integer n to the number of non-equivalent colored

n-balls in the tree colored by ¢, i.e.,

by(n) := [By(n)|.
As a special word in Definition 4.1.6, we define a special colored n-ball.

Definition 6.1.3. We call a colored n-ball [B,,(z)] a special n-ball if there are
distinct vertices x and y such that

[Br(2)] = [Bu(y)], but [Bnti(x)] # [Buta(y)]-
In this case, we call [Byp+1(x)] and [Bp11(y)] extensions of [By(x)].

The type set A, of a vertex u € VT is the set of integers n such that
[B,,(u)] is special. A vertex w is said to be of bounded type if A, is a finite set.
For a vertex u of bounded type, the mazimal type 7(u) of u is the maximum
of elements in A,. We say that a coloring ¢ is of bounded type if each vertex
(or equivalently a vertex) of 7 is of bounded type. Otherwise, we say that a
coloring ¢ is of unbounded type.

One of the motivations for studying colorings of trees is to investigate tree
lattices. Let I' be a subgroup of Aut(7). If I'\'7 has a finite volume, then we
say that I' is a tree-lattice (see [9] for more detail). Note that I, may or may
not be a discrete subgroup of Aut(7) even if I'y\7 is a finite graph.
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Another motivation is that factor complexity gives an invariant of an au-
tomorphism of a tree as a Cayley graph. Let

T:={a, - ,a;|ai =1for 1 <i<k).

Then, the Cayley graph of T is a k-regular tree 7 and T is a discrete subgroup
of Aut(7). Lubotzky, Mozes and Zimmer defined a coloring ¢, associated to
g € I' and they proved that ¢, has bounded factor complexity if and only if g
is a commensurator of I" [49].

6.1.2 Sturmian colorings of trees

Let (7, ¢) be a coloring of a tree and I' := I'y is the group of color-preserving
automorphism.

Definition 6.1.4. We say that ¢ is periodic if I\T is a finite graph.

Dong Han Kim and Seonhee Lim studied colorings of trees with factor
complexity. They proved the analogous theorem of Coven-Hedlund theorem
(Theorem 4.1.4) and generalized Sturmian words to Sturmian colorings on a
regular tree [41].

Theorem 6.1.5 ([41], Theorem 2.7). The following statements are equivalent.
(1) The coloring ¢ is periodic.
(2) The factor complexity satisfies by(n) = by(n + 1) for some n.
(3) The factor complezity by(n) is bounded.

Assume that by is unbounded. Then, by (0) is at least 2 and it is strictly
increasing. Thus the minimal factor complexity of non-periodic colorings is
n+ 2.

Definition 6.1.6. A coloring is called a Sturmian coloring if b(n) = n + 2.

Theorem 6.1.7 ([41], Theorem 3.9). The quotient graph of a Sturmian col-
oring is a graph that looks like a half-line or a 2-reqular tree with possibly
attached loops on the vertices (see Figure 6.1).
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L ™ ™ ™ ™ ™ ™ ™ -

Figure 6.1: The quotient graph of a Sturmian coloring in Theorem 6.1.7.

The factor graph G, is defined as the graph whose vertices are the colored
n-balls. Its edges are pairs of colored n-balls whose centers are adjacent to
each other, i.e., (D, E,) such that

[B,,(v)] = Dy, and [B,(w)] = E,, for some v,w € VT with d(v,w) = 1.

By definition of Sturmian coloring, there is a unique special n-ball for each
n. We denote by S, the special n-ball. We denote by C), the centered colored
n-ball of S, ;1. The special ball S,, has exactly two extensions to (n + 1)-balls.
Denote by A,11 and By,;1 the extensions of S,,. Then we can choose {4, }
and {B,} such that A, ;1 contains more A, than B, as a factor. We define
subgraphs g;;‘ and GZ of G,. The subgraphs Q;:‘, G5B are composed by the
colored n-balls connected with S, in A,,+1, Bpy1, respectively.

The following theorem explains the evolution of g;;‘ and Qf . In the theorem,
> is a concatenation defined as follows: If C), # .S, then

V(G GP) =VGAUVGE and E(GA = GP) = EGA U EGP

where C), in G2 and C,, in GZ are identified and the loops at C, in G2, G5
are identified. If C,, = S,, then we consider C,, in gf} and C,, in gf as the
distinct vertices such that

V(GAaGB) =V uvgE and E(G) = GP) = EGAUEGE U {e}
where e is the edge connecting C,,’s.

Theorem 6.1.8 ([42], Theorem 1.2). Let ¢ be a Sturmian coloring.

(1) If ¢ is such that G, does not have any cycle for all n, then there exists
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K € ]0,00] and a sequence (ng)x such that n, =k for 0 >k > K and

ga=gl | GgBh~gl wgh if 0<n<K,
G = gﬁ‘—1 <GPy, GF = g??—l > Gl or

Gl =gt =GP, gh=gh

gfggf,},l, GB=gh | if n#ng, n>K,
gf? = gﬁtl > gffh Gp = gffh or

A~ oA B~ oA B
gn - gn—l’ gn = gn—l > gn—17

if 0<n=K,

if n=ng, n>K.

(2) If a factor graph G, of ¢ has a cycle, for some n, then ¢ is of bounded
type. The coloring ¢ is of bounded type if and only if either G or GB
eventually stabilizes.

6.1.3 Linear, intermediate and exponential complexities

In this section, we introduce constructions of colorings with linear, intermedi-
ate and exponential factor complexities, following [46].

For a bi-infinite word w = (w,,), we can induce the natural coloring of a
2-regular tree. Let X be a 2-regular tree. We label VX with v,,, n € Z. Then
the coloring ¢ : VT — A defined by v, — w, is a natural coloring induced
by w.

For a given one-sided sequence v = (vy, )nen, we define a bi-infinite sequence
W = (Wp )nez such that

Wy = vy and wW_pa1 := v, for n € N.
Then v and w has the same asymptotic growth type since
pv(n) < pw(n) < 2py(n) +n —2.

Note that a ball of radius n in X corresponds to a subword of length 2n + 1 of
a word, and two distinct subwords v and v of length 2n + 1 can be the same
as an n-ball in X if u = v. Thus, we have

pv(2n +1)

(6.1) .

< by, (n) <py(2n+1)+n.
Let ¢g be a coloring of X and let ¢ be an index map of X. Let 7 be the
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universal covering of (X,7) and 7 : T — X be the covering map. We can
obtain the coloring ¢ = ¢ o 7 of a tree T.

Theorem 6.1.9 ([46], Theorem 3.6). Let ¢g be a coloring of X. There exists
an index map i of X such that

(1) the universal covering T of (X,1i) is a k-regular tree and

(2) for any n, by(n) = by, (n) where ¢ = ¢ o 7.

Rote investigated a class of words with p(n) = 2n. The word w = (wy, )nen
is generated by

(6.2) w _{ 1, if (¢+nf) mod 1 € [0,)),

0, if (¢c+nb) mod 1 € [\ 1),
where ¢, A € R and 6 € R\Q such that
0<A<1, 0<0<min{\,1— A} and m# # X (mod 1)

for any m € Z [58]. We define a bi-infinite word w = (wy,)nez by the same
process as in (6.2). Then the factor complexity is pw(n) = 2n and w is
non-eventually periodic. Note that the word w is reversible. The factor set
Fy,41(w) has exactly two palindrome words. Thus, by, (n) = 2n + 2.

Corollary 6.1.10 ([46], Theorem 4.9). There are colorings of k-reqular trees
with factor complexity 2n + 2.

We say that a function has an intermediate growth if it grows faster than
any polynomial and slower than any exponential function. One-sided infinite
words with intermediate factor complexity have been constructed (see [18],
[43]). By (6.1), a coloring of a 2-regular tree induced by a word of intermediate
factor complexity has intermediate factor complexity.

Corollary 6.1.11 ([46], Corollary 3.7). There are colorings of k-reqular trees
with intermediated factor complexity.

On the other hand, we define an index map that establishes a coloring with
exponential factor complexity.

Theorem 6.1.12 ([46], Theorem 5.1). Let (X, ¢o) be a non-periodic coloring
of a 2-reqular tree whose 1-balls colored by [aaa] occur only finitely many times
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(N
C o L o
[
[ ]
A B B A AB

./O

— .
° T
A B B A AB

Figure 6.2: The evolution of Rauzy graphs of a quasi-Sturmian word (above)
and the evolution of G,, of a quasi-Sturmian coloring on a tree (below)

for any a € A. Then, there is an edge index map i of X such that its universal
cover T is a k-regular tree and by(n) grows exponentially where ¢ = ¢g o .

There are many classes of words on which aaa occurs finitely many times
for all a € A including Sturmian words and the words in (6.2).

Corollary 6.1.13. There are colorings of k-reqular trees with exponential
factor complexity.

6.2 Quasi-Sturmian colorings

Quasi-Sturmian words, which are infinite words with factor complexity even-
tually n + ¢, share many properties with Sturmian words. In this section, we
will study quasi-Sturmian colorings of trees.

Definition 6.2.1. We say that a coloring is quasi-Sturmian if there exists a
pair of integers ¢ and Ny such that b(n) =n+ ¢ for n > Ny, i.e.,

(6.3) b(n+1) —b(n) =1 for each n > Ny.

We assume that Ny is the minimal integer satisfying (6.3). Similar to the
Sturmian colorings, a quasi-Sturmian coloring has a unique special n-ball for
all n > Ny which we denote by 5.

For a coloring of bounded type, we define the subgraph G of X as the
graph consisting of the vertices whose lifts are of maximal type less than or
equal to N (see the equation (6.4) for the definition).
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6.2.1 Quotient graphs of quasi-Sturmian colorings

In this section, we characterize the quotient graphs of quasi-Sturmian color-
ings.

For w € VT, 7(u) < m if and only if [Byp+1(u)] = [Bm+1(v)] implies that u
and v are in the same class. If two vertices u and v are in the same class, then
u and v have the same maximal type. Kim and Lim proved that the converse
is also true in the case of a Sturmian coloring (see Proposition 3.2 in [41]).
We observe that the same proof holds in quasi-Sturmian colorings as long as
b(n+1) —b(n) = 1.

Lemma 6.2.2. Suppose that b(n) is a strictly increasing function. If
b(n+1)—b(n)=1

and two vertices u and v have maximal type n, then u and v are in the same
class.

Proof. Suppose that b(n + 1) — b(n) = 1 and there exist two vertices u and
v not in the same class such that 7(u) = 7(v) = n. Since the alphabet A is
finite, there is a number N such that By (w) contains a special n-ball for each
weVT.

Fix a vertex w and let z be the center of a special n-ball contained in
By (w). Since the special n-ball is unique and it has only two extensions of
radius n + 1, either [By41(2)] = [Bu+i1(u)] or [Bpt+1(2)] = [Bnt1(v)], thus z
is in the same class of u or v. Since w € By(z), the tree T is covered by
N-balls whose centers are in the same class of u or v. Thus, the maximal
types of vertices of T is bounded by M = max{7(p) : p € By(u) UByn(v)}. It
contradicts that b(n) is strictly increasing. O

Corollary 6.2.3. Let (T,¢) be a quasi-Sturmian coloring of bounded type
with factor complexity b(n) = n + ¢ for n > Ny. If two vertices u and v of
(T, @) have the same maximal type greater than or equal to Ny, then u and v
are in the same class.

Lemma 6.2.4. If a vertex u of a quasi-Sturmian coloring (T, ¢) is of maximal
type m, then the following hold.

(1) If m > Ny, its neighboring vertices are of maximal type m—1, m, m—+1.
If m = Ng — 1, its neighboring vertices are of maximal type at most Ng.
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If m < Ny — 2, its neighboring vertices are of maximal type at most
Ny — 1.

(2) If m > Ny, one of its neighboring vertices is of mazximal type m + 1.

(8) If m > Ny is not minimum among mazximal types of vertices, one of its
neighboring vertices is of mazximal type m — 1.

Proof. Let {u;}i=1,.. 4 be the neighboring vertices of u, where d is the degree
of T.

(1) Let 7 = max{r(u;)}i=1,... 4. Choose uy such that 7(ur) = 7. There
is a vertex v such that [B;(ug)] = [B-(v)] but [Brii(ug)] # [Br+i(v)]. Let
f : Br(ur) — Br(v) be a color-preserving isometry. Let w = f(u). Suppose
that 7 > m + 1. Since By41(u) C Br(ug), [Bm+1(w)] = [Bmt1(w)]. Thus, u
and w are in the same class. Since d(w,v) = 1, u; and v are in the same class
for some j. We have

[Br(uj)] = [B-(v)] = [Br(ur)] and [Bri1(uj)] = [Bry1(v)] # [Bri(ug)],

thus 7(u;) > 7. By the maximality of 7, 7(u;) = 7. By Corollary 6.2.3, if
7 > Ny, then u; and u; are in the same class. It contradicts [Bri1(ug)] #
[Br4+1(uj)]. Hence, 7 < Np.

We conclude that 7 > m+1 implies 7 < Ny. If m > Ng—1, then 7 < m+1.
If m < Ny—1, then 7 < Ny — 1. In other words, for u, v such that d(u,v)=1, if
|7(u)—7(v)| > 2, then 7(u), 7(v) < No—1. Thus if m > Ny, then 7(u;) > m—1.

(2) Let m > Np. Suppose that there is no u; such that 7(u;) = m + 1. By
(1), m —1 < 7(u;) < m for each i. If 7(u;) = m — 1, then there is no vertices
on Bi(u;) of maximal type greater than m. Even if 7(u;) = m, since u and w;
are in the same class by Corollary 6.2.3, we have the same conclusion. Thus,
there is no vertex on By (u) of maximal type greater than m. Inductively, every
vertex is of maximal type less than m + 1. It contradicts the fact that b(n) is
strictly increasing.

(3) We can show it by a similar argument of the proof of (2). O

For a quasi-Sturmian coloring of bounded type, we define
(6.4) Ni := max{Ny, min{7(x): 2z € VT}}

For a coloring of bounded type, we define the subgraph G of X as the graph
consisting of the vertices of maximal type less than or equal to N;. The next

100



CHAPTER 6. COLORINGS OF TREES

proposition follows from Corollary 6.2.3 and Lemma 6.2.4.

Proposition 6.2.5. For the quotient graph X = (X,i) of a quasi-Sturmian
coloring ¢ of bounded type, the quotient graph X is a union of G and a geodesic
ray (see Figure 6.3). The quotient graph X is linear from the vertex of mazximal

X

N1 b

Nz b

‘N1+3 T

N L

N1+5

Figure 6.3: Quotient graphs of quasi-Sturmian colorings of bounded type.

type N1 + 1. In the figure, the vertex labeled by xy, is of maximal type k.

In the rest of the section, we provide examples of quasi-Sturmian colorings.
The following examples are quasi-Sturmian colorings. The alphabet A is {e, o,
o} for the following examples.

Example 6.2.6 (The quotient graph is not a geodesic ray and Ny # 0).

G
.ﬁ -3
Y /11 12 12 12 12 12 .,

The factor complexity is

and NO = N1 =1

Example 6.2.7 (A cycle in the compact part G).
G
i

1 =3
P 5/]’ 1 12 12 12 12 12 2.4

o8 1
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It has the factor complexity

and Ng = N; = 2.

Example 6.2.8 (an example with Ny # Ni).

G
y. &3 2,1 21 21 21 21 21 21 21 21 21
1 2
2 1
Z
1 9
9 1

The factor complexity is

MMZ{l’ ifn=—1

n+3, ifn>0

anng:O, N1:1.

The quotient graph of a Sturmian coloring of unbounded type is a geodesic
ray or an infinite geodesic (see Theorem 6.1.7). In this section, we show that
a similar property holds for quasi-Sturmian colorings of unbounded type.

Proposition 6.2.9. For a quasi-Sturmian coloring of unbounded type, the
vertices of a 1-ball have at most three distinct type sets.

Proof. Let us assume that there are three neighboring vertices w1, usg, ug of u
such that the type sets of u, u1, us, ug are all distinct. Since each special n-ball
is unique for n > Ny, if there is n € A, N A, such that n > Ny, then B, (u)] =
[B),(v)]. Thus, if A, N A, is infinite, then A, = A,. Let N = maxA, N A,.
Note that A, NA, is non-empty since every type set contains —1. Choose such
N for each pair of vertices from different classes in Ba(u) and let M be the
maximum of such N’s. Then, the type sets of two non-equivalent vertices in
Ba(u) intersected with {M + 1, M + 2,---} are all mutually disjoint.
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Now let [ > M + 1 be in the type set A,. Such [ exists since the coloring
is of unbounded type. At least one of wuy, us,us has a type set disjoint from
{l—1,1,1 + 1}, say u;. Since | € A, there is v such that [B;(u)] = [B;(v)] but
[Bi11(u)] # [Biy1(v)]. Let f : By(u) — Bj(v) be a color-preserving isometry.
Then [Bi—1(us)] = [Bi—1(f (ui)))-

Let p = min{k > 1 —1:k € Ay, }. Since p > I + 1, [Bi—1(u;)] has a
unique extension to [B,(u;)]. Thus, [By(u;)] and [B,(f(ui))] are equivalent
by a color-preserving isometry g. Since [B,—1(g71(v))] = [Bp-1(v)] and p —
1> 1, Bilg ()] = [B)] = [Biw)] and [Bra(g ()] = B (v)] #
[Biy1(uw)]. Thus, g~ (v) # u and Ag-1(,) N Ay contains [ > M + 1. However,
since d(g~!(v),u) < 2, it contradicts that Agry NALN{M +1, M + 2, }
is empty. O

Let (7,¢) be a quasi-Sturmian coloring of a tree and & = (X,4) be its
quotient graph. If two vertices u, v have the same type set, they have the same
colored n-balls for every n, i.e. u, v are equivalent (see Lemma 2.4 in [41]). By
Proposition 6.2.9, there are at most 2 adjacent vertices of each vertex x € V' X.

For a quasi-Sturmian coloring of unbounded type, we define G as the set
of vertices that have only one adjacent vertex in X. Since factor complexity of
¢ is unbounded, X is an infinite graph. Since X is connected, G is empty or G
has a single element. Thus, we obtain the quotient graphs of quasi-Sturmian
colorings of trees.

Theorem 6.2.10. If ¢ is a quasi-Sturmian coloring, then its quotient graph
is one of graphs in Figure 6.4. More precisely, the quotient graph of a coloring

G

7

Figure 6.4: Quotient graphs of quasi-Sturmian colorings

of bounded type is the first graph, where the quotient graph of a coloring of
unbounded type is a geodesic ray or a biinfinite geodesic.
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6.2.2 Evolution of factor graphs

In this section, we look into quasi-Sturmian colorings of unbounded type in
detail. Let us begin by explaining an induction algorithm for quasi-Sturmian
colorings of bounded type. For n > Ny, S,, denotes a unique special n-ball, C,
denotes a centered n-ball of S,,11, and A, 11, Bn+1 denote two types of exten-
sions of S,,. For a class of n-balls B = [B,,(z)], denote the class of [B,+1(z)]
by B and the class of [B,,_1(x)] by B. Note that if B is not special, then B is
well-defined.

Recall from the introduction that for a given quasi-Sturmian coloring ¢,
for n > No + 1, the factor graph G, has By(n) as its vertex set. There is an
edge between two colored n-balls D, E if there exist n-balls centered at z, y
in the classes D, F, respectively, such that d(z,y)=1.

Cyclic quasi-Sturmian colorings

We gather preliminaries of cyclic quasi-Sturmian colorings.

Definition 6.2.11. We say that D is weakly adjacent to E if there exist
v,w € VT such that d(v,w) =1 and [B,(v)] = D and [By,(w)] = E for some
n,m.

We also say that D is strongly adjacent to E if for any B, (x) in the class
D, there exists a vertex y such that Bpy(y) € E and d(z,y) = 1. If D is
strongly adjacent to E and vice versa, then we say that D and E are strongly

adjacent.

We remark the following fact. If [By,1+1(u)] = [Bpt+1(v)] and [Byyo(u)] #
[Bp+2(v)], then there exist neighboring vertices u' and v" of u and v, respec-
tively, such that [B,(u')] = [Bn(v")] and [Bp41(u')] # [Bpt1(v')] (see Lemma
2.11 in [41] for details). Thus, S,+1 is strongly adjacent to S, for n > Np.

Lemma 6.2.12. Let (T, ¢) be a quasi-Sturmian coloring and n > Njy.

(1) We can choose { An}n>No+1, {Bn}n>No+1 S0 that Apt1, Bpi1 are strongly
adjacent to Ay, By, respectively. Moreover, Ani1, Bni1 are uniquely de-
termined if we give the condition that A,+1 contains more balls of the
class A, than Bpy1 does.

(2) For each vertexr x in T — G and n > Ny + 1, the n-balls with centers
adjacent to x belong to at most two classes of n-balls apart from [B,(x)].
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Thus, for any class D # S, of n-balls with centers in T — CNJ, each vertex
of Gn has degree at most 2.

(3) If A, # Sy (respectively By, # Sy ), then A, (respectively By, ) is strongly
adjacent to Sy,.

(4) The two classes Sy, C,, are strongly adjacent.

We will specify the choice of An,4+1 from the two extensions of Sy, for
acyclic quasi-Sturmian colorings later.

Lemma 6.2.13. Let ¢ be a quasi-Sturmian coloring and n be greater than
Ny. Let D be a colored n-ball other than A, B, and S,. Assume that S,, and
D are weakly adjacent. Then, we have that

(1) the special ball S,, and D are strongly adjacent, and
(2) if D% Chy, then Sn # Ch.

Proposition 6.2.14. If there are two vertices of degree at least three in Gy
for some n > Ny, then the quasi-Sturmian coloring (T, ¢) is of bounded type.

Proof. If ¢ is of unbounded type, S,, is the unique vertex adjacent to the
distinct three classes of n-balls in G, by Lemma 6.2.12 (2). Thus, there is at
most one vertex of degree at least three in G,. O

Definition 6.2.15. A quasi-Sturmian coloring is cyclic if there is a cycle
containing S, in G, for some n > Ny. If not, we say that a quasi-Sturmian
coloring is acyclic.

Lemma 6.2.16. Suppose that G, has a cycle whose lift in X is not contained
in G for some n > Ny + 1. The following statements hold.

(1) The special ball Sy, is in the cycle.
(2) If D # A,,, By, Cy, Sy, then D is not weakly adjacent to S,.

Lemma 6.2.17. For n > Ny, suppose that G, has a cycle whose lift in X is
not contained in G.

(1) If Cy, is not contained in the cycle, then G, 1 has a cycle containing Cp 4y
for some l > 1.

(2) If C,, = Sp, then Gn41 has a cycle containing Cpy1 and Cpi1 # Spt1-
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Proposition 6.2.18. (1) Let n > Ny + 1. If there is a ball D which is weakly
adjacent to S, and different from Ay, By, Cy,and Sy, then G,11 has a cycle
containing D.

(2) Any cyclic quasi-Sturmian coloring is of bounded type.

Acyclic quasi-Sturmian colorings

Lemma 6.2.19. Let ¢ be an acyclic quasi-Sturmian coloring. If Ay = Sy =
Cn for some N > No + 1, then A, =S, =C), for all Ng+1<n < N.

We choose A,, as S,, = C,, = A,, if there exists n > Ny such that S,, = C,
is identical to A, or B,,. Define

K =min{n > Ny : A,,, Sy, C,, are not all identical}

as in [42]. Note that K may be infinity.

For an acyclic quasi-Sturmian coloring, for each n > K, neither A,, Sy, Cy,
nor B,,S,,C, are identical. Therefore, the colored n-balls S,, A,, B,, Cp,
satisfy one of the following conditions.

(I) Sy, C,, are distinct, but one of S, C), is identical to A4,, or B,.
(IT) Sy, A,, By, C), are all distinct.
(ITT) S,,, Ay, By, are distinct, but S,, = C,.
Case (I) is divided into three subcases:
(I-a) A, Bp, Sy are distinct and C,, = A,, or By,
(I-b) A,, By, C, are distinct and S, = A,, or By,
(I-c) A, = Sp, By, = C,, are distinct,

By Lemma 6.2.16 and Lemma 6.2.18, we deduce that S, is a vertex of
degree 3 in G, for Case (II), but for Case (I) and (III), G, is a linear graph
and S, is of degree 1 or 2.

Theorem 6.2.20. Suppose that G, corresponds to Case (I). Then S, is a
vertex of degree 2 or 1 in G,. Thus G, is a linear graph. Let m be the number
of wvertices connected to S, through C,. Note that m > 1 since C, is not
identical to Sy,. Then we have G, 1) belongs to Case (II) for all0 < k < m and
either Gpim belongs to Case (I) or Gpim belongs to Case (III) and Gpim+1
belongs to Case (I).
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Sn,  C.

n ng
Snk+2
gnk“ S VP P S NS —e
Sﬂk+1 an+1

Figure 6.5: The evolution of G,, along the path (I) — (II) — --- — (II) — (I)
where the vertex o represents either S,, or the extensions of Sy,

Proof. 1t S,, and C,, are distinct, then G, belongs to Case (I) or (II). We
deduce that Sp+1, Apy1, Bp+1 are distinct. If C), is of degree 2, then there
exists D neighboring C,, which is not S,,. Thus D is weakly adjacent to S, 1
but different from S, 1, Api1, Bny1, which implies that D = C,,1, which
corresponds Case (II). In this case, the number of vertices connected to Sy1
through C), 41 decreases by 1.

If C), is of degree 1, then m = 1. In this case, Sp+1 is connected to only
two extensions A,y1, Byy1 of Sy, in G,11, which implies that Cp,11 = Spi1,
i.e. Case (III) or Cp 41 = Apqq or By, ie. Case (I-a).

If G,, belongs to Case (III), then S, = C,, thus we have either S, 11 =
Apt1 or Spi1 = Bpy1, say Spe1 = An41. Since A, is weakly adjacent to
Api1 = Spy1 and A, cannot be A, 1 nor B, 1, we deduce that C,, 1 = A,,.
Therefore, G,4+1 belongs to the Case (I-b).

We remark that Case (I-c) can happen only for n = K. O

We denote by (ng) the subsequence for which G,, is of Case (I). The
evolution of G, from n = ny to n = ng41 is shown in Figure 6.5. Compare
with Sturmian words (see Figure 6.2): there are infinitely many n’s such that
the Rauzy graph has disjoint two cycles starting from a common bi-special
word (see e.g. [1]). It corresponds to the factor graph G, belongs to Case (I).

6.2.3 (Quasi-Sturmian colorings of bounded type

In this section, we investigate a necessary and sufficient condition for a quotient
graph to be a quotient graph of a quasi-Sturmian coloring of bounded type.

Let = be a vertex of the quotient graph X. For the two lifts & and @’ of x,
[B.(Z)] = [Bn(&")] for all n. Then, 7(z) = 7(&’). By abuse of notation, define
[B,(x)] as a class [B,,(Z)]. Define the maximal type 7(x) of x as 7(Z).
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Recall the examples in Section 6.2.1. Let X = (X, ) be the quotient graph
for each of them. We obtain a periodic edge-indexed subgraph X’ of X by
removing a finite subgraph G in Proposition 6.2.5. Then, a lift of (X', i|px/)
can be extended to a periodic coloring of a tree. It is natural to guess that the
property holds for every quasi-Sturmian coloring.

From now on, let (7, ¢) be a quasi-Sturmian coloring of bounded type. By
Proposmon 6.2.5, the quotient graph X of (7, ¢) is the graph in Flgure 6.3.
Let G be the union of lifts of G. A connected component of T — G is a lift of
(X — G,ilgx—¢))- Thus, all connected components of T — G are equivalent
to each other. Let Y be a connected component of 7 — G.

Lemma 6.2.21. If u,v are vertices of Y with [Bn, (u)] = [Bn, (v)], where Ny
is as in (6.4), then we have [By,+1(u)] = [Bny+1(v)].

Proof. 1t suffices to consider the case of [By,(u)] = Su,. Every vertex of
maximal type N is the center of either Ay, 41 or By, 41, say An,+1. Since
vertices of X — G are of maximal type bigger than Ny, if u is a vertex of YV
and [BNl (u)] = SN17 then [BN1+1(U)] = BN1+1. ]

We define an edge-indexed graph Z = (Z,iyz) as follows: the vertices of Z
are of the form [By, (u)] for a vertex u in Y or X — G, and any two vertices
D, E of Z are adjacent if D and F are weakly adjacent. The index iz (D, E)
is the number of F which are adjacent to D. The indices are well-defined by
Lemma 6.2.21. Since any vertex in X — (G is adjacent to at most two vertices
besides itself, the graph Z is a line segment or a cycle.

Lemma 6.2.22. A restriction of ¢ on any connected component of T — G has

a periodic extension to T .

Proof. Let u be the vertex of Y. Define a coloring ¢ on Bj(u) with the
alphabet VZ = {[Bn,(v)] |v € Y} recursively: Put ¢g(u) = [Bn, (u)] € VZ.
Define 9;41(v) = 9% (v) for v € By(u). Choose w € VT with d(u,w) = k and
let wy (@ =0,---d—1) be the neighboring vertices of w with d(u,wq) = k+1
for a > 1 and d(u, wp) = k — 1. We define 9;4+1(w,) for @ > 1 in the following
ways.

Ifw¢Y, then wy ¢ Y for all @ > 1. Let Dy = 9;(wo) and D; be a colored
Ni-ball satisfying iz (y,(w), D;) > 0 with j = 0,1,2 or j = 0,1. We assign
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Yrt1(wa) as Do for 1 < o <iz(¢p(w), Do) and, for £ # 0,

-1 ¢
Vi1 (we) = Dy for Y iz(Yn(w),Dj) < a <Y iz(gr(w), D) — 1.
=0 =0
Then we have
(6.5) iz(Yp41(w), D) = #{0 < a < d|Yp11(wa) = D}

for each D e V7.

If w €Y, then we put ¥p41(wa) = [Bn,(wq)] for all @ > 1. Using the
fact that Y is an infinite subgraph of T, Lemma 6.2.21 implies that there
exists a vertex v such that By, +1(v) C Y and [Byn,+1(v)] = [Bn,+1(w)], thus
Yr+1(wa) = [BN, (wa)] € VZ and (6.5) is satisfied.

Since ¢k+g|5k(u) = 1y, for £ > 1, the coloring v = limy_,o ¥, on 7 with
alphabet V' Z exists. By (6.5), we deduce that Z is the quotient graph of .
Since 1(u) = [Bn, (u)] on Y, by the coloring which gives the color of the center
of ¥ (u), we complete the proof. O

Theorem 6.2.23. Let X = (X,i) be the quotient graph of a coloring (T, ®).
The following statements are equivalent.

(1) The coloring ¢ is a quasi-Sturmian coloring of bounded type.

(2) There is a finite connected subgraph G of the quotient graph X such that
X — G is a connected infinite ray and any connected component of T —G
has a periodic extension to T where G is the union of lifts of G.

Proof. By Lemma 6.2.21 and Lemma 6.2.22, (1) implies (2). Now we assume
(2) holds. Let A be the alphabet of ¢. Let Z be a lift of z € VX. Define a new
coloring v with an alphabet AU VG as

T if v =z for some x € VG,
o]

¢(v)  otherwise.

Denote by [By(u)]y a 1-colored n-ball. As ever [B,(u)] means a ¢-colored
n-ball. A map By (n) — By(n) which defined by [B,,(z)]y — [Bn(z)] is surjec-
tive. It implies by(n) < by(n). Since X is not a finite graph, by(n) is strictly
increasing. Thus, it is enough to show that by is linear.
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Let us denote by d(z,G) = min{d(z,g9) : ¢ € VG} for z € VX. Fix a
positive integer n. If d(z, G) < n, then [By(x)]y # [Bn(y)]y for any other y €
VX. If z is a vertex such that d(z,G) > n + 1, then [By41(x)]y = [Bnt1(2)].
Thus, [B,(x)] has a unique extension to a colored (n + 1)-ball. Since X is
not finite, 1 has at least one special n-ball for each n. Thus, for z such that
d(z,G) = n+ 1, [By(x)] is the unique special n-ball and it has exactly two
extensions to colored (n + 1)-balls. It means that by(n) = n + |A| + |VG]| for
all n. O

6.2.4 Recurrence functions of colorings of trees

In this section, we will extend the notion of recurrence functions R(n), R"(n)
for words to colorings of trees. We will show that the quasi-Sturmian col-
orings of trees satisfy a certain inequality between R”(n) and b(n). We also
explain that the existence of R(n) is related to the unboundedness of the
quasi-Sturmian colorings of trees.

Let us briefly recall recurrence functions of words (see Section 10.9 in [3]
for definitions and details). Recurrence functions are important objects related
to symbolic dynamics. We recall that A* be the set of finite words and AN be
the set of infinite words over A. For u € A* U AN, we denote by F,(u) the set
of factors of length n.

A recurrence function Ry (n) is defined as the smallest integer m > 1 such
that every factor of length m contains all factors of length n. It is known that
such an integer Ry(n) exists for all n if and only if the word is uniformly
recurrent, i.e. any subword of the word infinitely occurs with bounded gaps.
Another recurrence function R/:(n) is defined by

Ri(n) = min{m € N | F,,(u) = F,(v) for some v € F,,(u)},

i.e. it is the length of the smallest factor of u that contains all factors of length
n of u. From the definition, the following fact immediately holds.

Remark 6.2.24. For alln >0, R!(n) > pu(n) + n —1 for any word u.

Recall that a word u is said to have grouped factors if, for all n > 0, it
satisfies Rli(n) = pu(n) +n — 1. If there is ng such that the equality holds for
all n > ng, we say that u has ultimately grouped factors. Cassaigne suggested
some conditions that guarantee equality.
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Theorem 6.2.25 ([17]). A word u is Sturmian if and only if Ri(n) = 2n for
every n > 0. A uniformly recurrent word on a binary alphabet has ultimately
grouped factors if and only if it is periodic or quasi-Sturmian.

We want analogous results for quasi-Sturmian colorings of trees. Let (7, ¢)
be a quasi-Sturmian coloring of a tree and X = (X, i) be the quotient graph of
(T, ¢). We define Rg(n) as the smallest radius m such that every colored n-ball
of ¢ occurs in [By,(2)] for all z € V'T. We define Rjj(n) as the smallest radius
m such that every colored n-ball of ¢ occurs in [B,,(x)] for some z € V'T.

Definition 6.2.26. A coloring of a tree (T, ¢) is said to be recurrent if, for
any compact subtree T', every colored ball appears in T — T'. A coloring of a
tree is said to be uniformly recurrent if Ryg(n) < oo for all n.

Proposition 6.2.27. Let (T,¢) be a quasi-Sturmian coloring of a tree. The
following conditions are equivalent.

(1) (T, ¢) is of unbounded type.
(2) (T, @) is uniformly recurrent.
(3) For any colored ball, it appears in T — 7w~ 1(S) for any finite set S C X.

Proof. (1) implies (2) : Suppose (T, ¢) is of unbounded type. Let n > Ny. For
each colored n-ball E = [B,,(w)], we define mpg to be the smallest element of
Ay N {n,n 4+ 1,---} which is not empty since A, is infinite. Note that mg
depends only on F and not on w.

Choose a vertex v € VT and a colored n-ball E which is distinct from
[B.(v)]. Let m = mp. Denote F' = [B,,(v)] which is not S,. Let [F! — F? —
coo—Fl— Sin] be the shortest path from F'to0 S, in G,,. For arbitrary colored
m-balls F and F”, if F # S,,, then F has the unique extension. Thus, if F is
weakly adjacent to F’, then F' is strongly adjacent to F’. Therefore, there is
apath [v — vy —v3 — - —v; —w'] in T such that [B,,(v;)] = F',i=2,--- 1,
and [B,(w')] = Sp,-

Since Sy, occurs in [B,,4(v)], E occurs in [B,4;(v)]. Since | < |[VG,,| =
m + ¢, E occurs in [Bytm+c(v)]. Every colored n-ball occurs in [By4ar4¢(v)]
where M = max{mpg : E € By(n)}. Thus, Rg(n) <n+ M +c.

(2) implies (3) : Suppose that R4(n) exists for all n. Since the quotient
graph X is infinite, for any finite S C X, there is  such that Bg, ) (x) C
T — 7 49).
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(3) implies (1) : Assume that (7,¢) is of bounded type. Let v be a vertex
of maximal type N1. By Proposition 6.2.5, all vertices in X — G are of maximal
type larger than Np. Therefore, [By,11(v)] does not appear in T —7~}(G). O

Recall that we denote by Z the quotient graph of T — G with respect to
the coloring ¢. By abuse of notation, let d be the metric on X or G, induced
by d on T'. Let us denote by

r(z,G) := max{d(z,y) : y € VG}.

Proposition 6.2.28. Let (T,¢) be a quasi-Sturmian coloring.

(1) Let ¢ be of unbounded type. As in Theorem 6.2.20, the factor graph G,
is of Case (I) on n = ny. Then, we have

b
Rg(n) =n+ Ldj(;k)J for np_1 <n < ny.
(2) Let ¢ be of bounded type. Let Ty, be the vertex of X which is of maximal

type Ni.

(a) If Z is acyclic, then we have
Riy(n) = n+ E(bd,(nk)—]VG]—i—r(le, G)+1)J for np_1 <n < ng.
(b) If Z is cyclic, then we have
Ri(n) =n+ E(bqﬁ(n) VG| +x(ay,G)+1)| forall n> N,

Proof. (1) In the case of a quasi-Sturmian coloring of unbounded type, the
evolution of the factor graph follows Theorem 6.2.20. Let D and E be ng-balls
that are weakly adjacent. If D # S, or if D =S5, , F = C,,, then D and
E are strongly adjacent by Lemma 6.2.12 (3), (4). If D = S,,, and E # C,,,
then there exist vertices v, v and w in T with d(v,u) = d(v,w) = 1 such that
D = [B,, (v)], E = [By,(u)] and C,, = [By,(w)]. Therefore, we can take a
path with length bg(ny) — 1 consisting of centers of all the colored ny-balls in
T. Thus, we have

b¢(nk)J.

Ry (ng) < ny + L 5
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Let D,,, E,, be the colored ng-balls which are the endpoints of the graph
Gn,- The distance between D, and E,, in G,, is by(ny) — 1, thus for any

vertices z,z’ in T such that [B,, (z)] = D, and [By,, (2')] = E,,, we have
d(z,2") > by(ng) — 1. Therefore, it follows that
by (ny
R (i) = ny, + L¢(2 )J~

Now, let us consider the case ny_1 < n < ny, then G, is of Case (II) or Case
(IIT). We define D,,, E,, and F,, as the colored n-balls which are the vertices
of degree 1 and connected to S, through A,,, B,, C, in G,, respectively. Note
that if S,, = C,, then we define F;, = C,. Any vertex of the center of special
ball S, in T is adjacent to either centers of A,, and C,, or centers of B, and
C,. Thus, the distance between the centers of D, and FE, in T is at least
d(Dy, F,) + d(Ey, Fy).

If G, is of Case (II) for all nx_1 < n < ng, then d(Dy, F),) + d(E,, F,,) =
by(ny) — 1. Otherwise, G, is of Case (III) for n = nj — 1 and G, is of Case
(IT) for ng—1 < n < ny — 1. Then, d(Dy,, F,,) + d(Ep, F,) = by(ng — 1) — 1.
However, on T, a path from a center of D, to a center of F, has at least
two vertices which are centers of F;,, where they are extended to two distinct
colored ny-balls Cy,, and S, . It means that the length of the path is at least
byp(ng —1) — 14+ 1 = bg(ng) — 1. Thus,

by (nur,)
2

R;g(n) >n+ { J for ni_1 < n < ng.
On the other hand, since each m-ball is the restriction of an ng-ball, there
exists a path with length by(ny) — 1 consisting of centers of all the colored
ng-balls in 7. Thus we have a conclusion.

(2)-(a) If Z is acyclic and n > Ny, then the evolution of the factor graph
Gy also follows Theorem 6.2.20. Hence, we apply the argument similar to the
argument in (1). The difference between (1) and (2)-(a) is the existence of
the compact part G of the quotient graph X. Take a finite graph G’ in G,
isomorphic to G. Since every vertex in G, — G’ has at most degree 2, the
maximal distance between any two vertices in Gy, is by(ng) — [VG|+r(zy, G).
Thus, by the similar argument with (1), we have for ng_1 <n < mny

RY(n) =+ | 5 (bs(ns) ~ [VG] +x(ay, @) + 1)
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(2)-(b) Let Z be cyclic and assume that n > Nj. Let G’ be the subgraph of
Gn, which is isomorphic to G. Then G,,—G’ consists of a cyclic graph isomorphic
to Z and a finite linear graph with a common vertex S,, which is the unique
vertex of degree 3 in G,, — G'. We may assume that A,, belongs to the cycle in
Gn — G'. Consider the path P = [Ay, — -+ — Cp, — Sy — By — -+ — [Bu(&y,)]]
in G, where a vertex Z, is a lifting of z, in 7. Since a vertex in 1" which
is the center of B,41 is a center of S5, and adjacent to centers of B,, C,
(Lemma 6.2.12), there exists a lifting of a path P in T. Since the length of
the path P is by(n) — |V G|, the maximal distance between any two vertices in
Gn is also by(n) — VG| + r(z,,, G). By a similar argument before, we have the
third assertion. O

We note that the converse of the proposition does not hold. Consider a
sequence of words

x aLpaLipbLiga, if k is odd,
k =
bLpaLpbLib, if k is even,

where Ly is given by L; = ¢, the empty word and Lg1 = LiaLy for odd k,
Ly41 = LibLy, for even k recursively. Then Ly is a palindrome and we get

X1 = aaba, X9 = baaabab, X3 = aabaaabababaa,

Since Xj is a factor of Xjyyq, we have a coloring ¢ of a 2-regular tree by
the limit of Xj. Let ny = |LgagLy| = 2¥ — 1. Then we can check that for
nE_1 <n < ng, we have

i) -n=|

and
by(ni) = [ Xkl

Thus, we have

by (nk)
2

Ry(n) =n+ L J for np_1 <n < ng.
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