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One of the earliest cues for neurological or degenerative disorders

are speech impairments. Individuals with Parkinson’s Disease, Cerebral

Palsy, Amyotrophic lateral Sclerosis, Multiple Sclerosis among others are

often diagnosed with dysarthria. Dysarthria is a group of speech disorders

mainly affecting the articulatory muscles which eventually leads to severe

misarticulation. However, impairments in the suprasegmental domain are

also present and previous studies have shown that the prosodic patterns of

speakers with dysarthria differ from the prosody of healthy speakers. In a

clinical setting, a prosodic-based analysis of dysarthric speech can be

helpful for diagnosing the presence of dysarthria. Therefore, there is a need

to not only determine how the prosody of speech is affected by dysarthria,

but also what aspects of prosody are more affected and how prosodic

impairments change by the severity of dysarthria.

In the current study, several prosodic features related to pitch, voice

quality, rhythm and speech rate are used as features for detecting dysarthria

in a given speech signal. A variety of feature selection methods are utilized

to determine which set of features are optimal for accurate detection. After



selecting an optimal set of prosodic features we use them as input to

machine learning-based classifiers and assess the performance using the

evaluation metrics: accuracy, precision, recall and F1-score. Furthermore,

we examine the usefulness of prosodic measures for assessing different

levels of severity (e.g. mild, moderate, severe). Finally, as collecting

impaired speech data can be difficult, we also implement cross-language

classifiers where both Korean and English data are used for training but

only one language used for testing.

Results suggest that in comparison to solely using Mel-frequency

cepstral coefficients, including prosodic measurements can improve the

accuracy of classifiers for both Korean and English datasets. In particular,

large improvements were seen when assessing different severity levels. For

English a relative accuracy improvement of 1.82% for detection and 20.6%

for assessment was seen. The Korean dataset saw no improvements for

detection but a relative improvement of 13.6% for assessment. The results

from cross-language experiments showed a relative improvement of up to

4.12% in comparison to only using a single language during training. It was

found that certain prosodic impairments such as pitch and duration may be

language independent. Therefore, when training sets of individual languages

are limited, they may be supplemented by including data from other

languages.

Keyword: dysarthric speech, prosody, machine learning, classification,

cross-linguistics, feature selection, acoustics

Student Number: 2018-23331
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Chapter 1. Introduction

1.1. Dysarthria

Neurological disorders often come with a range of cognitive and

physical issues that can make life difficult. Speech is one aspect of

neurological disorders that can be severely damaged and lead to issues in

both articulation and communication. A common speech disorder known as

dysarthria often occurs in individuals with a variety of neurological damage.

Dysarthria occurs up to 90% of the time in patients with Parkinson’s

Disease (Muller et al., 2001), 50% of the time for individuals with multiple

sclerosis (Sandyk, 1995), one of the first symptoms of Amyotrophic Lateral

Sclerosis (ALS) in 25% of patients was dysarthria (Traynor et al., 2000).

Given the prevalence of dysarthria in neurological disorders, more research

into dysarthria could help individuals live a more comfortable life. The

purpose of the current study is to use prosodic measurements to

automatically detect dysarthria in continuous speech.

An important aspect of dysarthria is the spectrum of issues that may

or may not occur depending on severity, disorder type, dysarthria type or

individual differences. In general, the most common speech related issues in

dysarthria are respiration (i.e. frequent or forcible inspiration, long

respiration resting level), speech tempo (i.e. slow or variable speech rate,

many pauses), pitch (i.e. too high or too low pitch, variable pitch),

articulation and nasality (i.e. hypernasality). While individual differences
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exist, the specific issue and degree of issue often depends on the specific

type of dysarthria. The most common classification system for dysarthria

was developed by Darley, Aronson, and Brown (1975) known as The Mayo

Classification System for Differential Diagnosis of Dysarthria. Table 1.

displays some of the most common types of dysarthria along with their

associated brain damage and major speech impairments. A more detailed

overview of studies related to prosodic deficits in dysarthric speech will be

explored in Chapter 2.

Table 1. Common types of dysarthria and related speech issues.

Type of Dysarthria
(Disease) Location of Damage Distinct Speech Issues

Flaccid
(Bulbar Palsy) Lower Motor Neuron Hypernasality, breathiness,

audible inspiration

Spastic
(Cerebral Palsy,

MS)
Upper Motor Neuron

Misarticulation, slow
speech rate, low pitch,
harsh/strained voice.

Ataxic
(Cerebellar ataxia) Cerebellum

Monostress, phoneme and
interval prolongation,
dysrhythmia, syllable

repetition, slow speech rate

Hyperkinetic
(Parkinson’s) Basal Ganglia

Monopitch, monoloudness,
variable speech rate, short

rushes of speech

Mixed (ALS) Multiple Motor
Systems

Misarticulation, slowed
speech rate, hypernasality,

disrupted prosody

As seen from Table 1, misarticulations are not the only factor

involved in dysarthria. While the articulatory muscles in the vocal tract are
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essential in correct articulation, they are also important for natural prosody.

For example, individuals with dysarthria tend to have little control over the

contractions of the vocal tract which reduces the range and speed of

laryngeal movement. The lack of control of one’s vocal folds can result in a

more monopitch voice, or an absence of stress within stress syllables.

Therefore, there is a growing research interest in not only focusing on the

articulatory difficulties involved in dysarthria but also the prosodic

irregularities.

1.2. Impaired Speech Detection

Typically, dysarthria is diagnosed by a trained speech pathologist

who administers several tasks to the patient in order to perceptually evaluate

their speech (Duffy, 2013; Kent et al., 1987). These assessments tend to

involve a speech pathologist eliciting speech from the patient and

determining whether any irregularities are present. For example, one can

measure the voice quality and the ability for the patient to change loudness

and pitch to assess the laryngeal or phonation damage. We can also

determine prosodic damage by having patients read sentences and observe

any irregular variations in pitch, duration or stress. Several, standardized

assessments based on perceptual evaluation have been proposed, with the

Mayo Clinic Rating System (Darley, Aronson & Brown, 1969) and
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Frenchay Dysarthria Assessment (FDA) being the most detailed and

commonly utilized test for English speakers (Enderby, 1980).

Despite the wide use of perceptual evaluation, the subjective nature

of the task and overly long duration of administering these types of tests are

common criticisms. Low identification accuracy was found in Zyski and

Weisiger (1987), while low intra- and inter-rater reliability was found in

Kearns and Simmons (1988) and Zeplin and Kent (1996) for the Mayo

Clinic Rating System. Other more general methods have been proposed

(Wannberg, Schalling & Hartelius, 2016; Hong et al., 2018) with higher

intra- and inter-rater reliability but still contain a subjectivity problem.

Another solution to the subjectivity and long duration issue is to

conduct an acoustic analysis. This approach involves measuring certain

acoustic properties of speech such as formant frequency, fundamental

frequency (F0), jitter, shimmer, segment duration and comparing those

values to a standard healthy speaker. Kent et al. (1999) provides a detailed

description of useful measures when examining dysarthric speech from a

specific viewpoint such as vowels, fricatives, voice quality, and so on. In

general, if enough deviancy from the norm is present, it is possible that the

individual has some form of dysarthria. Usually, acoustic analyses are not

the sole determiner of dysarthria and a speech pathologist would still

administer a perceptual evaluation. However, this approach comes closer to

an object assessment of dysarthria.
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Lastly, the rise of machine and deep learning methods have

introduced a variety of methods for automatically detecting and even

assessing the severity level of dysarthric speech. The main approach to

using machine learning for detecting dysarthria is extracting acoustic

features and using the features as input to a classifier. The goal of this

approach is to allow the machine learning algorithm to automatically detect

dysarthria based on manually crafted features (López, Orozco-Arroyave,

Gosztolya, 2019; Kodrasi & Bourlard, 2019; Tripathi, Bhosale &

Kopparapu, 2020). A second approach is to simply use the raw speech

signal as features and feed them into complex neural architectures then

allow the network to automatically determine the important information that

distinguishes between healthy and dysarthric speech (Kim, Cao & Wang,

2018; Millet & Zeghidour, 2019; Mayle et al., 2019).

The first approach requires more data pre-processing as we need to

systematically choose appropriate features for our machine learning model,

but allows for more interpretability as we can more easily examine the

specific acoustic impairments that are most useful in distinguishing

dysarthric speech from healthy. The second approach requires less data

preparation as we only need the raw speech signal but may suffer from a

lack of interpretability since the network inherently determines what

features of the speech signal are important. Recent studies have attempted to

reduce this interpretability issue with some success but tend to require
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sophisticated post processing techniques to extract interpretable information

(Tu, Berisha & Liss, 2017; Korzekwa et al., 2019).

1.3. Research Goals & Outline

The main research question our study asks is ‘which set of prosodic

features are most useful for automatically detecting dysarthria in continuous

speech?’. However, we also explore other related problems such as: which

specific prosodic measurements contribute more to classification accuracy?

What aspects of prosody are more important for distinguishing different

severity levels (mild, moderate, severe)? Are there language specific

differences? Are there language independent features that can be trained

jointly? These questions are examined via machine learning-based

experiments.

The following thesis is organized as follows: Chapter 2 will briefly go

over previous literature in prosodic impairments in dysarthric speech and

machine learning-based approaches for automatic detection and severity

assessment. Issues regarding previous related studies and how this study

differs will also be mentioned. Chapter 3 will describe the English and

Korean dysarthric speech datasets in detail. In Chapter 4 we go over the

prosodic features used in our study and several feature selection methods for

selecting the optimal set of prosodic features are also proposed. We also

describe the classifiers (random forest, support vector machine, neural
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network) in detail. Since our baseline models use Mel-Frequency Cepstral

Coefficients (MFCC), we will go over the extraction process and parameters

regarding MFCC’s. Starting from Chapter 5 we go over all the experiments.

Two experiments per language group, detection and assessment, and one

experiment we refer to as a cross-language experiment where we train our

models using data from both languages but only test with one language.

Results in Chapter 6 are evaluated by using accuracy, precision, recall and

F1-scores. Chapter 7 and 8 will conclude the paper with a discussion of the

results and future directions for dysarthric speech research.
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Chapter 2. Background Research

2.1. Prosodic Impairments

2.1.1 English

The most salient prosodic impairments in dysarthric speech are related

to pitch and speech rate. One of the earliest studies of dysprosody in

dysarthric speakers was by Schlenck, Bettrich and Willmes (1993). In their

study, length of tone units, fundamental frequency, and standard deviation

of fundamental frequency from spontaneous speech was collected from 84

dysarthric speakers with ALS and 154 healthy controls. Results revealed

significant differences from both speaker groups and by severity level.

Severe dysarthric speech had shorter tone units and a higher mean

fundamental frequencies than mild dysarthria and normal controls. Patients

with mild dysarthria had lower standard deviations of fundamental

frequency (more monotonous speech) than normal controls and severe

dysarthric speakers.

The findings of Schlenck et al. (1993) are further supported by later

studies in speakers with multiple sclerosis, cerebral disease and motor

neuron disease (Bunton, Kent, Kent & Rosenbek, 2000; Lowit-Leuschel &

Docherty, 2001). In Bunton et al.’s (2000) study, mean F0, F0 standard

deviation, F0 variation, and duration of tone units which was defined as

word or syllable per second for the minimal unit which can carry intonation

were collected from speakers with ALS, cerebral disorders (CD) and healthy
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controls. Results showed that speakers with ALS (49 Hz) and CD (46 Hz)

tended to have lower F0 variation compared to healthy controls (143 Hz).

Similarly, control speakers had a longer tone unit duration, a larger number

of words in a tone unit, a smaller average duration of words in a tone unit

compared to dysarthric speakers.

Lowit-Leuschel and Docherty (2001) found similar results by taking

the following measurements from read and spontaneous speech: articulation

rate (syll/min), mean unstressed vowel duration (UVD), number of

unstressed vowels (UV), percentage of unstressed vowels, range of intensity

variation (dB), F0 range, mean F0 (male and female). A summary of their

results can be seen in Table 2. In general, dysarthric speakers had a slower

articulation rate, less intensity and F0 variation, longer vowel duration, a

smaller percentage of unstressed vowels, and a higher mean F0 for males.

However, no test of significance was conducted between speaker groups

only within groups. Therefore, we are unable to make conclusions regarding

significant differences.
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Table 2. Prosodic measurement from dysarthric and healthy

speakers.

Dysarthric Group Control Group

Prosodic Measure Reading / Spontaneous Reading / Spontaneous

artic. rate 249 / 255 279 / 284

Mean UVD (ms) 80 / 68 50 / 47

No. of UV 45 / 43 49 / 58

% of UV 26 / 27 29 / 33

dB range 5.5 / 6.25 6.85 / 7.75

Mean F0 (male)
Mean F0 (female)

158 / 156
196 / 206

119 / 101
209 / 199

F0 range (Hz) 140 / 123 191 / 129

2.1.1 Korean

Research with Korean speakers also found similar prosodic

impairments in dysarthric speakers. Nam and Kwan (2005) took several

prosodic measurements for six interrogative and declarative sentences for

patients with spastic and athetoid cerebral palsy (SCP, ACP respectively)

associated dysarthria. Unlike the studies with English speakers, healthy

controls had the narrowest F0 range while the group with ACP had the

widest F0 range for full sentences. The range of the pitch in sentence

endings was wider in the SCP and ACP groups than in the healthy group.

The range of the loudness in sentence endings was also wider in the SCP

and ACP group than in the healthy group. Lastly, the duration of utterances
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and the duration of pauses were much longer and the frequency of pause

was higher for dysarthric speakers than for healthy speakers.

Kang, Seong and Yoon (2011) found differences by gender.

For males, mean F0 slope and semitone slope were the most important

factors to distinguish healthy and dysarthric speech, while for females mean

energy slope and max energy slope were the most important. In another

study, Kang, Yoon, Seong and Park (2012), found that patients with

Parkinson’s had lower pitch values in interrogative sentences, and lower

loudness values than the control group. The prosody of dysarthric speakers

with a wide range of disorders (Cerebral Palsy, Motor Neuron disease,

traumatic brain injury, Parkinson’s, cerebral disease) were examined in Seo

and Seong (2012). Researchers found reduced speaking and articulation

rates, reduced F0 slope and question-tone slope for sentences, and all of

intonation slope in the final word for sentential questions.

In general, results follow closely to English speakers who also

display reduced speech rates, and longer durations of utterances. The only

language difference seen was in F0 range. English speakers with dysarthria

tend to have a reduced range, while the speakers in Nam and Kwon (2005)

had a wider range than healthy controls.
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2.2. Machine Learning Approaches

The literature on machine learning-based approaches to dysarthric

speech detection and assessment is wide and contains many different

approaches to the difficult issue. We will first go over classical machine

learning approaches, particularly those which utilize prosodic measurements,

and then go over to more recent deep learning approaches.

Early approaches using prosody for automatic detection of dysarthric

speech have been argued based on findings that prosodic impairments tend

to be one of the notable cues for early stage dysarthria (Darkins, Fromkin &

Benson, 1988). Therefore, including prosodic measurement can be essential

for accurately detecting dysarthria in its early stages. Bocklet et al. (2011)

extracted features from a variety of read sentences based on phonation

(glottis features), articulation (MFCCs), and prosody (F0, energy, duration,

pauses, jitter and shimmer) from both healthy and dysarthric speakers.

These acoustic features were then used as input to a SVM classifier. Results

show that glottal features can achieve an accuracy of 83.3%, MFCCs

features reached an accuracy of 100%, and the prosodic features obtained up

to a 90.5% accuracy. While results are promising in showing that prosodic

information can be helpful for detection, one issue with this study was a

lack of explanations regarding the exact prosodic measures. The total set

includes 292-dimensional features where 73 are related to F0, duration,

shimmer, jitter, pauses, and energy, along with their mean, minimum,
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maximum and standard deviation (73 *4=292). After a correlation-based

feature selection, only 12-17 of these prosodic measures are determined to

be the most useful for distinction, but those selected measures are never

explained. In a clinical setting, knowing these prosodic features would be

essential in determining what aspects of a patient's prosody should be

attended to when developing proper speech therapy.

The issue of selecting relevant and explainable features is addressed

in Kadi et al. (2013), where the most relevant of exactly 11 prosodic

features are used to automatically assess the severity level of dysarthric

speakers from the publicly available Neymours database (Menendez-Pidal

et at., 1996). A Linear Discriminant Analysis (LDA) based feature selection

methods was used to determining the most discriminative prosodic features

as follows (from most to least discriminative): articulation rate, # of period,

mean pitch, voice breaks, %V, HNR, jitter, shimmer, std pitch, std period,

NHR. These features were shown to assess four levels of dysarthric speech

with an accuracy of 88.89% when using a gaussian mixture model classifier,

and an accuracy of 93% when using an SVM classifier.

Kadi et al,’s (2013) study shows how a small set of prosodic features

can be sufficient in detecting sentence-level dysarthria, however, one

serious limitation to this study relates to the database. First, the speakers in

the Neymours database are composed of 12 males, 11 with dysarthria and

only one healthy control. The lack of both healthy speakers and female
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speakers may limit the generalizability or the model’s capability of accurate

classification with other speakers. Another issue relates to the limited

sentences structure. The database is mostly composed of simple carrier

sentences where the format is always: ‘the X is Y-ing the Z”. X and Z

coming from a set of 74 monosyllabic nouns, while Y was selected from a

set of 37 disyllabic verbs. Using carrier sentences can alter the natural

prosody of language leading to an inaccurate representation of prosody.

A slightly more recent study by Kim et al, (2015) attempts to

alleviate the issue with the Kadi et al.’s (2013) work by evaluating the

performance of classifiers trained on two different datasets. The first being

the TORGO database, which was developed by Rudzicz, Namasivayam and

Wolff (2012) at the University of Toronto. More details regarding this

database will be addressed in Chapter 3, but in general there is a more

diverse set of speakers, which help increase the generalizability, and a

diverse set of recorded utterances that contain sentences with more natural

prosody. The second database Kim et al., (2015) used is the NKI CCRT

Speech Corpus developed for the 2012 Interspeech speaker trait sub-

challenge for pathological speech (Schuller et al., 2012). This database

contains recordings from 55 speakers (10 females, 45 males). The prosodic

features are separated into two categories voice quality and pitch-duration.

The voice quality feature set contains 3 measures, HNR, shimmer and jitter,

along with statistical estimates such as quantiles, mean, median and
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standard deviation. The pitch-duration set includes F0 measures, utterance

and phone duration, along with normalized values and several statistical

measures. An LDA-based classifier was used to achieve an accuracy of

71.9% and 82.1% for voice quality and pitch-duration feature sets

respectively. While this study shows promising results by both reducing the

feature set to more explainable features and utilizing a more complex and

realistic database, there is still an issue with the representation of prosody.

Prosody is a multidimensional aspect of speech that should not be limited to

just F0, duration and voice quality. As mentioned in section 2.1 speech rate

and rhythm are also important prosodic elements affected in dysarthric

speech and should be included for a more complete holistic representation

of prosody.

Deep learning approaches are another group of machine learning

methods that incorporate more sophisticated learning algorithms and

architectures. The training procedure tends to be the same where acoustic

features are extracted and used as input to a classifier. Although the use of

deep learning is the standard approach in many audio and speech

classification problems, several issues arise that prevent it from being the

standard in impaired speech detection. First, the success of deep learning

has largely been the result of big data and the ability to train on large

datasets. Unfortunately, the collection of impaired speech data is difficult

and available datasets are often very limited. Secondly, most deep learning
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approaches use features that can be either difficult to interpret in a clinical

setting where dysarthric speech detection is most likely to be conducted or

minimally helpful for further analysis.

Mayle et al. (2019) used long short-term memory (LSTM) recurrent

neural networks (RNN) to detect dysarthria from MFCCs. While the results

were promising, no comparison was made against classical machine

learning algorithms. Furthermore, MFCCs have already been shown to be

accurate in detecting dysarthria even in classical machine learning classifier

algorithms such as SVMs, LDA, GMM, HMM, KNN (Bocklet et al. 2011;

Selouani et al. 2012; Kim et al. 2015).

Convolutional neural networks (CNN) were used for dysarthric

speech detection in An et al. (2018). CNN’s can naturally extract local

features from a speech signal, in this case from filterbank energies, and later

fed to a feed-forward neural network for classification. Results show that

using filterbanks in a CNN-based classifier produce a specificity rate of

80.9% while using other acoustic features (MFCC, prosody, statistical

variations) in a standard feed-forward network reached a specificity of

80.4%.

Lastly, filterbanks were fed to attention-based LSTMs in Millet et al.

(2019). Results show that time-domain filterbanks outperform low-level

descriptors (65.5 % vs 82.4% UAR). However, results are either comparable
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or inferior to other studies using the same dataset but with fewer features

and less complex models (Kim et al., 2015).

The previously mentioned studies are not an exhaustive

representation of all deep learning-based studies on dysarthric speech

detection but provides some examples of drawbacks or issues with deep

learning. The deep learning approach should not only provide good results

but also help speech pathologists interpret the results to aid patients who are

diagnosed with dysarthria. A growing trend has gone towards explainable

deep learning, and current/future studies are attempting to apply deep

learning techniques for dysarthric speech detection in an interpretable

manner.
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Chapter 3. Database

Early studies on dysarthric speech used personal datasets collected

within the university or in collaboration with a speech pathology clinic.

Recently, publicly available datasets are being used more often in order to

allow other researchers to validate or replicate studies. Few of these sets are

available but the most commonly used datasets for English are the

Neymours dataset (Menendez-Pidal et at., 1996), the UA-Speech database

(Kim et at., 2008), and the TORGO database (Rudzicz et al., 2012).

The issues of the Neymours database was described in the previous

section, mainly regarding the lack of diversity in both speakers and stimuli.

The UA-Speech database is a larger database of 15 speakers with dysarthria

ranging from very low intelligibility to highly intelligible. Each speaker

recorded 765 isolated words; 300 distinct uncommon words and 3

repetitions of digits, computer commands, radio alphabet and common

words. The only concern with the UA-Speech database is that lack of full

sentences. Speakers with dysarthria not only vary in severity between

speakers but also within speakers. Some words may show signs of

dysarthria more than others even within the same speaker, so it would be

more helpful to analyze a full sentence rather than a single word.

Furthermore, while severe speakers may be easily identified just by a single

word, this is not necessarily the case for speakers with mild dysarthria.

Early detection of dysarthria is a case of mild dysarthria and is an important
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factor since early diagnosis can lead to early therapy. Early diagnosis would

require an evaluation of continuous speech to accurately diagnose the

presence of dysarthria in speech. Lastly, given that we are using prosodic

features for classification, compared to isolated words, prosodic tendencies

are better represented in continuous speech. Therefore, we choose to use the

most recently built database TORGO, as this database contains a diverse set

of speakers, stimuli and continuous speech.

Few databases of dysarthric speech in other languages exist, and

even fewer are publicly available. Some commonly used databases are the

CUHK for Cantonese (Wong et al., 2015), for Spanish the Orozco-Arroyave

et al. (2014) dataset has often been studied. However, for our cross-

language experiments we chose to use the Quality of Life Technology

(QoLT) dataset, which is a Korean database of dysarthric speakers with

cerebral palsy (Choi et al., 2012). We choose this database as it has a large

number of speakers, contains continuous speech data, and comes from a

non-indo European language. The few cross-language dysarthric speech

studies that have been conducted have always been between European

languages (Orozco-Arroyave et al., 2016). Therefore, including Korean

allows the evaluation of training datasets between two very different

languages.
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3.1. English-TORGO

The TORGO dataset was originally created to provide resources for

developing personalized ASR systems for speakers with dysarthria but has

been widely used in dysarthric speech detection and assessment. The

publicly available dataset contains 8 dysarthric speakers, 5 males and 3

females, from speakers with cerebral palsy and ALS. Speakers with

dysarthria were assessed by a trained speech pathologist using the Frenchay

Dysarthria Assessment. Four speakers were categorized as having severe

dysarthria, one speaker with moderate/severe, one moderate, and two mild.

Recording from 7 healthy controls, 4 males, 3 females, were also collected.

A mixture of short words, non-words, restricted sentences (read speech),

and unrestricted sentences (spontaneous speech) was recorded from all

speakers. Some examples of the speech stimuli can be seen in table 3.

Table 3. Speech stimuli examples from the TORGO database.

Short Words
Digits, computer commands
International radio alphabet

Phonetically contrasting pairs of words

Restricted
Sentences

Preselected phoneme-rich sentences such as:
o ‘‘The quick brown fox jumps over the

lazy dog’’
The Grandfather Passage

The 460 TIMIT-derived sentences used as
prompts in the MOCHA database

Unrestricted
Sentences

Spontaneous speech elicited from an image
description task of 30 images.
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3.2. Korean-QoLT

The QoLT database was created to improve the quality of life for

individuals with disabilities by improving technology commonly used by

healthy speakers. In particular, for improving ASR technologies in PC’s or

smart phones. The database contains recordings from 100 dysarthric

speakers and 30 healthy controls. A speech therapist assessed the severity of

speakers via Percentage of Consonant Correct (PCC) using the Assessment

of Phonology and Articulation for Children (APAC) words, and divided

speakers into four groups; mild (PCC: 85~100%), mild to moderate (PCC:

65~84.9%), moderate to severe; (PCC: 50~64.9%), and severe (PCC: less

than 50%). A subset of assessments was re-evaluated and it was found that

the intra-rater reliability was .957 and the inter-rater reliability was .901

using Pearson's product moment correlation.

Four main sets of speech stimuli were recorded. First, 37 words from

APAC which include 19 Korean consonants with 70 speech sounds – word-

initial, word-final, word-medial onset and word-medial coda consonants.

Second, 100 Machine Control Commands and 36 Korean Phonetic

Alphabets. Machine control commands are commands which are commonly

used for PC, cell phone, TV, radio, and other electronic appliances. Third,

452 Phonetically Balanced Words (PBW) where 1/9th are recorded by

dysarthric speakers and 1/3rd by healthy speakers. Lastly, 100 words and 5

sentences for investigating Korean consonants and vowels reflecting various
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phonetic environments. The five sentences along with their translations are

displayed in table 4. As we are interested in continuous speech, only the five

recorded sentences are considered in our experiments.

Table 4. Full sentence stimuli along with phonetic and English translation from

QoLT.

Korean Hangul Yale Romanization English Translation

추석에는 온 가족이 함

께 송편을 만든다 .

chwusekeynun on
kacoki hamkkey

songphyenul mantunta

In Chuseok, the whole
family makes

songpyeon together.

갑자기 미국에 있는 오

빠 얼굴이 보고 싶다.

kapcaki mikwukey
issnun oppa elkwuli

poko siphta.

Suddenly, I want to see
my brother’s face who

is in America.

어제 하늘이 컴컴해지

더니 비가 쏟아졌다 .

ecey hanuli
khemkhemhayciteni
pika ssotacyessta.

The sky turned dark
yesterday and it rained.

동생이랑 싸워서 엄마

한테 혼났다 .

tongsayngilang ssawese
emmahanthey
honnassta.

My mom scolded me for
fighting with my
younger sibling.

시원한 물 한 잔 주세

요 .
siwenhan mwul han can

cwuseyyo.
I would like a glass of
cold water, please.
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Chapter 4. Methods

4.1. Prosodic Features

4.1.1 Pitch

Pitch is a commonly studied cue of dysarthria, showing differences

not only with healthy speakers but also between speakers of different

severity levels. Mild dysarthric speakers tend to be more monotonic while

severe speakers often have significantly higher pitch than both mild and

healthy speakers (Schlenck et al., 1993). Therefore, we believe pitch

measurements to not only be helpful in detecting dysarthria but also useful

for distinguishing different severity levels. However, we also expect some

language differences to arise given the opposite results found in Korean

(Nam and Kwon, 2005).

The acoustic representation of pitch is known as fundamental

frequency (F0) which is the lowest frequency of a periodic waveform. F0 is

measured for all voiced segments of an utterance. We include standard pitch

measurements such as mean, median, minimum and maximum F0 along

with standard deviation, 25% and 75% quantiles. Figure 1 and 2 also display

the mean values for English and Korean speakers respectively. From both

figures we see generally higher F0 values for speakers with dysarthria. The

only language difference appears to be with the max F0 values which is

similar in English speakers but much higher in Korean dysarthric speakers.
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Severity based measures can be seen in figures 3 and 4 for English

and Korean respectively. Speakers with severe dysarthria tend to have a

higher max and mean F0. Interestingly, Korean speakers with moderate

dysarthria tended to have higher F0 values for all measures excluding max

F0, even compared to the severe group. Another important finding was that

with English speakers the mild dysarthric group had a lower standard

deviation (25.35 Hz) compared to healthy speakers (35.5 Hz) as expected

given the studies showing this group to be more monopitch. However, the

opposite was found in Korean speakers where healthy speakers had a

slightly lower standard deviation (30.2 Hz) compared to the mild group

(35.2 Hz).

Figure 1.Mean values for all pitch measures in healthy and dysarthric

speakers.
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Figure 2.Mean values for all pitch measures in healthy and dysarthric

speakers.

￼

Figure 3. Mean values for all pitch measures based on severity.

Figure 4. Mean values for all pitch measures based on severity.
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4.1.2 Voice Quality

Voice quality refers to the properties of speech related to the vocal

folds within the larynx. Individuals with dysarthria tend to have less control

over their vocal folds leading to irregular measurements (Dogan et al., 2007).

Speakers with multiple sclerosis caused dysarthria (spastic and ataxic

dysarthria) had several voice quality based measurements taken, such as:

jitter percent (jitt %), shimmer percent (shim %), soft phonation index (SPI),

and noise to harmonics ratio (NHR). Results show that the mean jitter,

shimmer, and SPI of MS patients were significantly increased compared to

the control group ((Jitt, p < 0.001; Shim, p <5 0.033; SPI, p < 0.0001).

Voice quality features have also been shown to be useful in machine

learning classification of impaired speech (Bocklet et al., 2011; Kadi et al.,

2013; Kim et al., 2015). Our study extracts 5 voice quality measures: jitter,

shimmer, Harmonics to noise ratio (HNR), # of voice breaks, and degree of

voice breaks. These measures are extracted as they are the most commonly

used measures for voice quality in clinical studies of dysarthric speech1.

Jitter represents the variations of F0 within a time period. More

specifically we can calculate relative local jitter by the average absolute

difference between consecutive periods, divided by the average period. The

1 Voice quality measures are not all directly related to prosody. For example, jitter and shimmer are
related to perturbations of pitch, but voice break and HNR measure are more related to phonation. For
completeness and fair comparisons with previous studies, we include voice breaks and HNR measures
for our voice quality feature set.
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calculation for jitter can be examined in equations 1-3, where Ti is the

duration of the ith interval and N is the number of intervals.

Absolute jitter (sec) = ∑i=1N |Ti - Ti+1| / (N - 1) (1)

Mean Period (sec) = ∑i=1N Ti / N (2)

Relative Jitter = Absolute Jitter / Mean Period (3)

Shimmer is similar to jitter except that perturbation of F0 falls in the

amplitude domain, so we take the average absolute difference between the

amplitudes of consecutive periods, divided by the average amplitude.

Relative Shimmer =
1

�−1 �=1
�−1 ��−��+1�
1
� �=1

� ���
(4)

Next, HNR refers to the periodicity of a speech signal over noise.

Harmonicity is measured in decibels (dB) by the ratio of the energy of the

periodic part (Ep) related to the noise energy (En) as seen in equation 5.

HNR (dB) = 10*log (�‸�‸) (5)

Furthermore, we take two measures related to breaks in voicing. In

healthy speech, speakers can maintain the phonation of voiced segments

such as a vowel for quite some time. However, speakers with dysarthria
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have trouble with this task. We included two voice break related measures.

The first being the number of voice breaks which is the number of distances

between consecutive pulses that are longer than 1.25 divided by the pitch

floor (in our case we set the pitch floor to 50 Hz). Secondly, we measure the

degree of voice breaks, which is the total duration of the breaks over the

signal, divided by the total duration, excluding silence at the beginning and

the end of the sentence. Speakers from both our datasets were observed to

generally have higher values for both voice break measurements. Mean

values for all measures in Korean and English can be seen in Table 6. The

only consistent trends we see are with voice breaks. In general, the more

severe the dysarthria the higher number of voice breaks and larger degree of

voice breaks. In English speakers, jitter is higher, but shimmer is lower than

healthy controls.

Table 6.Mean Voice Quality measure for all speaker groups.

Corpus Speaker Group Jitter Shimmer HNR # of VB % of VB

TORGO

Healthy
Dysarthric (All)

Mild
Moderate
Severe

1.85
2.03
2.02
1.80
2.24

11.46
8.78
9.76
7.98
8.46

9.59
12.13
10.23
13.75
12.67

6.00
7.91
6.7
7.80
9.29

17.13
21.29
16.71
27.10
20.86

QoLT

Healthy
Dysarthric (All)

Mild
Moderate
Severe

1.68
1.61
1.53
1.62
1.69

7.54
7.11
7.08
6.94
7.37

15.12
15.83
15.78
16.14
15.50

5.71
9.50
7.89
9.3
11.84

13.15
29.21
20.90
33.39
34.58
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4.1.3 Speech Rate

Several studies have found impairments in speech rate based

measurements such as speaking rate (syll/per sec), articulation rate (syll/per

sec without pause), # of pauses, segment duration (Ackermann & Hertrich,

1994; Le Dorze, Ouellet & Ryalls, 1994). Speakers with dysarthria tend to

have both a lower speaking rate and articulation rate, more pauses, and

longer syllable duration. The current study takes 7 relevant measures: full

utterance duration, speaking duration, balance, speaking rate, articulation

rate, number of syllables and number of pauses. To extract speech rate

features, the approach taken by De Jong and Wempe (2009) is used where

the syllable nuclei is automatically detected and no transcriptions are

necessary. First, we use intensity to find peaks in the energy contour, since a

vowel within a syllable (the syllable nucleus) has higher energy than

surrounding sounds. Intensity contour is then used to make sure that the

intensity between the current peak and the preceding peak is sufficiently low.

With this procedure, multiple peaks within one syllable are deleted. Finally,

we use voicedness to exclude peaks that are unvoiced, which is required to

delete surrounding voiceless consonants that have high intensity. As

expected, our data followed the trends of previous studies, dysarthric

speakers tend to have longer durations, slower speaking and articulation rate,

more pauses, and more syllables given the habit of repetition. The full range

of mean values can be seen in table 7.
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Table 7. Mean Speech Rate measures for all speaker groups.

Corpus Speaker
Group

# of
syllables

# of
pauses

Speaking
Rate

Artic.
Rate

Speaking
Duration
(sec)

Total
Duration
(sec)

TORGO

Healthy
Mild

Moderate
Severe

9.12
10.67
10.78
12.21

0.17
1.4
2.09
1.82

2.00
1.75
1.78
1.69

4.135
3.53
3.33
3.17

2.22
3.1
3.38
3.77

4.50
6.22
6.60
7.13

QoLT

Healthy
Mild

Moderate
Severe

11.75
13.14
13.91
17.53

0.09
1.45
3.29
4.74

3
2.29
1.69
1.64

4.58
3.82
3.42
3.47

2.52
3.58
4.19
5.29

3.83
6.00
8.96
11.49

4.1.4 Rhythm

The last group of prosodic measurements we extract are known as

rhythm metrics. Unlike pitch or voice quality measures, rhythm does not

have a specific acoustic cue. Instead, linguists have proposed several

durational measures of vocalic and intervocalic segments. These measures

have been shown to be correlates of rhythm (Ramus, Nespor & Mehler,

1999; Grabe & Low, 2002; Dellwo & Wagner, 2003). Traditionally, rhythm

metrics have been used to classify between languages with different rhythm

patterns. Such as comparing stress-timed, syllable-timed or mora-timed

languages. The focus of the current study is not to compare the rhythm of

Korean and English with rhythm metric, but instead use the metrics to

distinguish between healthy and dysarthric speakers. Liss et al. (2009) were

one of the first researchers to use rhythm metrics to classify healthy and

dysarthric speakers, and showed an accuracy of 80% when classifying
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different types of dysarthrias (ALS, PD, HD, Ataxic). Further studies have

supported these results by using rhythm metrics in machine learning

classifiers (Selouani et al., 2012; Dahmani et al., 2013).

One of the first group of rhythm metrics, formally known as ‘the

deltas’, was proposed by Ramus et al. in 1999. They proposed 3 metrics; the

average proportion of vocalic intervals (%V), and the average standard

deviations of consonantal (∆C) and vocalic (∆V) intervals. For example,

"next Tuesday on" (phonetically transcribed as /nɛkstjuzdeɪɒn/) would

contain 3 vocalic and 4 consonantal intervals (/n/ /ɛ/ /kstj/ /u/ /zd/ /eɪɒ/ /n/).

They found that the proportion of time of vocalic intervals in the sentence

(%V) and the standard deviation of intervocalic intervals (ΔC) was the best

correlate for distinguishing different rhythm classes. In general, stress-timed

languages have high ΔC and low %V, in contrast syllable-timed languages

have low ΔC but high %V. Figure 5 shows that our healthy speakers follow

this trend as English speakers have a higher ΔC but lower %V compared to

Korean speakers. On the other hand, regardless of the language, speakers

with dysarthria have an overall high ΔC.

Researchers have tried to normalize delta values in order to reduce

the interaction between speech rate and deltas. Dellwo and Wagner (2003)

proposed a method where the values of deltas are divided by the mean

duration of vocalic or consonantal intervals, then multiplied by 100. These

normalized measures are known as the ‘Varcos’ and can be measured for
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both vowel and consonant intervals. For example, Varco C can be calculated

as such:

VarcosC = �‸∗100
���‸(�) (6)

The last group of speech metrics were proposed by Grabe and Low

(2002). They take another approach to rhythm, where the temporal

succession of the vocalic and consonantal intervals is taken into

consideration instead of joining all the values and calculating the standard

deviation. The influence of speech rate variation can be controlled by

calculating the normalized PVI, which calculates the mean absolute

normalized difference between durations of neighboring interval pairs. In

Figure 5. Mean values of ΔC and %V for dysarthric and

healthy groups in both Korean and English.
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general, the raw PVI is used for consonantal intervals and normalized PVI

for vocalic intervals. rPVI and nPVI can be defined as in eq. 7-8, where dk is

the length of the kth vocalic or intervocalic segment and m is the number of

segments.

rPVI = �−1
�−1 �� −��+1 /(�− 1)� (7)

nPVI = 100 * �−1
�−1 ��−��+1

��+��+1
2

/ (m − 1)� (8)

A full table of mean scores for all rhythm metrics for all speaker

groups can be seen in Table 7. As seen from the table 7, healthy English

speakers have a higher ΔC but lower %V compared to Korean speakers.

English speakers also have lower varco and nPVI means compared to

Korean speakers. Speakers with dysarthria from both language groups have

overall higher means for deltas and rPVI metrics. This is likely due to

difficulty in articulating, leading to highly variable durations of both

consonantal and vocalic intervals. Both Varcos and nPVI measures show

minimal difference between healthy and dysarthric speakers.
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Table 7. Mean values of rhythm metrics for all speaker groups.

Speaker
Group %V ΔV ΔC varco

-V
varco-
C Vrpvi Crpvi Vnpvi Cnpvi

English
Healthy 41.72 60.70 73.28 53.18 50.89 66.20 81.85 55.85 56.89

English
Dys. 43.54 93.30 107.56 50.66 55.07 102.86 116.34 54.03 58.58

Korean
Healthy 54.37 65.69 51.79 57.59 55.23 67.52 65.78 61.51 70.36

Korean
Dys. 57.83 139.57 96.65 58.43 60.05 148.56 110.56 60.90 69.18

4.2. Feature Selection

Choosing the right set of features is an important aspect when

training machine learning models as not all features may be necessary. In

order to select the optimal set of prosodic features, we conduct several

feature selection methods and compare the performance for each method.

For our study, we specifically implemented three major feature selection

methods: the filter method, embedded method, and wrapper methods.

The filter method works by ​ selecting the best features based on

univariate statistical tests. The selection of features is independent of any

machine learning algorithm. Features are ranked on the basis of statistical

scores which tend to determine the features' correlation with the outcome

variable. In our case we use ANOVA F-values since our groups are

categorical. F-values in this case are the ratios of two Chi-distributions
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divided by its degrees of Freedom (as in eq. 9) and is used since we are

comparing the variance between the groups and variance within the groups.

F = (�1
2/n1-1) / (�2

2/ n2-1) (9)

To calculate F-values for feature selection we first need to calculate

the between sum of squares (SSB) and within sum of squares (SSW). The

distance between each group average value g from grand means xbar is g-

xbar to get eq. 10 where gi is the ith item in the set and �� ������� is the mean of all

items in the set. The distance between each observed value within the group

x from the group-mean g is given as x-g in equation 11. Lastly, our F-value

is calculated as in equation 12. For each feature, if the null hypothesis is

rejected that means variance exists between the groups and we will include

this feature for model training.

SSB = (gi-x)2 (10)

SSW = (xi-g)2 (11)

F = (SSb/dfb) / (SSW/dfw) (12)

Next, we tested two embedded feature selection methods, an L1-

based (lasso) feature selection and tree-based feature importance method.

The lasso method is a regularisation approach where a penalty is applied
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over the coefficient of a linear model (see eq. 13). We then select the

features with non-zero coefficients.

J(θ) =
1
� �=1

� ‸ö逷 ℎ� � � ,� �� +
�
� �=1

‸ ��� (13)

Tree-based estimators such as random forest or extra forest can be

used to compute impurity-based feature importances, which in turn can be

used to discard irrelevant features. Running this technique allows us to test

the top features used in an iterative manner. Lastly, the method that worked

best for our models in all experiments was recursive feature elimination.

Recursive feature elimination (RFE) performs a greedy search to find the

best performing feature subset. It iteratively creates models and determines

the best or the worst performing feature at each iteration. It constructs the

subsequent models with the leftover features until all the features are

explored. It then ranks the features based on the order of their elimination. A

sample of the features selected can be visualised from table 8, which shows

the features selected for binary detection in the TORGO dataset2.

For our experiments we use the RFE feature set as it was the feature

selection method which provided the best results and was consistent with all

scenarios (detection, assessment, cross-language) for both languages. From

table 8 we see that each feature selection method selects different features.

2 Tables for other experiments are in the appendix.
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For example, all methods with the exception of the filter method selected

some pitch features. Furthermore, some methods select more features than

others, as seen when comparing the RFE and lasso methods which have 8

and 21 selected features respectively.

Table 8. Selected features for detection using various feature selection

methods for the TORGO dataset.

Features Filter
Method Lasso Method Tree-based RFE

Pitch None

f0_std,
f0_quan_75,

f0_min, f0_max,
f0_quantile25

f0_quantile25,
f0_quan_75,
f0_mean,
f0_median,

f0_std,
f0_quantile25,
f0_quan_75

Voice
Quality

Shimmer,
Mean HNR

Shimmer,
Jitter, % of voice
breaks, # of voice

breaks

Mean HNR,
Jitter, Shimmer Jitter

Speech
Rate

# of pauses,
full duration,
speaking
duration,
articulation

rate

speaking rate,
articulation rate,
speaking duration,
number of pauses

# of pauses,
full duration,
speaking
duration

# of pauses,
full duration

Rhythm
delta-V,

Vrpvi, delta-
C, Crpvi

Vnpvi, Cnpvi,
varco-V, %V,
delta-V, Crpvi,
delta-C, Vrpvi

None delta-V,
varco-V

# of
features 10 21 10 8
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4.3. Classification Models

In our experiments we evaluate the performance of selected features

by using them as input to three different machine-learning based classifiers:

random forest, support vector machine, and a feed-forward neural network.

Including multiple classifiers allows us to generalize the performance and

reduces the chance of our data overfitting to one classifier. All classifiers

were used for each experiment, detection and assessment for both Korean

and English. As well as for the cross-language experiments.

4.3.1 Random Forest

A random forest (RF) classifier is an estimator that fits multiple

decision tree classifiers on various sub-samples of the dataset and uses

averaging to improve the predictive accuracy and control over-fitting. We

use the Gini impurity function to measure the quality of a split. Gini

Impurity is a measurement of the likelihood of an incorrect classification of

a new instance of a random variable, if that new instance was randomly

classified according to the distribution of class labels from the data set. The

Gini impurity can be computed by summing the probability pi of an item

with label i being chosen, times the probability �≠1‸� = 1− ‸�� of a

mistake in categorizing that item. Figure 6 displays a simple example of

how a random forest is structured. In this basic case our random forest

produces 3 decision trees, where 2 trees have predicted an utterance to be

dysarthric, while 1 tree made a healthy prediction. Given that the majority
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of trees have predicted dysarthria, the final decision for our random forest

classifier will be dysarthric. In actual practice we will have to tune several

hyper parameters such as the number of decision trees and depth of trees

(how many nodes). We could also train using information gain (entropy)

instead of the Gini impurity, but we found the latter to produce better results.

Figure 6. Simplified example of a random forest classifier.

Decision Tree 2
dysarthria

Decision Tree 3
dysarthria

Decision Tree 1
healthy

Majority vote

Final decision
(dysarthria)

Random Forest
Instance
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4.3.2 Support Vector Machine

The next classifier is a support vector machine (SVM), which is the

most commonly used classifier in machine learning, and in particular for

impaired speech detection (Selouani et al., 2012; Dahmani et al., 2013; Kim

et al., 2015; Orozco-Arroyave et al., 2016). The success of SVM’s has not

been limited to early studies, but continues to show good performance even

in recent studies as they consistently perform well even with small datasets

(López et al., 2019; Kodrasi & Bourlard, 2019; Tripathi et al., 2020). SVM

is another supervised learning model which aims to find the maximum-

margin hyperplane and margins for a given set of data points. Figure 7

shows an ideal case where the data points represent utterances from either

healthy of dysarthric speakers. In order to maximize the margin we use the

hinge loss function.

Figure 7. Simplified example of a linear SVM.
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In many cases including the current study, the fact that we have

several features means our data points are represented in a high-dimensional

feature space. Therefore, we must account for the non-linear dimensionality

by implementing a ‘kernel trick’ which will map our data points into the

appropriate dimension space. For our SVM model we use a Gaussian radial

basis function.

Another important aspect of SVM’s are the C and gamma

parameters, which must be optimized. C is the parameter for the margin cost

function, which controls the influence of each individual support vector; this

process involves trading error penalty for stability. A small C makes the cost

of misclassification low (soft margin), allowing more of them for the sake of

wider margin. A large C makes the cost of misclassification high (hard

margin), forcing the algorithm to explain the input data stricter and

potentially overfit. The goal is to find the balance between a too soft margin

or a too hard margin.

The gamma parameter relates to the kernel method and defines how

far the influence of a single training example reaches, with low values

meaning ‘far’ and high values meaning ‘close’. If the gamma is too large,

the radius of the area of influence of the support vectors only includes the

support vector itself and no amount of regularization with C will be able to

prevent overfitting. When gamma is very small, the model is too constrained



42

and cannot capture the complexity of the data. Again, we must find a good

balance between a gamma with a too high value or a too small value.

4.3.3 Feed-Forward Neural Network

The last and most complex classifier is the feed-forward neural

network (FFNN) which is a type of artificial network that sends information

between nodes in a single direction. The literature on neural networks is vast

and beyond the scope of this paper, but the most basic FFNN is a multilayer

perceptron (MLP) that learns a function f(): Rn→ R0 by training on a dataset,

where n is the number of dimensions for the input and 0 is the number of

dimensions for the output. Given a vector of acoustic features X = x1,

x2,.....,xn and some targets y (labels regarding diagnosis) an MLP can learn a

non-linear function approximator for classification.

Figure 8 shows a simplified MLP where we have an input layer X =

X1… of acoustic features with values that gets combined with some weights

a = a1…, and eventually a prediction gets made on whether the acoustic

vector was a representation of healthy speech (H) or dysarthric speech (D).

Hyperparameter tuning of layers, nodes, learning rate, optimizer, epochs, is

very important and we apply a grid search to find these optimal parameters.3

3 The exact parameters are discussed in Ch. 5.
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4.4. Mel-Frequency Cepstral Coefficients

As a baseline, we compared the performance of classifiers when

solely trained on Mel-frequency cepstral coefficients compared to different

sets of prosodic features. The mel-frequency cepstrum (MFC) is a

representation of the short-term power spectrum of a sound, based on a

linear cosine transform of a log power spectrum on a nonlinear mel scale of

frequency. Mel-frequency cepstral coefficients (MFCCs) are coefficients

that collectively make up an MFC and are commonly used in ASR systems

as they are a good approximation to the vocal tract and thus model

pronunciation well.

Healthy
Utterance

Figure 8. Simplified example of MLP classifier.
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Figure 9. Main steps for computing MFCCs.

There are several steps to calculate MFCCs which can also be seen

from figure 9. First, apply a pre-emphasis filter on the speech signal to

amplify the high frequencies and then take the Fourier transform of the

signal within a defined window. Second, we map the powers of the

spectrum obtained above onto the mel scale with overlapping windows. The

mel scale is used since it is a better representation of the human auditory

system which is not linear. Third, we take the log of the powers at each of

the mel frequencies. Fourth, we take the discrete cosine transform of the log

filterbank energies. The MFCCs are the amplitudes of the resulting

spectrum.

Framing Windowing FFTpre-emphasis

Power
spectrumMel-filter bankLogDCTMFCC

coefficient
s
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One issue with using MFCC as input for machine learning models is

the varied sequence nature of data. Naturally, our speech samples vary in

length which leads to variable sequence vectors. However, all machine

learning models require a fixed sequence as input. Therefore, we must apply

some pre-processing techniques to produce MFCCs with a fixed length

despite utterances with different durations. In our case it was required to

apply different methods for English and Korean speakers. For Korean

speakers we simply averaged each coefficient for each utterance. Since we

extract 13 coefficients4 the output ends up being a vector of length 13.

While this method was sufficient and led to good results for Korean, English

required a different process. For English, we averaged each coefficient to

contain 5 frames5 leading to a vector of length 65 (13*5) for each utterance.

4 We experimented with different numbers of coefficients (see appendix table A2) and 13 was ideal.
5 Different numbers of frames such as 3,4,6,7 were also tested.
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Chapter 5. Experiment

We conducted several experiments using many different sets of

prosodic features. The main experiments are dysarthria detection, severity

assessment of dysarthria and cross-language assessment of dysarthria.

However, for each of those experiments we also conduct several other

experiments to draw comparisons. First, we evaluate the performance of

models when trained on only MFCCs, then we check the performance when

training on the full prosodic feature set. Then, we train on single prosodic

features (e.g. only pitch, etc.). Next, we compare the prosodic features based

from previous studies. Lastly, we show the performance of our feature set

when applying recursive feature selection.

In most cases, machine learning models are sensitive to feature

scaling. For example, an SVM model assumes that all features are centered

around zero and have variances in the same order. If a feature has a variance

that is orders of magnitude larger than others, it might dominate the

objective function and make the estimator unable to learn from other

features correctly as expected. Therefore, for all prosodic measurements we

center to the mean and followed by component wise scale to unit variance.

We apply this method of scaling measures for all prosodic measurements,

MFCC, and for all classifiers.
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5.1. Model Parameters

As previously mentioned, hyperparameter tuning is an important part

of building good classifiers. We implement a grid search which is an

exhaustive search over specified parameter values for a given classifier.

These parameters are optimized by also applying cross-validation.

Only two parameters are optimized for the random forest classifier,

number of trees and depth of trees. In general, 100 trees were most optimal,

while the optimal depth ranged from 30 to None, where none means all

nodes are expanded until all leaves are pure or until all leaves contain less

than the minimum number of samples required to split an internal node.

The SVM model had C and gamma values optimized by checking

values between 10-4 to 104. For detection this tended to be 0.1 for gamma

and 10 for C, while for assessment it was 0.01 for gamma and 10 for C.

Furthermore, we tested different kernels such as poly, sigmoid and RBF,

and we found RBF to provide the best results. As SVMs are inherently

binary classifiers, we apply a one-versus-one approach when building the

models for severity assessment. This method creates multiple binary models

where n * (n - 1) / 2 classifiers are constructed and each one trains data from

two classes.

Lastly, for our multi-layer perceptron we optimized the number of

hidden layers, nodes, activation function, solver, learning rate, learning rate

scheduler and the maximum iterations. Only 1 hidden layer with 100 nodes
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was needed for detection, while assessment performed better with two

hidden layers with the first containing 100 nodes and the 2nd containing 50

nodes. In both cases the ReLU activation function outperformed the logistic

or tanh function. The solver for detection and assessment was Adam, which

gave better results than standard stochastic gradient descent or limited-

memory BFGS solvers. An initial learning rate of 0.001 was used with an

adaptive learning rate. An adaptive learning rate keeps the learning rate

constant as long as loss continues to decrease, otherwise the learning rate is

reduced. Lastly, the optimized number of epochs until convergence was

around 500 for all cases. The only difference between detection and

assessment experiments relates to the activation function for the last layer.

Since detection is a binary task, we use a logistic function, while the

assessment is a multiclass task so we use a softmax function.

5.2. Training Procedure

5.2.1 Dysarthria Detection

The training procedure for dysarthria detection is similar for both

TORGO and QoLT dataset with few differences (see figure 10). We first

extract both MFCC and prosodic features. Then, we do some pre-processing

of features such that we get a fixed length for MFCCs and a reduced set of

prosodic features. Lastly, we concatenate both MFCCs and prosodic

features and feed them into our classifier to make a prediction. All 15
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speakers from the TORGO dataset were present in the training and test sets.

In total, we collected 160 sentences which were split such that no sentence

in the train set was in the test set. This led to 200 utterances for training and

140 for testing. Given that there are more dysarthric utterances than healthy,

we balanced the dataset so there is an equal amount of utterance per group

(100 for healthy 100 for dysarthric). Before validating our model on the test

set, we implement a 10-fold cross-validation.

Figure 10. Overall process for detecting dysarthria given a speech signal.

Unlike the TORGO dataset, the QoLT dataset has a large number of

speakers which allows us to test speaker-independent models such that there

are no overlapping speakers in train and test sets. However, because the

number of recorded sentences per speaker is 10 (5 sentences * 2), the

overall amount of utterances is much lower. In total, we collected 380

utterances, 100 from healthy speakers and 280 from dysarthric speakers. For

training we use the data from 6 healthy speakers and 17 dysarthric speakers,
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while for testing we use 4 healthy speakers and 11 dysarthric speakers. As

with the TORGO experiments, we balance the data so that both groups have

an equal amount of total utterances.

5.2.2 Severity Assessment

The training procedure for assessment is similar to detection except

now we have different levels of severity (see figure 11). We divided severity

into four levels, healthy, mild, moderate and severe. This was based on the

assessments of speech therapists during data collection of each dataset. For

the TORGO database each group has an average of 85 utterances for

training and 60 utterances each for testing6. The QoLT data has 60

utterances in each group for training and 35 for testing.

Figure 11. Overall process for assessing the severity level of a given speech signal.

6 Each speaker in the TORGO dataset has a different number of recordings.

Moderate

Severe
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5.2.3 Cross-Language

The training procedure is again very similar to the assessment

process from the previous section. However, during training we include data

from both languages while testing on one language. For example, when

testing on Korean data we train with both English and Korean data. Cross-

language experiments were only conducted with the severity assessment

task as it’s a more difficult task than detection. Furthermore, when testing

on a specific language we only included data from dysarthric speakers of the

other language during training. For example, when testing with Korean data

we include all Korean data (healthy and dysarthric) for training, plus

English dysarthric data.
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Chapter 6. Results

6.1. TORGO

6.1.1 Dysarthria Detection

As seen from Table 9, including our feature selected prosodic set

improves on all classifiers compared to the baseline models which only use

MFCCs. A relative accuracy increase of 1.84% and 1.82% was seen for

SVM and MLP models respectively. In particular, we see a higher recall

96.7% to 100% which shows our model is correctly predicting all utterances

coming from dysarthric speakers (zero false negatives). Recall is an

important metric, as we want to correctly diagnose utterances that come

from speakers with dysarthria.

Table 9. Evaluation of baseline model and feature selected prosodic

features.

Feature set Classifier Accuracy % Precision % Recall % F1-score %

MFCC
RF
SVM
MLP

91.6
92.4
93.3

89.1
90.5
90.6

95
95
96.7

92
92.3
93.5

MFCC+
prosody

RF
SVM
MLP

92.4
94.1
95

88
89.6
90.9

98.3
100
100

92.9
94.5
95.2

To compare the prosodic features selected from recursive feature

selection, we also evaluated the performance of our MLP classifier when

only trained on a single prosodic group. Results from table 10 suggest that
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our selected features outperform any individual prosodic group. While pitch

(92.4%) and voice quality (93.2%) came close to the 95% accuracy of RFE

selected features, they still had a lower recall which means the presence of

false negatives.

Table 10. A comparison of MLP results when trained on individual prosodic

measures.

Feature set Accuracy % Precision % Recall % F1-
score %

RFE selected
features 95 90.9 100 95.2

Pitch 92.4 89.2 96.7 92.8

Voice
Quality 93.2 90.6 96.7 93.5

Speech rate 90.8 86.6 96.7 91.3

Rhythm 89.1 86.2 93.3 89.6

We also compare results when using the features sets from previous

studies utilizing prosodic features. Table 11 shows the results of our

selected features from those proposed in previous studies. As the exact

features are not known from all studies we approximate based on

description of prosodic features. For example, Kim et al. (2015) only used

F0 and duration measures as a representation of prosody, while Brocket et al.

(2011) used F0, duration and voice quality to represent prosody. Kadi et al.
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(2013), and Dahmani et al. (2013) were more specific with their feature

choice and we were able to test the exact features used in their studies.

Table 11. A comparison of other prosodic representation from previous

studies.

Feature set Features Accuracy % Recall % F1-
score %

RFE
selected
features

f0_std, f0_quantile25,
f0_quan_75, # of pauses, full
duration, jitter, delta-V,

varco-V

95 100 95.2

Kim et al.
(2015) All F0 and duration measures 90.76 95 91.2

Kadi et al.
(2013)

%V, AR, mean F0, std F0,
voice break, HNR, Jitter,

Shimmer
93.3 96.7 93.5

Dahmani et
al. (2013) %v, delta-V 90.7 91.7 90.9

Martens et
al. 2013

SR, AR, # of pauses, # of
syllables 89.9 93.3 90.3

Bocket et
al. (2011)

All F0, duration, pauses,
jitter, shimmer 92.4 95 92.7

Lastly, there have been several other studies using a variety of

features which may or may not include prosodic measures. We compare the

accuracy of more recent studies on dysarthric speech detection using the

same TORGO database seen in table 12. The previous study with the best

results comes from Narendra et al. (2018) who reach an accuracy of 94.29%

when using over 6,500 features including MFCC, prosody and glottal
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features. However, our feature set produces better results while only using 8

specific features.

Table 12. Comparison from other studies using the TORGO dataset.

Study Results (accuracy) # Features used

Current Study 95% 8

Narendra, N. P., &
Alku, P. (2018) 94.29%

6552+ glottal
features

(open-smile2)

Kim et al. (2015) 93.4% 11

Millet, J., &
Zeghidour, N. (2019) 82.4% UAR 32+

Narendra, N. P., &
Alku, P. (2020) 82.12 % 6744

Jung & Kim (2017) 89.5 % 16

6.1.2 Severity Assessment

Severity assessment is a much more difficult task as there are more

ambiguities between mild/healthy, mild/moderate, and moderate/severe

classes. As expected, overall lower results are achieved compared to

detection, however, we see better improvements when including prosody

measures (see table 13). When including prosodic features we see a relative

accuracy improvement of 6.87%, 11.64% and 20.16% with RF, SVM and

MLP classifiers respectively. From figure 12, we see that a majority of

improvement with our MLP model is with better classification of mild
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utterances. Common mistakes are predicting moderate when an utterance is

from a severe speaker or predicting mild when an utterance comes from a

moderate speaker.

Table 13. Results from severity assessment task.

Classifier
Accuracy (%)

MFCC only

Accuracy (%)

MFCC+prosody

Relative accuracy

increase

RF

SVM

MLP

58.2

63.6

61.5

62.2

71

73.9

6.87 %

11.64 %

20.16 %

Figure 12. Confusion matrix of MLP predictions for baseline (left) and

proposed feature set (right).

6.2. QoLT

6.2.1 Dysarthria Detection

The RFE selected features for the QoLT dataset differed from the

TORGO dataset. The full set of features are seen in table 14. The features in

bold are those that were also in the feature set for TORGO. There were no
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major differences between the features sets for TORGO and QoLT datasets.

One noticeable difference for detection is that TORGO only uses 2 voice

quality (jitter & shimmer) and 1 speech rate (# of pauses) feature, while the

QoLT dataset uses 4 voice quality measures and 3 speech rate features.

Similarly, for assessment TORGO used 6 rhythm and pitch features while

QoLT only used 4. However, speech rate was again utilized more in the

QoLT dataset, 6 features, compared to the TORGO dataset (4 features). A

deeper investigation regarding these differences are discussed in chapter 7.

Table 14. RFE selected features for QoLT dataset.

Features Detection Assessment

Pitch f0_mean, f0_quan_75 f0_mean, f0_median, f0_max,
f0_quantile25

Voice
Quality

# of voice breaks, % of
voice breaks, Jitter, Mean

HNR

# of voice breaks, Degree of voice
breaks, Jitter, Mean HNR

Speech
Rate

# of syllables, # of pauses,
rate of speech

# of syllables, # of pauses, rate of
speech, speaking duration, original

duration, balance

Rhythm Crpvi delta-V, Vrpvi, Crpvi, Vnpvi

Total # of
features 10 18

6.2.1 Severity Assessment

Results from the severity assessment are more promising and show

improvement over baseline models for all classifiers (see table 15). A

relative accuracy improvement of 8.47%, 12.5% and 20.24% was seen for
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MLP, SVM and RF classifiers respectively. Most improvements were seen

with mild and moderate utterances. A recall increase from 33.3% to 63%

was seen for mild utterance while an increase from 56.7% to 66.7% was

seen for moderate utterance. Healthy utterances were also more accurate

when including prosodic features (see figure 13). A precision and recall

increase to 100% was seen for healthy utterances. This implies no healthy

utterance was misdiagnosed as dysarthric and no dysarthric utterance was

misdiagnosed as healthy.

Table 15. Results for severity assessment in the QoLT dataset.

Classifier Accuracy (%)
MFCC only

Accuracy (%)
MFCC+prosody

Relative accuracy
increase

RF
SVM
MLP

58.3
60
56.7

70.1
67.5
61.5

20.24 %
12.5 %
8.47 %

Figure 13. Confusion matrix of random forest predictions for baseline (left) and

proposed feature set (right).
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6.3. Cross-Language Assessment

The last group of experiments are to determine whether we can

supplement low-data training sets with data from an outside language. In

this case, this means train with both Korean and English data. Depending on

what language we tested on, we made sure to balance the groups when

training. Also, we found that including specific groups outperformed

including all data. For example, when testing with Korean data if we include

all the data from English, then mild utterances were almost always

incorrectly predicted as healthy. Therefore, we only included utterances

from dysarthric speakers when training with a Korean test set. Results can

be seen in table 16. In general overall improvements are seen for all models

when including English data. A higher relative increase was seen for the RF

classifier (4.12%) but a higher accuracy was achieved when using an SVM.

Table 16. Results for cross-language experiment when testing with QoLT.

Classifier Accuracy (%)
Korean only data

Accuracy (%)
Korean + English Relative accuracy increase

RF
SVM
MLP

58.3
65.9
58.1

60.7
68.2
59.8

4.12 %
3.49 %
2.93 %

When looking at the selected features from table 17 we see that

speech rate measures are very important, and all 7 features were selected.

Compared to the features selected when only training on Korean data, we
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see voice quality being used less, but rhythm being used more. It’s difficult

to determine how the cross-language features compare to the Korean and

English selected features on their own, but as expected there is a trend

towards using features more helpful for Korean. The added features not in

table 17. were also not in the feature set for English severity assessment

(articulation rate and %V).

Figure 10. Confusion matrix for cross-language assessment when only using

Korean training data (left) and when using both Korean and English (right).

Table 17. RFE selected features for cross-language assessment.

Features Test with Korean Test with English

Pitch f0_mean, f0_median, f0_quan_75
f0_mean, f0_median,

f0_quan_75, f0_quan 25, f0_std

Voice
Quality

# of voice breaks, Degree of voice
breaks, Shimmer

Degree of voice breaks, Shimmer,
jitter, mean HNR

Speech
Rate

# of syllables, # of pauses, rate of
speech, articulation rate, speaking

duration, original duration,
balance

# of pauses, speaking duration,
original duration, balance

Rhythm %V, Vrpvi, Crpvi, Vnpvi, Cnpvi Delta-V, delta-C, varco-C, Vrpvi,
Crpvi, Vnpvi
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In the opposite case where we test using English data, there are less

improvements overall. However, we see better performance when

identifying speakers with mild dysarthria (see figure 11). A precision

increase from 65.9% to 73.3% was seen for the mild group, and a recall

increase from 57.6% to 66.7% was achieved. In table 18, we see that more

improvements were obtained for the random forest and MLP classifier but a

higher accuracy with the SVM model.

Table 18. Results for cross-language experiment when testing with

TORGO.

Classifier Accuracy (%)
English only data

Accuracy (%)
Korean + English Relative accuracy increase

RF
SVM
MLP

58.4
66.8
63

63.4
67.2
64.7

8.5%
0.6%
2.70

Figure 11. Confusion matrix for cross-language assessment when only

using English training data (left) and when using both Korean and English (right).
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Chapter 7. Discussion

Results from the dysarthria detection experiments suggest that

prosody can help improve detection and severity assessment, but it may be

dependent on the data. Detection was helpful for the TORGO dataset but

minimally helpful for the QoLT dataset. Prosody is better utilized for

severity assessment, as relative increases of around 20% were seen for both

datasets. This is likely because prosodic impairments are severity dependent

and may not generalize to all speakers with dysarthria. Lastly, based on the

cross-language experiments we see that including prosodic features from a

different language can help improve assessment. Features related to

common prosodic impairments such as speech rate were correctly selected

by the RFE algorithm. The rest of the discussion section will go over the

results and specific features used by the three main experiments.

7.1. Linguistic Implications

The TORGO dataset saw about a 2% relative increase in accuracy

but the QoLT dataset saw almost no improvements for detection. Given that

the QoLT already had a higher accuracy with the baseline MFCC features,

we cannot make any claims whether this is caused by language differences.

Important distinctions exist between the datasets such as number of speakers,

stimuli along with methodological differences such as the data split

(speakers vs sentences) which could have contributed to the difference. As
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for the selected features, there were some interesting differences when

applying the RFE for each dataset. The TORGO dataset made more use of

pitch (3), voice quality (2), and rhythm (2) features, while the QoLT dataset

used more speech rate (3) and voice quality (4) features. The usefulness of

speech rate features for Korean are supported the findings of Kim and Choi

(2017) who found articulation rate to be a significant factor for predicting

speech intelligibility in Korean speakers with dysarthria but not for English

speakers. Furthermore, their hypothesis that the variation in the rhythm

metric npvi-V would be larger for English speakers than Korean is also

supported. This hypothesis was based on the fact that English speakers with

hypokinetic dysarthria tend to equalize the duration of syllables despite

English being a stress-timed language. In our prosodic feature set we see

npvi-V along with rpvi-V for the TORGO dataset but not the QoLT which

only contains the rpvi-C metric.

It is unclear why the largest group of selected prosodic measurement

was voice quality for Korean speakers, but the findings of Kim et al. (1998)

and Lee et al. (2000) suggest that jitter (which was selected in our feature

set) is significantly increased in comparison to healthy controls. Previous

studies have found other voice quality measures such as Linear Prediction

residual signal (Kim & Kim, 2012) and Cepstral Peak Prominence (Seo &

Seong, 2013) to also be useful for dysarthria detection. Future studies
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should compare the performance of different voice quality measures to

determine which type of features are most useful.

The number features selected during severity assessment were much

higher than the ones selected for detection. In general, the prosodic features

were more evenly distributed for both languages. The TORGO dataset

utilized 6 features each from both pitch and rhythm groups, and 4 features

each from the speech rate and voice quality groups. The QoLT selected 6

features from the speech rate group and 4 features each for the voice quality,

rhythm and pitch groups. As seen in table 19, few differences were seen

between language groups.

Table 19. Prosodic features used in one dataset but not used in

another.

Features
Prosodic features used for English

Severity assessment but not
Korean

Prosodic features used for Korean
Severity assessment but not

English

Pitch f0_quan_75, f0_std None

Voice
Quality shimmer # of voice breaks

Speech
Rate None # of syllables, speaking rate

Rhythm delta-C, varco-C, None

Relevant differences were found when comparing detection and

assessment. The findings of Schlenck et al. (1993) regarding severity

differences seem to be apparent when looking at pitch features. Schlenck et
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al. found that speakers with mild dysarthria had a lower F0 variation and

speakers with severe dysarthria had a higher F0 than healthy controls. While

the features F0_max and F0_std were not present in the detection feature set,

they were present in the assessment set. This suggests that more relevant

and refined features are needed to accurately distinguish different severities

in comparison to simply distinguishing between healthy and dysarthric

speakers in general. Furthermore, Ziegler, Hartmann and Hoole (1993)

found the duration of syllables to be correlated with severity such that the

more severe the longer the syllable duration. This is realized in our feature

set for assessment which includes several durational measures in both

languages. Interestingly, very few duration-based measure was selected for

detection; 2 measures for detection in both languages but 9 for English and

8 for Korean when selecting for assessment. This shows the importance of

duration differences when taking into account different severity groups.

7.2. Clinical Applications

Automatic detection of dysarthria has important applications in a

clinical setting. We are not suggesting an automatic approach to replace

speech therapists, but instead automatic methods can be used as a tool in

conjunction with a therapist. An automatic approach to detection provides a

more objective method of diagnosis compared to the traditional perceptual

evaluation method. Furthermore, an automatic method of detection can be
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more cost effective as it would be quicker to administer than the traditional

approach. Future studies, however, should also incorporate an automatic

approach to diagnosis that provides information on what prosodic aspects

are more damaged.

Automatic severity assessment also has the same benefits of

detection but has the added benefit of distinguishing different severity levels.

Furthermore, being able to detect dysarthric speech from speakers with mild

dysarthria is important for early detection. Perceptually, it is difficult to

diagnose a speaker who has mild dysarthria as their speech is minimally

affected. An automatic approach of detecting mild dysarthria can help

speech therapists provide early treatment for these individuals.

Results from the cross-language experiments also show promising

results for clinical applications. Individuals suffering from dysarthria who

are from an underrepresented language can undergo diagnosis by using

computations models trained on more represented languages. For example,

we might be able to automatically diagnose dysarthria from an individual

who speaks Mongolian by extracting language independent prosodic

features from a model trained with Korean data. Knowledge regarding

language independent impairments can also assist training models with low

data. Regardless if the language is widely spoken, impaired speech is always

difficult to collect and incorporating data from multiple language can

alleviate the issue of low data.
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Chapter 8. Conclusion

In conclusion, our study found pitch, voice quality, speech rate and

rhythm measures to be useful features for severity assessment and slightly

useful for detection in English. A relative accuracy increase of 2% was seen

for detection in the TORGO dataset, however, no improvement was seen for

the QoLT dataset. For severity assessment a relative accuracy improvement

around 20% was seen for both Korean and English datasets. The results

from the cross-language experiments were promising showing a relative

increase of 4.12% when testing on the QoLT dataset and an increase of

8.5% when testing on the TORGO dataset.

The optimal set of prosodic features was selected by the RFE feature

selection algorithm, but the exact selected features depended on the

language group and task. For detection in English, pitch (standard deviation,

both quantiles), speech rate (number of pauses, full duration), and rhythm

(delta-V, varvoV) measures were most helpful for detection but jitter was

also selected. Detection in Korean utilized more voice quality (number of

voice breaks, degree of voice breaks, jitter and mean HNR) and speech rate

features (number of syllables, number of pauses, speaking rate) but also had

some pitch measures (mean and 75% quantile) and the Crpvi rhythm

measure.

In most cases, the features selected for detection were also selected

for severity assessment in both languages. In the case of English, increases
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in the number of selected features was seen for all prosodic groups but in

particular for voice quality and rhythm. For severity assessment in Korean,

speech rate and rhythm measures contributed more measures in comparison

to detection. In particular, more duration measures in general but also

duration measures related to vowels.

In regards to language independent or dependent features we see that

duration measures along with mean F0 tend to be useful for both Korean

and English. However, pitch in general appeared to be more useful for

English, while speech rate features were more helpful for Korean. Future

studies with other databases in Korean and English should validate whether

the previously mentioned features are truly language independent/dependent

or if the patterns are limited to the databases used in our study.

Results from testing individual prosodic groups show that a holistic

approach that includes multiple aspects of prosody is superior to focusing on

single prosodic groups. Furthermore, the method of feature selection is very

important to optimally select the most relevant features as some features

may not be helpful. Lastly, future studies should further investigate the use

of other prosodic features in severity assessment and detection as our study

only utilized a select set of 28 features.
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Appendix
Table A1. Selected features for severity assessment using various feature

selection methods for the TORGO dataset.

Features Filter Method Lasso Method Tree-based RFE

Pitch

f0_max, f0_min,
f0_quantile25,

f0_mean

f0_std, f0_min,
f0_max,

f0_quantile25,
f0_quan_75

all

f0_mean,
f0_std,

f0_median,
f0_quantile25,
f0_quan_75

Voice
Quality

% of voice
breaks, Mean

HNR, # of voice
breaks, Shimmer

# of voice
breaks, % of
voice breaks,
Jitter, Shimmer

Mean
HNR, % of
voice breaks,
Shimmer,
Jitter,
# of voice
break

% of voice
breaks, Jitter,
Shimmer, Mean

HNR

Speech
Rate

speaking
duration, # of

pauses,
articulation rate,
balance, # of
syllables, full
duration

# of pauses,
speaking rate,
articulation rate,
full duration,
balance

articulation
rate, # of
pauses,
speaking
duration,
balance

# of pauses,
speaking

duration, full
duration,
balance

Rhythm
Cnpvi, Crpvi,
Vrpvi, delta-C,
delta-V, varco-C

%V, varco-V,
varco-C, Vrpvi,
Crpvi, Vnpvi,

Cnpvi

delta-C,
delta-V,
Crpvi

delta-V, delta-
C, varco-C,
Vrpvi, Crpvi,

Vnpvi

# of
features 20 21 20 19
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Table A2. Results with different MFCC parameters for TORGO dysarthria
detection.

# of Mel-coefficients Accuracy Precision Recall F1-Score

12 87.4 88.1 86.7 87.4

13 93.3 90.6 96.7 93.5

20 91.5 89.1 95 91.9

13 + Δ

(26-dim)

86.5 87.9 85 86.4

13 + Δ + ΔΔ

(39-dim)

83.2 84.5 81.7 83.1

Table A3. Results with different features selection for TORGO dysarthria
detection.

Feature Selection Method Accuracy Precision Recall F1-Score

Filter 97.6 100 95.6 97.7

Lasso 96.4 100 93.3 96.5

Tree-based 94.11 100 88.9 94.1

RFE 97.6 100 95.6 97.7
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Table A4. Results with different features selection for QoLT dysarthria
detection.

Feature Selection Method Accuracy Precision Recall F1-Score

Filter 91.6 87.9 96.7 92.1

Lasso 89.9 86.4 95 90.5

Tree-based 93.3 89.4 98.3 93.7

RFE 95 90.9 100 95.2
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국문초록

운율 정보를 이용한 마비말장애 음성

자동 검출 및 평가

말장애는 신경계 또는 퇴행성 질환에서 가장 빨리 나타나는 증

상 중 하나이다 . 마비말장애는 파킨슨병 , 뇌성 마비 , 근위축성 측삭 경

화증 , 다발성 경화증 환자 등 다양한 환자군에서 나타난다 . 마비말장애

는 조음기관 신경의 손상으로 부정확한 조음을 주요 특징으로 가지고 ,

운율에도 영향을 미치는 것으로 보고된다 . 선행 연구에서는 운율 기반

측정치를 비장애 발화와 마비말장애 발화를 구별하는 것에 사용했다 .

임상 현장에서는 마비말장애에 대한 운율 기반 분석이 마비말장애를

진단하거나 장애 양상에 따른 알맞은 치료법을 준비하는 것에 도움이

될 것이다 . 따라서 마비말장애가 운율에 영향을 미치는 양상 뿐만 아니

라 마비말장애의 운율 특징을 긴밀하게 살펴보는 것이 필요하다 . 구체

적으로 , 운율이 어떤 측면에서 마비말장애에 영향을 받는지 , 그리고 운

율 애가 장애 정도에 따라 어떻게 다르게 나타나는지에 대한 분석이 필

요하다 .

본 논문은 음높이 , 음질 , 말속도 , 리듬 등 운율을 다양한 측면에

서 살펴보고 , 마비말장애 검출 및 평가에 사용하였다 . 추출된 운율 특

징들은 몇 가지 특징 선택 알고리즘을 통해 최적화되어 머신러닝 기반

분류기의 입력값으로 사용되었다 . 분류기의 성능은 정확도 , 정밀도 , 재

현율 , F1-점수로 평가되었다 . 또한 , 본 논문은 장애 중증도 (경도 , 중등

도 , 심도)에 따라 운율 정보 사용의 유용성을 분석하였다 . 마지막으로 ,

장애 발화 수집이 어려운 만큼 , 본 연구는 교차 언어 분류기를 사용하
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였다 . 한국어와 영어 장애 발화가 훈련 셋으로 사용되었으며 , 테스트

셋으로는 각 목표 언어만이 사용되었다 .

실험 결과는 다음과 같이 세 가지를 시사한다 . 첫째 , 운율 정보

를 사용하는 것은 마비말장애 검출 및 평가에 도움이 된다 . MFCC 만을

사용했을 때와 비교했을 때 , 운율 정보를 함께 사용하는 것이 한국어와

영어 데이터셋 모두에서 도움이 되었다 . 둘째 , 운율 정보는 평가에 특

히 유용하다 . 영어의 경우 검출과 평가에서 각각 1.82%와 20.6%의 상대

적 정확도 향상을 보였다 . 한국어의 경우 검출에서는 향상을 보이지 않

았지만 , 평가에서는 13.6%의 상대적 향상이 나타났다 . 셋째 , 교차 언어

분류기는 단일 언어 분류기보다 향상된 결과를 보인다 . 실험 결과 교차

언어 분류기는 단일 언어 분류기와 비교했을 때 상대적으로 4.12% 높

은 정확도를 보였다 . 이것은 특정 운율 장애는 범언어적 특징을 가지며 ,

다른 언어 데이터를 포함시켜 데이터가 부족한 훈련 셋을 보완할 수 있

음을 시사한다 .

주제어: 마비말장애, 운율, 머신러닝, 기계 학습, 분류기, 변수 선택, 음

향학

학번: 2018-23331
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