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Abstract

Investigating Evidence for Hierarchical
Color Learning in Convolutional Neural

Networks

Chris Hickey

Interdisciplinary Program in Cognitive Science

The Graduate School

Seoul National University

Empirical evidence suggests that color categories emerge in a universal, recur-

rent, hierarchical pattern across different cultures in the following order; white,

black < red < green, yellow < blue < brown < pink, gray, orange, and purple.

This pattern is referred to as the “Color Hierarchy”. Over two experiments, the

present study examines whether there is evidence for such hierarchical color cat-

egory learning patterns in Convolutional Neural Networks (CNNs). Experiment

A investigates whether color categories are learned randomly, or in a fixed, hi-

erarchical fashion. Results show that colors higher up the Color Hierarchy (e.g.

red) are generally learned before colors lower down the hierarchy (e.g. brown,

orange, gray). Experiment B examines whether object color affects recall in

object detection. Similar to Experiment A, results show that object recall is

noticeably impacted by color, with colors higher up the Color Hierarchy gener-

ally showing better recall. Additionally, objects whose color can be described by

adjectives that emphasise colorfulness (e.g. vivid, brilliant, deep) show better

recall than those which de-emphasise colorfulness (e.g. dark, pale, light). The
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effect of both color hue and adjective on object recall is still observable, even

when controlling for contrast through grayscale images. These results highlight

similarities between humans and CNNs in color perception, and provide insight

into factors that influence object detection. They also show the value of using

deep learning techniques as a means of investigating cognitive universalities in

an efficient, unbiased, cost-effective way.

Keywords: color hierarchy; computer vision; convolutional neural network;

cognitive universalities; faster R-CNN

Student Number: 2018-29483
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Chapter 1

Introduction

How many colors are in the rainbow? In reality, the color solid is divisible

into millions of infinitesimally small differences. However, out of an estimated

7,295,000 visible differences in the psychological color solid (Newhall, Nickerson,

& Judd, 1943), most human languages use no more than 13 basic terms to

conceptualize this vast color spectrum (Kay, Berlin, Maffi, Merrifield, & Cook,

2009). For example, an English speaker will subsume color differences into 11

basic color categories; white, black, red, green, yellow, blue, orange, brown,

gray, pink, and purple. There are three physiological dimensions to color (see

Figure 1.1). These are:

a) Hue The dominant wavelength

b) Saturation The dominance of the achromatic wavelength for a given hue

c) Brightness (or Luminance) The degree or intensity of lightness / darkness

However, differentiation of color categories occurs along the most salient

Figure 1.1: Three Physiological Dimensions of Color a) Hue b) Saturation c)

Brightness
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dimension of color: hue (i.e. red, yellow, blue) (Wyszecki & Stiles, 1982).

1.1 Is Color Categorization Random?

The emergence of distinct hue-based color categories presents a paradigmatic

challenge across cognitive science and linguistic disciplines (Lakoff, 2008). This

is mainly due to difficulties delineating the unique inter-play between percep-

tion, conceptualization, and language features involved in color categorization.

As of yet no consensus theory has emerged to explain why these discrete cate-

gories of the continuous hue wavelength emerge. However, competing theories

in this decades-old debate have largely centred around two schools of thought:

Relativism versus Universalism. Relativist theorists argue that color categories

are not innate or pre-ordained. Rather, they are based on culture, and therefore,

the product of environmental factors and relatively idiosyncratic influences that

differ across time (Casson, 1997) and linguistic groups (Wierzbicka, 2008).

Universalist theorists, on the other hand, claim that color contains inherent

qualities that result in enduring, non-random patterns, consistently evident

across environments and across time. One of the most enduring Universalist

theories on how these hue-based categories emerge was first proposed by Brent

Berlin and Paul Kay half a century ago (Berlin & Kay, 1969). Their cross-

cultural research observed a fixed sequence according to which languages gain

color terms over time. To account for this evolution, Berlin and Kay (1969)

proposed the following two conjectures:

• there exists a limited set of “universal” cognitively-hardwired categories

from which all languages draw their color lexicons, and

• languages “evolve” by adding color terms in a relatively fixed sequence,

such that; white, black < red < green, yellow < blue < brown < pink,
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gray, orange, and purple

Therefore, if a language has a term for a given color in this inequality, that

language will also likely have terms for all colors to the left of that term. This

sequence has subsequently been referred to as the “Color Hierarchy” (See Figure

1.2).

Figure 1.2: Color Hierarchy. In a language, if a term exists for a color in this

figure, terms will also exist for all colors to the left of that color term.

Berlin and Kay’s initial hypothesis has gained strong support through ‘The

World Color Survey’ (Kay et al., 2009). This survey constituted a long-term

study in which color names were obtained from informants of mostly unwritten

languages spoken in pre-industrialized cultures that have had limited contact

with modern, industrialized society. Through this survey, the evolution of color

terms along the Color Hierarchy can be observed. For example, languages such

as the Bolivian Amazonian language Tsimane’ have only three words that cat-
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egorize color. These correspond to black, white and red, the first three colors in

the Hierarchy (Gibson et al., 2017). Languages with two additional terms, like

Papua-New Guinean Berinmo, will generally have these additional terms corre-

spond to the next two or three terms in the Hierarchy. In the case of Bermino,

these two additional colors roughly correspond to green and blue (Kay & Regier,

2007).

Research into hierarchical preferences for certain colors extends beyond the

emergence of color terms in language. Skelton, Catchpole, Abbott, Bosten, and

Franklin (2017) found that when pre-verbal infants learned to categorize colors,

they recognize hue categories corresponding to lexical terms towards the top

of the Color Hierarchy fastest. Also, Tchernikov and Fallah (2010) found a

similar hierarchical pattern in target selection, where participants presented

with multiple moving targets on a screen, eye-tracked targets according to the

following hierarchical color based bias; red > green > yellow > blue.

1.2 Modelling the Color Hierarchy

Efforts have been made to model the emergence of hierarchical color categoriza-

tions (Baronchelli, Gong, Puglisi, & Loreto, 2010; Loreto, Mukherjee, & Tria,

2012). Specifically Loreto et al. (2012) demonstrate that an approximation of

Berlin and Kay’s original Hierarchy emerges in a model where computational

agents have human perceptual discrimination of color regions via a “Just No-

ticeable Difference” function. These agents agree on terms for colors on the

color spectrum via a “Category Game”. They found that the time needed for a

population of artificial agents to reach consensus on a color name depends on

the region of the hue in the overall color spectrum. These computational agents

reached consensus on color terms from the spectrum in an order somewhat sim-
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ilar to Berlin and Kay’s original color hierarchy; red < (magenta)-red < violet

< green < blue < orange < cyan.

1.3 Convolutional Neural Networks and Color Learn-

ing

While various attempts have been made at modelling the emergence of color cat-

egories (also see Jameson and Komarova (2009)), few attempts have been made

to investigate what contribution Convolutional Neural Networks (CNNs) can

make to this question. CNNs have long been proposed as suitable frameworks

to model biological vision (Rafegas & Vanrell, 2018). Deep convolutional feed-

forward networks for object recognition are not biologically detailed. Rather,

they rely on nonlinearities and learning algorithms that may differ from those

of biological brains. Nevertheless they learn internal representations that are

highly similar to representations in the human and nonhuman primate Inferior

Temporal cortex, indicating that CNNs may provide at least a partially faithful

tool for modelling biological vision (Kriegeskorte, 2015).

In addition, CNNs have shown similarities to humans in the domain of color

perception. Researchers have analysed trained CNN networks using physiologi-

cally inspired methodologies to understand how neurons codify color throughout

different convolutional layers (Rafegas & Vanrell, 2017, 2018). Results found

color representations for single hue colors, opponent colors and color shape

entanglements for specific objects across all convolutional layers in a trained

CNN. These representations, most notably the single and opponent selective

neurons, show similarities to how color is encoded through the visual pathways

in biological visual systems (Lim, Wang, Xiao, Hu, & Felleman, 2009; Conway,

2001).
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Do neural networks faithfully imitate the human process and learn colors

in an analogous, hierarchical way? Or rather, will neural networks learn color

labels in a non-interpretable random way? As discussed above, parallels have

already been drawn between the human visual system and CNNs in the domains

of internal object representations (Kriegeskorte, 2015) and color perceptions

(Rafegas & Vanrell, 2018). If hierarchical color learning patterns are observed

in CNNs, this would serve as additional evidence to suggest that CNNs can

offer at least partial fidelity to biological vision modeling. Additionally, if object

detection models were shown to be influenced by color, this could shed valuable

insight into factors that influence object detection performance.

1.4 Hypotheses

Over two experiments, the present study examines whether there is evidence

for hierarchical color category learning patterns in CNNs. The study antici-

pates that CNNs can partially model human biological processes. Specifically,

it anticipates that CNNs will show color learning that is different from what

we would expect if it were truly learning colors randomly. By randomness, the

present study means the network will not learn colors in any meaningfully inter-

pretable way. This forms the basis of the core hypotheses under investigation.

If there are no similarities between humans and neural network mechanisms,

one would expect there to be no pattern in how CNNs learn color:

Null Hypothesis 1 CNNs learn colors in a stochastic, random manner.

However, following from previous research that finds parallels between CNNs

and aspects of human visual perception, if we see noticable hierarchical patterns

of color learning, the present study will support the alternative hypothesis:

6



Hypothesis 1 CNNs learn colors according to consistent hierarchical patterns,

analogous to the hierarchical color patterns seen in humans.
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Chapter 2

Datasets

Two datasets were used in the present study. Experiment A used the Basic

Color Dataset, while Experiment B used the Modanet dataset with added color

annotations.

2.1 Basic Color Dataset

The basic color dataset was made up of 880 images taken from Google images.

Images were gathered by searching for specific colors, (e.g “red”) and download-

ing images of either objects, wallpapers or backgrounds that best encapsulate

this color. The total dataset was divided into a training dataset and a test

dataset. The training dataset was comprised of 60 images for each of the eight

colors. The test dataset was comprised of 50 images for each of the eight colors.

For samples from the basic color dataset, please refer to Figure 2.1.

2.2 Modanet

Zheng, Yang, Kiapour, and Piramuthu (2018) created a large scale street fash-

ion dataset with polygon annotations, containing 55,176 images. This dataset

contains bounding box, polygon segmentation details, and labels for 13 cloth-

ing categories, namely: bag, belt, boots, footwear, outer (coat, jacket etc.),
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(a) blue (b) brown (c) green (d) gray

(e) orange (f) purple (g) red (h) yellow

Figure 2.1: Samples from Basic Color Dataset used in Experiment A

dress, sunglasses, pants, top, shorts, skirt, headwear, scarfs (See Figure

2.2). Images in this dataset were given a train/test split of roughly 60/40, with

image names ending in 0, 1, 3, 5, 7 and 9 being added to the training set, and

the remaining images added to the test set.

2.2.1 Color Annotating Process

We then added color attributes to each of the objects in the dataset as follows:

firstly, semantic segmentation was performed on each object. Then each item of

clothing was assigned a color label from the ISCC-NBS color labelling system.

ISCC-NBS labels are a taxonomization of the Munsell color system devel-

oped by the Inter-Society Color Council (ISCC) and National Bureau of Stan-

dards (NBS) (Kelly & Judd, 1955). The purpose of this color naming scheme

was to develop a “designation to be sufficiently standardized as to be acceptable

and usable by science, sufficiently broad to be appreciated and used by science,

art, and industry, and sufficiently commonplace to be understood, at least in

9



Figure 2.2: Sample images from the Zheng et al. (2018) Modanet dataset. The

top row shows the original images. The second row shows polygon segmentation

for each clothing item in the top row

a general way, by the whole public”. In order to be intuitive to people, the

ISCC-NBS system uses only common English colors and descriptive adjectives,

excluding less commonly used color terms like teal, fuchsia, etc. Basic hues like

red, yellow, blue or green are combined with descriptive adjectives like “bril-

liant”, “vivid”, “dark” or “pale” to produce 267 color categories; some examples

are “light greenish gray” and “deep blue”. Each category is a well-defined subset

of the Munsell color system (Munsell, 1941), and every Munsell color belongs

to a unique ISCC-NBS category.

In order to assign each item of clothing from the dataset a color label, the

polygon information for each item of clothing was used to sample 500 random

RGB pixels for each clothing item. The ISCC-NBS color label that was sampled

10



Figure 2.3: Samples of color attributes assigned to objects in the Modanet

dataset using pixel sampling.

most often from each clothing polygon was then assigned as the label for that

object. If no color label emerged for at least 10% of the labels for an object,

that object was assigned a null color label. This process is outlined in Figure

2.3.
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Chapter 3

Color Space

A color space is essentially an abstract mathematical model used to organise

and describe colors through numbers. Color spaces are most commonly used to

help us reproduce analog and digital representations of color.

Computer vision has improved rapidly over recent decades, notably in the

domains of image classification and object detection. Most of the datasets used

for image classification and object detection tend to be color images, repre-

sented through the default RGB color space. Most recent models developed

for classification tend not to perform a color space transformation to the im-

age, instead using the RGB or BGR1 image directly for classification or object

detection. In addition to RGB and BGR, the present study also investigates

alternative color spaces inspired by aspects of human vision, as outlined below.

3.1 Opponent Color Space

Opponent color spaces are a family of physiologically-motivated color spaces

inspired by the human visual system (Plataniotis & Venetsanopoulos, 2013).

This inspiration stems from a theory that the human visual system perceives

colors in terms of opponent hues, specifically yellow-blue and red-green (Hurvich

& Jameson, 1957). Activation of one end of the axes inhibits activity in the

1BGR is simply a rearrangement of RGB where the red and blue color channels are switched
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other. This explains why there generally is no concept for colors like “bluish

yellow” or “reddish green”. Opponent color spaces have been shown to give

the best results in color-shape descriptors for object recognition tasks (Van

De Sande, Gevers, & Snoek, 2009). The specific opponent space used in this

paper was taken from Rafegas and Vanrell (2018).

RGB to Opponent Space Transformation

O1 ←− (R+G+B − 1.5)/1.5

O2 ←− (R−G)/1.5

O3 ←− (R+G− 2B)/2

(3.1)

3.2 Luminance Color Spaces

Luminance based color spaces, such as YUV and YCrCb, encode color while

taking the human retina into account, in order to allow for reduced bandwidth

use of chrominance components. The Y channel carries information related to

the luminance channel, which describes the intensity of light. This is similar to

the function served by rod cells in the retina (Podpora, Korbas, & Kawala-Janik,

2014). The additional channels carry information on chrominance, similar to the

function cone cells serve in the human eye. Previous research has indicated that

luma-based color spaces, specifically YUV, may be better suited as input for

computer vision tasks compared to the standard RGB input (Podpora et al.,

2014).
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RGB to YUV Transformation

Y ←− 0.299 ·R+ 0.587 ·G+ 0.114 ·B

U ←− (B − Y ) · 0.492 + δ

V ←− (R− Y ) · 0.877 + δ

(3.2)

RGB to YCrCb Transformation

Y ←− 0.299 ·R+ 0.587 ·G+ 0.114 ·B

Cr ←− (R− Y ) · 0.713 + δ

Cb←− (B − Y ) · 0.564 + δ

(3.3)
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Chapter 4

Experiment A: CNN Color
Classification Recall Experiment

Experiment A1 investigates how CNNs learn to classify basic categories. Specif-

ically, Experiment A attempts to establish two things: Firstly, this experiment

investigates whether all color categories are equally difficult to learn, or whether

colors exhibit hierarchical patterns of learning. Secondly, this experiment inves-

tigates how color classification differs across five color spaces; OPP, RGB, BGR,

YUV and YCrCb.

4.1 Model

CNNs have already been proposed as a means by which partially faithful sim-

ulations of human vision can be modelled, specifically in the domain of color

perception (Rafegas & Vanrell, 2018). The present study uses an architecture

based on the CNN created by Rachmadi and Purnama (2015). This CNN ar-

chitecture was chosen as it has already been proven to successfully learn to

classify cars based on color from a car dataset taken from traffic camera im-

ages. Furthermore, this architecture consists of five convolutional layers. Five

convolutional layer CNNs have been used in previous research to investigate

similarities between human color perception and CNN internal color represen-

1All code associated with this experiment can be found at https://github.com/

chrishickey/color hierarchy experiment/tree/master/experiment1
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tations across convolutional layers (Rafegas & Vanrell, 2018).

Figure 4.1: The CNN used in this study consists of two base networks and five
convolutional layers. In addition to convolution, pooling was also performed
in the first, fourth and fifth convolutional layers. Normalization was also per-
formed on the first and second convolutional layers. Channel concatenation was
performed before feeding forward to the fully connected layers.

The CNN architecture consists of two base networks, with five convolutional

layers and two fully connected layers, each with 4,096 neurons (See Figure 4.1).

ReLU Activation was used for all five convolutional and both fully connected

layers. Additionally, pooling was performed in the first, fourth and fifth con-

volutional layers. Normalization was also performed on the first and second

convolutional layers. Dropout of 0.6 was used in both fully connected layers.

Softmax was used as the output layer to classify input images as one of the

eight colors from the Basic Color Dataset described in the Datasets section.

Stochastic gradient descent was used as an optimizer, with a learning rate of

0.001. In order to increase variety of the training data, zoom, shear and flip

data augmentation were used in the training dataset. Mini batches of size 16

were also used during training. See Figure 4.1 for a visual representation of the

16



model.

4.2 Method

For each of the five color spaces, 500 CNNs were trained to classify each of

the eight colors shown in Figure 2.1. A total of 2,500 models were trained in

this experiment. This large number of models was required in order to obtain

a normally distributed sample of learning epochs for each color, suitable for

Analysis of Variance (ANOVA) testing. For each model, the epoch in which

a color was “learned” was recorded for each color. This experiment defines

“learning” as achieving and maintaining recall on the test dataset for a color

category, such that;

TruePositive

TruePositive+ FalseNegative
> 0.85 (4.1)

Training stopped when all colors were successfully learned. ANOVA was

then conducted to check for statistically significant differences in mean learning

times between colors.

4.3 Results

Shapiro–Wilk analyses were carried out to establish if learning time for each

color category in each color space was normally distributed. It was important

to establish that data points for each color category in each color space were

normally distributed, as this establishes whether or not the data is suitable for

ANOVA. Results found that for all color categories across each color space,

data were normally distributed with p < 0.01 certainty.

Next, ANOVA was used to investigate differences in learning time for each

color category within each color space. If there were significant differences be-
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Figure 4.2: The mean time to learn each color across each color space in Ex-
periment A

CS
Colors

Red Yellow Green Purple Blue Brown Orange Gray

OPP 19.44 23.50 24.73 24.55 28.38 33.81 34.01 33.08
(9.87) (11.5) (6.56) (8.80) (9.65) (6.45) (7.23) (6.80)

RGB 22.99 27.73 27.09 29.20 31.99 36.60 37.43 36.75
(11.30) (13.14) (8.27) (9.77) (10.93) (8.10) (8.98) (8.62)

BGR 22.62 27.12 27.15 28.90 31.39 36.17 37.23 36.30
(10.83) (12.49) (7.84) (9.54) (10.7) (7.74) (8.69) (8.37)

YUV 19.62 22.69 25.72 20.56 21.60 32.72 32.75 31.92
(8.87) (11.23) (6.59) (6.84) (11.77) (5.99) (6.86) (6.50)

YCbCr 17.49 23.81 26.78 20.49 23.06 33.44 33.58 32.55
(8.36) (11.71) (6.88) (7.78) (11.36) (6.16) (6.97) (6.46)

(n = 500 for each color)

Table 4.1: Means (and standard deviations) of color learning time across each
color space in Experiment A
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tween any learning epochs within a color space, post-hoc analyses were con-

ducted in order to establish which color category learning times were signifi-

cantly different from each other. ANOVA analyses found statistically significant

differences between the number of epochs required to learn colors in all five color

spaces. Post-hoc Games-Howell analyses found hierarchical learning patterns in

all five color spaces, with OPP, RGB, BGR and YUV all having four hierar-

chical levels, and YCbCr having five hierarchical levels. Some similarities are

observable in the hierarchical patterns found in all five color spaces. For ex-

ample, each hierarchy learned red in its first hierarchical layer. Additionally,

each hierarchy learned brown, gray and orange in its final hierarchical layer.

Results of ANOVA and Games-Howell analyses are summarized in Table 4.2,

where the inequality sign < denotes that the color to the left of the inequality

was learned significantly faster than the color to the right of the inequality. An

= sign indicates that there was no statistically significant differences between

learning epoch for two color categories.
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CS F η2 Epochs to Learn

OPP 206∗∗∗ .27 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

RGB 141∗∗∗ .20 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

BGR 151∗∗∗ .21 red < yellow = green = purple < blue < brown = gray = orange∗∗∗

YUV 232∗∗∗ .29 red = blue = purple < yellow < green < brown = gray = orange∗∗∗

YCbCr 270∗∗∗ .32 red < purple < yellow = blue < green < brown = gray = orange∗∗

Table 4.2: The results of ANOVA and post-hoc analyses on differences in learn-
ing epoch between color categories across all color spaces. 500 learning epochs
per color category were recorded for 500 trained networks. This was done for
all 5 color spaces, resulting in 2,500 trained networks in total. F is the F -test
statistic and η2 is the effect size from ANOVA; in addition, there were 7 degrees
of freedom between color categories for all color spaces ( df+b = 7) and 3,984
within color categories ( df+b = 43, 984). The “Epochs to Learn” category de-
tails the results of post-hoc analyses. The inequality (<) denotes a significant
difference at the p < .01 level, with the color to the left of the inequality being
learned significantly faster than the color to the right. Equality (=) denotes the
opposite. ∗∗ p < .01. ∗∗∗ p < .001.
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Chapter 5

Experiment B: Faster R-CNN
Colored Clothing Recall Experiment

Experiment B1 examines how object color affects object detection in Faster

R-CNNs (Ren, He, Girshick, & Sun, 2015). Specifically, does object color affect

how successfully Faster R-CNNs are able to detect an object? And if so, which

colored objects are more likely to be detected?

5.1 Model

Experiment B trained a Faster R-CNN (Ren et al., 2015) with a Resnet-50 back-

bone and a Feature Pyramid Network (Lin et al., 2017) to detect 13 clothing

categories; bag, belt, boots, footwear, outer, dress, sunglasses, pants,

top, shorts, skirt, headwear, scarfs. Horizontal flip data augmentation was

applied to the training data in order to make the training set more diverse.

Batches of 8 were used in training. Stochastic gradient descent was used as

an optimizer, with Nesterov momentum of 0.9 and a learning rate of 0.005.

In addition to this architecture being a state-of-the-art model for object de-

tection, researches have started to observe similarities between this model and

certain aspects of human vision. Specifically, Rosenfeld, Zemel, and Tsotsos

(2018) highlight how parallels can be drawn between feature interference seen

1All code associated with this experiment can be found at https://github.com/

chrishickey/color hierarchy experiment/tree/master/experiment2

21

https://github.com/chrishickey/color_hierarchy_experiment/tree/master/experiment2
https://github.com/chrishickey/color_hierarchy_experiment/tree/master/experiment2


in these Faster R-CNN architectures, and the “binding problem”, seen in biologi-

cal vision. Feature interference refers to the phenomenon where Faster R-CNN’s

sometimes classify the same object differently based on background informa-

tion. Similarly, the “binding problem” refers to how human vision sometimes

leads to feature integration through illusory conjunctions, where features from

two different objects are combined into one (Treisman, Schmidt, et al., 1982).

5.2 Method

Training continued until mAP on the test dataset plateaued at around 70%2.

Next, within all clothing categories, objects were further sub-classified based

on two criteria; basic color (e.g. strong red shirts, moderate red shirts etc. were

all categorised as “red” shirts), and descriptive adjective, (e.g. strong yellow-

ish pink shirts, strong red shirts etc, were all categorised as “strong” colored

shirts). Two things should be noted about these classifications. Firstly, ambigu-

ously colored clothing were not assigned color adjectives (e.g. grayish greenish

yellow shirts). Secondly, the adjectives analysed in this experiment can be sum-

marized into two groups; adjectives which emphasise chromatic hue saturation

(e.g. brilliant, vivid, deep, strong) and adjectives which de-emphasise hue sat-

uration (e.g. light, pale, dark, moderate).

Recall values were then calculated for each subcategory; i.e. out of all suc-

cessfully recalled shirts, what percentage of red shirts were recalled. Object

detections were prioritised based on the models certainty. The maximum num-

ber of object detections allowed per image equalled the number of ground truth

objects in that image. If a subcategory contained less than 50 instances (e.g.

if there were only 20 red belts in the test set), it was excluded from analy-

2mAP scores cited in the original paper (Zheng et al., 2018) were achievable when using a
pre-trained backbone. However the purpose of this experiment was to investigate color learning
patterns, not to maximize model performance.
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ses, as denoted by the ‘-’ in Tables 5.1 and 5.2. If a clothing category had less

than three subcategories of objects (e.g. only brown and green boots met the

50 instance subcategory threshold), this clothing category was excluded from

analyses. This is because a diverse range of subcategory colors and descriptive

adjectives per object category are required to accurately and robustly assess the

impact of colors and adjectives on object detection. All color and descriptive

adjective recall scores across subcategories which met the threshold were then

averaged out to produce a mean recall score for both colors and descriptive

adjectives.

5.3 Results

Following other studies on color perception in computer vision (Rafegas & Van-

rell, 2018), the results outlined in this section were obtained using OPP color

space images as input. However hierarchical color patterns were also found

using other color spaces as model inputs. Table 5.1 shows recall per object cat-

egory based on color. Similar to Experiment A, red is the best recalled color

subcategory across most clothing categories, with colors lower down the Color

Hierarchy such as orange, brown and pink showing the worst recall.

Category Red Green Blue Purple Yellow Pink Brown Orange Gray

Outer .725 .680 .669 .667 .647 .557 .571 .650 .696
Skirt .819 .673 .732 .727 - .62 .654 - -
Bag .752 .646 .669 .656 .675 .66 .694 .702 -

Footwear .807 .784 .805 .724 .752 .621 .740 .698 .755
Belt .657 - .456 .517 - .462 .660 .481 -
Top .629 .661 .614 .632 .619 .736 .580 .626 .423

Dress .702 .718 .698 .690 - .660 .500 - -
Pants .914 .859 .911 .878 - .830 .713 - -

Mean .751 .717 .694 .686 .673 .643 .639 .631 .625

Table 5.1: Recall for each clothing category based on color in Experiment B.
The best recall score within each clothing category is highlighted in bold.
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Category Brilliant Vivid Deep Strong Dark Moderate Light Pale

Outer .725 .671 .703 .614 .715 .564 .602 .663
Skirt .805 .813 .758 .767 .739 .652 .633 .610
Boots - - .556 .559 .497 .421 .364 .265
Bag .790 .742 .710 .716 .675 .663 .632 .636

Footwear .807 .789 .755 .774 .73 .718 .733 .697
Belt - .563 .639 .599 .577 .561 .502 .402
Top .722 .722 .621 .665 .575 .579 .644 .654

Dress .720 .726 .636 .697 .664 .647 .659 .663
Pants - .902 .872 .831 .857 .815 .845 .843
Scarf - .296 .390 .351 .330 .382 .305 .303

Shorts - .759 .709 .763 .707 .795 .72 .778
Headwear - - .703 - .711 .641 .686 .617

Mean .762 .698 .671 .667 .648 .620 .610 .594

Table 5.2: Recall for each clothing category based on descriptive adjective used
to describe the color in Experiment B. The best recall score within each clothing
category is highlighted in bold.

Table 5.2 shows recall per object category based on descriptive adjective

that was used to describe clothing color. Adjectives which emphasise higher

levels of chromatic hue colorfulness, such as “brilliant”, “vivid” and “deep”,

show best recall by the Faster R-CNN model. Conversely, adjectives which de-

emphasise colorfulness, such as “dark”, “light” and “pale”, show notably worse

recall performance across most clothing categories.

CNNs have color selective neurons similar to those in biological vision

(Rafegas & Vanrell, 2017, 2018). In order to isolate the specific augmenting

effect of both color and descriptive adjective on object detection recall caused

by these color selective neurons, a second Faster R-CNN model was trained

using colorless, grayscale images as input (See Figure 5.1). This second model

acts as a baseline against which we can assess the effect of color on object recall.

Recall for each subcategory from this control model trained on grayscale “col-

orless” image input was then subtracted from the original recall scores. These

recall scores are intended to show the impact of color selective neurons on ob-
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(a) Original (b) Grayscale

Figure 5.1: Comparing original and grayscale images in Modanet dataset used
in Experiment B

ject recall and control for non-color related factors such as background color

contrast or other features. These results are summarized in Tables 5.3 and 5.4

Category Red Green Yellow Blue Purple Pink Orange Gray Brown

Outer .143 .100 .235 .094 .093 .016 .117 .071 -.025
Skirt .256 .200 - .249 .234 .185 - - .179
Bag .151 .108 .078 .047 .000 .072 .000 - .062

Footwear .056 .005 .028 .025 -.012 .000 -.018 .047 .039
Belt .163 - - .029 -.017 .058 .135 - .113
Top -.011 -.011 -.082 -.023 -.029 -.010 -.077 -.058 -.058

Dress .061 .028 - .034 .086 .000 - - -.042
Pants .062 .056 - .038 -.027 .000 - - -.137

Mean .110 .069 .065 .062 .041 .040 .031 .020 .017

Table 5.3: Recall for each clothing category based on color in Experiment B,
after subtracting recall values from the control grayscale model. The best recall
score within each clothing category is highlighted in bold.

Table 5.3 shows that for all color categories, the presence of color led to bet-

ter recall on average than the absence of color. However, certain colors showed

noticeable improved recall over the baseline grayscale images when compared
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Category Brilliant Vivid Strong Deep Light Moderate Dark Pale

Outer .147 .132 .083 .068 .110 .048 .058 .126
Skirt .317 .192 .302 .258 .181 .172 .199 .185
Boots - - .044 -.022 -.019 -.055 -.013 -.059
Bag .099 .166 .069 .086 .019 .052 .024 .031

Footwear .037 .050 .044 .051 .013 .020 .025 -.007
Belt - .019 .099 .112 .119 .050 .037 .039
Top .017 .026 -.003 .008 -.016 -.066 -.017 -.038

Dress .037 .037 .010 -.006 -.037 -.009 -.006 -.015
Pants - .105 .063 .016 .024 -.050 -.017 -.009
Scarf - .111 .070 .104 .031 .124 -.026 .040

Shorts - .019 .034 .06 .037 .091 .059 .074
Headwear - - - .117 .069 .109 .085 .028

Mean .109 .086 .074 .071 .044 .040 .034 .033

Table 5.4: Recall for each clothing category based on descriptive adjective used
to describe the color in Experiment B, after subtracting recall values from the
control grayscale model. The best recall score within each clothing category is
highlighted in bold.

to others. Similar to Table 5.1, red clothing items generally showed the most

improved recall across most categories. For 7 out of 8 clothing categories, red

showed greater than 5% improvement over the baseline grayscale images. Com-

pare this to pink, where only 3 of the 8 clothing categories showed greater

than 5% improvement, or brown, where half the clothing categories showed

dis-improved recall when compared to the baseline. It is noteworthy that color

appeared to improve recall much more for smaller items such as bags, skirts

and belts as opposed to larger items like dresses, or pants.

Table 5.4 shows that for all color adjectives, the presence of color led to

better recall on average than the absence of color. However similar to Table

5.2, adjectives which emphasise higher levels of chromatic hue colorfulness, such

as “brilliant”, “vivid” and “deep”, showed the greatest improvement in recall

when compared to the baseline grayscale images. Conversely, adjectives which

de-emphasise colorfulness, such as “dark”, “light” and “pale”, showed the lowest
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level of improved recall when compared to the baseline grayscale images.
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Chapter 6

Discussion and Conclusion

Experiment A Experiment A investigated whether color categories are learned

in a random order by CNNs, or whether meaningful hierarchical patterns can

be observed when CNNs learn specific color categories. Results found that while

there is large variation between individual CNN models, CNNs learn color cat-

egories along a normally distributed number of epochs, with statistically sig-

nificant differences observable between the mean learning time for each color

category. These statistically significant differences were found across five dif-

ferent color spaces. These results suggest that conventional color categories as

understood by humans are not randomly learned by CNNs, and that certain

color categories are learned faster than others in a statistically significant way.

Experiment B Experiment B builds on the first experiment by investigating

whether the hierarchical color category learning patterns seen in Experiment A

affected performance in practical CNN based computer vision tasks, specifically

object detection. Results found that for Faster R-CNNs, object recall on a

dataset of fashion clothing items was impacted by object color, with recall

being noticeably better for certain colored clothing items compared to others.

For example, recall for red clothing items was on average 10% higher than recall

for pink, brown, orange or gray clothing items. These differences persisted, even
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when controlling for factors such as background color contrast through models

trained on grayscale images. In addition to color category, descriptive adjectives

for colors also appeared to noticeably impact clothing item recall. Adjectives

which emphasised color chromatic hue such as “brilliant”, “vivid” and “strong”

colors appear to show noticeably better recall when compared to “moderate”,

“dark” and “pale” colors that de-emphasise hue. These differences also persisted

when controlling for other factors through grayscale image trained models.

Experiments A and B In both experiments A and B, hierarchical color

learning patterns were observed, giving support to the alternative hypothesis

outlined in the introduction. Some notable similarities can be seen between the

hierarchical learning patterns that emerge in both experiments. In both experi-

ments, red shows both the fastest learning speed and best recall. Green, yellow

and blue generally followed red in showing the next best learning speed and

recall. Finally, brown, orange and gray displayed consistently slower learning

speed and worse recall scores when compared to other colors. This hierarchical

pattern observed in both experiments mimics the general hierarchical patterns

observed in the human Color Hierarchy.

Contributions and Weaknesses The present study contributes to litera-

ture on the use of neural networks and deep learning methodologies as a means

of investigating the existence of cognitive universalities. Similar to methodolo-

gies used to investigate the universality of cognitive arithmetic difficulty (Cho,

Lim, Hickey, Park, & Zhang, 2019; McClelland et al., 2010), the present study

uses neural networks as a means of investigating the universality of hierarchi-

cal color patterns. This investigation is done using partially faithful models

of human vision (CNNs) and biologically-inspired color space images as input
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(OPP, YCbCr). Results found support for Berlin and Kay (1969) and their

original Color Hierarchy. Additionally, results from the present study give ten-

tative support to studies that claim that models inspired by the human visual

system can at least partially simulate the emergence of such hierarchical color

category patterns (Baronchelli et al., 2010; Regier, Kay, & Khetarpal, 2007).

This is distinct from other research which suggests cultural (Wierzbicka, 2008)

or evolutionary psychological (Tchernikov & Fallah, 2010) explanations for the

emergence of hierarchical color patterns. In reality, the fact that color hierar-

chical patterns in language show recurrent, cross-cultural similarities while not

being strictly uniform across languages suggests that some confluence of both

universalities and cultural factors lead to the emergence of the Color Hierarchy.

For the purpose of this study, color categories were generally considered

as both discrete and unrelated. However, as Gärdenfors (2004) outlines, this

is actually not the case. Color categories are a prime example of something

which can be represented through conceptual space - a geometric structure

formed by a set of quality dimensions. Given that color can be represented

via a geometrical structure along three quality dimensions (hue, chromaticness

/ saturation, and brightness), distance between separate color categories as

well as an area occupied by any single color category are both tractable and

calculable. Therefore we can not assume that the emergence of hierarchical

color preferences are purely a function of biological vision. In order to conduct

a truly thorough investigation into what causes the emergence of hierarchical

color patterns, examining how hierarchical color patterns relate to geometric

distance between conventional color categories should be considered.

Additionally, the present study labels color categories either through the

visual assessment of a native English speaker, or by using the ISCC-NBS color

labeling system which is very much based on common English language under-
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standing of colors. A more robust investigation of hierarchical color preferences

could explore if hierarchical patterns emerge when labelling of separate color

categories is considered from the perspective of different languages, similar to

the precedent set in studies like Taft and Sivik (1997), and Kay et al. (2009).

If the present study were to be replicated and evidence for hierarchical color

patterns in CNNs was found using labelling systems from multiple languages,

this would add significant weight to the strength of conclusions that could be

drawn from the present study. Additionally, if results from this experiment were

duplicated using different recall values and numbers of convolutional layers for

Experiment A, and different object detection models such as YOLO (Redmon,

Divvala, Girshick, & Farhadi, 2016) for Experiment B, this would also serve to

further enhance the robustness of the conclusions that could be drawn from the

present study.

Future Study Firstly, the present study focuses solely on investigating whether

training CNN based models on color data could lead to the emergence of hierar-

chical color patterns. Therefore, future studies should aim to better understand

how and why these patterns emerge in CNNs. Previous research has outlined a

methodology for investigating which single, opponent and non-opponent color

selective neurons are present at each convolutional layer in a trained CNN

(Rafegas & Vanrell, 2017, 2018). Investigating how these color selective neu-

rons emerge and evolve over the course of training should shed light on how

color hierarchies emerge, at least in the context of CNNs. Additionally, seeing

how color space image input affects the emergence of color selective neurons

could offer insight as to why different color spaces (e.g luminance color spaces,

opponent color spaces, etc.) lead to the emergence of different hierarchical color

patterns in CNNs, as was found in Experiment A.
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Secondly, in addition to finding hierarchical color patterns in CNNs, the

present study also found evidence to suggest that different color spaces learn

certain colors better than others (Experiment A). Furthermore, high color sat-

uration (e.g. “brilliant”, “vivid” colors) lead to better object recall than less

colorful objects (Experiment B). It could be possible to leverage this informa-

tion in order to improve performance for object detection tasks. For example,

given that different color spaces may be more optimized for certain colors, using

multiple color space images as input to a model, similar to the methodology

outlined by Gowda and Yuan (2018), may lead to improved object detection per-

formance. Additionally, artificially enhancing color saturation of images, thus

making them more colorful, may also improve object detection performance

based on the results from Experiment B.

Finally, investigating cognitive universalities - defined as core mental at-

tributes shared by humans everywhere - is a notoriously difficult task, given

the various costs, linguistic issues, and other difficulties inherent in conducting

unbiased, cross-cultural studies (Norenzayan & Heine, 2005). Partially biolog-

ically faithful deep learning models offer an economical way to test the exis-

tence of universalities in a comparatively controlled setting, as was the aim of

the present study. If parallel universalities can organically emerge from neural

network models, this lends credence to the biological faithfulness of that model,

as was seen in the arithmetic difficulty modelling study conducted by Cho et

al. (2019). Continuing to investigate universalities through deep learning (for

example, difficulty in cognitive object rotation), could serve to advance a mul-

titude of academic disciplines, including AI, cognitive science and psychology.
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국문초록

경험적으로 색상 계열은 보편적으로 다양한 문화권에 걸쳐 순환적이고 위계적인

패턴을나타내며그순서는다음과같이나타난다;검은색 <붉은색 <녹색 <노란

색 < 파란색 < 갈색 < 분홍색, 회색, 주황색, 보라색. 이러한 경향은 “색상 위계

(Color Hierarchy)”라 불린다. 소개될 두 가지 실험을 통해 본 연구는 콘볼루션

신경망의 경우에도 색상 위계 순서에 따른 색상계열 학습이 진행되는지 알아본다.

실험 A는 색상 계열이 무작위로 학습되는지 위계적인 순서를 통해 학습되는지

알아본다. 실험의 결과를 통해 색상 위계상으로 더 상위의 색상(예: 붉은색)은 일

반적으로하위의색상들 (예:갈색,주황색,회색)보다앞서학습이이뤄짐을볼수

있다.실험 B는색상위계에따른학습편차가객체인식학습의재현률(recall)에도

영향을 끼치는지 알아본다. 실험 A에서와같이 색상 위계는 객체인식 재현률에도

큰 영향을 끼친다. 추가적으로 색상을 강조하는 부사(예: 선명한, 눈에 띄는, 짙은)

와 함께 묘사된 객체의 경우에는 반대로 색상을 억제하는 부사(예: 어두운, 옅은,

엷은)와 함께 묘사된 객체들보다 재현률이 높게 나타난다. 부사와 색상의 효과는

흑백 이미지들에 대해서도 여전히 관측된다. 이와 같은 결과들은 사람과 콘볼루션

신경망의 색상 지각과정의 유사성을 보여주며 객체 인식에 영향을 주는 요인들에

대한 통찰력을 제공한다. 또한 이 결과들은 딥러닝 방법이 인지과정의 보편성을

살피는 데에 효율적이고, 치우치지 않으며, 경제적인 방법임을 지시한다.

주요어: 색상 위계; 컴퓨터 비전; 콘볼루션 신경망; 인지과정의 보편성; 물체 탐지

학번: 2018-29483
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