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ABSTRACT

Peripheral Mechanisms of Nociception 

in Pathophysiological Conditions

: Studies on Cellular Mechanisms and Single-Cell 

Transcriptional Profiling

Pa Reum Lee

Graduate School of Natural Science

Seoul National University

Brain and Cognitive Sciences Major

Pain sensations experienced in the body, as well as in the orofacial region, 

convey to the central nervous system (CNS) by peripheral sensory neurons 

such as the dorsal root ganglion (DRG) and the trigeminal ganglion (TG). 

Nociceptive pain, called nociception, begins at peripheral nerve endings of 

specialized peripheral sensory neurons known as nociceptors, which 

exclusively respond to noxious stimuli. Up to date, it has been well studied 

how the distinct nociceptors respond to various noxious stimuli such as heat, 

cold, chemical, or mechanical. However, it remains relatively little 

understood on mechanisms for how innocuous or non-painful stimuli, which 

would never be considered noxious, can cause pain. In this study, I have 

explored these polymodalities of nociception that may be elicited by 
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innocuous stimuli or endogenous mediators of inflammation in several 

pathophysiological conditions as below.

In the first chapter, I examined the contribution of peripheral γ–

aminobutyric acid type A receptor (GABAAR) that may be activated by 

endogenous GABA produced in the inflamed tissue to inflammatory pain. 

Using complete Freund’s adjuvant (CFA)-induced persistent inflammatory 

pain mouse model, I demonstrated that CFA-induced spontaneous nociceptive 

behavior and mechanical hypersensitivity were inhibited by intraplantar (i.pl.) 

injection of GABAAR antagonists. Moreover, local blockage of endogenous 

GABA with injection (i.pl.) of anti-GABA antibody attenuated CFA-induced 

mechanical hypersensitivity, whereas, i.pl. injection of a positive allosteric 

modulator of GABAAR facilitated mechanical allodynia in naïve mice. These 

findings suggest that peripheral GABAAR signaling contributes to CFA-

induced hypersensitivity, and its modulation can potentially be a therapeutic 

target for inflammatory pain alleviation.

In the second chapter, I investigated cellular mechanisms by which sweet 

substances excite dental primary afferent (DPA) neurons, thereby leading 

dentin hypersensitivity. Sweet substances contain high sugar concentrations 

so that they cause hyperosmolar conditions at the teeth. I thus demonstrated 

that the transient receptor potential cation channel, subfamily M, member 8 

(TRPM8), a well-known cold- and menthol-receptor, also served as a 

hyperosmosensor in DPA neurons. By applying a hyperosmolar sucrose 

solution to the mouse exposed tooth dentin, I investigated whether TRPM8 in 

DPA neurons mediates upregulation of c-fos expression as a marker of 

hyperosmolarity-induced nociception in the CNS level. I showed that 

hyperosmolarity-induced dental nociception was significantly attenuated by 
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a selective TRPM8 antagonist, implying innocuous stimuli such as sweet 

substances can be sufficient to result in dental nociception via TRPM8 

channels.

In recent years, an increasing number of studies have successfully 

applied single-cell transcriptomics to characterize a population of cells and to 

identify rare subtypes or novel therapeutic targets in heterogeneous sensory 

system. In the third chapter, I thus employed transcriptional profiling using 

single-cell RNA sequencing (scRNA-seq) and specific gene-expression 

validation with in situ hybridization in order to identify unique molecular 

signatures in the adult mouse DPA neurons. The single-cell transcriptome 

analysis detected six distinct clusters of DPA neurons. Interestingly, a 

particular cluster of DPA neurons was characterized by high expression of a 

low-threshold mechanosensitive Piezo2 ion channel and a pain-related 

neuropeptide Calca encoding CGRP (calcitonin gene-related peptide). These 

findings provide an insight into one of the previously proposed mechanisms 

underlying dentin hypersensitivity (i.e., hydrodynamic theory; Brännström 

and Astroem 1964), which is a common occurrence by innocuous mechanical 

irritations such as brush or air puffs. I further discussed mechanosensitive ion 

channels that may play critical roles in generating pain within the tooth pulp 

and their clinical implications.

Keyword: pain; nociceptor; mechanistic study; single-cell RNA-sequencing; 

GABAAR; TRPM8; dorsal root ganglion neuron; dental primary afferent 

neuron

Student Number: 2015-22670
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BACKGROUND

1. Pain Sensation and Peripheral Mechanisms of 

Nociception

Pain sensation experienced in the body, as well as the craniofacial region, 

comprises four major steps: transduction, transmission, modulation, and 

perception (Fig. 1A). The sensation of pain usually starts from specialized 

peripheral sensory neurons known as nociceptors, which are subsets of the 

dorsal root ganglion (DRG) or the trigeminal ganglion (TG). District 

nociceptors generate action potentials at nerve endings innervating the skin 

in response to different modalities of noxious stimuli, for example, TRPV1 

(> 45℃ heat), ASIC (chemical), TREK-1 (mechanical), and TRPM8 (cold) 

(Fig. 1B). This initial step is referred to the transduction. The pain signals are 

sequentially carried to the brainstem and the spinal cord (transmission), are 

perceived as consequences of that inputs in the brain as pain (perception), and 

are simultaneously regulated by modulatory circuits in the spinal cord 

(modulation) (Institute of Medicine (US) Committee on Pain 1987, Scholz 

and Woolf 2002).

Nociceptive pain, called nociception, plays fundamental roles in 

protecting us from dangerous stimuli at the skin so that nociceptors mostly 

have high thresholds for responses, implying that they are activated by 

noxious or painful stimuli rather than innocuous or non-painful stimuli 

(Dubin and Patapoutian 2010, Gold and Gebhart 2010). For example, high-

threshold nociceptors are responsible for extremely noxious stimuli, such as 
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heat, cold, chemical, and mechanical, but not light tactile stimuli such as 

touch and brush. In contrast, innocuous mechanical stimuli activate low-

threshold mechanoreceptors.

Despite these principle roles of nociception, several studies have 

demonstrated that low-threshold mechanoreceptors are involved in 

nociception under certain pathophysiological conditions. For example, low-

threshold mechanoreceptors can participate in mechanical allodynia, a term 

used to describe pain caused by innocuous stimuli like light touch that would 

never be considered noxious under normal conditions (Lolignier, Eijkelkamp, 

and Wood 2015). On the other hand, so-called “silent” high-threshold 

nociceptors characterized by their complete insensitivity to mechanical 

stimulation can be activated after only exposure to inflammation or nerve 

injury (Dubin and Patapoutian 2010, Belmonte and Viana 2009). Therefore, 

understanding the mechanisms for how innocuous or non-painful stimuli 

transmit pain signals is necessary to provide therapeutic intervention for pain 

management.
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2. Roles of Peripheral GABAA Receptors

GABAAR (γ-aminobutyric acid type A receptor) is an ionotropic receptor and 

belongs to a subfamily of ligand-gated chloride channels. Its endogenous 

ligand is GABA (γ–aminobutyric acid), which plays an essential role in 

regulating neuronal activity as a major inhibitory neurotransmitter in the 

mammalian brain; it has been primary therapeutic benefits for the treatment 

of various psychiatric disorders such as anxiety, insomnia, and epilepsy 

(Uusi-Oukari and Korpi 2010). GABAAR forms as pentameric assemblies of 

subunits (Fig. 2Aa, Ab), and 19 different subunits have been described to date 

(α1-6, β1-3, γ1-3, δ, ε, θ, π, and ρ1-3, Fig. 2Ac) in humans (Simon et al. 2004)

and rodents (Olsen and Sieghart 2008). Importantly, the functional roles of 

GABAARs depend on their subunit composition (Fig. 2Ad) and cellular or 

subcellular location (Olsen and Sieghart 2009, Sieghart 1995). Accordingly, 

targeting specific subtypes of GABAAR has been effective therapeutic 

benefits for developing associated drugs.

It has been demonstrated that GABAARs are expressed not only in the 

CNS but also in the PNS. Their inhibitory actions can be shifted to excitatory 

in the adult primary sensory neurons (Levy 1977, Price et al. 2009) or under 

certain pathophysiological conditions such as developmental stage (Ben-Ari 

2002) and pathology (Coull et al. 2005). These excitatory effects depend on 

two major transmembrane cotransporters for controlling intracellular chloride 

concentration ([Cl-]in) (Fig. 2B): NKCC1 (Na-K-Cl cotransporter 1), which 

accumulates Cl- intracellularly, and KCC2 (K-Cl cotransporter 2), which 

extrudes it from the cell (Price et al. 2009, Herbison and Moenter 2011). Since 

peripheral sensory neurons, such as DRG and TG, maintain a high [Cl-]in as a 

result of the higher expression of NKCC1 and lack of KCC2, the activation 
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of GABAAR results in peripheral primary afferent depolarization (PAD) in 

rodents and humans (Price, Hargreaves, and Cervero 2006, Carr et al. 2010, 

Sung 2000). This phenomenon implies that GABAAR produces a net 

excitatory effect rather than inhibition in peripheral sensory neurons.

Interestingly, several reports have suggested that intraplantar injection of 

a high-dose of GABAAR agonists, such as GABA and muscimol, can increase 

pain hypersensitivity in the formalin-induced acute inflammatory pain model 

(Bravo-Hernandez et al. 2014, Carlton, Zhou, and Coggeshall 1999, Jang et 

al. 2017). In addition, a previous paper has demonstrated that spinal injection 

of a GABAAR antagonist gabazine results in analgesia in the CFA-induced 

persistent inflammation (Anseloni and Gold 2008), suggesting that 

GABAAR-mediated signals can be effective toward facilitating pain 

hypersensitivity in both acute and persistent inflammatory conditions. 

Furthermore, peripheral GABAAR is endogenously modulated by a variety of 

neurosteroids like pregnane steroids (Belelli and Lambert 2005, Magnaghi et 

al. 2006). Therefore, understanding the shifting roles of GABAAR in 

peripheral sensory neurons and their modulatory effects on pain 

hypersensitivity may offer a way to provide therapeutic strategies for 

alleviating inflammatory pain.
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3. Mechanisms of Dentin Hypersensitivity

Dental nociception, more precisely dentin hypersensitivity, is sudden and 

intense pain. Dentin hypersensitivity occurs when tooth dentin is exposed 

during eating, drinking, and brushing (Dababneh, Khouri, and Addy 1999). It 

mostly results from noxious stimuli such as hot and cold temperature; 

however, it can be frequently followed by innocuous stimuli such as air puffs, 

water spray, sugar consumption, and sometimes even breath (Dababneh, 

Khouri, and Addy 1999, Chung, Jung, and Oh 2013). Indeed, tooth or tooth 

pulp produces only pain regardless of stimulation with noxious or innocuous 

stimuli.

Dental nociception conveys to the CNS by nociceptors at nerve endings 

of DPA neurons innervating tooth pulp. It has been revealed that a variety of 

nociceptors in DPA neurons are responsible for various noxious stimuli, such 

as thermal (transient receptor potential (TRP) channels), chemical (acid-

sensing ion channels (ASICs)), and ATP (P2X purinergic receptors), in 

humans and rodents (Hossain et al. 2019, Lee et al. 2019). Despite the 

identification of these nociceptors, understanding the mechanisms of dental 

nociception is complicated due to the tooth’s unique structure (Fig. 3A). The 

tooth dentin is one of the mineralized tissues surrounding tooth pulp and 

interconnects the nerve endings of DPA neurons with the environment within 

the dentinal tubules flooded with dentinal fluid. Moreover, odontoblasts, 

which form the tooth dentin and process into the dentinal tubules from the 

dental pulp’s outer surface, are also able to directly or indirectly affect the 

DPA neurons (Schuh, Benso, and Aguayo 2019, Chung, Jung, and Oh 2013).

Three main hypotheses have been proposed to understand the dentin 

hypersensitivity (Fig. 3B). Firstly, the neural theory refers that nociceptors at 
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nerve endings of DPA neurons directly detect mostly noxious external stimuli 

such as hot and cold temperatures. Alternatively, the hydrodynamic theory

supports that nociceptors are indirectly activated by the fluid movement, 

which can be induced by various external stimuli, such as thermal, chemical, 

mechanical, and osmotic, within the dentinal tubules. Finally, the odontoblast 

transducer theory suggests that odontoblasts directly recognize external

stimuli or act as mediators in transducing signals to DPA neurons (Chung, 

Jung, and Oh 2013, Sole-Magdalena et al. 2018).

Among these three hypotheses, the hydrodynamic theory (Brännström 

and Astroem 1964) is the most commonly accepted because patients with 

toothache frequently experience pain by not only noxious stimuli but also 

innocuous stimuli such as water spray, air puffs, and sugar consumption 

(Chung, Jung, and Oh 2013). Based on this phenomenon, the functional 

expression of mechanosensitive ion channels, such as PIEZO2 (Won et al. 

2017), ASIC3 (Ichikawa and Sugimoto 2002), and TRPV2 (Gibbs, Melnyk, 

and Basbaum 2011), has been demonstrated in a subset of DPA neurons. 

Although these findings suggest that low-threshold mechanoreceptors can be 

involved in dental nociception rather than touch, it remains unclear how DPA 

neurons detect pure pain sensation without sensing other sensory modalities.
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4. Polymodal Roles of TRPM8 Channels

TRPM8 (transient receptor potential cation channel, subfamily M, member 8) 

is a homotetrameric nonselective cation channel that is activated by mildly 

cold temperature (15-25℃) or cooling agents from mint such as menthol 

(Clapham 2002, Fig. 4A). It is first identified in a subset of DRG neurons, 

mostly nociceptive fibers (Peier et al. 2002, McKemy, Neuhausser, and Julius 

2002). Its histological and functional expression have been well studied in all 

somatosensory neurons under normal or pathological conditions. For instance, 

TRPM8-deficient mice lack not only in detecting normal cold temperatures 

(Dhaka et al. 2007) but also tissue inflammation- or nerve injury-induced 

hypersensitivity to innocuous cooling (Colburn et al. 2007).

Interestingly, TRPM8 is engaged in transducing stimuli of innocuous 

cool temperature and noxious cold temperature, so it is not apparent to define 

the TRPM8 as a nociceptor (Julius 2013). In addition, TRPM8 is directly able 

to detect pH (Andersson, Chase, and Bevan 2004) and mediates menthol-

induced analgesia in animal models of chronic neuropathic pain or 

inflammatory pain (Liu et al. 2013, Proudfoot et al. 2006). Recently, several 

studies have demonstrated that TRPM8 serves as an osmosensor that is 

sensitive to the extracellular hyperosmolar environment, such as dry eye, to 

mediate eye blinking in corneal afferent neurons (Quallo et al. 2015, Bereiter 

et al. 2018).

TRPM8 expression has been molecularly and functionally detected in a 

subset of DPA neurons (Fig. 4Ba-Bc), encompassing nociceptive fibers with 

TRPV1 (transient receptor potential cation channel, subfamily V, member 1), 

TRPA1 (transient receptor potential cation channel, subfamily A, member 1) 

(Park et al. 2006, Chung, Jung, and Oh 2013), and VGLUT2 (vesicular 
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glutamate transporter 2; Kim et al. 2015). These studies demonstrate the 

mechanisms underlying dentin hypersensitivity frequently evoked by cold 

stimulation to the exposed dentin of teeth.
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5. Identifying Somatosensory System with Single-Cell 

RNA Sequencing

The somatosensory systems are the largest sensory system in mammalian and 

are composed of heterogeneous cell types, participating in various sensory 

modalities such as thermoception, mechanoreception, pruritoception, and 

proprioception (Li et al. 2018, Le Pichon and Chesler 2014). Using 

anatomical and physiological parameters, such as histological staining with 

markers, degree of myelination, and electrophysiological properties, 

somatosensory neurons have been classified into four general fiber types: C 

(unmyelinated nociceptive fiber), Aδ (myelinated nociceptive fiber), Aβ 

(myelinated mechanosensitive fiber), and Aα (myelinated proprioceptive 

fiber) (Le Pichon and Chesler 2014).

With the recent rapid development of biological technologies, it has been 

possible to dissect somatosensory neurons at the single-cell level. For 

example, the identity of a cell can be determined by whole transcriptome 

profiling via single-cell RNA-sequencing (scRNA-seq) (Li et al. 2016, 

Shrestha et al. 2018, Usoskin et al. 2015). An increasing number of studies 

have applied scRNA-seq to identify rare cell types in mixed cell populations 

of tissues or novel marker genes that may be an effective therapeutic target. 

Accordingly, several pioneering works have successfully verified well-known 

molecular phenotypes of subpopulations, such as C-fibers (peptidergic or 

non-peptidergic) and A-fibers (Aδ, Aβ, and Aα), as well as revealed novel 

marker genes in DRG (Usoskin et al. 2015, Li et al. 2016) and TG (Nguyen 

et al. 2017).

These novel findings are required for new unbiased computational 
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methods for single-cell transcriptome analysis (Usoskin et al. 2015). 

Furthermore, the scRNA-seq technique has been advanced with various 

combined approaches of genetically labeling (Megat et al. 2019, Chiu et al. 

2014, Goswami et al. 2014, Thakur et al. 2014) and electrophysiological 

techniques (Li et al. 2016) to reveal molecular and functional changes across 

neuronal populations by developmental states (Sharma et al. 2020) or

pathological conditions (Hu et al. 2016). Therefore, scRNA-seq has been a 

remarkable strategy to elucidate heterogeneity of the somatosensory system 

and its novel cell types or marker genes.
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Figure 1.
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Figure 1. Pain pathway and nociceptors

(A) Schematic drawing of four major processes of the pain pathway: 

transduction, transmission, modulation, and perception. (B) The functionally 

distinct nociceptors in response to their adequate noxious stimuli, including 

heat, chemical, mechanical, and cold.

Fig. 1A modified from Muench 2015

Fig. 1B modified from Scholz and Woolf 2002
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Figure 2. 
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Figure 2. Structure and functional shifts of GABAA

receptors

(Aa-Ad) Representative illustrations of the transmembrane structure of 

GABAAR (Aa) comprising heteropentamers, α1β2γ2 as the major isoforms 

(Ab), 19 genes encoding GABAAR subunits described to date in humans and 

rodents (Ac), and possible compositions of three different subunits, α (yellow), 

β (red), and γ (green) (Ad). (B) Schematic drawings of GABAAR functions 

of depolarization or hyperpolarization depending on intracellular chloride 

concentration affected by expression levels of chloride transporters.

Fig. 2A adopted from Sieghart 1995

Fig. 2B adopted from Herbison and Moenter 2011
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Figure 3.



２５

Figure 3. Teeth anatomy and mechanisms of dentin 

hypersensitivity

(A) The structure of a tooth consists of enamel, dentin, dental pulp, etc. The 

dentin surrounding tooth pulp interconnects DPA neurons’ nerve endings with 

the environment within the dentinal tubules flooded with dentinal fluid. (B) 

Three major hypotheses underlying the development of dentin 

hypersensitivity.

Fig. 3A adopted from Schuh, Benso, and Aguayo 2019

Fig. 3B adopted from Sole-Magdalena et al. 2018
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Figure 4.
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Figure 4. Polymodal functions of TRPM8 channels

(A) Schematic drawing of polymodal functions of TRPM8 in response to 

mildly cold temperature (15-25℃) and a cooling agent such as menthol. (Ba-

Bc) The confirmation of functional expression of TRPM8 in DPA neurons in 

response to both TRPM8 agonists, which are menthol and icilin, and cold 

stimulation (below 25℃) using a calcium imaging technique (Park et al. 2006,

Bb).

Fig. 4A adopted from Clapham 2002

Fig. 4B adopted from Chung, Jung, and Oh 2013
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PURPOSE

Although identifications of distinct nociceptors in response to different 

modalities of noxious or painful stimuli are well known, it remains elusive 

how innocuous or non-painful stimuli transmit pain signals under 

pathophysiological conditions. Here, I have explored these polymodalities of 

nociceptors that may be activated by innocuous stimuli or endogenous 

mediators of inflammation. I have focused research on the level of cellular, 

molecular biology, and the behavioral level using dorsal root ganglion (DRG) 

neurons and dental primary afferent (DPA) neurons. 

· To examine the contribution of peripheral GABAA receptors that may be 

activated by endogenous GABA to persistent inflammatory 

hypersensitivity

· To investigate cellular mechanisms on how TRPM8 channels in DPA 

neurons can detect sweet substances as dentin hypersensitivity

· To identify molecularly distinct subtypes and gene-expression signatures 

of DPA neurons using scRNA-seq



２９

CHAPTER 1:

Functional Roles of Peripheral 

GABAA Receptors in Persistent 

Inflammatory Hypersensitivity

* This chapter has been reproduced from the article published by Pa Reum 

Lee, Seo-Yeon Yoon, Hyoung Woo Kim, Ji−Hee Yeo, Yong Ho Kim, Seog 

Bae Oh. Peripheral GABAA receptor-mediated signaling facilitates persistent 

inflammatory hypersensitivity. Neuropharmacology, 2018, Jun;135:572-580. 

doi: 10.1016/j.neuropharm.2018.04.009.



３０

ABSTRACT

Unlike in the central nervous system (CNS), in the adult peripheral nervous 

system (PNS), activation of GABAA receptors (GABAAR) is excitatory due 

to the relatively high concentration of intracellular chloride in these neurons. 

Indeed, exogenous GABA and muscimol, GABAAR agonists, exacerbate 

acute inflammatory hypersensitivity in rodents. However, it remains unclear 

whether peripheral GABAAR and the endogenous GABA play an important 

role in persistent inflammatory hypersensitivity. In this study, I thus 

investigated how peripheral GABAAR affects pain hypersensitivity by using 

the complete Freund's adjuvant (CFA)-induced persistent inflammatory pain 

mouse model. I found that intraplantar (i.pl.) administration of GABAAR 

antagonists, picrotoxin, and 1(S),9(R)-(-)-bicuculline methiodide (bicuculline) 

significantly inhibited both spontaneous nociceptive (paw licking and

flinching) behavior and mechanical hypersensitivity in CFA-injected mice at 

day 3 (D3), but not in naïve mice. Interestingly, CFA-induced mechanical 

hypersensitivity was significantly reversed by anti-GABA antibody (anti-

GABA, i.pl.). In addition, RT-qPCR revealed that glutamate decarboxylase 

Gad1 (GAD 67) and Gad2 (GAD 65) mRNA expression levels were also 

upregulated in the ipsilateral hind paw of CFA-injected mice at D3. Finally, 

5α-pregnan-3α-ol-20-one (3α,5α-THP), a selective positive allosteric 

modulator of GABAAR, produced mechanical allodynia in naïve mice in a 

dose-dependent manner. Taken together, these results indicate that peripheral 

GABAAR and endogenous GABA, possibly produced by the inflamed tissue, 

potentiate CFA-induced persistent inflammatory hypersensitivity, suggesting 
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that they can be used as a therapeutic target for alleviating inflammatory pain.
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INTRODUCTION

Unlike in most central nervous system (CNS), γ-aminobutyric acid (GABA) 

generates excitatory effects in the adult peripheral nervous system (PNS), 

through ligand-gated GABAA receptors (GABAAR) (Levy 1977, Price et al. 

2009). For GABAAR, these excitatory actions depend on two major 

transmembrane cotransporters for controlling intracellular chloride 

concentration ([Cl-]in); the Na-K-Cl cotransporter NKCC1, which 

accumulates Cl- intracellularly, and the K-Cl cotransporter KCC2, which 

extrudes it from the cell (Price et al. 2009). Since primary afferent neurons, 

such as those of the dorsal root ganglion (DRG) and the trigeminal ganglion 

(TG), maintain a high [Cl-]in as a result of the higher expression of NKCC1 

and lack of KCC2, the activation of GABAAR results in peripheral primary 

afferent depolarization (PAD) (Alvarez-Leefmans et al. 2001, Kanaka et al. 

2001, Price, Hargreaves, and Cervero 2006, Sung 2000, Toyoda et al. 2005).

It has been reported that intrathecal injection of GABAAR agonist 

produces an analgesic effect (Yamamoto and Yaksh 1991), while spinal 

application of GABAAR antagonist induces pain hypersensitivity (Yamamoto 

and Yaksh 1993). These findings suggest that spinal inhibition, including the 

presynaptic inhibition of primary afferent terminals via GABAAR signaling, 

contributes to the regulation of nociceptive signaling. In addition, a recent 

report demonstrated that administration of GABA to sensory ganglia 

produces a net inhibitory effect on acute nociceptive transmission (Du et al. 

2017). Surprisingly, however, the enhancement of PAD, mediated by the 

activation of peripheral GABAAR (i.e., on peripheral nerve endings), can lead 



３３

to the generation of action potentials, indicating a net excitatory effect rather 

than inhibition, in peripheral sensory neurons (Carr et al. 2010, Price et al. 

2009).

It has been demonstrated that intraplantar (i.pl.) injection of a high-dose 

of GABAAR agonists, GABA and muscimol, can increase pain 

hypersensitivity in the formalin-induced acute inflammatory pain model 

(Bravo-Hernandez et al. 2014, Carlton, Zhou, and Coggeshall 1999, Jang et 

al. 2017). Interestingly, several reports have also suggested that GABAAR-

mediated signals on pain modulation can change in complete Freund's 

adjuvant (CFA)-induced persistent inflammation. For example, the 

intrathecal administration of muscimol potentiates CFA-induced pain 

hypersensitivity, whereas the GABAAR antagonist gabazine produces an 

analgesic effect (Anseloni and Gold 2008). Furthermore, persistent

inflammation by CFA facilitates GABA-induced depolarization through 

GABAAR in cultured mouse DRG neurons (Zhu, Dua, and Gold 2012, Zhu, 

Lu, and Gold 2012), and inflammatory mediators also potentiate GABA-

induced currents in human sensory neurons (Zhang et al. 2015). However, it 

is not completely understood how the GABA signaling, which is mediated by 

GABAAR and endogenous GABA, works on the nociception at peripheral 

sensory terminals under persistent inflammatory conditions.

In this study, I thus investigated the role of peripheral GABAAR 

signaling on pain hypersensitivity by using the CFA-induced persistent 

inflammatory pain model in mice. I found that peripheral GABAAR signaling 

contributes to CFA-induced hypersensitivity, and its modulation can 

potentially be a novel therapeutic target for inflammatory pain alleviation.
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MATERIALS AND METHODS

Animals

Adult male C57BL/6 mice (6 to 10 weeks old) were used in this study. Mice 

were housed by 4 to 6 per cage in a temperature controlled room (23 ± 1℃, 

12 h/12 h light/dark cycle) and were maintained with free access to food and 

water. All surgical and experimental procedures were in accordance with the 

Institutional Animal Care and Use Committee (IACUC) at Seoul National 

University.

Reagents and drug administration

The following materials were used: 1x phosphate buffered saline (PBS, pH 

7.4; Life technologies); rabbit anti-GABA antibody (Cat. 20094, Immunostar); 

picrotoxin, 1(S),9(R)-(-)-bicuculline methiodide (bicuculline), 5α-pregnan-

3α-ol-20one (3α,5α-THP), CFA, and dimethyl sulfoxide (DMSO) (Sigma).

For generating persistent inflammatory pain model, undiluted CFA (20 

µL) was injected into the plantar surface of the left hind paw, and then animals 

were returned to their home cages. All other drugs were administered by i.pl. 

injection in a volume of 10 µL, unless otherwise indicated. The following 

drug concentrations were used; 1, 3, and 5 mM picrotoxin; 3 mM bicuculline; 

anti-GABA antibody, 1/100 dilution in PBS; and 1, 10, and 100 mM 3α,5α-

THP. The dose of picrotoxin and bicuculline was determined based on 

previous studies (Carlton, Zhou, and Coggeshall 1999, Jang et al. 2017). 

Vehicle was injected as follows; 1% DMSO in PBS, in the case of picrotoxin; 

PBS, in the case of bicuculline; heat-inactivated anti-GABA antibody for the 



３５

respective antibody experiments; and PBS in the case of 3α,5α-THP. The anti-

GABA antibody was heat- inactivated at 60℃ for 20 min.

Behavioral tests

Mice were acclimated in a cage at least for a week and then were habituated 

in acrylic observation chambers with wire grid floors (size ranges 12 x 12 x 

12 cm) for at least 3 h, three times before the experiment. Behavioral testing 

was performed under blind conditions for all experiments. The treatments 

were randomized with either vehicle or drug (picrotoxin, bicuculline, anti-

GABA antibody, or 3α,5α-THP), and observer was unaware of which 

treatment each animal had received until after the behavioral experiments and 

measurements were over. CFA-induced spontaneous nociceptive behavior 

was observed for a period of 14 days (D0-D14) following CFA injection on 

D0. To test drug effects, naïve or CFA-injected mice at D3 received an i.pl. 

injection of vehicle or drug, and were video-recorded for 30 min before drug 

administration (pre-injection), to set a baseline, and for 30 min after (post-

injection). The CFA-induced spontaneous nociceptive behavior was analyzed 

by measuring the time spent licking and flinching of the injected hind paw in 

the 30 min period pre- or post-injection. To test mechanical 

hypersensitivity/allodynia, I measured both the 50% paw withdrawal 

threshold and paw withdrawal frequency after stimulating the hind paw of the 

animals with a series of von Frey filaments. The 50% paw withdrawal 

threshold was determined based on the up-down method (Dixon 1991), while 

the response frequency was used to assess the paw withdrawal frequency to 

the repeated application of a single von Frey filament (0.16-g or 0.6-g, ten 

times each).
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Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

The ipsilateral and contralateral hind paw tissue were harvested at D3 after 

PBS (20 µL) or CFA (20 µL) injections using 4-mm biopsy punches (Kai 

medical). Tissues were immediately frozen in liquid nitrogen and were stored 

at -80℃. Total RNA was extracted by using the RNeasy Mini Plus Kit 

(Qiagen), and 0.5 to 1 mg of the total RNA was used for cDNA synthesis with 

the M-MLV Reverse Transcriptase (Invitrogen) according to the 

manufacturer's instructions. For quantitative PCR, each sample containing 20 

ng of cDNA was run in triplicate with primer pairs (Gad1, Gad2, and Gapdh, 

Table 1) and SYBR Green PCR Master Mix Kit (Applied Biosystems). The 

quantitative PCR was performed using a 7500 Real-Time PCR system 

(Applied Biosystems) under the following conditions: 50℃ for 2 min, 95℃ 

for 10 min, 40 cycles of 95℃ for 15 sec and 60℃ for 1 min, followed by a 

dissociation stage. The expression of Gad1 and Gad2 in the PBS group and 

the CFA group relative to the Naïve control group was calculated by the ∆∆CT 

method using Gapdh as the reference gene.

Statistical analysis

Results are representative of n = 4 to 30 mice per each group, depending on 

the experiment. All data are presented as mean ± SEM. A statistical analysis 

was performed using the GraphPad Prism software (version 6.01, Graphpad 

Software Inc.). The differences between two groups were assessed by the 

unpaired two-tailed Student's t-test, in order to analyze the expression of

Gad1 and Gad2. For multiple comparisons, data were analyzed with one- or 

two-way analysis of variance (ANOVA) followed by Bonferroni post hoc test. 
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Statistical differences were considered to be significant at p < 0.05.



３８

TABLES

Table 1. List of primer pairs used 

Target Gene

(bp)
Primer Sequences GeneBank No. Reference

Gad1

(118)

(F) GTGACTGTGGCTTAGTCCTAGA

(R) ATACCATCCGCCCTGTAGTT
NM_008077.5

Gad2

(80)

(F) AGTAGGTCAGCACTCCCTAATG

(R) GGGCAGCTGCATATTTACTCTC
NM_008078.2

Gapdh

(317)

(F) AGGTCATCCCAGAGCTGAACG

(R) CACCCTGTTGCTGTAGCCGTAT

NM_001289726.1

NM_008084.3

(Kim, You, 

et al. 2011)
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RESULTS

Intraplantar application of GABAA receptor antagonists inhibits CFA-

induced spontaneous nociceptive behavior

To address the role of peripheral GABAAR, I used CFA to generate persistent 

inflammatory pain model in adult mice. First, I examined CFA-induced 

spontaneous nociceptive behavior at D0 to D14 following CFA injection. I 

measured the time spent in paw licking and flinching in a period of 30 min 

before (pre-injection group) or after (post-injection group) an injection of 

PBS (20 µL, i.pl.). CFA injection induced significant spontaneous nociceptive 

behavior at D3 and D7 in both groups, compared to D0 (D0 vs D3, p = 0.0009 

and D0 vs D7, p = 0.0056, pre-injection group; D0 vs D3, p = 0.0004 and D0 

vs D7, p = 0.0281, post-injection group, Fig. 5A). In contrast, PBS 

administration did not affect nociceptive behavior in CFA-injected mice at 

any time point (Fig. 5A).

Next, I tested the effects of GABAAR antagonists on CFA-induced 

spontaneous/ongoing nociceptive behavior. I used picrotoxin, a 

noncompetitive GABAAR inhibitor, and bicuculline, a competitive inhibitor 

unable to cross the blood-brain barrier (Johnston 2013). I administered 

picrotoxin and bicuculline by i.pl. injection in naïve or CFA-injected mice at 

D3, according to the experimental protocol shown in Fig. 5B. Paw licking 

and flinching behavior was significantly inhibited by administration of 

picrotoxin (3 mM, 10 µL) compared to vehicle (1% DMSO in PBS, 10 µL, p

< 0.0001, Fig. 5C) in CFA-injected mice, but there were no significant effects 

in naïve mice. The vehicle injection (1% DMSO) also exhibited nociceptive 
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behavior in CFA-injected mice (p = 0.0008, Fig. 5C). 

To confirm the analgesic effects of picrotoxin via blockade of peripheral 

GABAAR in inflamed tissue, the competitive GABAAR antagonist 

bicuculline was applied in the hind paw of naïve or CFA-injected mice (at D3 

post-CFA). The spontaneous nociceptive behavior of CFA-injected but not of 

naïve mice was also significantly reduced by bicuculline (3 mM, 10 µL, i.pl., 

p = 0.0013, Fig. 5D) compared to the vehicle (PBS, 10 µL). Vehicle (PBS) 

injection also exhibited nociceptive behavior in CFA-injected mice (p = 

0.0001, Fig. 5D). In addition, CFA-induced spontaneous nociceptive behavior 

was dose-dependently attenuated by injection of 1 mM (p = 0.1855), 3 mM 

(p < 0.0001), and 5 mM (p < 0.0001) picrotoxin compared to the vehicle (Fig. 

5E).

Intraplantar application of GABAA receptor antagonists alleviates CFA-

induced mechanical hypersensitivity 

It has been reported that i.pl. injection of CFA induces mechanical 

hypersensitivity in rodents (Gao et al. 2010, Ren 1999, Ren and Dubner 1993). 

I measured both 50% paw withdrawal threshold and frequency using von Frey 

filaments (0.16-g or 0.6-g, ten times each) in naïve or CFA-injected mice, 

administered with picrotoxin at D3 post-CFA (Fig. 6A-C). In the 0.5 h post-

injection group, picrotoxin (3 mM, 10 µL) significantly reduced mechanical 

hypersensitivity compared to the vehicle injection (1% DMSO in PBS, 10 µL) 

in CFA-injected mice (p = 0.0009 for the 50% paw withdrawal threshold, Fig. 

6A; for paw withdrawal frequency, p = 0.0001 using the 0.16-g filament; p < 

0.0001 using the 0.6-g filament, Fig. 6B, C), but not in naïve mice. Picrotoxin 

also significantly reduced mechanical hypersensitivity in CFA-injected mice 
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compared to the baseline (p = 0.0039 for the 50% paw withdrawal threshold, 

Fig. 6A; for paw withdrawal frequency; p = 0.0002 using the 0.16-g filament 

and p < 0.0001 using the 0.6-g filament, Fig. 6B, C). The CFA-induced 

mechanical hypersensitivity was dose-dependently inhibited by i.pl. injection 

of 1 mM (p = 0.3013), 3 mM (p < 0.0001), and 5 mM (p < 0.0001) picrotoxin 

compared to the vehicle, in CFA-injected mice (Fig. 6G-I).

Bicuculline (3 mM, 10 µL) also significantly attenuated mechanical 

hypersensitivity in the 0.5 h post-injection group, compared to the vehicle 

(PBS, 10 µL), in CFA-injected mice (p = 0.0361 for the 50% paw withdrawal 

threshold, Fig. 6D; for paw withdrawal frequency, p = 0.0028 using the 0.16-

g filament and p = 0.0001 using the 0.6-g filament, Fig. 6E, F), but not in 

naïve mice. Injection of bicuculline also significantly reduced the mechanical 

hypersensitivity in CFA-injected mice compared to the baseline (p = 0.0062 

for the 50% paw withdrawal threshold, Fig. 6D; for paw withdrawal 

frequency, p = 0.0056 using the 0.16-g filament and p < 0.0001 using the 0.6-

g filament, Fig. 6E, F). Taken together, these results indicate that local 

administration of the GABAAR antagonists, picrotoxin and bicuculline, in 

peripheral inflamed tissue, can alleviate CFA-induced mechanical 

hypersensitivity.

Intraplantar application of anti-GABA antibody attenuates CFA-

induced mechanical hypersensitivity

Attenuation of spontaneous nociceptive behavior and mechanical 

hypersensitivity by GABAAR antagonists in the CFA-induced inflammatory 

pain model suggests that endogenous GABA plays an important role in 

peripheral inflamed tissue by activating peripheral GABAAR and nociceptive 

fibers under persistent inflammation. Thus, I tested whether CFA-induced 
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persistent mechanical hypersensitivity can be inhibited by i.pl. application of 

anti-GABA which can accomplish a functional blockade of GABA in the 

inflamed tissue (Fig. 7). The timeline for application was as shown in Fig. 5B, 

except I also tested the effects of anti-GABA 1 h and 3 h post-injection. 

Administration of anti-GABA (1/100 dilution in PBS, 10 µL) significantly 

reversed the CFA-induced mechanical hypersensitivity in CFA-injected mice 

(0.5 h post-injection group), compared to heat-inactivated anti-GABA, which 

was injected as a control (p = 0.0008 for the 50% paw withdrawal threshold, 

Fig. 7A; for paw withdrawal frequency, p < 0.0001 using the 0.16-g filament 

and p < 0.0001 using the 0.6-g filament, Fig. 7B, C). Anti-GABA did not 

affect mechanical sensitivity in naïve mice. Injection of anti-GABA also 

significantly reduced mechanical hypersensitivity at 0.5 h compared to the 

baseline, in CFA-injected mice (p = 0.0026 for the 50% paw withdrawal 

threshold, Fig. 7A; for paw withdrawal frequency, p = 0.0004 using the 0.16-

g filament and p = 0.0003 using the 0.6-g filament, Fig. 7B, C). Among the 

three time points tested, the analgesic effects of anti-GABA on CFA-induced 

mechanical allodynia were significantly observed at the 0.5 h post-injection, 

compared to the control (p < 0.0001, Fig. 7D), while no significant 

differences were observed in naïve mice at any time point (Fig. 7E). 

Moreover, anti-GABA significantly reversed paw withdrawal threshold in 

CFA-injected mice, compared to the baseline at D3 (p = 0.0002, Fig. 7D), but 

not in naïve mice (Fig. 7E). In order to confirm the efficient neutralization of 

GABA by the blocking antibody, whole-cell patch clamp recordings were 

used in cultured mouse DRG neurons. GABA (100 mM)-induced currents 

were significantly reduced by anti-GABA co-application (1/100 dilution in 

the extracellular solution), but not by the vehicle control solution (data not 



４３

shown). These results indicate that endogenous GABA in inflamed tissue 

contributes to the facilitation of inflammatory mechanical hypersensitivity.

Gad1 and Gad2 expression levels increase in the CFA-inflamed hind paw

Since I found an important role of endogenous GABA in CFA-induced 

mechanical hypersensitivity, I investigated whether GABA production 

increases in the inflamed tissue, by examining changes in the expression 

levels of GADs, the GABA synthesizing enzymes. Mammalian species 

express two isoforms of GADs to synthesize the transmitter GABA. GAD 67, 

encoded by the Gad1 gene, preferentially synthesizes cytoplasmic GABA, 

whereas GAD 65, encoded by Gad2, preferentially synthesizes GABA for 

vesicular release (Soghomonian and Martin 1998, Tian et al. 1999). To 

address the regulation of GABA synthesis in inflammation, I tested Gad1 and 

Gad2 mRNA expression levels in the ipsilateral and contralateral hind paws 

of PBS- and CFA-injected mice using the RT-qPCR. Both Gad1 and Gad2

mRNAs were significantly higher in the ipsilateral hind paw of CFA-injected 

mice than of the PBS-injected mice (p = 0.0022 for Gad1, Fig. 8A; p = 0.0077 

for Gad2, Fig. 8C), while there were no differences in the contralateral hind 

paw (p = 0.4607 for Gad1, Fig. 8B; p = 0.5474 for Gad2, Fig. 8D). These 

results show that levels of GADs were upregulated upon CFA-induced 

inflammation.

Intraplantar application of 3α,5α-THP is sufficient to induce mechanical 

allodynia through GABAAR in naïve mice 

To address whether peripheral GABAAR-mediated signaling is sufficient for 

the development of mechanical allodynia, I employed 3α,5α-THP, a 

neurosteroid that acts as a selective positive allosteric modulator of GABAAR 



４４

(Lambert et al. 2001, Majewska 1990). Thirty minutes after administration, 

the 50% paw withdrawal threshold was dose-dependently reduced by 1 mM 

(p = 0.0027), 10 mM (p = 0.0004), and 100 mM (p < 0.0001) 3α,5α-THP (20 

µL, i.pl.), compared to the baseline (Fig. 9A). The paw withdrawal frequency 

using a 0.16-g filament was instead dose-dependently increased by 1 mM (p

= 0.2053), 10 mM (p = 0.0282), and 100 mM (p < 0.0001) 3 α,5α-THP (20 

µL, i.pl.) compared to the baseline (Fig. 9B). To confirm GABAAR

dependency on 3α,5α-THP inducing mechanical allodynia, I used the GABAA

antagonist picrotoxin. The effects of the high dose of 3α,5α-THP (100 mM, 

20 µL, i.pl.) were significantly reversed by co-injection of 3α,5α-THP (100 

mM, 20 µL) with picrotoxin (3 mM) on paw withdrawal frequency (p < 

0.0001, Fig. 9D), but not the paw withdrawal threshold (p = 0.4508, Fig. 9C). 

These results indicate that potentiated peripheral GABAAR-mediated 

signaling is sufficient to produce mechanical allodynia in naïve animals.



４５

Figure 5.
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Figure 5. Inhibition of CFA-induced spontaneous 

nociceptive behavior by application (i.pl.) of GABAAR 

antagonists

(A) Quantification of time spent paw licking and flinching in a period of 30 

min before (pre-injection) and after (post-injection) injection of PBS (20 µL, 

i.pl.) in CFA (20 µL, i.pl.) injected mice at 0-14 days (D0-D14). Data are 

expressed as mean ± SEM and analyzed by two-way ANOVA and Bonferroni 

post hoc test. **p < 0.01 and ***p < 0.001 vs D0 pre-injection group, #p < 0.05 

and ###p < 0.001 vs D0 post-injection group. (B) Experimental protocol for 

measuring CFA-induced spontaneous nociceptive behavior in naive mice and 

CFA-injected mice at D3. (C-D) Quantification of time spent paw licking and 

flinching in a period of 30 min before (pre-injection, pre) and after (post-

injection, post) injection of the noncompetitive GABAAR antagonist 

picrotoxin (3 mM,10 µL, i.pl., C), the competitive GABAAR antagonist 

bicuculline (3 mM,10 µL, i.pl., D), or vehicle (10 µL, i.pl., 1% DMSO in PBS 

or PBS for picrotoxin and bicuculline, respectively) in CFA-injected (CFA D3) 

or naïve mice, as indicated. Note; the inhibition of CFA-induced spontaneous 

nociceptive behavior after drug administration. For all groups, n = 5 to 10 

mice, as indicated. Data are expressed as mean ± SEM. **p < 0.01 and ****p < 

0.0001, two-way ANOVA with Bonferroni post hoc test; ###p < 0.001, one-

way ANOVA with Bonferroni post hoc test. ns, not significant. (E) 

Quantification of time spent paw licking and flinching after injection of 

picrotoxin (1, 3, and 5 mM, 10 μL, i.pl.) or vehicle (1% DMSO in PBS, 10 μL, 

i.pl.) in CFA-injected mice at D3. (F-H) Quantification of the paw withdrawal 

threshold (F) and paw withdrawal frequency of in CFA-injected mice at D3 
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in response to the 0.16-g (G) or 0.6-g (H) von Frey filaments, after injections 

of picrotoxin (1, 3, and 5 mM, 10 μL, i.pl.) or vehicle (1% DMSO in PBS, 

10 μL, i.pl.). n = 5 to 30 mice. Data are expressed as mean ± SEM. *p < 0.05 

and ****p < 0.0001 vs vehicle control (one-way ANOVA with Bonferroni post 

hoc test). ns, not significant.
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Figure 6.
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Figure 6. Inhibition of CFA-induced mechanical 

hypersensitivity by application (i.pl.) of GABAAR 

antagonists

(A-F) Quantification of the paw withdrawal threshold (A-D) and paw 

withdrawal frequency of CFA-injected mice at D3 (CFA D3) or in naïve mice, 

in response to the 0.16-g (B-E) or 0.6-g (C-F) von Frey filaments, before 

(baseline, BL) or 0.5 h after picrotoxin (3 mM, 10 µL), bicuculline (3 mM, 

10 µL), or vehicle (1% DMSO in PBS or PBS, respectively, 10 µL) i.pl. 

injection. All groups consisted of 5-10 mice, as indicated. Data are expressed 

as mean ± SEM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 (two-way 

ANOVA with Bonferroni post hoc test). ##p < 0.01, ###p < 0.001, ####p < 

0.0001 (one-way ANOVA with Bonferroni post hoc test). ns, not significant.



５０

Figure 7.
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Figure 7. Reversal of CFA-induced mechanical 

hypersensitivity by application (i.pl.) of GABA specific 

antibody

(A-C) Quantification of the paw withdrawal threshold (A) and paw 

withdrawal frequency of CFA-injected mice at D3 (CFA D3) or in naïve mice, 

in response to the 0.16-g (B) or 0.6-g (C) von Frey filaments, before (baseline, 

BL) or 0.5 h after regular or heat-inactivated anti-GABA antibody (1/100 

dilution, 10 µL, i.pl.). (D-E) Quantification of changes in the paw withdrawal 

threshold over time observed after i.pl. injection of anti-GABA antibody in 

CFA D3 (D) or naïve mice (E). Data are expressed as mean ± SEM; n = 10 

mice; ***p < 0.001, ****p < 0.0001 (two-way ANOVA with Bonferroni post 

hoc test). ##p < 0.01, ###p < 0.001 (one-way ANOVA with Bonferroni post hoc 

test).



５２

Figure 8.
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Figure 8. Upregulation of Gad1 and Gad2 expression in 

the hind paw tissue following CFA-induced 

inflammation

(A-D) RT-qPCR shows increases in Gad1 and Gad2 mRNA expression levels 

in the ipsilateral (A-C) but not contralateral (B-D) hind paw tissue in CFA-

injected mice at D3 (CFA D3). Bar graphs indicate fold changes of mRNAs 

relative to Naïve control. All groups include 4-8 mice, as indicated. Data are 

expressed as mean ± SEM. **p < 0.01 (Unpaired t-test, two-tailed). ns, not 

significant.
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Figure 9.
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Figure 9. Effect of positive GABAAR modulator on 

mechanical allodynia in naïve mice

(A-B) Quantification of the paw withdrawal threshold (A) and paw 

withdrawal frequency (B) of naïve mice injected with 5α-pregnan-3α-ol-20-

one (3α,5α-THP; 1, 10, and 100 mM, 20 µL, i.pl.) or vehicle (PBS, 20 µL, 

i.pl.) in response to the 0.16-g von Frey filament. (C-D) Quantification of the 

paw withdrawal threshold (C) and paw withdrawal frequency (D) of naïve 

mice injected with vehicle (1% DMSO in PBS, 20 µL, i.pl.), 3α,5α-THP (100 

mM, 20 µL, i.pl.), or 3α,5α-THP (100 mM) and the GABAAR antagonist 

picrotoxin (3 mM, 20 µL, i.pl.), in response to the 0.16-g von Frey filament. 

All groups n = 9 to 11 mice. Data are expressed as mean ± SEM. *p < 0.05,

**p < 0.01, ***p < 0.001, ****p < 0.0001 (two-way ANOVA with Bonferroni 

post hoc test). #p < 0.05, ##p < 0.01, ####p < 0.0001 (one-way ANOVA with 

Bonferroni post hoc test). ns, not significant.
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DISCUSSION

In chapter 1, I demonstrated the functional role of peripheral GABAAR and 

endogenous GABA at inflamed tissue in persistent inflammatory 

hypersensitivity. Firstly, the CFA-induced persistent spontaneous and 

mechanical hypersensitivity were alleviated by i.pl. injection of the GABAAR 

antagonists, picrotoxin and bicuculline. Secondly, i.pl. injection of the GABA 

specific antibody reduced mechanical hypersensitivity, suggesting a 

contribution of endogenous GABA in persistent inflammatory 

hypersensitivity. Thirdly, potentiation of the cutaneous peripheral GABAAR 

signaling by the GABAAR positive modulator 3α,5α-THP induced 

mechanical allodynia in naïve mice in a dose-dependent manner. Finally, 

mRNA expression levels of Gad1 (GAD 67) and Gad2 (GAD 65), were 

upregulated in the inflamed hind paw tissue upon CFA injection.

GABA can activate both ionotropic GABAAR and metabotropic 

GABABR expressed in primary afferent neurons. Activation of GABABR 

exhibits an inhibitory effect on DRG and TG neurons (Si et al. 1997, Takeda 

et al. 2004). Furthermore, GABABR attenuates TRPV1 sensitization by 

inflammatory mediators via a non-canonical pathway (Hanack et al. 2015). In 

contrast, there is evidence suggesting that a shift in the role of GABAAR-

mediated signaling from inhibition (Du et al. 2017, Yamamoto and Yaksh 

1993, 1991) to excitation (Anseloni and Gold 2008, Bravo-Hernandez et al. 

2014, Carlton, Zhou, and Coggeshall 1999, Jang et al. 2017, Zhu, Dua, and 

Gold 2012, Zhu, Lu, and Gold 2012) would contribute to persistent pain 

hypersensitivity. In addition, potentiation of dorsal root reflex activity by 
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neurogenic inflammation in Aδ- and C-fibers, as well as the swelling in 

inflamed tissue, is inhibited by spinal administration of GABAAR antagonists 

(Lin, Wu, and Willis 1999, Willis 1999). Although intrathecal administration 

of GABAAR antagonists induces mechanical allodynia in naïve mice 

(Anseloni and Gold 2008, Yamamoto and Yaksh 1993), these results show 

that cutaneous application of GABAAR antagonists induces neither 

mechanical allodynia nor spontaneous pain (Fig. 5, 6). However, the 

analgesic effects of GABAAR antagonists by i.pl. injection in the CFA-

induced persistent inflammatory pain model are consistent with a previous 

work that reported the analgesia after spinal injection of the GABAAR 

antagonist gabazine in the CFA-induced inflammation (Anseloni and Gold 

2008). These complex effects of GABAAR-mediated signaling on nociceptive 

functions seem to be influenced by the regulation of [Cl-]in in primary 

afferents under physiological (Price et al. 2009, Sung 2000) or pathological 

states (Anseloni and Gold 2008, Zhu, Dua, and Gold 2012, Zhu, Lu, and Gold 

2012). These results suggest that peripheral GABAAR-mediated nociceptive 

signaling has a crucial role in persistent inflammatory hypersensitivity.

It has been demonstrated that CFA produces a valid persistent 

inflammation in rodents, thus leading to increased stimulus-evoked pain 

hypersensitivity (Gao et al. 2010, Ren 1999, Ren and Dubner 1993). Even 

though spontaneous pain may be a more significant clinical issue for patients 

than stimulus-evoked pain (Mogil 2009, Vierck, Hansson, and Yezierski 

2008), little is known as to whether the non-evoked ongoing pain is present 

in the CFA-induced inflammatory pain model. Ongoing and spontaneous pain 

can be measured by examining animal behavior upon pain induction, 

including paw licking, flinching, or biting, as well as spontaneous foot lifting 
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(Allchorne et al. 2012, Choi et al. 1994, Djouhri et al. 2006, Gregory et al. 

2013, Mogil and Crager 2004, Tappe-Theodor and Kuner 2014, Xiao and 

Bennett 2007). Interestingly, I demonstrated that the paw licking and 

flinching behavior strongly develops in CFA-injected mice at D3 to D7 (Fig. 

5A). Moreover, I showed that CFA-induced spontaneous/ongoing nociceptive 

behavior is drastically inhibited by the local administration of GABAAR 

antagonists, at inflamed tissue. This suggests that peripheral GABAAR 

signaling appears to be a critical component of spontaneous pain in this model 

(Fig. 5C, D). It has also revealed overexpression of the GABA synthesizing 

enzymes at inflamed tissue (Fig. 8), implying increased production of 

endogenous GABA under inflammatory conditions.

Since activation of GABA-mediated signaling in peripheral neurons 

requires a sufficient amount of GABA and the functional expression of 

GABAAR, I used an IgG polyclonal anti-GABA antibody to functionally 

block endogenous GABA directly at inflamed tissue. In several studies, the 

administration of neutralizing antibodies for cytokines (Liu et al. 2016) or 

chemokines (Cao et al. 2014, Llorian-Salvador et al. 2016, Zhang et al. 2013)

has been employed to block their functions in mouse pain models. It has 

shown that i.pl. application of anti-GABA increases the mechanical threshold 

in the CFA-induced inflammatory pain model but not in naïve mice, 

suggesting that endogenous GABA plays a functional role in persistent 

inflammatory hypersensitivity (Fig. 7). The anti-GABA antibody activity was 

validated by whole-cell patch clamp recordings of GABA-induced currents, 

which were significantly reduced by co-application of anti-GABA in cultured 

DRG neurons (data not shown).

Several recent reports have reported that non-neuronal cells, such as 
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mammalian glial cells (Lee, McGeer, and McGeer 2011, Lee, Schwab, and 

McGeer 2011, Lee et al. 2010, Magnaghi 2007), macrophages (Bhat et al. 

2010), and fibroblasts (Ito et al. 2007, Kono et al. 2001), can produce and 

release GABA. I also found that GAD 65/67 immunoreactivity was increased 

in dermal fibroblasts of the inflamed hind paw (data not shown). Although 

observation suggests that dermal fibroblasts may produce GABA in inflamed 

tissue, it cannot be excluded that resident or infiltrating immune cells, like 

macrophages or neutrophils, release endogenous GABA during persistent 

inflammation. In addition, some reports claim that GABA or GAD is present 

in virtually all peripheral afferent neurons including those of DRG and TG 

neurons (Du et al. 2017, Hanack et al. 2015, Hayasaki et al. 2006). Therefore, 

further studies are required to address the source of endogenous GABA 

activating the peripheral GABAA receptors localized on the peripheral 

cutaneous nerve endings under persistent inflammation conditions.

Based on these results, targeting peripheral GABAAR-mediated 

signaling can effectively attenuate both spontaneous pain and mechanical 

hypersensitivity during persistent inflammatory conditions. In addition, those 

analgesic effects of picrotoxin (Fig. 5C, 6A-C) are more significant than 

bicuculline (Fig. 5D, 6D-F), even though I employed similar dose of 

antagonists, based on other studies with formalin models in rodents (Carlton, 

Zhou, and Coggeshall 1999, Jang et al. 2017). It has been widely accepted 

that picrotoxin is a non-competitive antagonist of GABAAR, whereas 

bicuculline is a competitive antagonist (Johnston 2013, Olsen 2006). This 

suggests that the resulting inhibition from bicuculline can be influenced by 

endogenous GABA concentration in the inflamed site. Furthermore, 

picrotoxin is now known to act upon GABACRs (also known as GABAARs 
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containing ρ subunits) and glycine receptors (Johnston 2013), whereas 

bicuculline is not able to affect GABACR. Since it has been demonstrated that 

GABAcRs (Lee, Charbonnet, and Gold 2012, Maddox et al. 2004) and 

glycine receptors (Wang et al. 2018) are expressed in DRG neurons, these 

results may imply the presence of GABACR in peripheral nerve endings. 

Therefore, kinetic mechanisms of inhibitors and the subunit composition 

should be confirmed in further studies for the development of drugs targeting

GABAAR. Although I observed strong analgesic effects in the behavioral test 

using GABA signaling blockade, peripheral GABAAR-mediated signaling is 

still one of the contributors that can sufficiently modulate the inflammatory 

pain threshold in CFA-injected mice.

Since GABA and GABAARs are present not only in the CNS but also in 

the PNS, their systemic modulation may induce convulsions or adverse 

effects. Therefore, non-CNS acting GABAAR antagonists or localized 

therapeutic approaches need to be developed for targeting peripheral 

GABAAR. Recently, several humanized IgG monoclonal antibodies against 

ligands or their receptors have been applied to selective prevention of pain 

(Li, Zheng, and Chen 2017, Pellesi, Guerzoni, and Pini 2017). Targeting 

specific subunits of GABAAR to be expressed in peripheral endings can also

be a feasible therapeutic application. Therefore, I suggest that functional 

blockade of peripheral GABA or GABAA receptors by such antibodies may 

be a novel therapeutic approach for treating persistent inflammatory pain.

In conclusion, it is verified in chapter 1 that peripheral GABAAR has a 

critical role in potentiating CFA-induced hypersensitivity and revealed that 

endogenous GABA is produced by the inflamed tissue. Therefore, peripheral 

GABAAR signaling in inflamed tissue may be a novel potential therapeutic 
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target for alleviating persistent inflammatory pain.
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CHAPTER 2: 

Cellular Mechanisms of TRPM8 

Channels Contributing to Dentin 

Hypersensitivity 

* This chapter has been reproduced from the article published by Pa Reum 

Lee, Jeong-Yun Lee, Han-Byul Kim, Jin-Hee Lee, Seog Bae Oh. TRPM8 

Mediates Hyperosmotic Stimuli-Induced Nociception in Dental Afferents. 

Journal of Dental Research, 2020, Jan;99(1):107-114. doi: 

10.1177/0022034519886847.
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ABSTRACT

Hyperosmolar sweet foods onto exposed tooth dentin evoke sudden and 

intense dental pain, called dentin hypersensitivity. However, it remains 

unclear how hyperosmolar stimuli excite dental primary afferent (DPA) 

neurons and thereby lead to dentin hypersensitivity. This study elucidated 

whether TRPM8, which is well known as a cold temperature- or menthol-

activated receptor, additionally mediates nociception in response to 

hyperosmolar stimuli in adult mouse DPA neurons, which are identified by a 

fluorescent retrograde tracer: DiI. Single-cell reverse transcription 

polymerase chain reaction revealed that TRPM8 was expressed in subsets of 

DPA neurons and that TRPM8 was highly colocalized with TRPV1 and 

Piezo2. Immunohistochemical analysis also confirmed TRPM8 expression in 

DPA neurons. By using Fura-2-based calcium imaging, application of 

hyperosmolar sucrose solutions elicited calcium transients in subsets of the 

trigeminal ganglion neurons, which was significantly abolished by a selective 

TRPM8 antagonist: N-(3-Aminopropyl)-2-[(3-methylphenyl)methoxy]-N-

(2-thienylmethyl)benzamide (AMTB) hydrochloride. When I further 

examined changes of c-fos expression (a neuronal activation marker) in the 

spinal trigeminal nucleus after hyperosmolar stimulation onto exposed tooth 

dentin, c-fos mRNA and protein expression levels were increased and were 

also significantly reduced by AMTB, especially in the spinal trigeminal 

interpolaris-caudalis transition zone (Vi/Vc). Taken together, these results 

provide strong evidence that TRPM8 to be expressed in DPA neurons might 

mediate dental pain as a hyperosmosensor in adult mice.
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INTRODUCTION

Dentin hypersensitivity is sudden, sharp, and intense dental pain, occurring 

when tooth dentin is exposed, and it typically disturbs patients during eating 

and drinking (Dababneh, Khouri, and Addy 1999). Dentin hypersensitivity 

results from various thermal, chemical, mechanical, and osmotic external 

stimuli (Cook et al. 1997, Dababneh, Khouri, and Addy 1999, Chung, Jung, 

and Oh 2013) that are conveyed by dental primary afferent (DPA) neurons 

innervating tooth pulp. Diverse molecular transducers that include transient 

receptor potential (TRP) channels and Piezo2 channel have been identified in 

DPA neurons that respond to thermal, chemical, and mechanical stimuli (Kim, 

Chung, et al. 2011, Won et al. 2017, Hossain et al. 2019).

Osmotic stimuli are known to evoke dentin hypersensitivity by inducing 

dentinal fluid movement (i.e. by the hydrodynamic theory; Brännström and 

Astroem 1964, Anderson and Matthews 1967, Chung, Jung, and Oh 2013). 

Based on this mechanism, several studies have identified hypo-osmosensors 

or mechanoreceptors that are activated by cell swelling, such as TRPV1 (Sato 

et al. 2013), TRPV2 (Gibbs, Melnyk, and Basbaum 2011, Sato et al. 2013), 

TRPV4(Sato et al. 2013), TRPM7 (Won et al. 2018), and TRPA1 (Tsumura et 

al. 2013), in dental tissues of rodents. Indeed, sweet foods with high 

osmolarity (e.g., soft drinks containing sugar with 678 to 817 mOsm/kg; 

Feldman and Barnett 1995) also frequently evoke dentin hypersensitivity 

(Sood et al. 2016); however, little is known about how sweet substances excite 

DPA neurons and thereby evoke dentin hypersensitivity.
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The TRPM8 (transient receptor potential cation channel, subfamily M,

member 8), which detects cold temperature or menthol in peripheral sensory 

neurons (McKemy, Neuhausser, and Julius 2002), has been reported to play a 

crucial role in dental pain evoked by cold stimuli in DPA neurons (Park et al. 

2006, Kim et al. 2015, Hossain et al. 2019). Recently, it was demonstrated 

that the TRPM8 acts as a polymodal channel that is also sensitive to 

extracellular hyperosmolarity in corneal afferent neurons and mediates eye 

blinking in mice (Quallo et al. 2015, Bereiter et al. 2018). Therefore, I 

hypothesized that TRPM8 might serve as a hyperosmosensor in DPA neurons 

and contribute to the dentin hypersensitivity.

In the present study, I thus examined the expression patterns of TRPM8 

in DPA neurons from adult mice via single-cell reverse transcription 

polymerase chain reaction (scRT-PCR) and immunohistochemical analysis. I 

also verified whether TRPM8 responds to hyperosmolar sucrose solution in 

the trigeminal ganglion (TG) neurons via Fura-2-based calcium imaging and 

whether TRPM8 in DPA neurons mediates upregulation of c-fos expression 

as a marker of hyperosmolarity-induced nociception in the spinal trigeminal 

nucleus (TN).
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MATERIALS AND METHODS

Animals

All experiments were performed with a total of 64 C57BL/6 male mice (5 to 

7 weeks old). All surgical and experimental procedures were approved by the 

Institutional Animal Care and Use Committee (IACUC) at Seoul National 

University. Mice were housed 2 to 6 per cage in a temperature-controlled 

room (23 ± 1℃, 12 h light-dark cycle) and were maintained with free access 

to food and water. This study conformed to the ARRIVE guidelines (Animal 

Research: Reporting In Vivo Experiments) for preclinical animal studies.

Retrograde labeling and primary culture of DPA neurons

By modifying methods described previously (Eckert, Taddese, and 

McCleskey 1997, Won et al. 2017), the dentin and tooth pulp of the maxillary 

first molars on both sides of the jaw were exposed with a low-speed dental 

drill and a round bur in mice, anesthetized with an intraperitoneal (i.p.) 

injection of pentobarbital (50 to 80 mg/kg). Crystals of 1,1′-Dioctadecyl-

3,3,3′,3′-tetramethylindocarbocyanine perchlorate (DiI; Molecular Probes) 

were filled into the maxillary molar, and then the dental cavity was sealed 

with the dental cement (#21, GC Fuji II, GC Corporation) according to the 

manufacturer’s instructions. Two weeks post-labeling, TG tissues were 

harvested in cold Ca2+-/ Mg2+-free Hank’s Balanced Salt Solution (HBSS, 

Life technologies) and were cultured as previously described (Lee et al. 2018), 

except for trypsinization with 0.16% trypsin for 7 min at 37℃. TG neurons 
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were prepared a day prior to the single-cell reverse transcription polymerase 

chain reception and the calcium imaging experiment.

Single-cell reverse transcription polymerase chain reaction (scRT-PCR)

Before collection, neurons were examined for DiI signals (red) and isolectin 

B4-FITC conjugate (Sigma) positivity (green) under a fluorescence 

microscope as previously described (Won et al. 2017). Neurons were 

collected randomly irrespective of cell body diameters with 

micromanipulation. Complementary DNAs (cDNAs) of collected neurons 

were synthesized by reverse transcriptase (superscript III, Invitrogen) 

according to the manufacturer’s instructions and were used for nested PCR 

amplifications with separate primer pairs (Trpm8, Trpv1, Piezo2, Tas1r2, 

Calca, and Gapdh, Table 2). All primers were designed as exon junction 

primers to avoid residual genomic DNA contamination. The first-round PCR 

was performed in 25 µL of the reaction buffer (2X Platinum Green Hot Start 

PCR Master Mix, Invitrogen) containing 3 µL of RT product and 0.2 µM outer 

primers, followed by PCR reactions of 20 cycles according to the 

manufacturer's instructions. For the second-round PCR, the reaction buffer 

(25 µL) contained 2 µL of the products from the first-round PCR and 0.8 µM 

inner primers. The PCR condition was kept same as the first-round PCR 

except for increment of the cycle number to 35 cycles. Only for Gapdh primer, 

6 µL RT products and 0.8 µM inner primers were used with same protocol for 

the second-round PCR. All PCR products were then displayed on SafePinky 

(GenDEPOT)-stained 1.5% agarose gel.

Calcium imaging
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Cultured neurons were loaded with 2 µM Fura-2 AM (Molecular Probes) for 

40 min in serum-free media at 37℃. Experimental procedures were 

performed as previously described (Park et al. 2006, Quallo et al. 2015, Won 

et al. 2018). To suppress baseline TRPM8 activity in the range of 307 to 310 

mOsm/kg (Quallo et al. 2015), I used lower osmolar bath solution (274 ± 1.87 

mOsm/L) containing 120 mM NaCl, 2 mM CaCl2, 1 mM MgCl2, 5 mM KCl, 

10 mM glucose, and 10 mM HEPES and buffered to pH 7.41 ± 0.01 with 

NaOH. Hyperosmolar sucrose solution was made by adding sucrose (6.6% 

w/v [weight/volume]) to the bath solution (final osmolarity, 489 ± 6.42 

mOsm/L). Images of cells were captured every 1 s, and calcium transients 

were measured by the fluorescence ratio (F340/F380) using MetaFluor 

software (version 7.8.13.0; Molecular Devices). Living neurons were 

identified by 50 mM KCl or 10 µM ionomycin-induced calcium transients. 

Hyperosmolarity-sensitive neurons that displayed at least two reproducible 

calcium transients, with ≥ 7% of the maximal amplitude by 50 mM KCl, 

following three sequential applications of hyperosmolar sucrose solution,

were used for the analysis. Both bath solution and hyperosmolar sucrose 

solution were made fresh, and the osmolality was measured by freezing point 

depression using an osmometer (Advanced Instruments, Inc.) before every 

experiments.

Hyperosmolar stimulation to the teeth

The dentin of the right maxillary first molar in each mouse was exposed with 

a low-speed dental drill and a round bur in mice under pentobarbital 

anesthesia (50 to 80 mg/kg, i.p.). The stimulation with the following solutions 

was repetitively applied to the exposed tooth dentin at least 15 times for 30 



６９

min by means of a 31G insulin syringe. The iso-osmotic phosphate-buffered 

saline (PBS) solution (302 ± 1.32 mOsm/L, 15 µL) for vehicle, the 

hyperosmolar sucrose solution in PBS solution (5.72% w/v; final osmolarity, 

478 ± 1.22 mOsm/L, 15 µL), and AMTB (30 µM, 15 µL), which was included 

in hyperosmolar sucrose solutions, were prepared on the day of the 

experiment.

Quantitative reverse transcription polymerase chain reaction (RT-qPCR)

Mice were sacrificed 1 h after hyperosmolar stimulation. The brainstem was 

coronally sliced and was ranged from -8.5 mm (Vc) to -7.5 mm (Vi/Vc) 

caudal to bregma with a mouse brain slicer (Zivic instruments). The TN 

regions were harvested with 1-mm biopsy punches (Kai medical) from 

coronal sections and were immediately submerged in RNAlater solution 

(Invitrogen) at 4℃. The total RNA was extracted by using the Direct-zol RNA 

miniprep Kit (Zymo research), and 200 to 250 ng of the total RNA was used 

for cDNA synthesis with the QuantiTect Reverse Transcription kit (Qiagen) 

according to the manufacturer's instructions. For quantitative PCR, each 

sample containing cDNAs (10 ng) was run in triplicate with PowerUp SYBR 

Green PCR Master Mix Kit (Applied Biosystems) and was performed using 

a StepOnePlus Real-Time PCR system (Applied Biosystems) under the 

following conditions: 50℃ for 2 min, 95℃ for 2 min, 40 cycles of 95℃ for 

3 sec, and 60℃ for 30 sec, followed by a dissociation stage. The primer pairs 

for c-fos and Gapdh are indicated in the Table 2. All experimental groups 

relative to the Naïve control group were calculated by the ∆∆CT method with 

GAPDH as the reference gene as previously described (Lee et al. 2018).
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Immunohistochemistry

The harvested TG tissues were fixed overnight in 4% paraformaldehyde in 

PBS (PFA; T&I), then transferred to 30% sucrose in PBS at 4℃. Serial frozen 

transverse sections (thickness: 15 µm) were mounted on SuperFrost Plus 

Slides (Thermo scientific) and were stored at -20℃ for later use. Sections 

were washed with PBS and were blocked with blocking solution (1% bovine 

serum albumin (BSA) in 0.2% tween 20 in PBS) for 2 h, followed by 

incubation of rabbit anti-TRPM8 (1/100 dilution in blocking solution, Cat. 

ACC-049, Alomone Labs) overnight at 4℃. Next day, sections were washed 

with PBS and were subsequently stained with donkey anti-rabbit Alexa Fluor 

647 (1:200, 0.05% tween 20 in PBS, Molecular Probes) for 2 h at room 

temperature (RT). NeuroTrace 500/525 green fluorescent Nissl stain (1/100 

dilution in PBS, Molecular Probes) was incubated for 20 min to specifically 

identify neuronal cell body size and then was washed with 0.1% tween 20 

(Bio-Rad) in PBS. All sections were mounted on slides with Mowiol 4-88 

embedding medium (Sigma) and were examined by confocal microscope 

(LSM 700; Carl Zeiss).

For c-fos immunostaining, mice were sacrificed 2 h after hyperosmolar 

stimulation, and frozen whole brainstem tissues, which were fixed with 4% 

PFA, were transversely cut (thickness, 40 µm). I determined three TN regions 

by serial sections, including the spinal trigeminal subnucleus caudalis (Vc; -

0.16 to 0 mm caudal to the obex; obex = 0 mm), the spinal trigeminal 

subnucleus interpolaris-caudalis transition zone (Vi/Vc; 0.16 to 0.32 mm 

rostral to the obex), and the spinal trigeminal interpolaris (Vi; 0.48 to 0.64 

mm rostral to the obex). All c-fos immunostaining procedures were prepared 

as previously described (Lee et al. 2017). Free-floating sections were washed 
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with PBS, were immersed into 0.3% H2O2 (in distilled H2O) for 30 min for 

quenching, and were blocked with 5% normal goat serum (NGS) in 0.3% 

PBST (triton X-100 in PBS) for 1 h at RT, sequentially. Sections were 

incubated with rabbit anti-c-fos (1/1000 dilution in 1% NGS in 0.3% PBST; 

Calbiochem) for 3 days at 4℃, were washed with PBS, and were incubated 

with biotinylated goat anti-rabbit (1/200 dilution in PBS; Vector Laboratories) 

for 2 h at RT. Sections were processed with Vectastain ABC kit (Vector 

Laboratories) for 1 h and DAB kit (Vector Laboratories). After dehydration 

steps, all sections were mounted on silane-coated slide grass (Muto Pure 

Chemicals Co., LTD) with hardening mounting medium (Sigma) and were 

examined under bright-field microscope (DM5000B, Leica).

Compounds

Icilin (Tocris) stock solution (10 mM in DMSO), N-(3-Aminopropyl)-2-[(3-

methylphenyl)methoxy]-N-(2-thienylmethyl)benzamide (AMTB) 

hydrochloride (Tocris) stock solution (10 mM in distilled H2O), ionomycin 

(Tocris) stock solution (5 mM in DMSO), and gadolinium (III) chloride 

hexahydrate (Sigma) stock solution (1 M in distilled H2O) were stored at -20

℃ before use in the experiment. Sucrose (D(+)-Saccharose) was purchased 

from Sigma. 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine 

perchlorate (DiI) was purchased from Molecular Probes. PBS, pH 7.4 was 

purchased from Life Technologies. All other chemicals were purchased from 

VWR Chemicals or Sigma.

Data analysis and statistics
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To analyze cell body diameters (µm) for cultured DPA neurons, mean vertical 

and horizontal lengths were measured under bright-field microscope. All 

subsequent immunohistochemical analyses were measured with ImageJ 

software (National Institutes of Health). To identify TRPM8 labeling of DiI-

labeled DPA neurons, each neuron was counted as being either TRPM8 

positive neuron or TRPM8 negative neuron based on its cross-sectional area 

(µm2) of TRPM8 labeling according to guidelines (Jensen 2013). 

The c-fos-positive cells in the brainstem sections were counted by an 

experimenter who was unaware of which treatment each animal had received, 

as previous described (Lee et al. 2017). Briefly, the TN regions were 

confirmed by serial sectioning of brainstem tissues, and one to two adjacent 

sections with the highest expression of c-fos in three TN regions 

corresponding to the Vc, the Vi/Vc, or the Vi per each mouse, were selected 

and were analyzed. The image of selected sections was converted to grey 

scale (8 bit), subtracted background (30 pixels), enhanced (30%), and 

sharpened. Intensity threshold (0.2%) was adjusted, and then the positive 

particles were automatically detected only within the different regions.

Data in figures are presented as mean ± SEM. All statistics were 

performed by Prism software (version 6.01; GraphPad). Statistical 

significance was achieved by one-way analysis of variance (ANOVA) with 

Bonferroni post hoc test. Differences with p values < 0.05 were regarded as 

statistically significant.
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TABLES

Table 2. List of primers used 

Target 

Gene (bp)
Outer Primer Sequences Inner Primer Sequences GeneBank No.

Trpm8

(300, 130)

(F) GTACATAGGCGAGGT

GGTGAGA

(R) CTGGTGCGCTCAGAG

ATGTACT

(F) CATGGTCTCCAACAG

GGACAC

(R) CAGCAGGTGGGTAT

GGTTGTT

NM_134252.3

Trpv1

(293, 115)

(F) CATCTTCACCACGGC

TGCTTA

(R)AGAACACCATGGAA

GCCACAT

(F) GCGACCATCCCTCAA

GAGTT-3’

(R) ATACTCCTTGCGATGG

CTGA

NM_001001445.2

Piezo2

(232, 160)

(F) GTCGCAACACGGAAT

AGCAT

(R) TCAGGTTGAGAACCC

ACCAC

(F) ATTGCTGGCAATGAC

ACAGA

(R) TGTCTCTGAACAAAA

TGATGGTG

NM_001039485.4

Tas1r2

(364, 156)

(F) TCGACCCTGTTCTACA

CAACCT

(R) ACATGCCAGATCTCC

CTGAGTA

(F) CATCACCGAGTCCTTT

AACAACG

(R) AGCTGCCATGGATAG

ACGATTT

NM_031873.1

Calca

(242, 156)

(F) GCCTTTGAGGTCAAT

CTTGG

(R) CCTTCACCACACCTC

CTGAT

(F) CACTCTCAGTGAAGA

AGAAGTTCG

(R) GTCACACAGGTGGCA

GTGTT

NM_001289444.1

NM_001033954.3

Gapdh

(282 bp)

(F) CCAGAACATCATCCC

TGCAT-3’

(R) GCATCGAAGGTGGAA

GAGTG-3’

NM_001289726.1 

NM_008084.3

c-fos

(100 bp)

(F) GGTGAAGACCGTGTC

AGGAG-3’

(R) CCTTCGGATTCTCCGT

TTCTCT-3’

NM_010234.3
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RESULTS

Localization of TRPM8 in DPA neurons

I first determined TRPM8 expression in DPA neurons via 

immunohistochemical analysis. DiI-labeled DPA neurons from the maxillary 

first molar were distributed only in the maxillary (V2) region, not in the 

ophthalmic (V1) and mandibular (V3) regions of the TG (Fig. 10Aa), 

consistent with our recent study (Won et al. 2017). All DiI-labeled cells turned 

out to be neuronal cells with Nissl staining (Fig. 10Ab–Ad). I found that 28% 

(n = 16 of 57) of DiI-labeled DPA neurons were colabeled with TRPM8 (Fig. 

10B, C). The 75% (n = 12 of 16) of the TRPM8+ DPA neurons and 75% (n = 

43 of 57) of the total DPA neurons were distributed within a range of medium-

sized neurons (Fig. 10C), consistent with previous reports in rats (Fried et al. 

1989, Pan et al. 2003, Kvinnsland et al. 2004, Fried, Sessle, and Devor 2011).

Molecular characterization of Trpm8-expressing DPA neurons

I then examined the Trpm8 mRNA expression profiles of DiI-labeled DPA 

neurons via scRT- PCR by comparing with potential markers for DPAs: 

TRPV1, IB4, and PIEZO2. TRPV1 is heat receptor and is expressed 

exclusively in unmyelinated C-fibers (Hossain et al. 2019), and IB4 positivity 

indicates non-peptidergic C-fibers (Stucky and Lewin 1999). However, 

PIEZO2 is the mechanosensitive receptor expressed in predominantly 

myelinated A-fibers (Won et al. 2017). All DPA neurons were IB4 negative 

(Fig. 11A), which is consistent with previous studies (Kvinnsland et al. 2004, 

Le Pichon and Chesler 2014, Chen et al. 2017), and 12.5% (n = 5 of 40) of 
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DPA neurons expressed Trpm8 mRNA (Fig. 11A, B). Interestingly, 

thermosensitive Trpv1 and mechanosensitive Piezo2 were highly co-

expressed in the majority of Trpm8 mRNA-expressing DPA neurons (80%, n

= 4 of 5, Fig. 11C) and in medium-sized DPA neurons (Fig. 11D).

Hyperosmolar sucrose solution activates TRPM8 in TG neurons

Since TRPM8 is a Ca2+-permeable cation channel (McKemy, Neuhausser, and 

Julius 2002), I verified whether hyperosmolarity activates TRPM8 in TG 

neurons via calcium imaging. Hyperosmolar sucrose solution elicited calcium 

transients in subpopulations (8.2%, n = 24 of 294) of TG neurons, which were 

also responsive to icilin, a TRPM8 agonist (Fig. 12A, F). Three sequential 

applications of hyperosmolar sucrose solution produced comparable and 

reproducible calcium transients (Fig. 12B, C), and I found that second 

calcium transients were significantly abolished by pretreatment with AMTB, 

a selective TRPM8 antagonist, in a dose-dependent manner in icilin-

responsive neurons (Fig. 12D, E). Populations of hyperosmolar-sensitive 

neurons within TG neurons were also decreased by AMTB in a dose-

dependent manner (Fig. 12F).

The Vi/Vc region is critical for hyperosmolarity-induced nociception 

from DPA neurons

The immediate early gene c-fos mRNA (Sawamura et al. 1999) or protein 

(Hunt, Pini, and Evan 1987) expression, which is trans-synaptically regulated 

by noxious stimulation of sensory afferents, has been widely used as a 

neuronal marker of nociception in the spinal dorsal horn or the spinal TN 

(Harris 1998). I found that the c-fos mRNA expression levels were 
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significantly upregulated after hyperosmolar stimulation onto the exposed 

tooth dentin in the ipsilateral TN as compared with vehicle and that their 

enhancements were also significantly inhibited by AMTB (Fig. 13A, B), 

while. its expression levels were not changed in the contralateral side. 

Changes in c-fos expression were then analyzed at the protein level in the 

ipsilateral subnuclei of TN corresponding to the Vc, Vi/Vc, or Vi, respectively. 

The number of c-fos-positive neurons was increased after hyperosmolar 

stimulation as compared with vehicle in the Vi/Vc, which was also inhibited 

by AMTB (Fig. 13E, F). However, c-fos expression was not changed in 

neither the Vc (Fig. 13C, D) nor the Vi (Fig. 13G, H). Taken together, these 

results suggest that the Vi/Vc region may be critical for the transmission of 

hyperosmolarity-induced nociception, mediated by TRPM8, in teeth.
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Figure 10.
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Figure 10. Expression of TRPM8 in DPA neurons

(Aa) Representative image shows DiI-labeled DPA neurons (red) and Nissl-

stained somata of neuronal cells (green) in the TG. Scale bar: 200 µm. (Ab-

Ad) Inset in panel Aa is the high-magnification images. Arrows indicate DiI-

labeled DPA neurons. Scale bars: 20 µm. (Ba-Bd) TRPM8 (green) was 

expressed in DiI-labeled DPA neurons (red), which were stained by Nissl 

(violet). Arrows show TRPM8+ DPA neurons, and arrowheads indicate 

TRPM8- DPA neurons. Scale bars: 20 µm. (C) The majority was within a 

range of medium-sized (401 to 800 µm2) TRPM8+ DPA neurons (201 to 400 

µm2, n = 1; 401 to 600 µm2, n = 4; 601 to 800 µm2, n = 8; 801 to 1,000 µm2, 

n = 3) and total DPA neurons (201 to 400 µm2, n = 1; 401 to 600 µm2, n = 22; 

601 to 800 µm2, n = 21; 801 to 1,000 µm2, n = 13). n = 5 mice.
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Figure 11.
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Figure 11. Characterization of Trpm8-expressing DPA 

neurons

(A) Representative agarose gels show 9 individual DPA neurons for each 

scRT-PCR product and total TG tissue as positive control. Predicted sizes for 

selected markers: Trpm8 (130 bp), Trpv1 (115 bp), Piezo2 (160 bp), and 

Gapdh (282 bp). (B) Additional scRT-PCR analysis indicates that the 

expressional profile of collected DPA neurons revealed Trpm8+ only (2.5%, n

= 1), Trpv1+ only (25%, n = 10), Piezo2+ only (17.5%, n = 7), 

Trpm8+Trpv1+Piezo2+ (10%, n = 4), Trpv1+Piezo2+ (40%, n = 16), or Trpm8-

Trpv1-Piezo2- (5%, n = 2). n = 40 neurons from 11 mice. (C) Pie graph 

representation of TRPM8+ DPA neurons. (D) Size distribution of Trpm8, 

Trpv1, and Piezo2 mRNA-expressing DPA neurons.
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Figure 12.
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Figure 12. Effects of hyperosmolar sucrose solution on 

intracellular calcium transients in TRPM8-expressing 

TG neurons

(Aa-Ab) Representative cell image of pseudocolor ratiometric [Ca2+]i images 

in TG neurons. Scale bars: 30 µm. Representative traces (B) and quantitative 

data (C) of reproducible calcium transients by hyperosmolar sucrose solution 

(489 ± 6.42 mOsm/L) in 1 µM icilin-responding neurons, ns (one-way 

ANOVA with Bonferroni post hoc test), n = 17 neurons from 2 mice. 

Representative traces (D) and quantitative data (E) of dose-dependently 

blocked calcium transients by pretreatment with AMTB, *p < 0.05 (one-way 

ANOVA with Bonferroni post hoc test, n = 9 neurons from 2 mice), **p < 0.01 

(one-way ANOVA with Bonferroni post hoc test, n = 11 neurons from 2 mice). 

Bars represent mean ± SEM. ANOVA, analysis of variance; ns, not significant. 

(F) Percentage summary of hyperosmolar-sensitive neurons that are observed 

in subsets of TG neurons and percentage of TG neurons remaining responsive 

after 1 µM (0.8%, n = 3 of 368) or 10 µM (0%, n = 0 of 366) AMTB 

pretreatment. (G) The representative gels showing scRT-PCR products from 

Trpm8 mRNA-expressing DPA neurons and whole TG and tongue tissue as 

positive controls. Predicted sizes for selected markers Trpm8 (130 bp), Tas1r2

(156 bp), Calca (156 bp), and Gapdh (282 bp).
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Figure 13.
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Figure 13. Effects of hyperosmolar stimuli onto the 

exposed dentin on c-fos expression in the TN from 

adult mice

(A-B) RT-qPCR shows changes of c-fos mRNA levels in the ipsilateral TN, 

*p < 0.05, **p < 0.01 (one-way ANOVA with Bonferroni post hoc test, A), but 

not in the contralateral TN, ns (one-way ANOVA with Bonferroni post hoc 

test, B), of the hyper group (478 ± 1.22 mOsm/L, 15 µL) as compared with 

the phosphate-buffered saline vehicle group (302 ± 1.32 mOsm/L, 15 µL). 

Their enhancements were also significantly inhibited in the hyper + AMTB 

group (30 µM, 15 µL). n = 5 to 8 mice per each group. Bar graphs indicate 

fold changes in mRNAs relative to naïve controls (n = 4 mice, data not shown). 

(C-H) Representative images of the c-fos staining in the ipsilateral Vc (C), 

Vi/Vc (E), and Vi (G). Quantitative analysis of the c-fos expression in the Vc, 

ns (one-way ANOVA with Bonferroni post hoc test, D), Vi/Vc, **p < 0.01 

(one-way ANOVA with Bonferroni post hoc test, F), and Vi, ns (one-way 

ANOVA with Bonferroni post hoc test, H). n = one or two sections were used 

from the same animal. n = 4 to 7 mice per each group. Scale bars: 200 µm. 

Data are expressed as mean ± SEM. ANOVA, analysis of variance; ns, not 

significant.
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Figure 14.
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Figure 14. A mechanosensitive ion channel blocker 

does not inhibit hyperosmolar sucrose solution-

induced calcium transients

(A-B) A representative trace (A) and quantitative data (B) of reproducible 

calcium transients which were not blocked by 30 µM Gd3+ in 1 µM icilin-

responding TG neurons. The delta fluorescence ratio (ΔF340/F380) was 

measured as the difference between the basal fluorescence ratio recorded 

before drug treatments and the peak fluorescence ratio, ns (one-way ANOVA 

with Bonferroni post hoc test), n = 19 neurons from 2 mice. Bars represent 

mean ± SEM. ANOVA, analysis of variance; ns, not significant.
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DISCUSSION

In chapter 2, I demonstrated the following findings: TRPM8 channels were 

molecularly and functionally expressed in subsets of DPA neurons. TRPM8-

expressing TG neurons responded to hyperosmolar stimuli, and hyperosmolar 

sucrose solution-induced calcium transients were blocked by AMTB in a 

dose-dependent manner. Hyperosmolarity-induced nociception, determined 

by the c-fos expression, was significantly attenuated by AMTB in the TN, 

critically in the Vi/Vc region. Therefore, my results suggest that TRPM8 in 

DPA neurons contributes to dental nociception as a hyperosmosensor in adult 

mice.

With respect to the labeling methods of DPA neurons, most previous 

studies (Cook et al. 1997, Eckert, Taddese, and McCleskey 1997, Park et al. 

2006, Kim, Chung, et al. 2011, Won et al. 2017) labeled DPA neurons with 

crystal DiI in rats, except for a study in mice that used paste DiI (Kadala et al. 

2018). I verified in the present study that DiI-labeled DPA neurons were 

located only in the V2 region of the TG (Fig. 10A). Placing crystal DiI directly 

on the pulp, I could minimize pulp inflammation by preventing bleeding. 

Furthermore, the expression of neuronal CGRP, which is related to dentin 

injury and pulpal inflammation (Byers 1994), was comparable between the 

ipsilateral (surgical side) and contralateral (non-surgical side) TG (data not 

shown), suggesting that DPA neurons are less affected by pulpal inflammation 

in my experimental conditions. I also found that the number of accessible 

maxillary molar was limited to one from each side in a mouse model, even 

though it is possible to use up to three maxillary molars in each side of the 
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jaw for labeling DPA neurons in rats (Eckert, Taddese, and McCleskey 1997), 

and the number of DiI-labeled DPA neurons per each molar in mice was also 

slightly smaller than in rats (data not shown).

The population of TRPM8-expressing neurons is restricted to a relatively 

small population (5% to 10%) of adult DRG but higher in TG than DRG 

(McKemy, Neuhausser, and Julius 2002, Kobayashi et al. 2005, Le Pichon 

and Chesler 2014). Previous works with mutant mice expressing a green 

fluorescent protein under the control of the TRPM8 promoter have reported 

that TRPM8 is expressed in 6% (Michot, Lee, and Gibbs 2018), 13% (Kim et 

al. 2015), or 49% (Kadala et al. 2018) of labeled DPA neurons. In this study, 

it was presented that expression of TRPM8 was in subsets of DPA neurons, 

which were medium-sized in diameter (Fig. 10C, 11D).

The majority of Trpm8 mRNA was colocalized with Trpv1 and Piezo2

mRNAs in DPA neurons (Fig. 11A-C), and Trpm8 mRNA-expressing DPA 

neurons also co-expressed with Calca mRNA encoding CGRP (Fig. 12), 

consistent with previous reports from rats (Fried, Sessle, and Devor 2011, 

Won et al. 2017) and mice (Kim et al. 2015), suggesting that TRPM8 in 

nociceptive neurons is involved in dental pain. The preferential co-expression 

of Trpm8 with Trpv1, Calca, and Piezo2 in DPA neurons may suggest that 

DPA neurons have a unique sensory population of TG neurons distinct from 

DRG neurons. To further identify detailed molecular characteristics of DPA 

neurons, single-cell transcriptome analysis can be an important strategy 

(Nguyen et al. 2017).

The Vi/Vc, as well as the Vc, is an important region where c-fos 

expression increases after noxious or cold stimulation is applied to the tooth 

(Ren and Dubner 2011, Ahn et al. 2012, Michot, Lee, and Gibbs 2018). In this 
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study, c-fos-positive neurons were increased by hyperosmolar stimulation 

critically in the Vi/Vc region, consistent with a previous report (Michot, Lee, 

and Gibbs 2018), which was significantly reduced by AMTB (Fig. 13E, F), 

suggesting that hyperosmolarity-induced nociception from the tooth may be 

due to the activation of TRPM8 in DPA neurons. Interestingly, it was noticed 

that c-fos expression was about two times higher in the Vi as compared with 

the Vc and the Vi/Vc, even in the vehicle group (Fig. 13H). As the Vi receives 

neuronal projections from the deep oral structures, such as the 

temporomandibular joint and the masseter muscle (Ohya 1992), higher c-fos 

expression in the Vi may be due to their activation during surgery for 

hyperosmolar stimulation. Nevertheless, the upregulation of c-fos-positive 

neurons was not reduced by AMTB in the Vi (Fig. 13G, H), suggesting 

minimal involvement of TRPM8 in neuronal activation of the Vi during the 

surgery procedure.

It has been demonstrated that noxious cold stimulation of the tooth in 

mice significantly increases c-fos expression only in the Vi/Vc, not in the Vc 

or the Vi, and the upregulation of c-fos is not reduced by the TRPM8 knockout 

mice or the application of a selective TRPA1 antagonist (Michot, Lee, and 

Gibbs 2018). This result suggests that the TRPM8 and TRPA1 have minor 

effects on dental nociception following cold stimulation (Michot, Lee, and 

Gibbs 2018). However, an increase in osmolarity elevates the temperature 

threshold for TRPM8 activation to a physiologically relevant temperature 

(e.g., 37℃) (Quallo et al. 2015), suggesting that cold-evoked dental 

nociception can be affected by hyperosmolarity. To address relationships 

between cold and osmolarity, it remains to be elucidated how TRPM8 has 

polymodal roles, responding to cold temperature and hyperosmolar stimuli.
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Furthermore, another issue is related to the controversy regarding 

menthol-evoked nociception. Menthol, derived from peppermint, acts as one 

of the agonists of cold-activated TRPM8 channel (Clapham 2002). Menthol 

has widely been used as topical pain relievers applied to the skin (Fernandez-

Pena and Viana 2013). Menthol is also commonly contained in toothpaste 

with implications for flavors, anti-inflammatory properties, prevention of 

tooth decay, whitening teeth, and refreshing feelings (Nectar Lifesciences, 

n.d.). It has not yet been reported that the menthol produces dentin 

hypersensitivity in exposed tooth dentin. However, some papers have 

reported that very high concentrations of menthol (~40%) applied topically to 

the skin are noxious in human objectives (Binder et al. 2011, Wasner et al. 

2004). In efforts to understand how TRPM8 activators interact with the 

channel, the desensitization mechanisms of TRPM8, similar to heat 

desensitization of TRPV1 by capsaicin, have been studied. For example, cold-

and cooling agents (e.g., menthol and menthol derivatives)-evoked responses 

reflect Ca2+-dependent desensitization (Diver, Cheng, and Julius 2019, Kuhn, 

Kuhn, and Luckhoff 2009). It is also contributing to our cold adaptation 

(Yudin et al. 2011). However, icilin (super-cooling agent) modulates TRPM8 

activity through the specific ligand-binding pocket (Diver, Cheng, and Julius 

2019). Due to these different mechanisms on TRPM8, its activators can lead 

to controversial results. Therefore, further studies are needed to address how 

the hyperosmolar sucrose solution interacts with TRPM8.

For this study, I used the hyperosmolar sucrose solution to mimic 

hyperosmolar solutions and sweet substances. It is reported that hyperosmolar 

solution, which is made by an increase in either NaCl or sucrose concentration, 

yields similar results regarding hyperosmolarity-induced calcium responses 
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in cultured sensory neurons, as well as at recombinant mTRPM8 receptors 

(Quallo et al. 2015). However, it is interesting to observe that patients 

experience discomfort with sweet substances more strongly and frequently as 

compared with salty foods. This observation implies that there is probably 

another mechanism for DPA neurons to transduce nociception in response to 

sweet stimuli. Since TRPM8 mRNA-expressing DPA neurons lacked Tas1r2

mRNA encoding sweet taste receptor T1R2 (Fig. 12), this should be 

independent of sweet taste receptor signaling. On the other hand, NaCl 

solutions can be intended to treat dentin hypersensitivity via dentinal tubule 

occlusion. For example, a clinical study has demonstrated that the NaCl 

solution (3%, pH = 2.4) significantly decreases dentinal tubules’ aperture and 

thereby reduces dentin hypersensitivity (Cuenin et al. 1991). The NaCl 

solution is more effective than the 3% potassium oxalate solution (3%, pH = 

2.4), which have been used for treating dentin hypersensitivity (Cuenin et al. 

1991). Accordingly, dentin hypersensitivity can be affected differently under 

hyperosmotic conditions by sucrose solution and NaCl solution. 

The hydrodynamic theory has traditionally explained dentin 

hypersensitivity induced by sweet substance since hyperosmolar sucrose 

induces fluid movement in dentinal tubule (Brännström and Astroem 1964, 

Fried, Sessle, and Devor 2011, Chung, Jung, and Oh 2013). From the present 

study, I demonstrated that hyperosmolar sucrose solution could also activate 

TRPM8 in DPA neurons and that activation of TRPM8 in DPA neurons 

produced c-fos expression in the TN. These results suggest that TRPM8 

contributes to dental nociception by acting as a hyperosmosensor in DPA 

neurons. Given that hyperosmolar solution-induced calcium transients were 

not blocked by pretreatment with Gd3+, a mechanosensitive ion channel 
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blocker, in TRPM8-expressing TG neurons (Fig. 14), activation of TRPM8 

by hyperosmolar sucrose solutions may not be due to the changes of 

mechanical dynamics in the cell membrane.

In conclusion, it is verified in chapter 2 the role of TRPM8 expressed by 

DPA neurons in the development of dental pain evoked by hyperosmolar 

stimuli such as sweet foods.
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CHAPTER 3: 

Gene-Expression Signatures of 

the Adult Mouse Dental Sensory 

System
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ABSTRACT

External stimulation to the exposed dentin of teeth can cause dental pain, 

which is conveyed by dental primary afferent (DPA) neurons innervating 

tooth pulp. Since dental pain is the most likely evoked by light mechanical 

irritations such as brush or air puffs, there have been efforts to demonstrate 

mechanosensitive ion channels in DPA neurons. However, it remains elusive 

how these innocuous mechanical stimuli, which mostly do not activate 

nociceptors or evoke pain in the skin, generate pain within the tooth pulp 

under pathological conditions. In an effort to elucidate this observation, I 

performed full-length single-cell RNA sequencing (scRNA-seq) and 

generated whole transcriptome profiles from a total of 83 adult mouse DPA 

neurons. In this study, the downstream analyses revealed that six molecularly 

distinct subpopulations in DPA neurons. In addition, one of the largest 

subpopulations of DPA neurons consisted of neurons showing the high 

expression levels of both a low-threshold mechanosensitive Piezo2 ion 

channel and a pain-related neuropeptide Calca encoding CGRP (calcitonin 

gene-related peptide). Comparing the expression of pain-related marker genes 

amongst Piezo2-expressing DPA neurons revealed that Calca showed the 

highest co-expression rate than Trpv1 and Tac1. Taken together, scRNA-seq 

can provide insights into molecular signatures of the mouse dental sensory 

system. Furthermore, these results may suggest that low-threshold 

mechanoreceptors are involved in pain rather than touch in teeth under 

pathological conditions.
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INTRODUCTION

External stimulation to the exposed dentin of teeth can cause dental pain, 

more precisely dentin hypersensitivity, conveyed by dental primary afferent 

(DPA) neurons innervating tooth pulp (Cook et al. 1997, Chung, Jung, and 

Oh 2013). Like most somatic afferent neurons, various sensory transducers 

for responding directly to noxious external stimuli, such as thermal (e.g., 

transient receptor potential (TRP) channels) and chemical (e.g., acid-sensing 

ion channels (ASICs)), have been demonstrated in DPA neurons (Chung, Jung, 

and Oh 2013, Hossain et al. 2019, Lee et al. 2019). However, it cannot be 

explained why dentin hypersensitivity is the most likely evoked by extremely

light mechanical irritations, such as brushing, water spray, or air puffs so that 

this paradoxical phenomenon makes the dental sensory system different from 

nociceptive networks at other body sites (Cook et al. 1997, Fried, Sessle, and 

Devor 2011, Fried and Gibbs 2014). In addition, the nerve fibers are rarely 

expanded to the dentino-enamel junction, which is the most sensitive portion 

of the tooth in patients when a dental bur passes through it (Markowitz and 

Pashley 2015).

In this context, the hydrodynamic theory has first proposed by 

Brännström (Brännström and Astroem 1964). Brännström and his colleagues 

have studied the occurrence of intratubular fluid shifts in vitro in response to 

the application of hydrodynamic stimuli (e.g., thermal, evaporative, tactile, 

and osmotic; Brännström and Astroem 1964). Later in vivo animal 

experiments have directly demonstrated that intratubular fluid shifts excite 

the intradental nerves (Matthews and Vongsavan 1994, Markowitz and 
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Pashley 2015). In line with these studies, a paper has proposed that a 

particular type of low-threshold mechanoreceptors, called algoneurons or 

low-threshold nociceptors, contributes to pain rather than touch in the dental 

sensory system (Fried, Sessle, and Devor 2011). This neuronal type is 

characterized by double immunopositivity for a pain-related neuropeptide 

CGRP and NF200, a marker for myelinated Aβ-fibers. Parallelly, it has been 

demonstrated the functional expression of PIEZO2 (Won et al. 2017), ASIC3 

(Ichikawa and Sugimoto 2002), and TRPV2 (Gibbs, Melnyk, and Basbaum 

2011) to serve as the mechanotransducer in DPA neurons. However, it remains 

unclear how low-threshold mechanosensitive ion channels can generate pain 

within the tooth pulp under pathological conditions.

The identity of a cell can be described by the expression of marker genes 

or molecular characteristics of its genetic pool. An increasing number of 

studies have successfully applied single-cell transcriptomics to characterize a 

population of cells, as well as the novel differentially expressed genes within 

the subpopulation in the sensory neurons (Usoskin et al. 2015, Nguyen et al. 

2017, Li et al. 2016, Petitpre et al. 2018, Shrestha et al. 2018, Sharma et al. 

2020). Moreover, the increased read-depth of single-cell RNA sequencing 

(scRNA-seq) reveals variability in gene expression of genetic markers even 

within a single neuronal population (Sharma et al. 2020, Li et al. 2016, 

Shrestha et al. 2018).

In the present study, I investigated molecular subpopulation and unique 

gene-expression signature of DPA neurons by generating whole transcriptome 

profiles of DPA neurons using full-length scRNA-seq from a total of ten

mouse DPA neurons. DPA neurons were composed of six molecularly distinct 

subpopulations (C10, C13, C4, C6, C7, and C8) annotated from trigeminal 
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ganglion (TG) transcriptome data (Nguyen et al. 2017); subsequent 

investigation of differentially expressed genes within each subpopulation 

revealed. I also verified the specific gene-expression in DPA neurons using in 

situ hybridization technique. These results offer insights into subtype-specific 

gene-expression signatures of DPA neurons to be involved in dental pain. 
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MATERIALS AND METHODS

Animals

All experiments were performed with a total of 14 adult (five to seven weeks 

old) male C57BL/6 mice. All surgical and experimental procedures were 

approved by the Institutional Animal Care and Use Committee (IACUC) at 

Seoul National University and University of Pennsylvania.

Single-cell RNA sequencing

The workflow is described in detail below and Figure 1.

Retrograde labeling of DPA neurons

DPA neurons retrogradely labeled with a neuronal tracer 1,1'-Dioctadecyl-

3,3,3',3'-tetramethylindocarbocyanine perchlorate (DiI, Cat. D3911, 

Invitrogen) were prepared as described previously (Lee et al. 2020). 14 days 

post-labeling, DPA neurons were isolated in acute culture from the TG tissues 

as previously described (Lee et al. 2020) and were incubated up to four hours 

in a humid incubator at 37 ℃ (5% CO2) before collection.

Collection of single neurons

A total of 96 DPA neurons from ten male mice (seven weeks old) were 

prepared from two independent batches of collection. Each neuron was 

photographed for cell body area measurements before collection. The DPA 

neurons were manually collected using a glass micropipette with minimizing 

non-neuronal contaminations.
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Preparation of cDNA library and sequencing

Once the DPA neurons were separated into an individual tube, they were 

digested, reversed transcribed into non-stranded cDNA using poly-T primers, 

then amplified using SMART-Seq v4 Ultra Low Input RNA kit (Clontech) 

into cDNA libraries according to the manufacturer’s instructions, but with the 

following modifications: 1) ERCC RNA Spike-In controls (1/4000000 

dilution, Cat. 4456740, Invitrogen) were added at the cell lysis; 2) 18 PCR 

cycles were performed to amplify cDNA libraries. The libraries were diluted 

accordingly, then used to make DNA sequencing libraries by following 

Nextera XT DNA Library Preparation Kit protocol (Illumina). Then, 

sequencing libraries were analyzed using Bioanalyzer High Sensitivity DNA 

Kit (Agilent Technologies) to determine the quality of the libraries. Libraries 

that passed quality control filters (for size distributions) were sequenced using 

NextSeq 500 (Illumina) with single-end 75 base pair reads to an average of 4 

million reads per sample. Reads were trimmed for adapters and poly-A 

sequences using in-house software and then mapped to the mouse genome 

(mm10) using STAR (Dobin et al. 2013). Uniquely mapped reads were used 

for feature quantification using VERSE (Zhu et al. 2016).

Sample quality control

Based on summary statistics from in-house software, ten samples (DPA_20, 

DPA_27, DPA_07, DPA_59, DPA_94, DPA_08, DPA_56, DPA_77, DPA_43, 

and DPA_51) with “Percent Spike-In” > 5% were removed from downstream 

analyses. The above samples corresponded with the sample, whose cDNA 

concentration after reverse transcription and amplification, was lower than 
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0.5 ng/µL, so three additional samples (DPA_38, DPA_54, DPA_71) with a 

concentration of less than 0.5 ng/µL were additionally removed. Therefore, a

total of 83 samples was used in the downstream analyses.

Single-cell RNA sequencing data analysis

This paper made extensive use of the Seurat package developed by the Satija 

lab (Shekhar et al. 2016, Satija et al. 2015); in essence, the recommended 

(TransferData) methods were used to project reference data onto a query 

object (Stuart et al. 2019). Briefly, single-cell TG transcriptome data, to be 

used as the reference (Nguyen et al. 2017), provided by the Ryba lab were log 

normalized and center scaled; variable features were identified and were used 

for linear dimensional reduction (principal components analysis, PCA). As 

previously described, informative principal components were used for 

clustering, and multidimensional data were displayed in a UMAP 2-

dimensional representation. Similarly, DPA transcriptome data (query) were 

log normalized and center scaled; variable features were identified. Next, 

anchors were identified in the reference data set, and a weights matrix was 

constructed that defined the association between each query cell and each 

anchor. Afterward, a binary classification matrix where the rows correspond 

to possible cluster identities, and the columns correspond to the anchors, 

where the matrix cell is 1 if the anchor pair is a member of a certain cluster, 

was created and multiplied to the weights matrix as mentioned above to 

calculate prediction scores to transfer cluster labels onto the DPA data.

The transferred cluster labels were verified with two different separate 

cluster analyses. First, a subset of DPA transcriptome data including only 

expression data for marker genes for the TG and the DRG previously reported 
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(Nguyen et al. 2017, Sharma et al. 2020), was log normalized and was used 

for non-linear dimensional reduction (t-distributed stochastic neighbor 

embedding, t-SNE). Upon visualization in 2-dimensions, the clusters were 

well separated (PVClust to be included).

In situ hybridization

The workflow is described in detail below.

Retrograde labeling of DPA neurons

For in situ hybridization experiments, DPA neurons were labeled with a 

retrograde neuronal tracer fluoro-gold (FG, Cat. 26858, Cayman Chemical). 

All procedures of tooth dentin and pulp exposure surgery, including 

anesthesia, anti-inflammatory analgesic treatment, and surgery in mice, were 

followed as described previously (Rossi et al. 2020). A total volume of 0.5-2 

µl FG (4% in distilled water) was directly applied into an exposed dental pulp 

of maxillary molar (either a left side or both sides of the jaw) in mice, and 

then the dental cavity was sealed with the GC Fuji II dental cement (GC 

corporation) according to the manufacturer’s instructions. Upon anesthetic 

recovery, animals were returned to their home cages.

Sample preparation and in situ hybridization using RNAscope assay

Five days post-labeling, mice were deeply anesthetized and were perfused 

with ice-cold PBS solution followed by ice-cold 4% paraformaldehyde in 

PBS solution (PFA solution). TG tissues were post-fixed in 4% PFA solution 

for at least 4 hours at 4℃ and then were transferred to 30% sucrose solution 

in PBS at 4℃. Serial frozen transverse sections (thickness: 14 µm) of TG 
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were mounted onto superfrost plus slides and were stored at -20℃ until later 

use. The slides were used for in situ hybridization using RNAscope Multiplex 

Fluorescent v2 assay (Advanced Cell Diagnostics) as previously described 

(Rossi et al. 2020) with two probes assigned a different color channel, which 

is either Channel 2 (C2) or Channel 3 (C3) (Table 3). The C2 was visualized 

using opal 570 (Cy3 range) dye, and the C3 was visualized using opal 690 

(Cy5 range) dye. The slides were mounted with mounting medium (Vector 

Laboratories), and all images were acquired using a fluorescence microscope 

(Leica) with a 20x objective.

Data acquisition and analysis

Cell body area (µm2) of dissociated DPA neurons was measured with ImageJ 

software (National Institutes of Health). For quantitative analysis of in situ 

hybridization, images were obtained separately before the RNAscope assay 

to acquire FG-labeled DPA neurons (DAPI range) and then after the 

RNAscope assay to acquire fluorescent signals (Cy3 and Cy5 range) as all 

FG signals disappeared after the RNAscope assay. The ImageJ software was 

used to adjust brightness/contrast and to merge/align the images. Each DPA 

neuron was counted as a positive cell when at least ten puncta dots were 

shown within a cell. Bar graphs were presented as mean ± SEM using the 

Prism software (version 6.01; GraphPad). All plots or heatmaps of scRNA-

seq data were generated in RStudio (version 1.2.5033; RStudio, Inc.).
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TABLES

Table 3. List of probes used 

Probe Name Cat No. Company GeneBank No.

RNAscope Probe-Mm-Calca-tv2tv3-C2 420361-C2

Advanced 

Cell 

Diagnostics

NM_001033954.3

RNAscope Probe-Mm-Mrgprd-C2 417921-C2

Advanced 

Cell 

Diagnostics

NM_203490.3

RNAscope Probe-Mm-Prph-C2 400361-C2

Advanced 

Cell 

Diagnostics

NM_013639.2

RNAscope Probe-Mm-Tac1-C2 410351-C2

Advanced 

Cell 

Diagnostics

NM_009311.2

RNAscope Probe-Mm-Trpv1-C2 313331-C2

Advanced 

Cell 

Diagnostics

NM_001001445.1

RNAscope Probe-Mm-Piezo2-C3 400191-C3

Advanced 

Cell 

Diagnostics

NM_001039485.4
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RESULTS

Single-cell RNA sequencing (scRNA-seq) for DPA neurons

Sequential procedures for scRNA-seq of DPA neurons, including sample 

preparation, single-cell collection, single-cell RNA sequencing, and 

transcriptome analysis, were processed as described in Fig. 15. A total of 96 

DiI-labeled DPA neurons was manually collected in the acute culture of TG 

tissues from ten male C57BL/6 mice (seven weeks old) for performing 

scRNA-seq on each collected neuron. 

Molecular subpopulations of DPA neurons

A total of 83 DPA neurons’ transcriptome data, which showed the average 

number of mapped reads (4.975 ± 1.301 million (mean ± SD) per each neuron, 

Fig. 16Aa) and detected genes (11915 ± 1112 (mean ± SD) per each neuron, 

Fig 16Ab), passed the quality control criteria (Fig. 16Ac, Ad) and was 

processed for downstream analysis. No noticeable correlation between the 

number of genes detected and the read depth was observed (Fig. 16Aa, Ab). 

Next, unbiased single-cell transcriptome cluster analysis revealed that six 

molecularly distinct subpopulations were found across DPA neurons (C10, 

C13, C4, C6, C7, and C8) corresponding to clusters previously found in the 

TG transcriptome data (Nguyen et al. 2017) (Fig. 16Ba, Bb). Among the 

clusters identified in DPA neurons, clusters C4 and C6 highly expressed both 

S100b and Nefh, which are well-known markers for myelinated A-fibers (Fig. 
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16Ca, Cb). Also, on average, neurons in clusters C4 and C6 had larger cell 

body area (Fig. 16D).

Assessment of DPA transcriptome data using selected marker genes

Next, in situ hybridization using the RNAscope assay in DPA neurons in order 

to validate my transcriptome data. I found binary high/low expression levels 

of Prph and Mrgprd with close correspondence between RNAscope data (Fig. 

17A, B) and scRNA-seq data (Fig. 17C). In DPA transcriptome data, 

housekeeping genes (Gapdh and Actb) and sensory neuronal markers (Tubb3, 

Avil, and Prph) were very prominent, while the expression levels of marker 

genes for satellite glial cell (Kcnj10 and Gja1), motor neuron (Chat, Neurog2, 

and Olig2), and taste receptor (Tas1r1, Tas1r2, and Tas1r3) were low in 

expression (Fig. 17D). Interestingly, DPA neurons expressing itch-related 

genes, such as Mrgpra3 and Nppb, were rare (Fig. 17D). Among several 

mechanosensitive ion channels, the transcriptome data also showed that 

Piezo2, Trpm7, Trpv2, and Asic3 predominantly expressed in DPA neurons 

(Fig. 17E).

Molecular gene-expression signatures of DPA neurons

To address further molecular signatures of DPA neurons, I examined the 

differential gene expression across subpopulations using selected markers: 

Trpv1, Calca, Tac1, Prph, Piezo2, and Mrgprd. Clusters C10, C7, and C8 

expressed high levels of Trpv1, Calca, and Tac1 (Fig. 18Aa-Ac), but low 

levels of S100b (Fig. 16Ca), Nefh (Fig. 16Cb), and Piezo2 (Fig. 18Ae). These 

neurons are likely to play a role in nociception. On the other hand, cluster C4 

expressed high levels of S100b (Fig. 16Ca), Nefh (Fig. 16Cb), and Piezo2
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(Fig. 18Ae), but low levels of Trpv1, Calca, and Tac1 (Fig. 18Aa-Ac). As the 

expression levels of the myelination markers and the mechanosensitive 

Piezo2 ion channel are high, these neurons are likely to be myelinated 

mechanosensitive neurons. Only cluster C13 consisted of a DPA neuron 

showing high level of Mrgprd, which is the noxious mechanosensitive neuron 

(Fig 18Af). In addition, all clusters broadly expressed Prph (Fig. 18Ad). 

Interestingly, cluster C6 showed high expression levels of both Calca and 

Piezo2 (Fig. 18Ab, Ae), and the proportion of this cluster was the largest

(42.17%, n = 35 of 83 neurons, Fig. 18B) among DPA neuron clusters. The in 

situ hybridization assay confirmed that Piezo2 was highly expressed in DPA 

neurons (95.88 ± 1.883%, Fig. 18Ca, Cb).

High expression of Calca in Piezo2-expressing DPA neurons

Next, to verify the co-expression of pain-related molecules and the low-

threshold mechanosensitive Piezo2 ion channel, I investigated the expression 

of Calca, Trpv1, and Tac1 in Piezo2-expressing DPA neurons. The in situ

hybridization analysis revealed that Calca had the highest co-expression rate 

(81%, Fig. 19Aa-Ad) than Trpv1 (37.5 ± 12.5%, Fig. 19Ba-Bd) and Tac1

(15.4%, Fig. 19Ca-Cd) in Piezo2-positive DPA neurons. These results 

suggested that Calca may act as a main molecule in nociceptive processing 

through the low-threshold mechanosensitive Piezo2 ion channel.
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Figure 15.
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Figure 15. Single-cell RNA sequencing (scRNA-seq) 

workflow

Workflow for scRNA-seq following sequential steps: 1) DPA neurons were 

labeled with retrograde tracer DiI from the mouse maxillary molar; 2) 14 days 

post-labeling, DiI-labeled DPA neurons (soma) were confirmed in the 

maxillary (V2) region of TG; 3) DiI-labeled DPA neurons were dissociated in 

acute culture, and then 4) individual cells were collected with 

micromanipulation under the microscope; 5) RT and PCR (18 cycles) 

reactions were performed, and the quality of the whole transcripts per each 

DPA neuron, as well as the negative control (collection of bath solution), was 

checked before making cDNA library; 6) cDNA libraries were made, and their 

qualities were checked before sequencing; 7) sequencing and 8) single-cell 

transcriptome analysis were performed. Detailed information (reagents, 

equipment, manufacturer, etc.) was described in the materials and methods 

section.

An illustration in 2) modified from Park 2015
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Figure 16.
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Figure 16. Subpopulations of DPA neurons detected 

via scRNA-seq

(Aa-Ad) Assessment of DPA transcriptome data and sample quality control.  

A total of 83 DPA neurons showed the number of mapped reads for each 

neuron ranged from 1.878 million to 8.826 million (Aa), and the number of 

detected genes for each neuron ranged from 8856 to 14100 (Ab). These 

neurons passed ERCC spike-in proportion (< 5%, Ac) and mitochondrial 

proportion (< 8%, Ad). Green dotted lines indicate the threshold value in the 

exclusion of the data. (Ba-Bb) UMAP (Ba) and t-SNE (Bb) graphs of mouse 

DPA neurons with dot and letter colors indicating subtype identity (C10, C13, 

C4, C6, C7, and C8) assigned by the TG transcriptome data (Nguyen et al. 

2017). (Ca-Cb) Violin plots comparing the gene expression level of S100b

(Ca) and Nefh (Cb) across subpopulations. (D) Dot plots illustrating cell body 

area (µm2) of DPA neurons.
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Figure 17.
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Figure 17. Assessment of DPA transcriptome data 

using selected marker genes

(Aa-Ab) Representative RNAscope in situ hybridization images for variable 

genes of Prph (red puncta, Aa) and Mrgprd (red puncta, Ab) in FG-labeled 

DPA neurons (grey). All white filled arrowheads indicate Prph-positive 

neurons, and all empty arrowheads indicate Mrgprd-negative neurons. Scale 

bars, 25 µm. (B) The quantitative data of Prph (100%, n = 2 mice) and Mrgprd

(0%, n = 1 mouse). Bars represent mean ± SEM. (C) Dot plots showing gene 

expression of Prph and Mrgprd in scRNA-seq data, which had close 

correspondence with the RNAscope data. (D) A Heatmap showing differential 

gene expression with representative markers for housekeeping (Gapdh and 

Actb), sensory neuron (Tubb3, Avil, and Prph), satellite glial cell (Kcnj10 and 

Gja1), motor neuron (Chat, Neurog2, and Olig2), taste receptor (Tas1r1, 

Tas1r2, and Tas1r3), and itch-related genes (Mrgpra3 and Nppb) listed in the 

right panel. (E) Differentially expressed mechanosensitive ion channels 

illustrated in a heatmap for Asic3, Piezo1, Piezo2, Trpv2, Trpv4, Trpc1, Trpc6, 

Trpm3, Trpm7, Tmc1, and Tmc2 genes across DPA neurons. Expression levels 

indicate log normalized counts value with DESeq2. Cell identity and subtype 

identity were listed in the bottom panel of each heatmap.
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Figure 18.
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Figure 18. Identification of the main subpopulation 

showing high expression levels of Piezo2 and Calca in 

DPA neurons

(Aa-Af) Violin Plots illustrating the differential gene expression for Trpv1

(Aa), Calca (Ab), Tac1 (Ac), Prph (Ad), Piezo2 (Ae), and Mrgprd (Af) across 

subpopulation of DPA neurons. (B) Pie graph showing the proportion of each 

subtype: C10 (21.69%, n = 18 of 83 neurons), C13 (1.2%, n = 1 of 83 neurons), 

C4 (7.23%, n = 6 of 83 neurons), C6 (42.17%, n = 35 of 83 neurons), C7 

(13.25%, n = 11 of 83 neurons), and C8 (14.46%, n = 11 of 83 neurons). (Ca-

Cb) Representative RNAscope in situ hybridization images for Piezo2 (red 

puncta, Ca) in FG-labeled DPA neurons (grey) and quantitative data (95.88 ± 

1.883%, Cb). n = 2 mice. White filled arrowheads indicate Piezo2-positive 

neurons, and an empty arrowheads indicate Piezo2-negative neurons. A scale 

bar, 25 µm.
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Figure 19.
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Figure 19. Calca is a main molecule in nociceptive 

processing of Piezo2-expressing DPA neurons

(Aa-Ad) Representative RNAscope in situ hybridization images showing co-

expression of Calca (green puncta) and Piezo2 (red puncta) (Aa-Ac) in FG-

labeled DPA neurons (grey) and quantitative data (Ad). n = 1 mouse. (Ba-Bd) 

Representative RNAscope in situ hybridization images showing co-

expression of Trpv1 (green puncta) and Piezo2 (red puncta) (Ba-Bc) in FG-

labeled DPA neurons (grey) and quantitative data (Bd). n = 2 mice. (Ca-Cd) 

Representative RNAscope in situ hybridization images showing co-

expression of Tac1 (green puncta) and Piezo2 (red puncta) (Ca-Cc) in FG-

labeled DPA neurons (grey) and quantitative data (Cd). n = 1 mouse. All white 

filled arrowheads indicate double positive-neurons for two genes, and all 

empty arrowheads indicate single positive-neurons for Piezo2 probe. Scale 

bars, 25 µm. Bars represent mean ± SEM.
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DISCUSSION

In chapter 3, I demonstrated molecularly distinct subpopulations and gene-

expression signatures in the adult mouse DPA neurons using scRNA-seq and 

RNAscope in situ hybridization. Importantly, single-cell transcriptome 

analysis revealed that a specific subpopulation, which highly expressed 

Piezo2 as well as Calca, was the largest subpopulation of DPA neurons. 

Among pain-related molecules, Calca showed the highest co-expression rate 

than Trpv1 and Tac1 within Piezo2-expressing DPA neurons. These results 

suggest the possible contribution of low-threshold mechanosensitive ion 

channels to tooth pain.

At first, it has been considered DPA neurons all nociceptive afferents 

since tooth pulp only generates pain regardless of stimulation with painful or 

non-painful stimuli (Cook et al. 1997). In this context, several studies have 

attempted to identify pain-sensing receptors from pure DPA neurons (Cook et 

al. 1997, Eckert, Taddese, and McCleskey 1997) and to reveal the 

composition of nociceptive fibers (e.g., unmyelinated C-fibers and 

nociceptive Aδ-fibers) observed in intrapulpal nerve fibers (Lee et al. 2019, 

Narhi et al. 1992). However, recent electrophysiological and histological 

studies have revealed that most pulpal nerves are myelinated Aβ-fibers (Lee 

et al. 2019), remains controversial. In line with an effort to dissect cellular 

heterogeneity within DPA neurons, I employed single-cell transcriptomics 

technology. Single-cell transcriptome analysis revealed six molecular 

subpopulations (C10, C13, C4, C6, C7, and C8) across DPA neurons (Fig. 

16Ba, Bb) and the variation of expression levels of myelination markers 
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(S100b and Nefh, Fig. 16Ca, Cb), correlated with their cell body size area 

(Fig. 16D). These results support that DPA neurons are composed of 

unmyelinated C-fibers and myelinated A-fibers, consistent with previous 

works (Won et al. 2017, Fried, Sessle, and Devor 2011).

Tooth pain is most likely evoked by light mechanical irritations such as 

brush, air puffs, or water spray (Chung, Jung, and Oh 2013). The axonal 

terminals of DPA neurons innervate the dentinal tubules of tooth dentin, filled 

with dentinal fluid. Due to this unique structure of the tooth, DPA neurons can 

be easily activated by the movement of dentinal fluid induced by various 

external stimuli; therefore, the hydrodynamic theory is the most widely 

accepted (Chung, Jung, and Oh 2013, Won and Oh 2019). In line with this 

phenomenon, a previous study proposed that a particular type of low-

threshold mechanosensitive neurons, called algoneurons or low-threshold 

nociceptors, may contribute to pain rather than touch (Fried, Sessle, and 

Devor 2011). They demonstrated that most DPA neurons show double 

immunopositivity for a pain-related neuropeptide CGRP and NF200 as a 

marker for myelinated Aβ-fibers, and these neurons are characterized as 

algoneurons (Fried, Sessle, and Devor 2011). Furthermore, several studies 

reported that mechanosensitive ion channels, such as PIEZO2 (Won et al. 

2017), ASICs (acid-sensing ion channels) including ASIC3 (Ichikawa and 

Sugimoto 2002, Chen and Wong 2013), and TRPV2 (Gibbs, Melnyk, and 

Basbaum 2011) expressed in DPA neurons, as well as TRPM7 in odontoblasts 

(Won et al. 2018), serve as the mechanotransducer of tooth pain. Consistent 

with these previous reports, my transcriptome data showed that 

mechanosensitive ion channels, such as Piezo2, Trpm7, Trpv2, and Asic3, 

predominantly expressed in DPA neurons (Fig. 17E). Interestingly, Piezo2
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expression was broadly found in my transcriptome data (Fig. 17E, 18Ae) and 

in situ hybridization results (95.88 ± 1.883%, Fig. 18Ca, Cb) of DPA neurons. 

Among the subpopulations of DPA neurons, a specific subpopulation showing 

the high expression level of both Piezo2 and Calca was the largest 

subpopulation in DPA neurons (Fig. 18B). In addition, Calca showed higher 

expression than other pain-related marker genes Trpv1 and Tac1 in Piezo2-

expressing DPA neurons (Fig. 19). These findings suggest that low-threshold 

mechanoreceptors, which are most responsive to touch or innocuous 

mechanical stimuli in the area of the skin, may contribute to pain at teeth 

under pathological conditions. 

In the general pain research field, the mechanisms underlying 

mechanical allodynia, described as pain caused by innocuous mechanical 

stimuli under pathological conditions (Lolignier, Eijkelkamp, and Wood 

2015), have also been an important topic (Hill and Bautista 2020). For 

example, it can be explained by CHRNA3-expressing neurons, which are 

mechanosensitive silent nociceptors (Prato et al. 2017). These neurons are 

characterized to be sensitized only by the inflammatory mediators (Prato et 

al. 2017). Furthermore, several papers have reported that PIEZO2-deficient 

mice show an impairment of nociceptive behavior in response to mechanical 

stimulation under inflammation or nerve injury conditions (Murthy et al. 

2018), suggesting that low-threshold mechanosensitive PIEZO2 ion channels 

are involved in mechanical allodynia. However, more recent studies have 

demonstrated that PIEZO2 is associated with touch rather than pain, and 

PIEZO1 plays an important role in the regulation of mechanical pain (Zhang 

et al. 2019). However, it is still unclear since PIEZO1 shows low expression 

in peripheral sensory neurons (Zhang et al. 2019).
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On the other hand, mechanical pain can be directly detected by 

specialized high-threshold mechanoreceptors. It has been demonstrated that 

MRGPRD-expressing C-fibers convey mechanical pain and that those 

neurons have a distinctive neuronal population from TRPV1-expressing C-

fibers (Cavanaugh et al. 2009). Furthermore, a recent paper has identified a 

novel mechanosensitive ion channel called TACAN (transcript name 

Tmem120a) (Beaulieu-Laroche et al. 2020). TACAN is expressed in non-

peptidergic nociceptive neurons, which are specific subsets of DRG neurons, 

with high expression levels of MRGPRD and purinergic receptor P2X3 

(Beaulieu-Laroche et al. 2020). Strikingly, my single-cell transcriptome data 

and in situ hybridization results demonstrated that the proportion of a specific 

population (cluster C13) with the high expression level of Mrgprd was very 

rare (~1%, Fig. 17B, 18B). These results suggest that low-threshold 

mechanoreceptors rather than high-threshold mechanoreceptors may play a 

key role in transmitting pain in teeth under pathological conditions.

In fact, a highly sensitive mechanosensory system is required for 

detecting stimuli through the hard shell of the tooth (Fried and Gibbs 2014). 

Hence, intradental low-threshold mechanoreceptors are responsible for a 

wide range of mechanical sensory inputs, including the texture of food, touch, 

pressure, vibration, and proprioception, thereby regulating occlusion, 

mastication, and biting (Fried and Gibbs 2014, Haggard and de Boer 2014). 

However, these low-threshold mechanoreceptors, which are densely 

innervated in the tooth pulp, make dental sensory systems distinct from 

nociceptive networks at other body sites in many ways when dentin is 

exposed (Fried and Gibbs 2014). That is, whether noxious stimulation (e.g., 

cold and heat) or extremely light mechanical force (e.g., brushing, air puffs, 
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and water spray) to exposed dentin appears as a paradoxical phenomenon that 

causes only pain sensation, without a mechanism for discrimination (Cook et 

al. 1997, Fried and Gibbs 2014, Fried, Sessle, and Devor 2011). The 

hydrodynamic theory can explain this where dentinal fluid shifts, regardless 

of stimulus modalities, excite intradental low-threshold mechanoreceptors. I 

thus have focused on the potential role of a neuronal population characterized 

by high expression of a low-threshold mechanosensitive PIEZO2 ion channel

and a pain-related neuropeptide CGRP to be engaged in tooth pain in this 

study. However, it remains unaddressed whether activation of PIEZO2 can 

generate action potentials at nerve endings of DPA neurons, and nociceptive 

signals are transmitted to the second-order neurons via CGRP as 

neurotransmitters. Therefore, further studies are strongly required to 

investigate the functional role of PIEZO2 channels in transmitting tooth pain. 

I am currently working on further experiments to employ PIEZO2-specific 

genetic modulation with in vitro/in vivo optogenetic tools (Murthy et al. 2018)

within the tooth pulp and to observe modulation of neuronal activity in the 

CNS level and behavioral changes. I also leave novel low-threshold 

mechanoreceptor candidates directly sensing pain to be open to possibility in

DPA neurons.

With respect to etiology and clinical features of dentine hypersensitivity, 

most published papers have focused on peripheral aspects, since this pain is 

relatively well managed by topical application of tubular-occluding or nerve-

desensitizing agents (Orchardson and Gillam 2006). However, the prevalence 

and the severity of dentin hypersensitivity are very variable, ranging from a 

minor inconvenience to the wide-ranging impact of quality-of-life in patients, 

so that there has been a broad spectrum of therapeutic strategies (Shiau 2012).
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In clinical studies, there is an effort to investigate cerebral processes related 

to dentin hypersensitivity evoked by air stimuli by using the fMRI (functional 

magnetic resonance imaging) (Meier et al. 2012). This study has 

demonstrated differential activity in the anterior insular cortex (aIC) and the 

anterior midcingulate cortex (aMCC) of patients, suggesting that these brain 

regions may become clinically relevant in dentin hypersensitivity (Meier et 

al. 2012). Although the role of the insular cortex in modulating pain remains 

unknown, a clinical study has reported that two individuals with extensive 

lesions to the insular have substantially higher pain intensity ratings of acute 

experimental noxious stimuli (Starr et al. 2009). This finding may imply that 

the role of central nervous system plasticity in explaining the large degree of 

variability observed in the severity of dentin hypersensitivity (Markowitz and 

Pashley 2015).
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CONCLUSION

Nociception experienced in the body, as well as the orofacial region, 

conveys by specialized peripheral sensory neurons called nociceptors, which 

are activated by noxious stimuli. It has been well studied for the distinct 

nociceptors in response to various noxious stimuli such as heat, cold, 

chemical, or mechanical. However, it remains unclear whether not only 

noxious stimuli but also innocuous or non-painful stimuli can cause pain. In 

an effort to elucidate this observation, I have explored the polymodal 

nociception that may be elicited by innocuous stimuli or endogenous 

mediators of inflammation with a focus on dorsal root ganglion (DRG) 

neurons and dental primary afferent (DPA) neurons.

In the first chapter, I demonstrated that activation of GABAAR at 

peripheral nerve endings of DRG neurons facilitated CFA-induced 

nociceptive behavior and mechanical hypersensitivity. Furthermore, the 

GABAAR modulated pain hypersensitivity in response to not only 

endogenous GABA in inflamed tissue but also endogenous positive allosteric 

modulation of GABAAR even in normal conditions. These results support that 

peripheral GABAAR-mediated signaling contributes to the regulation of 

inflammatory pain and provides therapeutic benefits for pain management. 

In the second chapter, I verified the functional expression of TRPM8 

channels in DPA neurons to detect hyperosmolar stimulation, such as sweet 

substance with high sugar concentrations. I investigated that TRPM8 in DPA 

neurons mediates upregulation of c-fos expression as a marker of nociception 

in the CNS level by applying hyperosmolar sucrose solution to the mouse 
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exposed tooth dentin. Furthermore, I showed that a selective TRPM8 

antagonist significantly attenuated the hyperosmolarity-induced dental 

nociception. These findings suggest that innocuous stimuli, such as sweet 

substances, can contribute to tooth pain via TRPM8 channels under 

pathological conditions.

In the third chapter, I introduced single-cell transcriptomics technology 

as an effective strategy to characterize a population of cells and to reveal rare 

subtypes or novel therapeutic targets in the sensory system. I used single-cell 

RNA sequencing (scRNA-seq) and in situ hybridization techniques to identify 

and verify gene-expression signatures in the adult mouse DPA neurons. I 

showed that a particular subtype, which was characterized by the high 

expression levels of both a low-threshold mechanosensitive Piezo2 channel

and a pain-related neuropeptide Calca, was the major subset of DPA neurons. 

This finding implies that low-threshold mechanoreceptors, which are most 

responsive to touch in the somatosensory system, may uniquely contribute to 

pain in teeth under pathological conditions. Further studies are in progress to 

address whether PIEZO2 plays an actual role in transmitting tooth pain and 

to discover other potential low-threshold mechanosensitive ion channels 

sensing pain in DPA neurons.
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국문초록

통증 감각의 말초 병태생리 기전

: 세포 기전 및 단일 세포 전사체 프로파일링에

관한 연구

신체와 구강악안면 영역에서 경험되는 통증 감각은 후근신경절(dorsal root 

ganglion)과 삼차신경절(trigeminal ganglion)과 같은 말초 감각 신경을 통

해 중추 신경계로 전달된다. 일반적인 통증 감각은 유해감수기(nociceptor)

로 불리는 특수한 말초 감각 신경의 말단에서 시작하고 이러한 유해감수기

는 유해 자극에 주로 반응한다. 지금까지 열, 저온, 화학 물질 또는 기계적 자

극과 같은 다양한 유해 자극에 반응하는 유해감수기에 대해서는 잘 연구되

었지만 특수한 병태생리학적 상황에서는 무해한 자극도 통증을 일으킬 수

있는데, 이에 대한 기전은 아직 완전하게 규명되지 않았다. 따라서 본 학위

논문은 여러 유형의 병태생리 상태에서 무해 자극 또는 염증으로 인한 내생

적 매개체(endogenous mediator)에 의해서 활성화될 수 있는 통증 감각의

기전을 세포, 분자 생물학 및 동물행동학적 수준에서 다음과 같이 탐구하고
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자 했다.

  첫 번째 장에서는 염증 상태에서 내생적 감마아미노 낙산(GABA)에 의해

활성화 될 수 있는 감마아미노 낙산 유형 A 수용체(GABAAR)의 역할을 조사

했다. CFA로 유도된 염증성 통증 마우스 모델을 사용하여, 후근신경절의 말

단에 발현하고 있는 감마아미노 낙산 유형 A 수용체의 활성을 줄이기 위한

선택적 억제제의 사용 또는 항-감마아미노 낙산 항체를 염증 부위에 주사하

여 내생적 감마아미노 낙산을 직접적으로 차단함으로써 조절했을 때, CFA로

유도된 자발적 통증 행동(spontaneous nociceptive behavior)과 기계적 자

극에 대한 통각과민(mechanical hypersensitivity)이 감소했다. 이와는 반대

로 감마아미노 낙산 유형 A 수용체의 활성을 양성 입체다른자리 조절자로

증가시켰을 때는 정상 마우스에서도 기계적 자극에 대한 이질통(mechanical 

allodynia)이 증가했다. 이를 통해 말초 감각 신경의 감마아미노 낙산 유형 A 

수용체를 매개로 하는 신호 전달이 염증성 통증 조절을 위한 새로운 치료 표

적이 될 수 있음을 입증했다.

두 번째 장에서는 단 물질이 어떻게 치수유래 일차 구심성 신경(dental 

primary afferent neuron)을 자극하여 상아질 과민증(dentin hypersensitivity)

을 유발하는지에 대한 세포 기전을 탐색했다. 설탕 농도가 높은 단 물질은

삼투압이 높기 때문에 우리가 단 음식을 섭취할 때 치아는 고삼투압 상태가

되며, 단 음식은 치통을 빈번하게 유발한다. 따라서, TRPM8 이온 채널-저온
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과 멘톨 수용체로 잘 알려져 있지만 특별히 각막 신경에서는 각막의 건조와

같은 고삼투압 상태에서 눈의 깜빡임을 조절하는 것으로 보고됨-이 치수유

래 일차 구심성 신경에서 고삼투압 자극에 활성화되어 통증 감각을 전달할

수 있음을 확인하고자 했다. 마우스의 치수유래 일차 구심성 신경 세포에는

TRPM8이 기능적으로 발현하고 있었으며, 살아있는 마우스의 치아 상아질

을 노출시키고 고삼투압성의 설탕 용액을 적용함으로써 유발된 통증 감각이

TRPM8의 선택적 억제제에 의해서 현저하게 감소되는 것을 중추신경계 수

준에서 확인했다. 따라서, 단 물질과 같은 무해한 자극이 TRPM8 채널을 통

해 치통을 유발할 수 있음을 증명했다.

  최근에 점점 더 많은 연구가 단일 세포 수준의 전사유전체학(single-cell 

transcriptomics)을 사용하여 혼합된 세포 집단 또는 복잡한 감각 신경 시스

템에서 세포의 이종성, 희귀한 세포 유형, 새로운 치료 표적을 성공적으로 발

견하고 있다. 세 번째 장에서는 마우스의 치수유래 일차 구심성 신경 세포에

서 보이는 독특한 유전자 발현을 탐색하기 위해 단일 세포 수준의 RNA 시

퀀싱(single-cell RNA sequencing) 기술과 현장혼성화(in situ hybridization) 

조직 염색 기법을 도입했다. 단일 세포 수준의 전사체 프로파일링을 통해 치

아 신경에서 여섯 개의 구별된 세포 집단(cluster)들이 존재하는 것을 발견했

다. 흥미롭게도 가장 큰 집단은 약한 기계적 자극에 활성화 되는 Piezo2 이

온 채널과 CGRP(칼시토닌 연관 단백질)를 부호화(encoding)하는 통증 관련
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신경전달물질인 Calca의 높은 발현을 특징으로 했다. 이러한 발견은 치아의

신경세포가 피부 영역에 분포 되어 있는 다른 감각 신경과는 달리, 칫솔질

또는 공기 분사와 같은 약한 기계적 자극이 빈번하게 상아질 과민증을 발생

시키는 기전을 설명하며, 이는 기존에 중요하게 제안된 유체역학 이론

(hydrodynamic theory)을 입증했다. 추가적으로 나는 치통에 중요하게 관여

할 수 있는 기계적 감각 이온 채널들과 본 연구의 임상적 적용에 대해서 논

의했다.

주요어: 통증; 유해감수기; 기전 연구; 단일 세포 전사체 시퀀싱; 감마

아미노낙산 유형 A 수용체; TRPM8 이온 채널; 후근신경절; 치수유래

일차 구심성 신경
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