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Abstract

Automatic Detection and Assessment of
Dysarthric Speech using Prosody-Based
Measures

Abner Hernandez
Department of Linguistics
Graduate School

Seoul National University

One of the earliest cues for neurological or degenerative disorders
are speech impairments. Individuals with Parkinson’s Disease, Cerebral
Palsy, Amyotrophic lateral Sclerosis, Multiple Sclerosis among others are
often diagnosed with dysarthria. Dysarthria is a group of speech disorders
mainly affecting the articulatory muscles which eventually leads to severe
misarticulation. However, impairments in the suprasegmental domain are
also present and previous studies have shown that the prosodic patterns of
speakers with dysarthria differ from the prosody of healthy speakers. In a
clinical setting, a prosodic-based analysis of dysarthric speech can be
helpful for diagnosing the presence of dysarthria. Therefore, there is a need
to not only determine how the prosody of speech is affected by dysarthria,
but also what aspects of prosody are more affected and how prosodic
impairments change by the severity of dysarthria.

In the current study, several prosodic features related to pitch, voice
quality, thythm and speech rate are used as features for detecting dysarthria
in a given speech signal. A variety of feature selection methods are utilized

to determine which set of features are optimal for accurate detection. After
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selecting an optimal set of prosodic features we use them as input to
machine learning-based classifiers and assess the performance using the
evaluation metrics: accuracy, precision, recall and Fl-score. Furthermore,
we examine the usefulness of prosodic measures for assessing different
levels of severity (e.g. mild, moderate, severe). Finally, as collecting
impaired speech data can be difficult, we also implement cross-language
classifiers where both Korean and English data are used for training but
only one language used for testing.

Results suggest that in comparison to solely using Mel-frequency
cepstral coefficients, including prosodic measurements can improve the
accuracy of classifiers for both Korean and English datasets. In particular,
large improvements were seen when assessing different severity levels. For
English a relative accuracy improvement of 1.82% for detection and 20.6%
for assessment was seen. The Korean dataset saw no improvements for
detection but a relative improvement of 13.6% for assessment. The results
from cross-language experiments showed a relative improvement of up to
4.12% in comparison to only using a single language during training. It was
found that certain prosodic impairments such as pitch and duration may be
language independent. Therefore, when training sets of individual languages
are limited, they may be supplemented by including data from other

languages.

Keyword: dysarthric speech, prosody, machine learning, classification,
cross-linguistics, feature selection, acoustics
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Chapter 1. Introduction

1.1. Dysarthria

Neurological disorders often come with a range of cognitive and
physical issues that can make life difficult. Speech is one aspect of
neurological disorders that can be severely damaged and lead to issues in
both articulation and communication. A common speech disorder known as
dysarthria often occurs in individuals with a variety of neurological damage.
Dysarthria occurs up to 90% of the time in patients with Parkinson’s
Disease (Muller et al., 2001), 50% of the time for individuals with multiple
sclerosis (Sandyk, 1995), one of the first symptoms of Amyotrophic Lateral
Sclerosis (ALS) in 25% of patients was dysarthria (Traynor et al., 2000).
Given the prevalence of dysarthria in neurological disorders, more research
into dysarthria could help individuals live a more comfortable life. The
purpose of the current study is to use prosodic measurements to
automatically detect dysarthria in continuous speech.

An important aspect of dysarthria is the spectrum of issues that may
or may not occur depending on severity, disorder type, dysarthria type or
individual differences. In general, the most common speech related issues in
dysarthria are respiration (i.e. frequent or forcible inspiration, long
respiration resting level), speech tempo (i.e. slow or variable speech rate,
many pauses), pitch (i.e. too high or too low pitch, variable pitch),

articulation and nasality (i.e. hypernasality). While individual differences
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exist, the specific issue and degree of issue often depends on the specific
type of dysarthria. The most common classification system for dysarthria
was developed by Darley, Aronson, and Brown (1975) known as The Mayo
Classification System for Differential Diagnosis of Dysarthria. Table 1.
displays some of the most common types of dysarthria along with their
associated brain damage and major speech impairments. A more detailed
overview of studies related to prosodic deficits in dysarthric speech will be
explored in Chapter 2.

Table 1. Common types of dysarthria and related speech issues.

1y Of. Dyl Location of Damage Distinct Speech Issues
(Disease)
Flaccid Hypernasality, breathiness,
(Bulbar Palsy) Lower Motor Neuron audible inspiration
Spastic Misarticulation, slow
(Cerebral Palsy, Upper Motor Neuron speech rate, low pitch,
MS) harsh/strained voice.
Monostress, phoneme and
Ataxic interval prolongation,
(Cerebellar ataxia) Cerebellum dysrhythmia, syllable
repetition, slow speech rate
Hyperkinetic Monopitch, monoloudness,

Basal Ganglia variable speech rate, short

(Parkinson’s) rushes of speech

Misarticulation, slowed
speech rate, hypernasality,
disrupted prosody

Multiple Motor

Mixed (ALS) Systems

As seen from Table 1, misarticulations are not the only factor

involved in dysarthria. While the articulatory muscles in the vocal tract are



essential in correct articulation, they are also important for natural prosody.
For example, individuals with dysarthria tend to have little control over the
contractions of the vocal tract which reduces the range and speed of
laryngeal movement. The lack of control of one’s vocal folds can result in a
more monopitch voice, or an absence of stress within stress syllables.
Therefore, there is a growing research interest in not only focusing on the
articulatory difficulties involved in dysarthria but also the prosodic

irregularities.

1.2. Impaired Speech Detection

Typically, dysarthria is diagnosed by a trained speech pathologist
who administers several tasks to the patient in order to perceptually evaluate
their speech (Duffy, 2013; Kent et al., 1987). These assessments tend to
involve a speech pathologist eliciting speech from the patient and
determining whether any irregularities are present. For example, one can
measure the voice quality and the ability for the patient to change loudness
and pitch to assess the laryngeal or phonation damage. We can also
determine prosodic damage by having patients read sentences and observe
any irregular variations in pitch, duration or stress. Several, standardized
assessments based on perceptual evaluation have been proposed, with the

Mayo Clinic Rating System (Darley, Aronson & Brown, 1969) and



Frenchay Dysarthria Assessment (FDA) being the most detailed and
commonly utilized test for English speakers (Enderby, 1980).

Despite the wide use of perceptual evaluation, the subjective nature
of the task and overly long duration of administering these types of tests are
common criticisms. Low identification accuracy was found in Zyski and
Weisiger (1987), while low intra- and inter-rater reliability was found in
Kearns and Simmons (1988) and Zeplin and Kent (1996) for the Mayo
Clinic Rating System. Other more general methods have been proposed
(Wannberg, Schalling & Hartelius, 2016; Hong et al., 2018) with higher
intra- and inter-rater reliability but still contain a subjectivity problem.

Another solution to the subjectivity and long duration issue is to
conduct an acoustic analysis. This approach involves measuring certain
acoustic properties of speech such as formant frequency, fundamental
frequency (FO0), jitter, shimmer, segment duration and comparing those
values to a standard healthy speaker. Kent et al. (1999) provides a detailed
description of useful measures when examining dysarthric speech from a
specific viewpoint such as vowels, fricatives, voice quality, and so on. In
general, if enough deviancy from the norm is present, it is possible that the
individual has some form of dysarthria. Usually, acoustic analyses are not
the sole determiner of dysarthria and a speech pathologist would still
administer a perceptual evaluation. However, this approach comes closer to

an object assessment of dysarthria.



Lastly, the rise of machine and deep learning methods have
introduced a variety of methods for automatically detecting and even
assessing the severity level of dysarthric speech. The main approach to
using machine learning for detecting dysarthria is extracting acoustic
features and using the features as input to a classifier. The goal of this
approach is to allow the machine learning algorithm to automatically detect
dysarthria based on manually crafted features (Lopez, Orozco-Arroyave,
Gosztolya, 2019; Kodrasi & Bourlard, 2019; Tripathi, Bhosale &
Kopparapu, 2020). A second approach is to simply use the raw speech
signal as features and feed them into complex neural architectures then
allow the network to automatically determine the important information that
distinguishes between healthy and dysarthric speech (Kim, Cao & Wang,
2018; Millet & Zeghidour, 2019; Mayle et al., 2019).

The first approach requires more data pre-processing as we need to
systematically choose appropriate features for our machine learning model,
but allows for more interpretability as we can more easily examine the
specific acoustic impairments that are most useful in distinguishing
dysarthric speech from healthy. The second approach requires less data
preparation as we only need the raw speech signal but may suffer from a
lack of interpretability since the network inherently determines what
features of the speech signal are important. Recent studies have attempted to

reduce this interpretability issue with some success but tend to require



sophisticated post processing techniques to extract interpretable information

(Tu, Berisha & Liss, 2017; Korzekwa et al., 2019).

1.3. Research Goals & Outline

The main research question our study asks is ‘which set of prosodic
features are most useful for automatically detecting dysarthria in continuous
speech?’. However, we also explore other related problems such as: which
specific prosodic measurements contribute more to classification accuracy?
What aspects of prosody are more important for distinguishing different
severity levels (mild, moderate, severe)? Are there language specific
differences? Are there language independent features that can be trained
jointly? These questions are examined via machine learning-based
experiments.

The following thesis is organized as follows: Chapter 2 will briefly go
over previous literature in prosodic impairments in dysarthric speech and
machine learning-based approaches for automatic detection and severity
assessment. Issues regarding previous related studies and how this study
differs will also be mentioned. Chapter 3 will describe the English and
Korean dysarthric speech datasets in detail. In Chapter 4 we go over the
prosodic features used in our study and several feature selection methods for
selecting the optimal set of prosodic features are also proposed. We also

describe the classifiers (random forest, support vector machine, neural



network) in detail. Since our baseline models use Mel-Frequency Cepstral
Coefficients (MFCC), we will go over the extraction process and parameters
regarding MFCC’s. Starting from Chapter 5 we go over all the experiments.
Two experiments per language group, detection and assessment, and one
experiment we refer to as a cross-language experiment where we train our
models using data from both languages but only test with one language.
Results in Chapter 6 are evaluated by using accuracy, precision, recall and
F1-scores. Chapter 7 and 8 will conclude the paper with a discussion of the

results and future directions for dysarthric speech research.



Chapter 2. Background Research

2.1. Prosodic Impairments
2.1.1 English

The most salient prosodic impairments in dysarthric speech are related
to pitch and speech rate. One of the earliest studies of dysprosody in
dysarthric speakers was by Schlenck, Bettrich and Willmes (1993). In their
study, length of tone units, fundamental frequency, and standard deviation
of fundamental frequency from spontaneous speech was collected from 84
dysarthric speakers with ALS and 154 healthy controls. Results revealed
significant differences from both speaker groups and by severity level.
Severe dysarthric speech had shorter tone units and a higher mean
fundamental frequencies than mild dysarthria and normal controls. Patients
with mild dysarthria had lower standard deviations of fundamental
frequency (more monotonous speech) than normal controls and severe
dysarthric speakers.

The findings of Schlenck et al. (1993) are further supported by later
studies in speakers with multiple sclerosis, cerebral disease and motor
neuron disease (Bunton, Kent, Kent & Rosenbek, 2000; Lowit-Leuschel &
Docherty, 2001). In Bunton et al.’s (2000) study, mean FO, FO standard
deviation, FO variation, and duration of tone units which was defined as
word or syllable per second for the minimal unit which can carry intonation

were collected from speakers with ALS, cerebral disorders (CD) and healthy
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controls. Results showed that speakers with ALS (49 Hz) and CD (46 Hz)
tended to have lower FO variation compared to healthy controls (143 Hz).
Similarly, control speakers had a longer tone unit duration, a larger number
of words in a tone unit, a smaller average duration of words in a tone unit
compared to dysarthric speakers.

Lowit-Leuschel and Docherty (2001) found similar results by taking
the following measurements from read and spontaneous speech: articulation
rate (syll/min), mean unstressed vowel duration (UVD), number of
unstressed vowels (UV), percentage of unstressed vowels, range of intensity
variation (dB), FO range, mean FO (male and female). A summary of their
results can be seen in Table 2. In general, dysarthric speakers had a slower
articulation rate, less intensity and FO variation, longer vowel duration, a
smaller percentage of unstressed vowels, and a higher mean FO for males.
However, no test of significance was conducted between speaker groups
only within groups. Therefore, we are unable to make conclusions regarding

significant differences.



Table 2. Prosodic measurement from dysarthric and healthy

speakers.
Dysarthric Group Control Group
Prosodic Measure Reading / Spontaneous  Reading / Spontaneous
artic. rate 249 /255 2797284
Mean UVD (ms) 80 /68 50/ 47
No. of UV 45/ 43 49 /58
% of UV 26/27 29/33
dB range 5.5/6.25 6.85/17.75
Mean FO (male) 158 /156 119/101
Mean FO (female) 196 /206 209/199
FO range (Hz) 140/ 123 191/ 129

2.1.1 Korean

Research with Korean speakers also found similar prosodic
impairments in dysarthric speakers. Nam and Kwan (2005) took several
prosodic measurements for six interrogative and declarative sentences for
patients with spastic and athetoid cerebral palsy (SCP, ACP respectively)
associated dysarthria. Unlike the studies with English speakers, healthy
controls had the narrowest FO range while the group with ACP had the
widest FO range for full sentences. The range of the pitch in sentence
endings was wider in the SCP and ACP groups than in the healthy group.
The range of the loudness in sentence endings was also wider in the SCP

and ACP group than in the healthy group. Lastly, the duration of utterances
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and the duration of pauses were much longer and the frequency of pause
was higher for dysarthric speakers than for healthy speakers.

Kang, Seong and Yoon (2011) found differences by gender.
For males, mean FO slope and semitone slope were the most important
factors to distinguish healthy and dysarthric speech, while for females mean
energy slope and max energy slope were the most important. In another
study, Kang, Yoon, Seong and Park (2012), found that patients with
Parkinson’s had lower pitch values in interrogative sentences, and lower
loudness values than the control group. The prosody of dysarthric speakers
with a wide range of disorders (Cerebral Palsy, Motor Neuron disease,
traumatic brain injury, Parkinson’s, cerebral disease) were examined in Seo
and Seong (2012). Researchers found reduced speaking and articulation
rates, reduced FO slope and question-tone slope for sentences, and all of
intonation slope in the final word for sentential questions.

In general, results follow closely to English speakers who also
display reduced speech rates, and longer durations of utterances. The only
language difference seen was in FO range. English speakers with dysarthria
tend to have a reduced range, while the speakers in Nam and Kwon (2005)

had a wider range than healthy controls.
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2.2. Machine Learning Approaches

The literature on machine learning-based approaches to dysarthric
speech detection and assessment is wide and contains many different
approaches to the difficult issue. We will first go over classical machine
learning approaches, particularly those which utilize prosodic measurements,
and then go over to more recent deep learning approaches.

Early approaches using prosody for automatic detection of dysarthric
speech have been argued based on findings that prosodic impairments tend
to be one of the notable cues for early stage dysarthria (Darkins, Fromkin &
Benson, 1988). Therefore, including prosodic measurement can be essential
for accurately detecting dysarthria in its early stages. Bocklet et al. (2011)
extracted features from a variety of read sentences based on phonation
(glottis features), articulation (MFCCs), and prosody (F0, energy, duration,
pauses, jitter and shimmer) from both healthy and dysarthric speakers.
These acoustic features were then used as input to a SVM classifier. Results
show that glottal features can achieve an accuracy of 83.3%, MFCCs
features reached an accuracy of 100%, and the prosodic features obtained up
to a 90.5% accuracy. While results are promising in showing that prosodic
information can be helpful for detection, one issue with this study was a
lack of explanations regarding the exact prosodic measures. The total set
includes 292-dimensional features where 73 are related to FO, duration,

shimmer, jitter, pauses, and energy, along with their mean, minimum,
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maximum and standard deviation (73 *4=292). After a correlation-based
feature selection, only 12-17 of these prosodic measures are determined to
be the most useful for distinction, but those selected measures are never
explained. In a clinical setting, knowing these prosodic features would be
essential in determining what aspects of a patient's prosody should be
attended to when developing proper speech therapy.

The issue of selecting relevant and explainable features is addressed
in Kadi et al. (2013), where the most relevant of exactly 11 prosodic
features are used to automatically assess the severity level of dysarthric
speakers from the publicly available Neymours database (Menendez-Pidal
et at., 1996). A Linear Discriminant Analysis (LDA) based feature selection
methods was used to determining the most discriminative prosodic features
as follows (from most to least discriminative): articulation rate, # of period,
mean pitch, voice breaks, %V, HNR, jitter, shimmer, std pitch, std period,
NHR. These features were shown to assess four levels of dysarthric speech
with an accuracy of 88.89% when using a gaussian mixture model classifier,
and an accuracy of 93% when using an SVM classifier.

Kadi et al,’s (2013) study shows how a small set of prosodic features
can be sufficient in detecting sentence-level dysarthria, however, one
serious limitation to this study relates to the database. First, the speakers in
the Neymours database are composed of 12 males, 11 with dysarthria and

only one healthy control. The lack of both healthy speakers and female
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speakers may limit the generalizability or the model’s capability of accurate
classification with other speakers. Another issue relates to the limited
sentences structure. The database is mostly composed of simple carrier
sentences where the format is always: ‘the X is Y-ing the Z”. X and Z
coming from a set of 74 monosyllabic nouns, while Y was selected from a
set of 37 disyllabic verbs. Using carrier sentences can alter the natural
prosody of language leading to an inaccurate representation of prosody.

A slightly more recent study by Kim et al, (2015) attempts to
alleviate the issue with the Kadi et al.’s (2013) work by evaluating the
performance of classifiers trained on two different datasets. The first being
the TORGO database, which was developed by Rudzicz, Namasivayam and
Wolff (2012) at the University of Toronto. More details regarding this
database will be addressed in Chapter 3, but in general there is a more
diverse set of speakers, which help increase the generalizability, and a
diverse set of recorded utterances that contain sentences with more natural
prosody. The second database Kim et al., (2015) used is the NKI CCRT
Speech Corpus developed for the 2012 Interspeech speaker trait sub-
challenge for pathological speech (Schuller et al., 2012). This database
contains recordings from 55 speakers (10 females, 45 males). The prosodic
features are separated into two categories voice quality and pitch-duration.
The voice quality feature set contains 3 measures, HNR, shimmer and jitter,

along with statistical estimates such as quantiles, mean, median and
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standard deviation. The pitch-duration set includes FO measures, utterance
and phone duration, along with normalized values and several statistical
measures. An LDA-based classifier was used to achieve an accuracy of
71.9% and 82.1% for voice quality and pitch-duration feature sets
respectively. While this study shows promising results by both reducing the
feature set to more explainable features and utilizing a more complex and
realistic database, there is still an issue with the representation of prosody.
Prosody is a multidimensional aspect of speech that should not be limited to
just FO, duration and voice quality. As mentioned in section 2.1 speech rate
and rhythm are also important prosodic elements affected in dysarthric
speech and should be included for a more complete holistic representation
of prosody.

Deep learning approaches are another group of machine learning
methods that incorporate more sophisticated learning algorithms and
architectures. The training procedure tends to be the same where acoustic
features are extracted and used as input to a classifier. Although the use of
deep learning is the standard approach in many audio and speech
classification problems, several issues arise that prevent it from being the
standard in impaired speech detection. First, the success of deep learning
has largely been the result of big data and the ability to train on large
datasets. Unfortunately, the collection of impaired speech data is difficult

and available datasets are often very limited. Secondly, most deep learning
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approaches use features that can be either difficult to interpret in a clinical
setting where dysarthric speech detection is most likely to be conducted or
minimally helpful for further analysis.

Mayle et al. (2019) used long short-term memory (LSTM) recurrent
neural networks (RNN) to detect dysarthria from MFCCs. While the results
were promising, no comparison was made against classical machine
learning algorithms. Furthermore, MFCCs have already been shown to be
accurate in detecting dysarthria even in classical machine learning classifier
algorithms such as SVMs, LDA, GMM, HMM, KNN (Bocklet et al. 2011;
Selouani et al. 2012; Kim et al. 2015).

Convolutional neural networks (CNN) were used for dysarthric
speech detection in An et al. (2018). CNN’s can naturally extract local
features from a speech signal, in this case from filterbank energies, and later
fed to a feed-forward neural network for classification. Results show that
using filterbanks in a CNN-based classifier produce a specificity rate of
80.9% while using other acoustic features (MFCC, prosody, statistical
variations) in a standard feed-forward network reached a specificity of
80.4%.

Lastly, filterbanks were fed to attention-based LSTMs in Millet et al.
(2019). Results show that time-domain filterbanks outperform low-level

descriptors (65.5 % vs 82.4% UAR). However, results are either comparable
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or inferior to other studies using the same dataset but with fewer features
and less complex models (Kim et al., 2015).

The previously mentioned studies are not an exhaustive
representation of all deep learning-based studies on dysarthric speech
detection but provides some examples of drawbacks or issues with deep
learning. The deep learning approach should not only provide good results
but also help speech pathologists interpret the results to aid patients who are
diagnosed with dysarthria. A growing trend has gone towards explainable
deep learning, and current/future studies are attempting to apply deep
learning techniques for dysarthric speech detection in an interpretable

manner.
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Chapter 3. Database

Early studies on dysarthric speech used personal datasets collected
within the university or in collaboration with a speech pathology clinic.
Recently, publicly available datasets are being used more often in order to
allow other researchers to validate or replicate studies. Few of these sets are
available but the most commonly used datasets for English are the
Neymours dataset (Menendez-Pidal et at., 1996), the UA-Speech database
(Kim et at., 2008), and the TORGO database (Rudzicz et al., 2012).

The issues of the Neymours database was described in the previous
section, mainly regarding the lack of diversity in both speakers and stimuli.
The UA-Speech database is a larger database of 15 speakers with dysarthria
ranging from very low intelligibility to highly intelligible. Each speaker
recorded 765 isolated words; 300 distinct uncommon words and 3
repetitions of digits, computer commands, radio alphabet and common
words. The only concern with the UA-Speech database is that lack of full
sentences. Speakers with dysarthria not only vary in severity between
speakers but also within speakers. Some words may show signs of
dysarthria more than others even within the same speaker, so it would be
more helpful to analyze a full sentence rather than a single word.
Furthermore, while severe speakers may be easily identified just by a single
word, this is not necessarily the case for speakers with mild dysarthria.

Early detection of dysarthria is a case of mild dysarthria and is an important
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factor since early diagnosis can lead to early therapy. Early diagnosis would
require an evaluation of continuous speech to accurately diagnose the
presence of dysarthria in speech. Lastly, given that we are using prosodic
features for classification, compared to isolated words, prosodic tendencies
are better represented in continuous speech. Therefore, we choose to use the
most recently built database TORGO, as this database contains a diverse set
of speakers, stimuli and continuous speech.

Few databases of dysarthric speech in other languages exist, and
even fewer are publicly available. Some commonly used databases are the
CUHK for Cantonese (Wong et al., 2015), for Spanish the Orozco-Arroyave
et al. (2014) dataset has often been studied. However, for our cross-
language experiments we chose to use the Quality of Life Technology
(QoLT) dataset, which is a Korean database of dysarthric speakers with
cerebral palsy (Choi et al., 2012). We choose this database as it has a large
number of speakers, contains continuous speech data, and comes from a
non-indo European language. The few cross-language dysarthric speech
studies that have been conducted have always been between European
languages (Orozco-Arroyave et al., 2016). Therefore, including Korean
allows the evaluation of training datasets between two very different

languages.
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3.1. English-TORGO

The TORGO dataset was originally created to provide resources for
developing personalized ASR systems for speakers with dysarthria but has
been widely used in dysarthric speech detection and assessment. The
publicly available dataset contains 8 dysarthric speakers, 5 males and 3
females, from speakers with cerebral palsy and ALS. Speakers with
dysarthria were assessed by a trained speech pathologist using the Frenchay
Dysarthria Assessment. Four speakers were categorized as having severe
dysarthria, one speaker with moderate/severe, one moderate, and two mild.
Recording from 7 healthy controls, 4 males, 3 females, were also collected.
A mixture of short words, non-words, restricted sentences (read speech),
and unrestricted sentences (spontaneous speech) was recorded from all
speakers. Some examples of the speech stimuli can be seen in table 3.

Table 3. Speech stimuli examples from the TORGO database.

Digits, computer commands
Short Words International radio alphabet
Phonetically contrasting pairs of words

Preselected phoneme-rich sentences such as:
0 “‘The quick brown fox jumps over the
Restricted lazy dog”’
Sentences The Grandfather Passage
The 460 TIMIT-derived sentences used as
prompts in the MOCHA database

Unrestricted Spontaneous speech elicited from an image
Sentences description task of 30 images.
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3.2. Korean-QoLT

The QoLT database was created to improve the quality of life for
individuals with disabilities by improving technology commonly used by
healthy speakers. In particular, for improving ASR technologies in PC’s or
smart phones. The database contains recordings from 100 dysarthric
speakers and 30 healthy controls. A speech therapist assessed the severity of
speakers via Percentage of Consonant Correct (PCC) using the Assessment
of Phonology and Articulation for Children (APAC) words, and divided
speakers into four groups; mild (PCC: 85~100%), mild to moderate (PCC:
65~84.9%), moderate to severe; (PCC: 50~64.9%), and severe (PCC: less
than 50%). A subset of assessments was re-evaluated and it was found that
the intra-rater reliability was .957 and the inter-rater reliability was .901
using Pearson's product moment correlation.

Four main sets of speech stimuli were recorded. First, 37 words from
APAC which include 19 Korean consonants with 70 speech sounds — word-
initial, word-final, word-medial onset and word-medial coda consonants.
Second, 100 Machine Control Commands and 36 Korean Phonetic
Alphabets. Machine control commands are commands which are commonly
used for PC, cell phone, TV, radio, and other electronic appliances. Third,
452 Phonetically Balanced Words (PBW) where 1/9" are recorded by
dysarthric speakers and 1/3™ by healthy speakers. Lastly, 100 words and 5

sentences for investigating Korean consonants and vowels reflecting various
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phonetic environments. The five sentences along with their translations are

displayed in table 4. As we are interested in continuous speech, only the five

recorded sentences are considered in our experiments.

Table 4. Full sentence stimuli along with phonetic and English translation from

QoLT.

Korean Hangul Yale Romanization

English Translation

7} chwusekeynun on
kacoki hamkkey
songphyenul mantunta

kapcaki mikwukey
issnun oppa elkwuli
poko siphta.

ecey hanuli
khemkhemhayciteni
7t . pika ssotacyessta.

tongsayngilang ssawese
emmahanthey
honnassta.

siwenhan mwul han can
CWuseyyo.

In Chuseok, the whole
family makes
songpyeon together.

Suddenly, I want to see
my brother’s face who
is in America.

The sky turned dark
yesterday and it rained.

My mom scolded me for
fighting with my
younger sibling.

I would like a glass of
cold water, please.
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Chapter 4. Methods

4.1. Prosodic Features

4.1.1 Pitch

Pitch is a commonly studied cue of dysarthria, showing differences
not only with healthy speakers but also between speakers of different
severity levels. Mild dysarthric speakers tend to be more monotonic while
severe speakers often have significantly higher pitch than both mild and
healthy speakers (Schlenck et al., 1993). Therefore, we believe pitch
measurements to not only be helpful in detecting dysarthria but also useful
for distinguishing different severity levels. However, we also expect some
language differences to arise given the opposite results found in Korean
(Nam and Kwon, 2005).

The acoustic representation of pitch is known as fundamental
frequency (FO) which is the lowest frequency of a periodic waveform. FO is
measured for all voiced segments of an utterance. We include standard pitch
measurements such as mean, median, minimum and maximum F0O along
with standard deviation, 25% and 75% quantiles. Figure 1 and 2 also display
the mean values for English and Korean speakers respectively. From both
figures we see generally higher FO values for speakers with dysarthria. The
only language difference appears to be with the max FO values which is

similar in English speakers but much higher in Korean dysarthric speakers.
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Severity based measures can be seen in figures 3 and 4 for English
and Korean respectively. Speakers with severe dysarthria tend to have a
higher max and mean FO. Interestingly, Korean speakers with moderate
dysarthria tended to have higher FO values for all measures excluding max
F0, even compared to the severe group. Another important finding was that
with English speakers the mild dysarthric group had a lower standard
deviation (25.35 Hz) compared to healthy speakers (35.5 Hz) as expected
given the studies showing this group to be more monopitch. However, the
opposite was found in Korean speakers where healthy speakers had a
slightly lower standard deviation (30.2 Hz) compared to the mild group

(35.2 Hz).
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Figure 1. Mean values for all pitch measures in healthy and dysarthric

speakers.
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Figure 2. Mean values for all pitch measures in healthy and dysarthric

speakers.
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Figure 3. Mean values for all pitch measures based on severity.
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Figure 4. Mean values for all pitch measures based on severity.
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4.1.2 Voice Quality

Voice quality refers to the properties of speech related to the vocal
folds within the larynx. Individuals with dysarthria tend to have less control
over their vocal folds leading to irregular measurements (Dogan et al., 2007).
Speakers with multiple sclerosis caused dysarthria (spastic and ataxic
dysarthria) had several voice quality based measurements taken, such as:
jitter percent (jitt %), shimmer percent (shim %), soft phonation index (SPI),
and noise to harmonics ratio (NHR). Results show that the mean jitter,
shimmer, and SPI of MS patients were significantly increased compared to
the control group ((Jitt, p < 0.001; Shim, p <5 0.033; SPI, p < 0.0001).
Voice quality features have also been shown to be useful in machine
learning classification of impaired speech (Bocklet et al., 2011; Kadi et al.,
2013; Kim et al., 2015). Our study extracts 5 voice quality measures: jitter,
shimmer, Harmonics to noise ratio (HNR), # of voice breaks, and degree of
voice breaks. These measures are extracted as they are the most commonly
used measures for voice quality in clinical studies of dysarthric speech!.

Jitter represents the variations of FO within a time period. More
specifically we can calculate relative local jitter by the average absolute

difference between consecutive periods, divided by the average period. The

1 Voice quality measures are not all directly related to prosody. For example, jitter and shimmer are
related to perturbations of pitch, but voice break and HNR measure are more related to phonation. For
completeness and fair comparisons with previous studies, we include voice breaks and HNR measures
for our voice quality feature set.
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calculation for jitter can be examined in equations 1-3, where 7; is the

duration of the ith interval and N is the number of intervals.

Absolute jitter (sec) =Y i-1™ |Ti - Tis1| / (N - 1) (1)
Mean Period (sec) = Yi=iN Ti /N (2)
Relative Jitter = Absolute Jitter / Mean Period 3)

Shimmer is similar to jitter except that perturbation of FO falls in the
amplitude domain, so we take the average absolute difference between the

amplitudes of consecutive periods, divided by the average amplitude.

1 oN-1
r_m21~=1 |Ai—Ajt1]

1 <N
ﬁ2i=1 Ai

(4)

Relative Shimme

Next, HNR refers to the periodicity of a speech signal over noise.
Harmonicity is measured in decibels (dB) by the ratio of the energy of the

periodic part (Ep) related to the noise energy (En) as seen in equation 5.
Ep
HNR (dB) = 10*log () (5)

Furthermore, we take two measures related to breaks in voicing. In
healthy speech, speakers can maintain the phonation of voiced segments

such as a vowel for quite some time. However, speakers with dysarthria



have trouble with this task. We included two voice break related measures.
The first being the number of voice breaks which is the number of distances
between consecutive pulses that are longer than 1.25 divided by the pitch
floor (in our case we set the pitch floor to 50 Hz). Secondly, we measure the
degree of voice breaks, which is the total duration of the breaks over the
signal, divided by the total duration, excluding silence at the beginning and
the end of the sentence. Speakers from both our datasets were observed to
generally have higher values for both voice break measurements. Mean
values for all measures in Korean and English can be seen in Table 6. The
only consistent trends we see are with voice breaks. In general, the more
severe the dysarthria the higher number of voice breaks and larger degree of
voice breaks. In English speakers, jitter is higher, but shimmer is lower than

healthy controls.

Table 6. Mean Voice Quality measure for all speaker groups.

Corpus  Speaker Group Jitter Shimmer HNR #of VB 9% of VB

Healthy 1.85 11.46 9.59 6.00 17.13
Dysarthric (All) 2.03 878 1213 7091 21.29
TORGO Mild 2.02 9.76 10.23 6.7 16.71
Moderate 1.80 7.98 13.75  7.80 27.10
Severe 2.24 846 12,67 9.29 20.86
Healthy 1.68 7.54 1512 571 13.15
Dysarthric (All) 1.61 7.11 15.83  9.50 29.21
QoLT Mild 1.53 7.08 1578  7.89 20.90
Moderate 1.62 694 1614 93 33.39
Severe 1.69 7.37 1550 11.84 34.58
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4.1.3 Speech Rate

Several studies have found impairments in speech rate based
measurements such as speaking rate (syll/per sec), articulation rate (syll/per
sec without pause), # of pauses, segment duration (Ackermann & Hertrich,
1994; Le Dorze, Ouellet & Ryalls, 1994). Speakers with dysarthria tend to
have both a lower speaking rate and articulation rate, more pauses, and
longer syllable duration. The current study takes 7 relevant measures: full
utterance duration, speaking duration, balance, speaking rate, articulation
rate, number of syllables and number of pauses. To extract speech rate
features, the approach taken by De Jong and Wempe (2009) is used where
the syllable nuclei is automatically detected and no transcriptions are
necessary. First, we use intensity to find peaks in the energy contour, since a
vowel within a syllable (the syllable nucleus) has higher energy than
surrounding sounds. Intensity contour is then used to make sure that the
intensity between the current peak and the preceding peak is sufficiently low.
With this procedure, multiple peaks within one syllable are deleted. Finally,
we use voicedness to exclude peaks that are unvoiced, which is required to
delete surrounding voiceless consonants that have high intensity. As
expected, our data followed the trends of previous studies, dysarthric
speakers tend to have longer durations, slower speaking and articulation rate,
more pauses, and more syllables given the habit of repetition. The full range

of mean values can be seen in table 7.
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Table 7. Mean Speech Rate measures for all speaker groups.

Speaker # of #of  Speaking  Artic. Speaking Total

Corpus Duration Duration
Group syllables  pauses Rate Rate 29 20
Healthy 9.12 0.17 2.00 4.135 2.22 4.50
Mild 10.67 1.4 1.75 3.53 3.1 6.22
TORGO ™ nioderate | 1078 | 200 | 178 | 333 338 6.60
Severe 12.21 1.82 1.69 3.17 3.77 7.13
Healthy 11.75 0.09 3 4.58 2.52 3.83
QoLT Mild 13.14 1.45 2.29 3.82 3.58 6.00
Moderate 13.91 3.29 1.69 3.42 4.19 8.96
Severe 17.53 4.74 1.64 3.47 5.29 11.49
4.1.4 Rhythm

The last group of prosodic measurements we extract are known as
rhythm metrics. Unlike pitch or voice quality measures, rhythm does not
have a specific acoustic cue. Instead, linguists have proposed several
durational measures of vocalic and intervocalic segments. These measures
have been shown to be correlates of rhythm (Ramus, Nespor & Mehler,
1999; Grabe & Low, 2002; Dellwo & Wagner, 2003). Traditionally, rthythm
metrics have been used to classify between languages with different rhythm
patterns. Such as comparing stress-timed, syllable-timed or mora-timed
languages. The focus of the current study is not to compare the rhythm of
Korean and English with rhythm metric, but instead use the metrics to
distinguish between healthy and dysarthric speakers. Liss et al. (2009) were
one of the first researchers to use rhythm metrics to classify healthy and

dysarthric speakers, and showed an accuracy of 80% when classifying
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different types of dysarthrias (ALS, PD, HD, Ataxic). Further studies have
supported these results by using rhythm metrics in machine learning
classifiers (Selouani et al., 2012; Dahmani et al., 2013).

One of the first group of rhythm metrics, formally known as ‘the
deltas’, was proposed by Ramus et al. in 1999. They proposed 3 metrics; the
average proportion of vocalic intervals (%V), and the average standard
deviations of consonantal (AC) and vocalic (AV) intervals. For example,
"next Tuesday on" (phonetically transcribed as /n€kstjuzdeipn/) would
contain 3 vocalic and 4 consonantal intervals (/n/ /€/ /kstj/ /u/ /zd/ /e1p/ /n/).
They found that the proportion of time of vocalic intervals in the sentence
(%V) and the standard deviation of intervocalic intervals (AC) was the best
correlate for distinguishing different rhythm classes. In general, stress-timed
languages have high AC and low %V, in contrast syllable-timed languages
have low AC but high %V. Figure 5 shows that our healthy speakers follow
this trend as English speakers have a higher AC but lower %V compared to
Korean speakers. On the other hand, regardless of the language, speakers
with dysarthria have an overall high AC.

Researchers have tried to normalize delta values in order to reduce
the interaction between speech rate and deltas. Dellwo and Wagner (2003)
proposed a method where the values of deltas are divided by the mean
duration of vocalic or consonantal intervals, then multiplied by 100. These

normalized measures are known as the ‘Varcos’ and can be measured for
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both vowel and consonant intervals. For example, Varco C can be calculated

as such:

AC%100
VarcosC =———
mean(c)

(6)

ac
157

O Korean-Dysarthria

105 4
> ® Korean-Healthy

85

@ English-Dysarthria
’%‘ @ English-Healthy

75 1 |{—|

65 1

55 1

45

35 40 45 50 55 60
%V

Figure 5. Mean values of AC and %V for dysarthric and
healthy groups in both Korean and English.

The last group of speech metrics were proposed by Grabe and Low
(2002). They take another approach to rhythm, where the temporal
succession of the vocalic and consonantal intervals is taken into
consideration instead of joining all the values and calculating the standard
deviation. The influence of speech rate variation can be controlled by
calculating the normalized PVI, which calculates the mean absolute

normalized difference between durations of neighboring interval pairs. In

32 T |



general, the raw PVI is used for consonantal intervals and normalized PVI
for vocalic intervals. rPVI and nPVI can be defined as in eq. 7-8, where dx is
the length of the k™ vocalic or intervocalic segment and m is the number of

segments.

tPVI= 3" dy = dygal/(m = 1) (7

m—1 dg—dg4q

k-1 | dp+dyyq
2

nPVI = 100 * / (m—1) (8)

A full table of mean scores for all rthythm metrics for all speaker
groups can be seen in Table 7. As seen from the table 7, healthy English
speakers have a higher AC but lower %V compared to Korean speakers.
English speakers also have lower varco and nPVI means compared to
Korean speakers. Speakers with dysarthria from both language groups have
overall higher means for deltas and rPVI metrics. This is likely due to
difficulty in articulating, leading to highly variable durations of both
consonantal and vocalic intervals. Both Varcos and nPVI measures show

minimal difference between healthy and dysarthric speakers.
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Table 7. Mean values of rhythm metrics for all speaker groups.

Speaker varco varco- . . . .
Group %oV AV AC v C Vrpvi  Crpvi  Vnpvi Cnpvi
English

4172 6070 7328 53.18 5089 6620 81.85 5585 56.89
Healthy
E%gylfh 4354 9330 107.56 50.66 55.07 102.86 11634 54.03 58.58
Korean 547 560 5179 5759 5523 6752 6578 61.51 7036
Healthy
K]g;esan 57.83 13957 96.65 5843 6005 14856 11056 6090 69.18

4.2. Feature Selection

Choosing the right set of features is an important aspect when

training machine learning models as not all features may be necessary. In
order to select the optimal set of prosodic features, we conduct several
feature selection methods and compare the performance for each method.
For our study, we specifically implemented three major feature selection
methods: the filter method, embedded method, and wrapper methods.

The filter method works by  selecting the best features based on
univariate statistical tests. The selection of features is independent of any
machine learning algorithm. Features are ranked on the basis of statistical
scores which tend to determine the features' correlation with the outcome
variable. In our case we use ANOVA F-values since our groups are

categorical. F-values in this case are the ratios of two Chi-distributions
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divided by its degrees of Freedom (as in eq. 9) and is used since we are

comparing the variance between the groups and variance within the groups.

F=(x?%Mml-1)/(x3/ n2-1) )

To calculate F-values for feature selection we first need to calculate
the between sum of squares (SSB) and within sum of squares (SSW). The
distance between each group average value g from grand means xbar is g-
xbar to get eq. 10 where g is the i™ item in the set and X is the mean of all
items in the set. The distance between each observed value within the group
x from the group-mean g is given as x-g in equation 11. Lastly, our F-value
is calculated as in equation 12. For each feature, if the null hypothesis is
rejected that means variance exists between the groups and we will include

this feature for model training.

SSB = (gi-x)? (10)
SSW = (xi-g)? (11)
F = (SSb/dfy) / (SSW/dfy) (12)

Next, we tested two embedded feature selection methods, an L1-
based (lasso) feature selection and tree-based feature importance method.

The lasso method is a regularisation approach where a penalty is applied
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over the coefficient of a linear model (see eq. 13). We then select the

features with non-zero coefficients.

IO =5 X7, Costlhg(x?), yO) + 15716 GB)

Tree-based estimators such as random forest or extra forest can be
used to compute impurity-based feature importances, which in turn can be
used to discard irrelevant features. Running this technique allows us to test
the top features used in an iterative manner. Lastly, the method that worked
best for our models in all experiments was recursive feature elimination.
Recursive feature elimination (RFE) performs a greedy search to find the
best performing feature subset. It iteratively creates models and determines
the best or the worst performing feature at each iteration. It constructs the
subsequent models with the leftover features until all the features are
explored. It then ranks the features based on the order of their elimination. A
sample of the features selected can be visualised from table 8, which shows
the features selected for binary detection in the TORGO dataset?.

For our experiments we use the RFE feature set as it was the feature
selection method which provided the best results and was consistent with all
scenarios (detection, assessment, cross-language) for both languages. From

table 8 we see that each feature selection method selects different features.

2 Tables for other experiments are in the appendix.
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For example, all methods with the exception of the filter method selected
some pitch features. Furthermore, some methods select more features than
others, as seen when comparing the RFE and lasso methods which have 8

and 21 selected features respectively.

Table 8. Selected features for detection using various feature selection

methods for the TORGO dataset.

Filter
Features Method Lasso Method Tree-based RFE
ol TS
Pitch None —quan_r», _quan_r, f0_quantile25,
f0_min, f0_max, f0_mean, 0 quan 75
f0_quantile25 f0_median, —quan_
Shimmer,
Voice Shimmer, Jitter, % of voice Mean HNR, Titter
Quality | Mean HNR  breaks, # of voice  Jitter, Shimmer
breaks
# of pauses,
full duration, speaking rate, # of pauses,
Speech speaking articulation rate, full duration, # of pauses,
Rate duration, speaking duration, speaking full duration
articulation = number of pauses duration
rate
Vnpvi, Cnpvi,
del.t a-v, varco-V, %V, delta-V,
Rhythm | Vrpvi, delta- ; None
C, Crpvi delta-V, Crpvi, varco-V
’ delta-C, Vrpvi
f of 10 21 10 8
features
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4.3. Classification Models

In our experiments we evaluate the performance of selected features
by using them as input to three different machine-learning based classifiers:
random forest, support vector machine, and a feed-forward neural network.
Including multiple classifiers allows us to generalize the performance and
reduces the chance of our data overfitting to one classifier. All classifiers
were used for each experiment, detection and assessment for both Korean

and English. As well as for the cross-language experiments.

4.3.1 Random Forest

A random forest (RF) classifier is an estimator that fits multiple
decision tree classifiers on various sub-samples of the dataset and uses
averaging to improve the predictive accuracy and control over-fitting. We
use the Gini impurity function to measure the quality of a split. Gini
Impurity is a measurement of the likelihood of an incorrect classification of
a new instance of a random variable, if that new instance was randomly
classified according to the distribution of class labels from the data set. The
Gini impurity can be computed by summing the probability p; of an item

with label i being chosen, times the probability >, k1 Pk = 1—p; ofa

mistake in categorizing that item. Figure 6 displays a simple example of
how a random forest is structured. In this basic case our random forest
produces 3 decision trees, where 2 trees have predicted an utterance to be

dysarthric, while 1 tree made a healthy prediction. Given that the majority
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of trees have predicted dysarthria, the final decision for our random forest
classifier will be dysarthric. In actual practice we will have to tune several
hyper parameters such as the number of decision trees and depth of trees
(how many nodes). We could also train using information gain (entropy)

instead of the Gini impurity, but we found the latter to produce better results.

Random Forest

Instance
Decision Tree 1 Decision Tree 2 Decision Tree 3
healthy dysarthria dysarthria
Majority vote

Final decision
(dysarthria)

Figure 6. Simplified example of a random forest classifier.
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4.3.2 Support Vector Machine

The next classifier is a support vector machine (SVM), which is the
most commonly used classifier in machine learning, and in particular for
impaired speech detection (Selouani et al., 2012; Dahmani et al., 2013; Kim
et al., 2015; Orozco-Arroyave et al., 2016). The success of SVM’s has not
been limited to early studies, but continues to show good performance even
in recent studies as they consistently perform well even with small datasets
(Lopez et al., 2019; Kodrasi & Bourlard, 2019; Tripathi et al., 2020). SVM
is another supervised learning model which aims to find the maximum-
margin hyperplane and margins for a given set of data points. Figure 7
shows an ideal case where the data points represent utterances from either
healthy of dysarthric speakers. In order to maximize the margin we use the

hinge loss function.

Dysarthric speech

O Support vectors

Figure 7. Simplified example of a linear SVM.
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In many cases including the current study, the fact that we have
several features means our data points are represented in a high-dimensional
feature space. Therefore, we must account for the non-linear dimensionality
by implementing a ‘kernel trick’ which will map our data points into the
appropriate dimension space. For our SVM model we use a Gaussian radial
basis function.

Another important aspect of SVM’s are the C and gamma
parameters, which must be optimized. C is the parameter for the margin cost
function, which controls the influence of each individual support vector; this
process involves trading error penalty for stability. A small C makes the cost
of misclassification low (soft margin), allowing more of them for the sake of
wider margin. A large C makes the cost of misclassification high (hard
margin), forcing the algorithm to explain the input data stricter and
potentially overfit. The goal is to find the balance between a too soft margin
or a too hard margin.

The gamma parameter relates to the kernel method and defines how
far the influence of a single training example reaches, with low values
meaning ‘far’ and high values meaning ‘close’. If the gamma is too large,
the radius of the area of influence of the support vectors only includes the
support vector itself and no amount of regularization with C will be able to

prevent overfitting. When gamma is very small, the model is too constrained
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and cannot capture the complexity of the data. Again, we must find a good

balance between a gamma with a too high value or a too small value.

4.3.3 Feed-Forward Neural Network

The last and most complex classifier is the feed-forward neural
network (FFNN) which is a type of artificial network that sends information
between nodes in a single direction. The literature on neural networks is vast
and beyond the scope of this paper, but the most basic FFNN is a multilayer
perceptron (MLP) that learns a function f(): R"— Rby training on a dataset,
where n is the number of dimensions for the input and 0 is the number of
dimensions for the output. Given a vector of acoustic features X = xi,
X2,.....,Xn and some targets y (labels regarding diagnosis) an MLP can learn a
non-linear function approximator for classification.

Figure 8 shows a simplified MLP where we have an input layer X =
Xi... of acoustic features with values that gets combined with some weights
a = aj..., and eventually a prediction gets made on whether the acoustic
vector was a representation of healthy speech (H) or dysarthric speech (D).
Hyperparameter tuning of layers, nodes, learning rate, optimizer, epochs, is

very important and we apply a grid search to find these optimal parameters.’

3 The exact parameters are discussed in Ch. 5.
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Figure 8. Simplified example of MLP classifier.

4.4. Mel-Frequency Cepstral Coefficients

As a baseline, we compared the performance of classifiers when
solely trained on Mel-frequency cepstral coefficients compared to different
sets of prosodic features. The mel-frequency cepstrum (MFC) is a
representation of the short-term power spectrum of a sound, based on a
linear cosine transform of a log power spectrum on a nonlinear mel scale of
frequency. Mel-frequency cepstral coefficients (MFCCs) are coefficients
that collectively make up an MFC and are commonly used in ASR systems
as they are a good approximation to the vocal tract and thus model

pronunciation well.
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Figure 9. Main steps for computing MFCCs.

There are several steps to calculate MFCCs which can also be seen
from figure 9. First, apply a pre-emphasis filter on the speech signal to
amplify the high frequencies and then take the Fourier transform of the
signal within a defined window. Second, we map the powers of the
spectrum obtained above onto the mel scale with overlapping windows. The
mel scale is used since it is a better representation of the human auditory
system which is not linear. Third, we take the log of the powers at each of
the mel frequencies. Fourth, we take the discrete cosine transform of the log
filterbank energies. The MFCCs are the amplitudes of the resulting

spectrum.
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One issue with using MFCC as input for machine learning models is
the varied sequence nature of data. Naturally, our spee