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ABSTRACT

Large-scale brain networks in 
resting-state underlying individual 
differences on response inhibition

Youngmin Huh

Interdisciplinary Program in Cognitive Science

The Graduate School

Seoul National University

Response inhibition is one of the essential cognitive functions and suppresses 

inappropriate responses for goal-directed behavior. When a brain is cognitively 

engaged, it enters a cognitive state that task-positive regions are activated, and 

the default mode network is deactivated (DMN). In contrast, DMN is activated, 

and task-positive regions are deactivated at rest. The transition between the 

states is important for the cognitive function, and recent studies have found that 

the salience network (SN) plays a crucial role in detecting and processing a 

salient signal and suppressing DMN at rest. It can be assumed that there exists 

optimized connectivity to perform response inhibition successfully and that it 

will also appear in resting-state requiring no cognitive effort. It was 

hypothesized that lower functional connectivity within SN and higher
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functional connectivity within DMN and greater anti-correlation between then 

is related to better response inhibition.

The response inhibition of individuals was measured by the stop-

signal task and the Stroop task. The correlation between intra-/inter-component 

functional connectivity derived from independent component analysis with 

dual regression and task performances were examined to test the hypothesis. 

The intra-/inter-component structural connectivity analysis using diffusion 

tensor imaging was conducted to provide a deeper understanding of functional 

connectivity. Topological characteristics of inter-component functional 

connectivity were also examined using the minimum spanning tree (MST) of 

each individual to provide a heuristic insight from the topological view.

The results indicate that the functional connectivity within SN, but not 

DMN components, and the functional and structural connectivity between SN 

and DMN components are critical to elucidate individual differences in 

response inhibition. Higher structural connectivity but low functional 

connectivity of SN at rest was an important feature for superior response 

inhibition. The stronger structural connectivity and stronger anti-correlation 

between SN and DMN components were also indicative of better response 

inhibition. MST of a subject with the best performance showed direct 

connections between SN and anterior DMN/pDMN, whereas the MST of the 

one with the worst performance does not. These intra-/inter components 

connectivities reflect the organization of the brain that enables competent 

response inhibition and account for individual differences. 

This study might suggest that the individual’s characteristics of 
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large-scale network components at rest provide evidence to illustrate response 

inhibition of an individual without any experimental scan.

Keywords: response inhibition, large-scale network, resting-state functional 

magnetic resonance imaging, diffusion tensor imaging, brain connectivity, 

minimum spanning tree

Student Number: 2014-30038  
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1. Introduction

1.1. Response inhibition and its neural correlates

Cognitive control is the ability to coordinate goal-directed thoughts and actions, 

and researchers regarded it as a marker that could explain mechanisms of 

individual differences in cognitive function (Lee et al., 2015; Nigg et al., 2006; 

Unsworth et al., 2009). Response inhibition implies behavior that suppresses 

actions that are inappropriate for the context, and it is one of the most critical 

components of cognitive control (Bunge et al., 2002). Various tasks, including 

the Stop-signal task (SST) and the Stroop task, have been developed to assess 

response inhibition (Friedman et al., 2004; Logan et al., 1984; MacLeod et al., 

2000; Stroop, 1935).

1.1.1. Cognitive tasks to measure response inhibition

Response inhibition suppresses a response that is not required in a given context. 

The SST and the Stroop task are both commonly used to measure response 

inhibition (Friedman et al., 2004). They instruct not to respond to the prepotent 

stimuli but to less dominant ones. 

In the SST, subjects were instructed to perform a primary task, which is a 

simple response selection task, and a stop signal is presented occasionally 

during a trial of the primary task. Previous studies reported that the SST is very 

sensitive to measure response inhibition than other tasks, e.g., Go/No-go task, 

Flanker task (Gauggel et al., 2004). In the Stroop task, subjects are told to report 
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the color of the ink printed, not the meaning of the word. In general, language 

processing is more dominant than color processing; hence, the task assesses 

response inhibition (MacLeod et al., 2000). 

1.1.2. The neural correlates of response inhibition

Early studies proposed that specific brain region and its connection supports 

discrete cognitive function (Hampshire et al., 2015). Based on behavioral 

measures, investigations have found candidate regions of response inhibition, 

including right inferior frontal gyrus (rIFG), anterior insula (aINS), pre-

supplementary area (preSMA), and cortico-striatal-thalamic-cortical loop 

(CSTC loop) with subthalamic nucleus (STN). Aron suggested that rIFG is the 

core region that “brakes” the response, and signals from rIFG is sent to the other 

areas for further processes (Aron, 2007; Aron et al., 2003; Aron et al., 2004, 

2014; Chikazoe et al., 2007). The increased activation in aINS was also 

observed when healthy subjects cancel their response during the task (Rubia et 

al., 2001). 

Contrary to the traditional view that response inhibition arises from a 

specific brain region, recent studies proposed a globalist view that some 

distributed brain regions are involved in diverse cognitively-demanding tasks 

(Erika-Florence et al., 2014; Hampshire et al., 2015). Given that various cortical 

and subcortical regions were reported to be involved in response inhibition, 

investigations on large-scale networks may provide a system-level 

understanding to clarify the neural correlates (Zhang et al., 2017). For example, 

the salience network is one of the most well-known large-scale networks and 
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includes aINS and STN, reported in task-based fMRI studies of response 

inhibition (Aron et al., 2006; Swick et al., 2011). Therefore, not a specific 

region, but large-scale networks consist of distributed brain regions were 

investigated in this study.

1.1.3. Response inhibition and resting-state brain

The traditional task-based fMRI has been widely used to investigate various 

cognitive functions, but the finding may vary depending on the experimental 

design and stimulus modality (Bennett et al., 2013; Gielen et al., 2018). In 

contrast, resting-state fMRI (rs-fMRI) focuses on the ongoing spontaneous 

fluctuation, that covers the entire repertoire of the brain network that reflects 

active brain, which can be observed by task-based fMRI (Douaud et al., 2015; 

Fox et al., 2010; Welvaert et al., 2013). Therefore, it is expected that rs-fMRI 

data analysis would reveal the robust baseline functional connectivity that 

underlies task-induced state and cognitive function. 

In recent years, rs-fMRI studies have emerged as a promising tool to 

uncover intrinsic connectivity that subserves cognition and behavior (Keller et 

al., 2015; Kong et al., 2019; Sala-Llonch et al., 2012). Previous studies have 

shown that intrinsic neural circuitry is related to development, aging, and 

individual differences in cognitive functions (Amer et al., 2016; Barber et al., 

2013; Chai et al., 2014).

Response inhibition is involved in a wide range of cognitive 

processing, and the deficit of response inhibition is related to diverse 

psychiatric diseases with maladaptive behaviors: Attention-
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deficit/hyperactivity disorde (ADHD), conduct disorder, and addictive 

disorders (Lawrence et al., 2009; Nigg et al., 2006; Slaats-Willemse et al., 2003; 

van der Meer et al., 2004). Since response inhibition is associated with broad 

classes of cognitive processing (Bechara et al., 2004; Fichten et al., 1986; 

Roberts et al., 1994), it is assumed that the brain at rest, the basic circuit 

underlying task-state, will also reflect individual differences in response 

inhibition in this study.

1.2. Investigations on large-scale networks underlying 

response inhibition

1.2.1. Resting-state networks and response inhibition

The resting-state networks are the most well-known large-scale networks 

consist of distributed brain regions that work together. Resting-state networks 

have been identified with a number of methods, such as Independent 

component analysis (ICA). Researchers reported few networks, including 

default mode network (DMN), salience network (SN), and central executive 

network (CEN), that are robust and reproducible (Damoiseaux et al., 2006). 

Moreover, recent findings implicated that resting-state networks are potential 

biomarkers for psychiatric disease that involves cognitive impairments (Di et 

al., 2014; Menon, 2011). For example, the disrupted functional connectivity 

within DMN was found in patients with Alzheimer’s disease (AD), and it 

showed a significant relationship with the hallmark of AD, the beta-amyloid 
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deposition (Elman et al., 2014). Numerous studies have investigated the 

resting-state of the brain, and it was expected to be one of the most convenient 

and efficient ways to understand brain functions.

When a brain is engaged in a task that requires cognitive demands, 

brain regions related to the cognitive function are activated, and the DMN is 

deactivated. In contrast, task-positive regions are deactivated, and the DMN is 

activated at rest. Previous studies found that states switch to respond to 

cognitive demand (Nour et al., 2019). DMN shows deactivation during the task, 

and the magnitude of the change was related to cognitive load (Mckiernan et 

al., 2003; Sambataro et al., 2010). Moreover, anti-correlation between SN and 

DMN is observed in both the tasking-state and resting-state of the brain due to 

their opposing properties (Buckner et al., 2008; Chai et al., 2014). 

SN is known to be essential to change states since the SN interacts 

with DMN and CEN. The causal influence from SN to DMN is related to better 

performances at a task that requires top-down regulation of internal noise (Wen 

et al., 2013). Due to the role of SN that interacts with other networks, SN is 

considered to be a modulator that switches DMN and CEN depending on the 

cognitive demands. SN is involved not only in top-down but also in bottom-up 

mechanisms and plays an important role in salient stimulus processing (Menon, 

2015; Menon et al., 2010). The aINS receives external sensory information via 

posterior insula and internal-oriented information. The aINS also interacts with 

various cortical regions to mediate top-down processing.

The response inhibition requires to detect proper stimulus that 

provokes suppression of an action. Information is abundant around, and the 
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detection of an appropriate stimulus is important for response inhibition. The 

SN engages in detecting salient stimuli and directing attention to an external 

stimulus, not toward the internal process, to achieve successful inhibitory 

control (Menon et al., 2010). Thus, it was inferred that SN and DMN and the 

functional connectivity between them are related to response inhibition.

1.2.2. Structural connectivity

There has been an ongoing debate over the relationship between brain structure 

and function. Previously, significant correlations between structural 

connectivity and functional connectivity were observed (Honey et al., 2009; 

Koch et al., 2002), but it is challenging to set their straightforward 

correspondence. The cases of functionally connected but no anatomical 

pathway between regions are fairly found (Koch et al., 2002), and the 

heterogeneity of structural and functional connectivity has been discussed. The 

structural connectivity tends to be spatially constrained (Bullmore et al., 2012), 

while functional connectivity arises from distributed brain regions (Thomas 

Yeo et al., 2011). However, the importance of structural links is agreed upon, 

and the links may underlie as a backbone for functional connectivity.

In this study, the structural connectivity of the resting-state network 

has been investigated for a profound understanding of functional connectivity. 

Previous studies have shown that structural connectivity is important to resting-

state networks and also contributes to functional connectivity and cognitive 

functions. The structural connectivity of the cingulum tract connecting the 

precuneus/posterior cingulate cortex and medial frontal cortex, the core regions 
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of DMN, was related to FC between them (van den Heuvel et al., 2008). The 

inferior occipitofrontal fasciculus and the uncinate fasciculus pass through 

insula (Wang et al., 2011), and they were associated with response inhibition 

and developmental disorders with inhibition impairment (Olson et al., 2015; 

Rollans et al., 2018).

In this study, structural connectivity analysis was conducted to support 

and provide a deeper understanding of functional connectivity underlying 

response inhibition. 

1.2.3. Topological characteristics

Functional coupling between target nodes is one of the most critical features to 

characterize neural substrates. It investigates pairwise relationships between 

nodes in a traditional way. However, the topological data analysis, which has 

risen with recent advances, enabled interpretation from functional connectivity 

in a topological perspective (Lee et al., 2011a; Lee et al., 2011b). A brain is 

assumed as a small-world network consisting of nodes, the brain regions, and 

edges connecting them to investigate topological characteristics. It provides an 

insight in terms of a wholly connected structure of the system, not a pairwise 

relationship (Giusti et al., 2016; Lee et al., 2011a; Lee et al., 2011b). In recent 

years, topological data analysis plays an important role in neuroscience, and it 

has been used to find a biomarker for a specific disease (Ha et al., 2020; Lee et 

al., 2019). 

In this study, a minimum spanning tree (MST) of each subject was 

estimated and displayed to visualize the topological characteristics of the large-
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scale networks underlying response inhibition at rest. It reflects not only the 

pairwise functional connectivity but also the whole system connected from a 

topological view, providing profound knowledge with the widened scope of 

functional connectivity.

1.2.4. The aim of the present study

In this study, large-scale networks at rest were investigated to figure out neural 

correlates of individual differences in response inhibition. It was expected that 

the intrinsic circuits at rest would reflect task-induced state with cognitive 

demands, and therefore would provide a system-level understanding 

encompassing task-based studies. The structural connectivity was also 

examined to give a deeper understanding of the nature of functional 

connectivity. 

It was hypothesized that low functional connectivity of SN and high 

functional connectivity of DMN and high anti-correlation between them at rest 

to be associated with better response inhibition. The analyses were conducted 

as follows to test this hypothesis. First, the functional connectivity within a 

resting-state network and between two resting-state networks were tested for 

correlations with response inhibition. Second, structural connectivity was 

examined to provide a further understanding of functional connectivity. Finally, 

each individual’s MST was estimated to provide an insight into the relationship 

between SN and DMN from the topological view. 
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2. Methods

2.1. Subjects

For the study, 22 healthy and right-handed adults without any psychiatric 

disease were recruited (Table 1). They underwent the Korean version of 

screening tests: CES-D (Center for Epidemiologic Studies Depression Scale) 

(Hahn, 1982), MMSE (Mini-Mental State Examination) (Kang et al., 1997), 

STAI-X (State-Trait Anxiety Inventory) (Kim et al., 1978). Subjects who meet 

screening criteria were included for the study (CES-D < 16, STAI < 50, MMSE 

≥ 28). Two subjects were excluded in whole analysis: one subject suspected 

of the arachnoid cyst; one subject with missing behavioral data. One more 

subject was excluded only in diffusion tensor imaging (DTI) analysis due to 

technical problems on DTI data acquisition. In total, rs-fMRI data of 20 subjects 

(male = 4; female = 16, mean age = 26.45 ± 5.20, mean education year = 15.55 

± 2.77) and DTI data of 19 subjects (male = 4; female = 15, mean age = 25.89 

± 4.72, mean education year = 15.58 ± 2.83) were included for analysis. The 

study was approved by the Institutional Review Board of Seoul National 

University Hospital (IRB No. 1312-121-545), and the study complied with the 

tenets of the Declaration of Helsinki. Informed consent was obtained from all 

individual subjects recruited, and a hard copy was given to all subjects.
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Table 1. Demographic information of subjects. The mean and standard 
deviation of variables for rs-fMRI (n=20) and DTI (n=19) analysis was 
presented. One subject was excluded from DTI analysis.

Variable
Modality

rs-fMRI (n = 20) DTI (n = 19)

Age (years):

Mean 26.45 25.89 

SD 5.20 4.72 

Gender:

Male 4 4

Female 16 15

Education (years):

Mean 15.55 15.58 

SD 2.77 2.83 

MMSE

Mean 29.50 29.47

SD 0.59 0.60

CES-D

Mean 8.70 8.58 

SD 3.72 3.77 

STAI-X

Mean 34.60 34.74 

SD 6.18 6.31 

rs-fMRI: resting-state functional magnetic resonance imaging, DTI: diffusion tensor 
imaging, CES-D: The Center for Epidemiologic Studies-Depression Scale, STAI-X: 
State-Trait Anxiety Inventory.
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2.2. Behavioral tasks to assess response inhibition

Response inhibition was estimated using the stop-signal task (SST) (Logan et 

al., 1984) and the Stroop task (Stroop, 1935) (Figure 1). The tasks were 

conducted to the subjects using Inquisit 4 (https://www.millisecond.com/). 

In SST, stop-signal reaction time (SSRT) was measured to assess 

response inhibition. An arrow pointing left or a right was randomly shown on 

the screen, and subjects were told to press a corresponding button in a go trial 

(i.e., primary task) (Figure 1 (a)). In some trials, a beep sound representing a 

stop signal comes after the arrow stimulus after a stop-signal delay (SSD) (stop 

trial) (Figure 1 (b). Subjects were told to withhold the response when they listen 

to a stop signal. SSRT is a duration of the stop process, and the higher SSRT 

indicates poorer response inhibition. 

The successful inhibition does not emit any behavioral output, so the 

SSRT can be estimated as follows. The distribution of the response time (RT) 

of the primary task trials, i.e., go trials without stop-signal, represents the 

finishing time of the go-process. Assuming the independence of Go and Stop 

processes, the finishing time of Stop-process bisects the RT distribution: 

p(respond|signal), p(inhibit|signal). The task dynamically adjusts the SSD 

depending on an individual’s performance of the previous trial. The SSD is set 

to 250ms at the first trial, and increases by 50ms after successful inhibitory trial 

and decreases by 50ms after the subject fails to inhibit. The procedure stops 

when a subject successfully inhibit half of the trial with the stop signal, i.e., 

p(inhibit|signal)=.5. The 50th percentile of rank-ordered RT distribution is the 

point that bisects the distribution, and it is called the internal response to the 
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stop signal. An individual cannot inhibit the response if the RT is smaller than 

an internal response to the stop signal on stop trials. The SSRT can be calculated 

by subtracting mean SSD from mean RT. 

In the Stroop task, three types of stimuli were presented during the 

task. A colored rectangle (control condition) (Figure 1 (c)) or a word 

representing the name of the color (incongruent/congruent condition) was 

displayed on the screen. The name of the color was presented under the two 

conditions: in the same ink color as it spelled out (congruent condition: ‘Green’ 

in green ink) (Figure 1 (a)) or in different ink colors (incongruent condition: 

‘Green’ in red ink) (Figure 1 (b)). Subjects were instructed to choose the color 

of ink, not the name of the color spelled out, by pressing the corresponding 

keyboard. The differences between three conditions were assessed using a one-

way analysis of variance (ANOVA) with post hoc Bonferroni tests to correct 

for multiple comparisons. The error rate for the incongruent condition was used 

for analysis as a measure of response inhibition. A higher error rate shows 

poorer response inhibition of an individual.  



13

Figure 1. Two behavioral tasks to assess response inhibition. (Top) In the Stop-
signal task (SST), subjects were instructed to push a button according to the stimulus 
shown on the screen (a). The stop trial is randomly presented, and subjects were told to 
withhold their response when the stop signal is given (b). (Bottom) There are three 
kinds of stimuli in the Stroop task. Subjects were shown a word representing a color, 
which is written in (a) identical ink color with the word, or (b) incongruent ink color 
with the word (ex. the word 'green' written in red ink). (c) A colored rectangle was 
displayed in the control condition. Subjects were instructed to press a button which 
represents the color of the ink of the stimulus, not the meaning of the word.
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2.3. Brain imaging data acquisition and preprocessing

2.3.1. Resting-state fMRI

Subjects were scanned on a 3-T scanner (Magnetom Biograph mMR, Siemens 

Healthcare, Erlangen, Germany) with 16–channel head coil. Spoiled gradient 

echo (SPGR) T1-weighted images were obtained with following parameters: 

repetition time (TR) = 1679ms, echo time (TE) = 1.89ms, flip angle = 9°, field-

of-view (FOV) = 250 × 250mm2, matrix size = 256 × 256, 208 sagittal slices of 

1mm thickness, voxel size = 1.0 × 1.0 × 1.0mm3. The rs-fMRI data were 

collected with parameters as below: TR = 3000ms, TE = 30ms, flip angle = 90°, 

FOV = 240 × 240mm, matrix size 128 × 128, 45 axial slices with 3mm thickness, 

voxel size = 1.9 × 1.9 × 3.0mm3, resulting 180 volumes. Subjects were given 

instructions not to sleep and not to think of anything specific during scanning 

with their eyes closed.

Statistical Parametric Mapping (SPM, www.fil.ion.ucl.ac.uk/spm/) 

was used for resting-state data preprocessing. After discarding five volumes, 

imaging data were inspected for noisy slices and repaired by ArtRepair 

Software (https://cibsr.stanford.edu/tools/human-brain-project/artrepair-

software.html) (Mazaika et al., 2005). Data quality was checked manually after 

the repair, and subjects with mean frame-wise displacement < 0.2mm were 

included in the study (Power et al., 2012). Each subject’s rs-fMRI data were 

corrected for motion artifacts after slice timing correction. Images were 

coregistered to anatomical T1 weighted images and normalized to MNI space. 

Next, they underwent smoothing, and the intensity of gray matter was 
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normalized to a whole-brain median of 1000 (Patel et al., 2014). Wavelet 

despiking was performed to denoise the data (Patel et al., 2016), then white 

matter, CSF, 6 motion parameters were regressed out, and bandpass filtering 

(0.01Hz-0.1Hz) was done.

2.3.2. Diffusion tensor imaging

DTI data were obtained with TR = 9500ms, TE = 92ms, FOV = 230 × 230mm2, 

matrix size 114 × 114, 66 axial slices with 2mm thickness, voxel size = 2.0 × 

2.0 × 2.0mm3, b-value = 1,000sec/mm2, 60 gradient directions and 8 reference 

images (b = 0). DTI images were preprocessed using FMRIB's Diffusion Tool 

(FDT, http://www.fmrib.ox.ac.uk/fsl) and Diffusion Toolkit (DTK, 

http://trackvis.org/dtk/). Data were corrected for eddy current distortion and 

subject movements (Andersson et al., 2016). Tensor reconstruction calculating 

eigenvectors of each voxel was performed using extracted gradient direction 

information. The preprocessed data were manually inspected for any noise or 

abnormal motion, and whole-brain fiber tracking was implemented with an 

interpolated streamline propagation algorithm, which is a modified Fiber 

Assignment Continuous Tracking (FACT) algorithm (Conturo et al., 1999; 

Mori et al., 1999). The algorithm builds streamlines by tracing the pathways 

from a seed region by following the diffusion tensor’s principal eigenvectors 

from one voxel to the next voxel. The voxels with fractional anisotropy (FA)

values larger than 0.2 were included for fiber tracking, and ten seeds per voxel 

were set to reconstruct streamlines starting from the random location of a voxel. 

If a turning angle between two voxels is greater than 35°, the tracking procedure 
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stopped.

2.4. Resting-state networks and functional connectivity 

analysis

2.4.1. Group independent component analysis to identify 

resting-state networks

Independent component analysis (ICA) was carried out using Multivariate 

Exploratory Linear Decomposition into Independent Components (MELODIC) 

to figure out independent components (IC’s), i.e., resting-state networks 

(Beckmann et al., 2009) (Figure 2, (a)). The ICA finds projections of maximal 

independence. According to the central limit theory, random mixing of random 

variables results in Gaussian. Conversely, it is possible to find the independent 

component by estimate non-Gaussianity. 

Y = XB + E (1)

Y is concatenated data of all 20 subjects in standard space, which was 

used for estimation resulting in 25 independent components, B. X contains the 

time-course of components, and E denotes Gaussian noise. Twelve network 

components, the group IC maps, were identified for the analysis: (a) anterior 

default mode network (aDMN), (b) posterior DMN (pDMN), (c) Salience 

network (SN), (d) left CEN (Lt CEN), (e) right CEN (Rt CEN), (f) Dorsal 

attention network (DAN), (g) Ventral attention network (VAN), (h) medial 

Visual network (medVN), (i) lateral VN (latVN), (j) primary VN (priVN), (k) 
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Sensorimotor network (SMN), (l) Basal ganglia and cerebellar network (BGCN) 

(Figure 3). 

2.4.2. Dual regression to obtain subject-specific data of 

components

Dual regression was performed to calculate subject-specific spatial maps that 

include parameter estimates, and the time-courses for each component 

(Beckmann et al., 2009; Filippini et al., 2009) (Figure 2, (b)). Firstly, in the 

spatial regression, group IC spatial maps were regressed to each subject’s four-

dimensional (4D) dataset to estimate subject-specific time-courses for each 

component:

Y = ����� + �� (2)

Y denotes dataset of the subject which is reorganized into two-dimensional data 

matrix (N voxels × T time points), and �� is group IC maps obtained from 

group ICA and is identically assigned to all subjects. ��� is the time course of 

the components, one for each component. ��  denotes the matrix of errors.

Next, in the temporal regression, the temporal information, which is the output 

from the first stage was regressed to each subject’s preprocessed dataset to 

estimate the subject-specific set of spatial information, i.e., parameter 

estimation maps:

Y = ������ + �� (3)

The ���  consist of spatial maps of the subject. The spatial map contains 

parameter estimates (beta values) per voxel, and they represent the functional 

connectivity of a given component. The spatial maps were obtained for each 
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corresponding component.
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Figure 2. The workflow of calculating intra-component functional connectivity (FC) and inter-component FC. (a) The group independent component 
analysis (ICA) was conducted to extract resting-state networks. (b) In the first stage, group IC maps were entered as a regressor in spatial regression, and a 
subject-specific time course for each IC map, i.e., resting-state networks were obtained. The correlation coefficient between time courses of two components 
was calculated as the inter-component functional connectivity (FC) of an individual. The output from stage 1, the time course, was entered as a regressor in 
stage 2 temporal regression. Subject-specific spatial maps, which are parameter estimation maps consist of beta values, were obtained for each component and 
masked with binarized group IC maps. The mean of masked values was calculated to examine intra-component FC.
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Figure 3. The resting-state networks included in this study. Twelve components were obtained by independent component analysis (ICA), and included 
in the analysis: (a) anterior default Mode Network (aDMN), (b) posterior DMN (pDMN), (c) Salience Network (SN), (d) left Central Executive Network (Lt 
CEN), (e) right Central Executive Network (Rt CEN), (f) Dorsal Attention Network (DAN), (g) Ventral Attention Network (VAN), (h) medial Visual Network 
(medVN), (i) lateral Visual Network (latVN), (j) primary Visual Network (priVN), (k) Sensorimotor Network (SMN), (l) Basal Ganglia and Cerebellar Network 
(BGCN).
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2.4.3. Estimation of subject-specific intra-/inter-

component functional connectivity

Subject-specific time-courses and spatial maps for each component were used 

for analysis. A mask image was generated by thresholding a group IC map (Z>5) 

and applied to a subject-specific spatial map, the parameter estimation map. 

Extracted parameter estimation values were averaged to assess intra-component 

functional connectivity. The intra-component represents the association 

between a single subject-specific time-course of a component obtained by the 

first stage in dual regression, and time-courses of the voxels composing a 

component. It shows large value when voxels from a subject-specific spatial 

map of a component are highly correlated to a subject-specific time-course of 

a component (Elman et al., 2014; Rolinski et al., 2015; van Duijvenvoorde et 

al., 2016). 

The correlation coefficients between the time-courses of the pair of 

components were calculated to examine inter-component functional 

connectivity. The intra-/inter component FC were tested for correlation with the 

performance of each task, respectively, that measured response inhibition. The 

age and gender effects were regressed out. 

2.5. Structural connectivity analysis

2.5.1. Structural connectivity and response inhibition

Binary mask images using IC maps (Z > 5) were warped into an individual 
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native space, and they were used as ROI to examine structural connectivity. The 

streamlines representing white matter were reconstructed by the tractography 

technique. The streamlines that both endpoints belong to one network 

component were classified to estimate intra-component structural connectivity. 

The mean FA of all voxels of which the streamlines pass was calculated to 

assess the intra-component structural connectivity. The voxels with their FA 

higher than 0.2 are included for the analysis to exclude gray matter and 

cerebrospinal fluid (Jones, 2010). Next, the streamlines connecting two 

components were identified to estimate inter-component structural connectivity. 

The mean FA of all voxels of which classified streamlines pass was calculated 

as inter-component structural connectivity (Figure. 4). Overlapping areas of 

network components were excluded in the analysis.

In an analysis that investigated intra-/inter-component structural 

connectivity, components, and edges showing significant correlations with 

response inhibition in functional connectivity analysis were included. Four 

components for intra-component SC and thirteen pairs of inter-component 

structural connectivity were examined for correlations with task performances 

representing response inhibition in this analysis. The age and gender effects 

were regressed out.

2.5.2. Relationship between functional connectivity and 

structural connectivity 

In inter-component functional connectivity analysis, thirteen edges that showed 

significant correlations with response inhibition were found. The structural 
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connectivity of thirteen edges were tested for correlation with response 

inhibition, and one edge showed significant correlations with SSRT in both 

functional and structural analysis: connectivity between SN and pDMN. In this 

analysis, the correlation between functional and structural connectivity between 

SN and pDMN was examined.
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Figure 4. The workflow to calculate intra-component structural connectivity (SC) 
and inter-component SC. The whole-brain tractography was implemented in 
individual native space. The binary masks of group IC maps were generated, and they 
were warped from standard space to individual native space. The streamlines that both 
endpoints are located in a component were classified, and their mean fractional 
anisotropy (FA) was calculated as an intra-component SC. The streamlines connecting 
pairs of components were also identified, and their mean FA was estimated as the inter-
component SC.
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2.6. Topological data analysis

2.6.1. Minimum spanning tree

To compare characteristics of topological structure associated better and poor 

performance of response inhibition, the MST was calculated and displayed. 

MST is a tree whose sum of the edge weight is minimum when all the nodes 

are connected with the least number of edges.

Subjects were ranked in order of good performance of each task to 

identify one subject who performed the best and one who performed the worst. 

The sum of the ranks of two tasks was used to assess performance and to 

identify the best and the worst performers. Subject #5 was one whose 

performance was the best, and the performances of both tasks were in the top 

10% (SSRT = 117ms, the error rate of the Stroop task = 3.75%). The 

performances of subject #19 were in the bottom 10% in both tasks and 

identified to be the worst (SSRT = 351ms, the error rate of the Stroop task = 

15%). Besides, the MSTs of all subjects were estimated to investigate the 

individual differences in the topological backbone structure. 

The connectivity matrix that consists of absolute values of negative 

correlation coefficients was used to estimate an MST. The distance matrix for 

each subject was calculated as follows: 

����, ��� = ��− |�������, ���|  (4)

MST of each group was obtained by Kruskal’s algorithm (Kruskal, 
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1956). Let G be a connected graph with node set V, and let w be the weight of 

edge set, E. The edges of G were sorted in ascending order according to weight. 

The algorithm assumes that G = (V, E, w) is a weighted undirected graph with 

m, the number of nodes, and n, the number of edges. Initially, there is no edge 

connected in G. The edge with the smallest weight is added to G, and it was 

checked if G forms a cycle. If a cycle is formed, the edge is discarded, and 

otherwise, included. The procedure that adds an edge is repeated until there are 

(m – 1) edges in the tree. In this analysis, twelve nodes were included, and MST 

with eleven edges was estimated for each subject.
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3. Results

3.1. The performances of behavioral tasks

Twenty subjects underwent two tasks: the SST and the Stroop task. The SSRT 

ranged from 103.83ms to 351.46ms across subjects, and the average SSRT was 

195.71ms (± 58.80ms). The error rates of three conditions in the Stroop task 

were measured: The congruent condition (1.49 ± 2.71%), the incongruent 

condition (7.03 ± 5.77%), and the control condition (0.74 ± 1.87%) (Table 2). 

The differences in mean error rates between conditions were found. The error 

rate of the incongruent condition was significantly higher than the error rates of 

the congruent condition and control condition (p < 0.0005) (Figure 5). 
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Table 2. The performances of behavioral tasks.

Characteristic
Modality

fMRI (N = 20) DTI (N = 19)

SSRT (ms)

Mean 195.71 197.14 

SD 58.80 59.99 

The error rate of the Stroop task (%)

  Congruent condition

Mean 1.49 1.57

SD 2.71 2.76

  Incongruent condition

Mean 7.03 7.00 

SD 5.77 5.92

  Control condition 

Mean 0.74 0.78

SD 1.87 1.91

SSRT: Strop-signal reaction time, SD: standard deviation, fMRI: functional resonance
imaging, DTI: diffusion tensor imaging
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Figure 5. The comparison of error rates between conditions of the Stroop task. 
There were significant differences in error rates between congruent and incongruent 
conditions and between incongruent and control conditions (p < 0.0005). *** p < 0.005.
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3.2. Intra-component connectivity and response inhibition

The correlation between intra-component functional connectivity and the 

performance of response inhibition was examined. The SN was the only 

component that showed significant correlations with both tasks (Figure 6, Table 

3). The functional connectivity within SN was positively correlated to SSRT (r

= 0.60, p < 0.01) and the error rate of incongruent condition of the Stroop task 

(r = 0.49, p < 0.05).

The correlation between response inhibition and inter-component 

structural connectivity was tested as well. The component that showed 

significant correlations in functional analysis, SN, VAN, latVN, and SMN were 

included for the analysis. SN was significantly correlated to SSRT (r = -0.46, p 

< 0.05) (Figure 7, Table 4). 
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Figure 6. The components that showed significant correlations between their intra-component functional connectivity and behavioral tasks. The intra-
component functional connectivity (FC) of SN (R2 = 0.36, p < 0.01), SMN (R2 = 0.41, p < 0.005) showed significant correlation between strop signal reaction 
time (SSRT). The error rate of incongruent condition of the Stroop task showed significant positive correlations with intra-component FC of SN (R2 = 0.24, p 
< 0.05), latVN (R2 = 0.23, p < 0.05), and VAN (R2 = 0.58, p < 0.005). 
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Table 3. The components that showed significant correlations between 
their intra-component functional connectivity and behavioral tasks.

Variable 
(Task)

Resting-state network 
(component)

r
p-value 

(uncorrected)

SSRT

SN a 0.60 < 0.01

SMN 0.64 < 0.005

The error rate of the incongruent condition in the Stroop task

SN a 0.49 < 0.05

VAN 0.76 < 0.0005

latVN 0.48 < 0.05

SSRT: Strop-signal reaction time, SN: Salience network, SMN: Sensorimotor 

network, VAN: Ventral attention network, latVN: lateral visual network. The results 

that showed significant correlations with both tasks were indicated by a.
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Figure 7. Significant correlations between intra-component structural 
connectivity (SC) and response inhibition. The significant correlation between the 
intra-component SC of SN (R2 = 0.21, p < 0.05) was found. 
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Table 4. The results that showed a significant correlation between intra-
component structural connectivity and behavioral tasks were displayed.

Variable 
(Task)

Resting-state network 
(component)

r
p-value 

(uncorrected)

SSRT

SN -0.46 < 0.05

SSRT: Strop-signal reaction time, SN: Salience network
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3.3. Inter-component connectivity and response inhibition

In the results that tested the correlation between inter-component functional 

connectivity and the performance of the response inhibition, three pairs were 

found significant in both tasks: SN-aDMN/pDMN, SN-medVN, and aDMN-

SMN (Figure 8). Functional connectivity between SN and pDMN showed a 

positive correlation with SSRT (r = 0.47, p < 0.05), and the one between SN 

and aDMN showed a positive correlation with the performance of the Stroop 

task (r = 0.52, p < 0.05). The edges that showed a significant relationship with 

each task are not identical, but both edges represent the connection between SN 

and the task-negative component (aDMN and pDMN). The inter-component 

functional connectivity between SN-medVN and aDMN-SMN showed 

significant positive correlations with both tasks (p < 0.05) (Figure 8, 9, Table 

5). 

To investigate the relationship between inter-component structural 

connectivity and response inhibition, the connections that showed significant 

correlations in functional analysis, the thirteen pairs of components were 

included for the analysis. In terms of inter-component structural connectivity 

analysis, lower SSRT was associated with greater inter-component structural 

connectivity between SN and aDMN/pDMN: SN-aDMN (r = -0.51, p < 0.05), 

SN-pDMN (r = -0.56, p < 0.05) (Figure 10, Table 6). There was no significant 

relationship between the structural connectivity of targeted edges and the 

performance of the Stroop task. 
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Figure 8. The significant correlations between inter-component functional connectivity (FC) and response inhibition. The correlation between inter-
component functional connectivity (FC) and response inhibition was examined, and the significant results (p < 0.05) were displayed. (a) The poorer response 
inhibition, i.e., the longer stop-signal response time (SSTR), was associated with higher FC of SN-pDMN/medVN, aDMN-SMN (p < 0.05). The negative 
correlation between SSRT and inter-component FC between ltCEN and priVN (p < 0.05) was found. (b) The poorer performance of the Stroop task was 
associated with greater functional connectivity between SN and aDMN, between aDMN and task-positive components, between SN and task-positive 
components, and between task-positive components (p < 0.05). The relationships between better response inhibition and the higher FC of BGCN-aDMN/SN, 
and latVN-medV (p < 0.05) were also found.
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Figure 9. The edges that showed significant correlations with response inhibition in common in both tasks: SN-aDMN/pDMN, aDMN-SMN, SN-
medVN. (a) The edges showed positive correlations with (a) SSRT, and (b) the error rate of the Stroop task. The time-courses of SN and aDMN of two subjects 
who showed low functional connectivity (FC) and high FC were illustrated. The correlation coefficient values between the time-courses of SN and aDMN (r) 
of two subjects shown in the middle are not regressed out for age and gender effect.
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Table 5. The Pair of components that showed significant correlations 
between their inter-component functional connectivity and behavioral 
tasks.

Variable 
(Task)

Pair of components            r
p-value 

(uncorrected)

SSRT

SN-pDMN 0.47 < 0.05

SN-medVN a 0.46 < 0.05

aDMN-SMN a 0.51 < 0.05

ltCEN-priVN -0.50 < 0.05

The error rate of the incongruent condition in the Stroop task

SN-aDMN 0.52 < 0.05

SN-medVN a 0.65 < 0.005

SN-SMN 0.45 < 0.05

SN-BGCN -0.49 < 0.05

aDMN-SMN a 0.60 < 0.005

aDMN-DAN 0.51 < 0.05

aDMN-BGCN -0.45 < 0.05

pDMN-priVN 0.45 < 0.05

ltCEN-latVN 0.61 < 0.005

rtCEN-priVN 0.56 < 0.01

medCN-latVN -0.73 < 0.0005

SSRT: Strop-signal reaction time, aDMN: anterior default mode network, pDMN: 
posterior DMN, SN: Salience network, ltCEN: left Central executive network, rtCEN: 
right Central executive network, DAN: Dorsal attention network, medVN: medial 
visual network, lateral VN: lateral visual network, priVN: primary visual network, 
SMN: Sensorimotor network, BGCN: Basal ganglia and cerebellar network. The 
results that showed significant correlations with both tasks were indicated by a.
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Figure 10. Significant correlations between inter-component structural connectivity (SC) and response inhibition. The higher mean fractional anisotropy 
(FA) of reconstructed streamlines connecting (a) SN-aDMN (R2 = 0.26, p < 0.05) and (b) SN-pDMN (R2 = 0.31, p < 0.05) was associated with better 
performance of SST.

. 
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Table 6. The results that showed significant correlations between inter-
component structural connectivity and behavioral tasks.

Variable
(Task)

Pair of components            r
p-value 

(uncorrected)

SSRT

SN-aDMN -0.51 < 0.05

SN-pDMN -0.56 < 0.05

SSRT: Strop-signal reaction time, aDMN: anterior default mode network, pDMN: 
posterior DMN, SN: Salience network.
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3.4. Relationship between functional connectivity and 

structural connectivity

In order to provide a deeper understanding of functional connectivity, the 

relationship between the functional connectivity and the structural connectivity 

was examined. The connectivity between SN and pDMN was targeted because 

both functional and structural connectivity showed significant correlations with 

SSRT. The inter-component functional connectivity and the inter-component 

structural connectivity between SN and pDMN showed significant negative 

correlation (r = -0.79, p < 0.0005, uncorrected) (Figure 11).
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Figure 11. The correlation between functional and structural connectivity of SN-pDMN. (a) SN and pDMN was displayed in yellow and orange, 
respectively. (b) A significant negative correlation between functional and structural connectivity between SN and pDMN was found (R2 = 0.63, p < 0.0005, 
uncorrected).
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3.5. Minimum spanning tree

The MSTs of a subject with the best performance on response inhibition and 

one with the worst were estimated. An MST of the subject with the best 

performance showed direct connections between SN and aDMN, and between 

SN and pDMN (Figure 12 (a)). There was no direct connection found in subject 

with the worst performance (Figure 12 (b), bottom). When MST of all subjects 

was listed in order of good performance, no direct connection between SN and 

aDMN/pDMN was found in the bottom seven subjects (Figure 13).
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Figure 12. Minimum spanning tree (MST) of the best and the worst performers. The MST estimated from a subject whose performances were the best 
(a) and the worst (b).



45

Figure 13. The minimum spanning trees of all subjects. The minimum spanning trees of all subjects were listed in order of good performance, considering 
both tasks.  The red line represents a direct connection between SN and aDMN and between SN and pDMN.
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4. Discussion

The converging evidence indicated that the connectivity within SN and between 

SN and DMN components are the critical indicators of individual differences 

in response inhibition. The stronger structural connectivity and lower functional 

connectivity at rest of SN were related to better response inhibition. Greater 

structural connectivity and greater anti-correlation between SN and DMN 

components were associated with better response inhibition.

4.1. Resting-state network and cognition

The healthy brain suppresses task-positive networks and activates DMN at rest 

(Gusnard et al., 2001). In contrast, DMN is suppressed, and task-positive 

networks are activated during the task (Raichle et al., 2001; Sambataro et al., 

2010). Therefore, the anti-correlated nature between DMN and task-positive 

networks were consistently demonstrated during a task and at rest (Fox et al., 

2005; Kelly et al., 2008). 

The brain with deficit showed abnormal activation or abnormal 

functional connectivity of large-scale networks in previous studies. The patients 

with schizophrenia showed increased functional connectivity within DMN and 

reduced anti-correlation between DMN and CEN in both resting-state and 

during the task (Whitfield-Gabrieli et al., 2009). Reduced anti-correlation 

between DMN and SN was also reported in patients with schizophrenia (Chai 
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et al., 2011) and bipolar disorders (Lopez-Larson et al., 2017). It implies that 

abnormal functional connectivity at rest or during a task is associated with 

cognitive impairment. In healthy adults, sleep deprivation resulted in poor task 

performance and reduced anti-correlation between DMN and insula in both 

resting-state and during the task (De Havas et al., 2012). In addition, the 

magnitude of anti-correlation between DMN and task-positive networks shows 

robust growth as age increases in healthy subjects age 8-24 years (Chai et al., 

2014).

In total, previous studies found that the abnormal connectivity within 

a large-scale network or reduced anti-correlation between DMN and task-

positive networks were related to a deficit of cognitive function. It underpins 

that a poorly attuned brain may lead to unsuccessful cognitive processing or 

even impairments of mental states. In particular, SN is one of the most critical 

component for information processing. Information is abundant around, and an 

individual has to direct attention to proper information; it can be predators, food, 

or a word written on the book. In this study, higher functional connectivity 

within SN and one between SN and DMN, implying cognitive engagement at 

rest, may lead to inefficient cognitive processes during the task. 

4.2. Salience network and response inhibition

The results showed that subjects with stronger intra-component functional 

connectivity in SN, sensorimotor, visual, and attention networks show 

relatively poor response inhibition. Notably, SN revealed significant 
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relationships with both tasks, and intra-component structural connectivity of 

SN also showed a significant negative correlation with SSRT. It implies that 

high white matter integration within SN leads to better response inhibition. 

However, higher functional connectivity within SN at rest may indicate an 

inefficient and not optimized operation of SN that induces poor response 

inhibition during task-induced state.

SN detects the salience stimulus and switches between other resting-

state networks to recruit attention and other proper cognitive functions (Fox et 

al., 2005; Menon, 2015; Menon et al., 2010). SN enables individuals to navigate 

the environment successfully and reach goals (Uddin, 2016). The core nodes of 

SN includes aINS and dorsal anterior cingulate cortex (dACC) that are crucial 

to detect a salient event. The aINS integrates interoceptive and exteroceptive 

signals from cortical and subcortical regions for a further cognitive process 

(Craig, 2010; Sterzer et al., 2010). It is known to be involved in information 

processing, including sensory, motor, emotion, and attention. Task-based 

functional fMRI studies reported the engagement of aINS in detecting salient 

stimulus and error awareness (Klein et al., 2007; Menon et al., 2010). Previous 

studies showed dACC’s involvement in control-demanding tasks and error 

monitoring (Carter et al., 1998; Shackman et al., 2011). Not only each node of 

SN separately, but their connectivity together was also investigated since they 

are functionally and structurally connected (Allman et al., 2010; Menon, 2011). 

Not only at rest but also during a task, aINS and dACC showed co-activation, 

which suggests they work together as a core task-set system (Dosenbach et al., 

2006; Engstrom et al., 2013). 
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Some studies found that increased functional connectivity of SN at 

rest is related to psychiatric disorders. The hyper-connectivity within SN was 

found in ASD children and considered as a distinguishing feature for 

classification (Uddin et al., 2013). The subjects with cocaine addiction showed 

hyper-connectivity within SN (Janes et al., 2018). Furthermore, the patients 

noted above share maladaptive behaviors associated with cognitive control 

impairment (Baler et al., 2006; Poljac et al., 2012). Hyperarousal that induces 

a hypervigilant stance is the primary symptom of posttraumatic stress disorder 

(PTSD), and increased functional connectivity within SN was found (Sripada 

et al., 2012; Uddin et al., 2013). It may imply that hyper-connectivity within 

the salience network facilitates in detecting a stimulus that might be potentially 

false, which results in a false alarm. In the same manner, subjects with increased 

intra-component functional connectivity of SN, which may suggest 

hypervigilant stance at rest, performed poor response inhibition. Previous 

studies found that higher expectancy of salient stimulus is related to higher 

functional connectivity between brain regions in SN during visual cue task (Li 

et al., 2017). High functional connectivity of SN at rest may reflect the less 

proficient switching between task-induced state and resting-state, which can 

lead to poor response inhibition.

The stronger structural connectivity within SN was related to better 

response inhibition in this study. Previous studies reported that the structural 

connectivity of SN is associated with the activation or functional connectivity 

of other large-scale networks, including DMN. A study of traumatic brain injury 

(TBI) patients demonstrated that white matter integrity of SN predicts DMN 
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deactivation during a response inhibition task (Bonnelle et al., 2012). The 

patient who has poor structural connectivity on SN showed failure in DMN 

deactivation during the task. The damage of the SN tract is related to 

impairments of the functional coupling between SN and DMN (Jilka et al., 

2014), which is considered to be critical to cognitive control (Kelly et al., 2008). 

In total, the high structural connectivity and low functional 

connectivity within SN when there are no cognitive demands may be indicators

of proficient and optimized operation for response inhibition. The stronger 

structural connectivity of SN was related to better response inhibition in this 

study. The structural connectivity may underlie functional connectivity during 

the task, and the low functional connectivity at rest may indicate the ability to 

modulate functional connectivity with the cognitive demands. However, the 

task-based analysis was not conducted in this analysis, so further research, with 

fMRI data at rest and during the task, and DTI data together, is required.

4.3. Connectivity between SN and DMN

4.3.1. Functional connectivity between SN and DMN 

It was found that connectivity between SN and aDMN/pDMN showed 

significant associations with response inhibition in both functional and 

structural modalities. Functional and topological data analysis suggested the 

importance of anti-correlation between SN and DMN components. The greater 

anti-correlation of SN-DMN components were related to better response 
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inhibition. Subjects with higher structural connectivity between SN and DMN 

components showed better response inhibition and also greater anti-correlation.

The MST of a subject with the best response inhibition showed the direct 

connections between SN and DMN components, whereas the bottom seven 

subjects including one with the poorest response inhibition performance do not.

Previous studies suggested the nature of anti-correlation between 

DMN and task-positive networks, and it is crucial for the control-demanding 

cognitive process (Fox et al., 2005; Fransson, 2005). The greater magnitude of 

anti-correlation between SN and DMN was related to more successful 

performance in healthy adults (Kelly et al., 2008; Putcha et al., 2016). The brain 

has functionally segregated networks, and resting-state networks that internally 

oriented have opposing and competitive relationships to ones that externally 

oriented. DMN is involved in an internally focused task, including 

autobiographical memory, mind wandering, and theory of mind (Buckner et al., 

2008). Since DMN manages the self-referential process, SN that directs

attention to the stimulus and cognitive processing suppresses DMN during the 

cognitive tasks. SN deactivates and DMN activates when there is no stimulus 

given. Based on studies that demonstrated lack of DMN suppression is related 

to cognitive deficits (Whitfield-Gabrieli et al., 2009; Zhou et al., 2016), the 

failure of SN to suppress DMN may induce unsuccessful response inhibition.

4.3.2. Structural connectivity between SN and DMN

Structural connectivity is also crucial to understand the nature of neural 
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circuitry. Previous studies have implicated that white matter structural 

architectures may underlie large-scale networks (Van Den Heuvel et al., 2009). 

For example, not only functional connectivity but also structural connectivity 

showed right-sided laterality within SN (Zhang et al., 2019), and it suggests a 

close relationship between function and structure of resting-state networks. 

In this study, connectivity between SN and pDMN showed a positive

correlation in functional analysis and a negative correlation in structural 

analysis with SSRT. Moreover, the relationship between functional and 

structural connectivity of SN-pDMN was found: the stronger the anatomical 

pathway connected, the stronger anti-correlation. The results suggest that there 

may exist a direct anatomical pathway connecting SN and DMN that plays an 

important role for SN to modulate DMN.

Previous studies imply that structural connectivity related to SN is 

associated with response inhibition. In particular, researchers found that the 

structural integrity of SN was related to the performance of response inhibition 

(Bonnelle et al., 2012; Xing et al., 2014). 

In a previous study, stronger anti-correlation between SN and DMN 

during the task was correlated with both greater task-induced deactivation in 

DMN during a task and lower glutamate/GABA ratio PCC and precuneus (Gu 

et al., 2019). Furthermore, functional interaction between DMN-SN partially 

mediated the relationship between task-induced deactivation in DMN and 

glutamate/GABA ratio of PCC/precuneus. It suggests that anti-correlation 

between SN and DMN may be induced by GABAergic interneurons that send 

signals from SN to DMN to suppress DMN. The negative correlation between 
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functional and structural connectivity between SN and pDMN in this study may 

suggest that the more interneurons from SN that suppress the activation of 

DMN during the task, the better response inhibition performance.

This study underpins the importance of structural connectivity for both 

functional connectivity and cognitive function. However, it remains unclear 

whether the GABAergic interneurons induce the anti-correlation, and further 

research is needed.

4.3.3. Topological characteristics between SN and DMN

The direct connections between SN and DMN components were found in MST 

of the best performer, while no direct connection was found in MST of the worst 

performer. There were no direct connections in MSTs of the bottom seven 

performers when all MST was shown. The MST also showed that the greater 

anti-correlation between SN and DMN is still important when whole 

components are considered as a single connected system. MST represents the 

most efficient backbone structure since it has the minimum cost. A direct 

connection represents a robust competitive relationship over limited 

computational resources between SN and DMN components. It reflects an 

individual’s ability to allocate resources for given cognitive demands: allocate 

resources to SN to enter and maintain task-induced state, and to DMN to stay 

at rest (Kucyi et al., 2018; Sonuga-Barke et al., 2007). 

In recent studies, topological characteristics that illustrate the hidden 

features of the brain networks became one of the major methods in 
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neuroscience. The study that investigated topological characteristics showed 

superior performance in the classification of clinical samples compared to 

network measures. The functional connectivity using fluorodeoxyglucose-

positron emission tomography data was used to calculate single linkage 

distance (Lee et al., 2011a), and the single linkage distance demonstrated 

unique attributes of typical developing and developmental disorders (Ha et al., 

2020; Lee et al., 2011a). The topological analysis also showed frontal lobe 

alterations of the functional connectome in ADHD (Gracia-Tabuenca et al., 

2020).

In this study, a direct edge between SN and DMN was found in a 

subject with superior performance, which is consistent with inter-component 

functional connectivity analysis. However, the analysis using MST was not 

statistically tested.

4.4. Limitations of the study

This study has some limitations to be acknowledged. First, the sample size is 

relatively small, and it is not sufficient to generalize the results. Besides, the 

sample exhibits gender bias, so it was statistically regressed out. In particular, 

the gender effect on response inhibition tasks and psychiatric disorders have 

been consistently reported (Fillmore et al., 2004; Li et al., 2006; Rubia et al., 

2013). In this study, no gender difference was found in the connectivity of SN 

and SN-DMN, but sampling bias can lead to an underestimation of the gender 

effect. Second, this study did not perform a correction for multiple comparisons, 
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which may induce false positives. Instead, this study focused on results that are 

consistently found in both SST and the Stroop task. Both two tasks measure the 

common underlying mechanisms, the response inhibition, and this approach 

may enable the investigation of response inhibition without task-specific effect. 

Third, the independence of the subject-specific IC estimated using dual 

regression is not optimized and guaranteed. Group ICA approaches to generate 

a single group IC map, which enables the correspondence of IC maps across 

subjects. It has been noted the independence is optimized at the group level, but 

not the subject level (Du et al., 2013; Du et al., 2015). The functional 

connectivity between components of the subject-level may be a byproduct of 

the dependence remained at the subject level.
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5. Conclusion 

In this study, it was aimed to reveal the heterogeneity in large-scale network 

characteristics that underlies individual variances of response inhibition. It was 

found that the functinoal connectivity and structrual connectivity at rest within 

SN and between SN and DMN were associated with the performance of 

response inhibition. The results imply that higher structural connectivity within 

SN and between SN and DMN is required for better response inhibition. 

However,  functionally higher connectivity within SN and between SN and 

DMN at rest may be the indicatives of inefficient modulation, which results in 

poor response inhibition. The study might suggest that the connectivity of large-

scale networks with no task condition can be the indicator of cognitive 

processing. The results extend our understanding of how large-scale networks 

at rest contribute to cognition.
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국문 초록

반응 억제의 개인차와 관련한

대규모 휴지기 뇌네트워크의 특성

허영민

서울대학교 대학원

협동과정 인지과학 전공

반응 억제는 가장 주요한 인지 기능 중 하나이며

이상행동을 동반하는 다양한 정신 질환과도 깊은 관련이 있다. 

따라서 이와 관련된 신경적 특성을 탐구하는 것은 매우 중요하다. 

우리의 뇌는 어떠한 인지 기능을 수행할 때, 작업 관련 영역들을

활성화하고 자기 참조적 처리를 하는 디폴트 모드 네트워크

영역들은 비활성화한다. 휴지기에는 반대로 작업 관련 영역들은

비활성화하고 디폴트 모드 네트워크 영역은 활성화한다. 이처럼

인지 기능을 수행하기 위해서는 상태를 효율적으로 전환하는 것이

중요하다. 현출성 네트워크 (salience network)는 어떠한 과제를

할 때 중요한 자극을 탐지하여 처리하며 또한 디폴트 모드

네트워크의 활성을 억제하기 때문에 상태 간 전환에 핵심적인

역할을 하는 대규모 뇌네트워크이다. 따라서 이와 관련된 연결적

특성이 인지 기능과 밀접한 관련이 있으며, 그러한 특성은 휴지기의

연결성에도 반영되어 있을 것이라 가정하였다. 즉, 본 연구에서는

반응 억제의 개인차를 휴지기 대규모 뇌네트워크들의 특성을 통해

설명할 수 있을 것이며, 특히 현출성 네트워크의 낮은 기능적

연결성, 디폴트 모드 네트워크의 높은 기능적 연결성, 그리고 그 둘

간의 높은 기능적 역 상관 (anti-correlation)이 반응 억제에

우수한 사람들의 특징적인 휴지기 연결성일 것이라 가설을 세웠다.

개인의 반응 억제는 정지 신호 과제와 스트룹 과제를 통해
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측정하였으며, 휴지기 대규모 뇌네트워크들의 특성들과 어떠한

상관을 갖는지 알아보았다. 즉, 기능적 뇌네트워크 내의 연결성과

두 뇌네트워크 간 연결성이 과제 수행과 어떠한 상관을 보이는지를

알아보았다. 또한 기능적 연결성에 대한 보다 깊은 이해를 위해

확산 텐서 영상과 트랙토그래피 기법을 사용하여 구조적 연결성과

반응 억제와의 상관을 알아보았다. 반응 억제와 관련된 토폴로지

특성 역시 함께 알아보기 위해 참여자들의 미니멈 스패닝

트리(MST: minimum spanning tree)를 계산하였다.

분석 결과, 현출성 네트워크, 그리고 현출성 네트워크와

디폴트 모드 네트워크 간의 연결성을 통해 반응 억제의 개인차를

설명할 수 있었다. 현출성 네트워크의 성분 내 구조적 연결성은

강하지만 휴지기의 기능적 연결성이 약한 참여자들일수록 반응

억제 수행이 우수했다. 현출성 네트워크와 디폴트 모드 네트워크

간의 구조적 연결성과 기능적 역 상관은 모두 높을수록 우수한

반응 억제를 보였다. 또한 두 네트워크 간 구조적 연결성이

높을수록 기능적 역 상관이 높은 것으로 나타났다. 토폴로지

분석에서는 가장 수행이 좋은 참여자의 MST는 현출성 네트워크와

디폴트 모드 네트워크들 간에 직접적인 연결이 관찰되었으나

수행이 가장 나쁜 참여자에서는 그러한 직접적인 연결이 관찰되지

않았다.

분석 결과, 휴지기의 현출성 네트워크 내 연결성, 그리고

현출성 네트워크와 디폴트 모드 네트워크 간의 기능적 역 상관과

구조적 연결성이 반응 억제의 개인 차이를 설명하였으나, 디폴트

모드 네트워크 내의 연결성은 그렇지 못했다. 이 연구는 과제 수행

중이 아닌 휴지기 동안의 뇌네트워크의 특성들을 통해 반응 억제의

개인차를 설명할 수 있음을 보여준다.
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