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Abstract 

 

The Role of Macrophage Ninjurin1 

on Mouse Colitis 
 

 

Hyun Jin Jung 
 

Interdisciplinary Program in Cancer Biology Major 

The Graduate School 

Seoul National University 

 

The incidence of inflammatory bowel disease (IBD) has been increasing, and 

IBD has become an emerging disease that requires greater elucidation of its 

pathogenesis. In common, IBD leads to complications like colon cancer, which 

is a life-threatening problem. IBD was considered as a growing disease only in 

western world in the past. However, recent studies report a significance rise in 

the number of cases of IBD in Asian countries. Especially, there has been a 

twentyfold increase in the number of patients with IBD over the last fourteen 

years in Korea. IBD is characterized by the dysregulated immune system, which 

means that it is an immune-mediated disease. Immune cells in the gut including 

macrophages, T cells, B cells, and dendritic cells are involved in contributing 

IBD. These immune cells induce inflammation via secreting pro-inflammatory 

cytokines and chemokines. Especially, macrophages are able to regulate IBD 
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development by changing their polarized phenotype.  

Nerve injury-induced protein 1 (Ninjurin1, Ninj1) is a cell-surface adhesion 

molecule that regulates cell migration and attachment. Several studies revealed 

that Ninjurin1 promoted macrophage migration capacity. However, the precise 

function of Ninjurin1 has not yet been clearly defined. 

Herein, I demonstrate that Ninjurin1 protein expression is increased in a dextran 

sodium sulfate (DSS)-induced colitis model, which is confirmed in IBD 

patients. To directly assess whether Ninjurin1 plays an important role in colitis, 

I introduced WT and Ninjurin1-deficient mice (KO) mice to 1.5% and 2.5% 

DSS and evaluated colitis incidence. Ninjurin1 KO mice showed significantly 

less body weight loss and longer colon length when compared with WT mice. 

I also performed hematoxylin and eosin staining of colon tissue sections, which 

revealed that less crypt destruction, surface epithelial erosion, and reduced 

submucosal edema in DSS-treated Ninjurin1 KO mice compared to DSS-

treated WT mice. No such differences in colon tissue histology were shown in 

control mice of either genotype. Likewise, relatively intact mucosa and larger 

number of mucin-containing goblet cells were remained in DSS-treated 

Ninjurin1 KO mice compared to WT mice, which were assessed by Ki-67 and 

Alcian blue staining, respectively.  

Various immune cells infiltrate into the site of inflammation during the 

development of colitis. To study what type of immune cell made a difference in 

colitis incidence according to Ninjurin1 expression, I investigated Ninjurin1 

expression pattern on lymphocytes and myeloid cells. Myeloid cells showed the 
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highest expression of Ninjurin1 among the various immune cells. Interestingly, 

Ninjurin1 does not regulate migration capacity of macrophages during 

development of experimental colitis. Next, I examined activation of 

macrophages under inflammatory conditions. Cytokines and chemokines 

secreted by activated macrophages play critical roles at the site of inflammation. 

I evaluated gene and protein expression of cytokines and chemokines in the 

presence or absence of Ninjurin1 in macrophages. Compared to WT cells, 

Ninjurin1 KO macrophages expressed less amount of cytokines and 

chemokines.  

To validate that Ninjurin1 on macrophages affects the intestinal inflammation, 

I generated mice with a conditional deletion of Ninjurin1 in macrophages 

(Ninjurin1fl/fl ; Lyz2-Cre+). Myeloid specific Ninjurin1-deficient mice exhibited 

significantly attenuated body weight loss, shortening of colon length, intestinal 

inflammation, and lesser pathological lesions than WT mice. Furthermore, 

DSS-treated myeloid specific Ninjurin1-deficient mice expressed less amount 

of pro-inflammatory cytokines compared to DSS-treated WT mice.  

During the development of colitis, the Ninjurin1 expressing macrophages 

secrete more cytokines and chemokines by regulating PKCδ/θ-STAT1 

activation. Colon tissues from DSS-treated WT mice expressed activated 

PKCδ/θ compared with those from DSS-treated Ninjurin1 KO mice. 

Pharmacological and genetic inhibition of PKCδ/θ-STAT1 pathway led to 

reduced production of pro-inflammatory cytokines in WT macrophages.   

In summary, I suggest that Ninjurin1 in macrophages has a pivotal function in 
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colon inflammation. 

 

Keywords: Nerve injury-induced protein 1 (Ninjurin1), Colitis, Macrophage, 
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I. Introduction 

Since Nerve injury-induced protein 1 (Ninjurin1, Ninj1) was first identified in sciatic 

nerve of rats, a variety of studies about the function and structure of Ninjurin1 has 

been conducted (Araki and Milbrandt, 1996). It was initially discovered that 

expression of Ninjurin1 was induced in Schwann cells in response to nerve injury 

(Araki and Milbrandt, 1996). The gene encoding Ninjurin1 is located on chromosome 

9 in human and chromosome 13 in mouse. Ninjurin1 is composed of 152 amino acids 

(aa) and associated with plasma membrane (Figure 1). Ninjurin1 contains N-terminal 

(1-80 aa) and C terminal extracellular domains (142-152 aa), two transmembrane 

domains (81-101, 121-141 aa) and cytoplasmic domains (102-120 aa). In N-terminal 

domain, a novel adhesion motif is located between amino acids Ala26 and Val37. 

Ninjurin1 mediates cell to cell and cell to matrix adhesion with this adhesion domain 

via homophilic binding (Araki et al., 1997; Lee et al., 2009). The sequence of 

Ninjurin1 in vertebrates is highly conserved (Bae et al., 2017). In drosophila, N-

terminal domain of NinjurinA contains 98% homology with mouse Ninjurin1 and 

cleavage of the ectodomain of NinjurinA led to loss of cell adhesion (Zhang et al., 

2006).   

The tumor suppressor protein p53 has been discovered to regulate Ninjurin1 

expression, which is the only known pathway that can regulate Ninjurin1 expression 

until now. p53 increases Ninjurin1 expression via binding to the p53 response element 

in the Ninjurin1 promoter (Cho et al., 2013; Kannan et al., 2001). p21, one of the p53 
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target genes, does not affect Ninjurin1 expression; however, Ninjurin1 increases p21 

expression (Cho et al., 2013; Toyama et al., 2004).   

Post-translational modification of Ninjurin1 has been also identified. In living cells, 

Ninjurin1 forms homomeric protein complex, which is mediated by N-glycosylation 

at Asn60 in its N-terminal domains (Bae et al., 2017; Kny et al., 2019). Another 

modification of Ninjurin1 is assessed by matrix metalloproteinase (MMP) 9. MMP9 

cleaves Ninjurin1 between Leu56 and Leu57, which liberates N-terminal ectodomain 

of Ninjurin1 (Ahn et al., 2012). This soluble Ninjurin1 may act as chemoattractant 

because it has similar structure with chemokines.  

Ninjurin2 was identified to bear significant homology to Ninjurin1 (about 50% amino 

acid sequence identity) (Figure 2) (Araki and Milbrandt, 2000). Ninjurin2 is also a 

cellular surface adhesion molecule; however, Ninjurin1 and Ninjurin2 do not share 

the sequence of adhesion motif (Figure 2). Transmembrane domains of Ninjurin1 and 

Ninjurin2 are nearly conserved (Figure 2). Expression of Ninjurin2 is also increased 

in Schwann cells in the injured nerve. Several studies indicated that Ninjurin2 was 

associated with increased risk of ischemic stroke, endothelial inflammation, 

colorectal cancer cell growth, and multiple sclerosis (Bis et al., 2014; Li et al., 2019; 

Noroozi et al., 2019; Wang et al., 2017).  
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Figure 1. The structure of human Ninjurins. 

Schematic illustration of Ninjurin1 structure. Ninjurin1 contains N-terminal, C-

terminal, intracellular domain, and two transmembrane domains. 
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Figure 2. The sequences of human Ninjurins. 

Alignment of human Ninjurin1 and Ninjurin2. Identical amino acids are boxed. 

Adhesion motif is indicated with dotted lines and transmembrane domains are 

underlined.  
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Ninjurin1 in inflammatory conditions 

It has been shown that Ninjurin1 is basally expressed in endothelial cells, fibroblasts, 

myeloid cells, and several organs such as kidney, liver, and thymus (Ahn et al., 2009; 

Araki et al., 1997; Ifergan et al., 2011). Under inflammatory conditions, Ninjurin1 

expression has been known to be induced. In keratinocytes and dermal fibroblasts, 

Ninjurin1 is increased by ionizing radiation (Koike et al., 2008). Hypoxia induces 

Ninjurin1 gene expression in capillary pericytes, and Ninjurin1 negatively modulates 

angiogenic effect of pericytes (Matsuki et al., 2015). Furthermore, Ninjurin1 

expression in microvessels is increased in mouse ischemic hindlimb ischemia 

(Minoshima et al., 2018).   

According to previous studies, macrophage is one of the cells highly expressing 

Ninjurin1 expression that is significantly increased under inflammatory conditions 

(Ahn et al., 2014b; Choi et al., 2018; Ifergan et al., 2011; Jennewein et al., 2015; Lee 

et al., 2016). Thus, the role of Ninjurin1 has been studied most intensively in 

macrophages.  

Ninjurin1 on macrophages regulate its migration capacity. Ninjurin1 induces 

infiltration of myeloid lineage cells across blood-brain barrier, which leads to disease 

activity of experimental autoimmune encephalomyelitis (Ifergan et al., 2011). 

Ninjurin1 on macrophages especially regulate protrusive membrane dynamics and 

consequently modulate transendothelial migration of macrophages (Ahn et al., 

2014a). Moreover, Ninjurin1 inhibition reduces susceptibility to systemic 
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inflammation, liver damage, and pulmonary inflammation in septic mice by 

mediating migration of leukocyte including macrophages (Jennewein et al., 2015). 

In addition, Ninjurin1 on macrophages induces the activation under inflammatory 

conditions. Ninjurin1 increases production of pro-inflammatory cytokines such as IL-

6 and TNFα upon LPS treatment, and inhibition of Ninjurin1 with blocking peptides 

results in reduced mRNA expression of pro-inflammatory cytokines (Jennewein et al., 

2015). Ninjurin1 modulates this macrophage activation through regulating Toll-like 

receptor 4 (TLR4)-p38-AP-1 dependent pathway (Jennewein et al., 2015). In addition, 

Shin and the colleagues reported that LPS directly binds to 81-100 aa region of 

Ninjurin1 (Shin et al., 2016). A previous study reported that Ninjurin1-deficient mice 

show a mild lung pulmonary fibrosis phenotype associated with interaction between 

macrophages and alveolar epithelial cells (Choi et al., 2018). In this study of lung 

fibrosis and Ninjurin1, it is demonstrated that macrophage activation, caused by 

binding with alveolar epithelial cells, is a factor determining the phenotypic 

difference between bleomycin-treated WT and Ninjurin1 KO mice (Choi et al., 2018).   
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Ninjurin1 in cancers 

Recently, several studies investigate that Ninjurin1 is related to progression and 

prognosis of tumors. Ninjurin1 is highly expressed in hepatocellular carcinoma, acute 

lymphoblastic leukemia, urothelial bladder cancer, and circulating tumor cells from 

locally advanced prostate cancer (Chen et al., 2001; Kim et al., 2001; Mhawech-

Fauceglia et al., 2009; Park et al., 2017). These studies suggest Ninjurin1 has an 

oncogenic function.    

p53, the regulator of Ninjurin1 expression, is one of the most well-known tumor 

suppressor and it controls cell cycle arrest and apoptosis of cancer cells. Ninjurin1 

modulates p53 mRNA translation, which makes a feedback loop between Ninjurin1 

and p53 (Cho et al., 2013). Ninjurin1 deficiency increases p53 expression, which 

results in increased cellular senescence, cell survival, and radiosensitivity (Cho et al., 

2013).  

In addition, Ninjurin1 regulates migration of cancer cells. Ninjurin1 inhibition 

increased migration and invasion of human lung cancer cells via activating 

IL6/STAT3 signaling and increasing ICAM1 expression, which means that Ninjurin1 

functions as a metastasis suppressor gene (Jang et al., 2016). On the other hand, 

Ninjurin1 in prostate cancer cells enhances cell motility (Park et al., 2017). 

Overexpression of Ninjurin1 with adenovirus significantly increases invasion and 

migration of prostate cancer cells (Park et al., 2017). 

The tumor mass is comprised of not only proliferating cancer cells but also a variety 
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of different molecules such as infiltrating immune cells. The function of Ninjurin1 

has been studied in tumor-associated macrophage (TAM) as well as cancer cells. 

Approximately half of tumor mass consist of TAMs, which helps tumor cells grow 

(Vinogradov et al., 2014). Therefore, infiltration of TAMs to tumor mass is important 

for tumor growth and metastasis. Ninjurin1 overexpression on macrophages reduces 

colon cancer incidence by repressing infiltration of TAM to tumors (Woo et al., 2016). 

In addition, this migration and invasion of TAM are regulated by Ninjurin1-

suppressed focal adhesion kinase signaling (Woo et al., 2016). This result shows the 

opposite role of Ninjurin1 in macrophages under inflammatory conditions and TAMs.  
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Inflammatory bowel disease 

Inflammatory bowel diseases (IBD) is a global problem that has been emerging in 

recent years. Incidence of prevalence of IBD vary depending on the geographic 

region. In the past decade, IBD was regarded as a disease of westernized countries. 

However, nowadays, the incidence of IBD is greatly increasing in other countries. 

Especially, in South Korea, the recent incidence of IBD has been the highest in East 

Asia, and the economic burden of IBD is significantly increasing (Jung et al., 2017b).  

IBD, including Crohn’s disease (CD) and ulcerative colitis (UC), are inflammatory 

disorders that affect the gastrointestinal tract. CD occurs anywhere in gastrointestinal 

tract and there are non-inflamed areas mixed in between inflamed parts. UC is limited 

to colon and the inflammation is continuous. Moreover, CD affects in all the layers 

of the gut and UC occurs only the inner most lining of colon.  

Another disorder of gastrointestinal tract is irritable bowel syndromes (IBS), which 

has been used interchangeably with IBD because they have some similar symptoms 

such as abdominal pain and diarrhea. However, these two are not the same disorder 

(Figure 3). The major difference between IBS and IBD is inflammation in 

gastrointestinal tract. IBS is a non-inflammatory condition and does not cause 

permanent intestinal damage. On the other hand, IBD is an inflammatory condition 

that requires treatment with drugs and surgery.  

Development of IBD has been associated with environmental and genetic factors as 

well as immune responses (Figure 4). A recent study reports that IBD involves the 
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differential expression of genes that regulate inflammation and tissue remodeling (Wu 

et al., 2008). Based on the therapeutic effect of immunosuppressive drugs, 

dysregulation of the immune system has been implicated in IBD (Deusch and Reich, 

1992). Even though previous studies have reported several factors involved in IBD, 

the epidemiology is still incompletely described.   
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Figure 3. Difference between IBD and IBS 
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Figure 4. Several factors that potentially trigger IBD. 
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Macrophages in inflammatory conditions 

Dysregulated homeostasis of immune cells has been associated with intestinal 

inflammation (Xu et al., 2014). Of the several immune cells that regulate 

inflammatory responses, macrophages are important during the development of 

colitis (Lv et al., 2019; Tamoutounour et al., 2012). Toll-like receptor 4 (TLR4), NF-

κB, p38, and Protein Kinase C (PKC) have been reported to be activated to induce 

the inflammatory signaling cascade during colitis (Figure 5) (Xu et al., 2016). After 

this complex cascade is triggered, macrophages produce pro-inflammatory cytokines 

and chemokines to amplify the inflammatory signal and to recruit leukocytes to the 

lesion site. The pro-inflammatory cytokines and chemokines produced by activated 

macrophages have a pivotal role in the development of IBD (Murakami et al., 2001).  

The production of cytokines and chemokines by monocytes and macrophages at the 

lesion site is important for the development of inflammation (Arango Duque and 

Descoteaux, 2014). Several articles demonstrate that IL1β is essential for regulating 

IBD, and elevated amounts of IL1β have been detected in IBD patients as compared 

to healthy subjects (Ludwiczek et al., 2004; Mazzucchelli et al., 1996). An animal 

experiment study reported that treatment with IL1β antagonist significantly 

diminishes intestinal inflammation (Cominelli et al., 1990). Moreover, IL1β is a 

master regulator of the inflammatory response, and secretion of IL1β results in 

upregulation of other pro-inflammatory cytokines and chemokines such as IL6, TNFα, 

and CCL2 (Li et al., 2010; Su et al., 2009). Therefore, IL1β secretion by activated 

macrophages is an important factor which drives the intestinal inflammation. 
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Figure 5. LPS/TLR4 signal transduction pathway 
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Ninjurin1 and inflammatory signals  

The function of Ninjurin1 during inflammation was mainly observed in the nervous 

system, and Ninjurin1 expression is induced under central nervous system 

inflammatory conditions. Ninjurin1 knock-out (KO) mice are less susceptible to 

experimental autoimmune encephalomyelitis (EAE) than wild-type (WT) mice (Ahn 

et al., 2014b). Recent studies reveal that Ninjurin1 regulates several inflammatory 

diseases outside of the nervous system. Ninjurin1 inhibition reduces susceptibility to 

systemic inflammation, liver damage, and pulmonary inflammation in septic mice 

(Jennewein et al., 2015). In addition, a previous study reported that Ninjurin1-

deficient mice show a mild lung pulmonary fibrosis phenotype associated with 

interaction between macrophages and alveolar epithelial cells (Choi et al., 2018). 

Macrophage infiltration has been shown to be crucial in the regulation of progression 

of lung fibrosis (Wynn and Vannella, 2016; Yao et al., 2016). However, in a study of 

lung fibrosis and Ninjurin1, it was demonstrated that the numbers of infiltrating 

macrophages in bronchoalveolar lavage fluids of bleomycin-treated WT and 

Ninjurin1 KO mice for lung fibrosis were not different, which means macrophage 

infiltration is not a factor determining the phenotypic difference between bleomycin-

treated WT and Ninjurin1 KO mice (Choi et al., 2018). In colitis, an inflammatory 

disorder, macrophage infiltration is also vital for pathogenesis; however, Ninjurin1 

function and macrophage infiltration in the development of colitis have not yet been 

studied.  

Ninjurin1 is known to be a target of p53 and is increased by DNA damage (Cho et al., 
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2013; Yang et al., 2017). And it modulates p53 mRNA translation, which makes a 

positive feedback loop between Ninjurin1 and p53. Another paper shows that 

Ninjurin1 is reported to modulate TLR4 signaling cascade, which results in increased 

pathogenesis in septic mice (Jennewein et al., 2015). Abundant studies demonstrate 

that lipopolysaccharides (LPS) activate TLR families and PKC isoforms (Cuschieri 

et al., 2006; Huang et al., 2009; Kim et al., 2015; Koff et al., 2006; Slomiany and 

Slomiany, 2018). PKC isoforms are categorized into three groups: conventional (α, 

βI, βII, γ), atypical (ζ, λ/ι), and novel (δ, ε, η, θ) isoforms based on activation 

requirements. PKC activation under inflammatory conditions increases the 

production of cytokines and chemokines in immune cells. Among the several 

isoforms, PKCδ/θ contributes to the secretion of cytokines and chemokines in animal 

models, and is therefore related to inflammatory diseases (Bhatt et al., 2010; Kontny 

et al., 2000). In the cecal ligation and puncture rat model for sepsis, TLR signaling 

through PKCδ activation increases the sepsis-induced lung injury, which is evidenced 

by detecting levels of chemokines in the lungs (Kilpatrick et al., 2011). PKCδ KO 

mice exhibit reduced production of cytokines in a lung injury mouse model (Shukla 

et al., 2007). Moreover, PKCθ inhibition provides protection to mice from 

experimental colitis (Zanin-Zhorov et al., 2010).  
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The purpose of this study 

Ninjurin1 is closely associated with a wide range of pathophysiological conditions 

especially related to inflammation (Figure 6). Induction of Ninjurin1 expression in 

tissues and cells is commonly observed. Even though studies about Ninjurin1 have 

been conducted for several years, underlying mechanism of Ninjurin1 showing how 

Ninjurin1 modulates inflammatory response, associated with development of 

progression of diseases, has been poorly understood.  

In this study, I investigated the role of Ninjurin1 in the pathogenesis of colitis by 

examining Ninjurin1-deficient mice treated with dextran sodium sulfate (DSS). Loss 

of Ninjurin1 alleviated the DSS-induced colitis. Mice harboring Ninjurin1-deficient 

macrophages also dampened the level of inflammation against colitis, which was 

associated with PKCδ/θ activation. Therefore, my results show Ninjurin1 has a 

critical function in macrophages in colonic inflammation. 
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Figure 6. The role of Ninjurin1.  

Ninjurin1 is regulated by several cellular stress signals. Ninjurin1 acts as a modulator 

in cellular process involved in vessel maturation, migration, invasion, and immune 

cell activation. Tumor-associated macrophages (TAM). 
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II. Materials and Methods 

1. Mice and experimental colitis 

All animal experiments were conducted in accordance with the protocols approved 

by the Institutional Animal Care and Usage Committee. Mice were housed under 12 

h light and dark cycles at 22 °C, and provided with food and water ad libitum. 

Ninjurin1 KO C57BL/6 mice were generated as previously described (Choi et al., 

2018). To generate myeloid-specific Ninjurin1-deficient mice, Ninjurin1fl/fl mice 

were bred with heterozygous Lyz2-cre+/- mice. Male and female (9 to 11-weeks-old) 

mice were randomly assigned to experimental groups. Colitis was induced in mice by 

administering 1.5% or 2.5% (w/v) DSS (36-50 kDa) (MP Biomedicals, OH, USA) in 

drinking water for 8 days. Mice were weighed every 2~3 days after initiation of DSS 

treatment, and subsequently sacrificed on day 8 after initiation of treatment (Figure 

7). Animals were euthanized by carbon dioxide inhalation, and the colon tissues were 

harvested to determine the colitis incidence. For blocking peptide treatment, 

Ninjurin126-37 peptide (1 mg/kg) was diluted in 0.9% NaCl and administered 

intravenously immediately before initiation of DSS treatment. All animal 

experiments were conducted in accordance with the protocols approved by the 

Institutional Animal Care and Usage Committee in Korea (GIACUC-R2016005, 

GIACUC-R2017014, GIACUC-R2018006). 
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Figure 7. In vivo experimental schedule for DSS-induced colitis. 

C57BL/6 WT, Ninjurin1 KO, Ninjurin1fl/fl, and Ninjurin1fl/fl; Lyz2-Cre+ mice were 

treated with 1.5% or 2.5% (w/v) DSS in drinking water for 8 days.  
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2. Cell lines  

All cell lines and primary cells were incubated at 37 °C in the humidified chamber 

with 5% CO2. Raw 264.7 cells were purchased from Korean Cell Line Bank (KCLB, 

Seoul, Korea). Raw264.7 cells were cultured in DMEM supplemented with 10% FBS 

(Welgene, Daegu, Korea) and streptomycin (100 μg/ml)/penicillin (100 units/ml). 

Using CRISPR Cas9, Ninjurin1-deficient cells were generated as previously 

described (Choi et al., 2018). Briefly, Raw 264.7 cells were transfected with CRISPR 

Cas9 lentiviral expression vectors targeting Ninjurin1, purchased from transOMIC 

Technologies (Hunsville, AL, USA). Using SONY cell sorter SH800Z, the 

transfected cells were sorted (SONY, Tokyo, Japan). In the current study, Ninjurin1-

expressing cells are denoted as WT cells, while Cas9-treated Ninjurin1 KO cells are 

referred to as Ninjurin1 KO cells. The WT and Ninjurin1 KO Raw264.7 cells were 

treated with LPS (Sigma-Aldrich, St Louis, MO, USA) or rottlerin (rott; Santa Cruz 

Biotechnology, CA, USA). Human monocytic cell line (THP-1) was purchased from 

ATCC and cultured in RPMI 1640 supplemented with 10% FBS and streptomycin 

(100 μg/ml)/penicillin (100 units/ml). THP-1 cells were transfected with adenovirus 

expressing human Ninjurin1 (Ad-Ninjurin1) or empty vector (Ad-EV), as previously 

described (Jang et al., 2016). Human colon carcinoma cell line (Caco2) was 

purchased from the Korea Cell Line Bank (Seoul, Korea) and cultured in DMEM 

supplemented with 10% FBS and streptomycin (100 μg/ml)/penicillin (100 units/ml). 
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3. Immunoblotting 

As previously described, Western blot analysis was performed against anti-Ninjurin1 

(Abclon, Seoul, Korea), anti-pSTAT6, anti-pPKCδ/θ and anti-pSTAT1 (Cell 

Signaling Technology, MA, USA), anti-actin, and anti-GAPDH (Millipore, 

Schwalbach, Germany) (Jung et al., 2019). Briefly, cell or tissue lysates were 

prepared with modified RIPA buffer containing 20 mM Tris-HCl, 1 mM EDTA, 150 

mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 1% triton x-100, 1mM sodium 

fluoride, and 1 mM sodium vanadate. Equivalent amounts of protein were resolved 

in sodium dodecyl sulfate-polyacrylamide gels. The proteins were transferred to 

polyvinylidene fluoride membrane. The blot was blocked in 3% skim milk and 

washed with TBST (0.1% Tween 20). After the primary antibodies were applied 

overnight at 4 °C, HRP-conjugated secondary antibodies were conjuagated for 1 h at 

room temperature (RT). The resultant protein-antibody complexes were analyzed 

using chemiluminescence Western blotting detection reagents (Abclon). 

4. Assessment of inflammation in colon 

Entire colons were fixed overnight in 10% neutral buffered formalin, and 

subsequently embedded in paraffin. Histology was evaluated after longitudinal 

sections of colons (swiss-roll) were stained with Hematoxylin and eosin staining 

(H&E). Histopathological evaluation assigned scores ranging from 0 to 3 for 

submucosal edema (0–3), surface epithelial erosion (0-3), and crypt damage (0-3), 

for a combined total score of 9; submucosal edema: 0 = no significant edema, 1 = rare 
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areas of submucosal edema, 2 = occasional areas of mild submucosal edema, 3 = 

frequent areas of marked submucosal edema; surface epithelial erosion: 0 = none, 1 

= rare small breaches in epithelium, 2 = frequent small breaches in epithelium, 3 = 

extensive areas lacking surface epithelium; crypt damage: 0 = none, 1 = some crypt 

damage, 2 = large areas without crypts, 3 = no crypts (Table 2) (Fodil et al., 2017).  

5. Immunofluorescence 

For immunofluorescence assessment, colon sections were deparaffinized, hydrated 

with distilled water. Antigen retrieval was performed by heating the sections in 10 

mM citrate solution supplemented with 0.1% Tween 20 using microwave. Then, the 

sections were incubated in a blocking solution (Life Technologies, MD, USA) for 1 

h at RT. The primary antibody against Ninjurin1 (Abclon) was diluted 1:300 and 

applied to the section-containing slides at RT for 1 h. The bound primary antibodies 

were detected using 1:300 AlexaFluore568. To assess co-localization of Ninjurin1 

and F4/80, 1:500 rat F4/80-FITC (eBioscience, CA, USA), was incubated with the 

slides, overnight at 4°C, followed by staining with Ninjurin1 antibodies. The nucleus 

was stained, and the slides were mounted with Vectashield mounting medium (Vector 

Laboratories, CA, USA). The slides were analyzed under a confocal microscope 

(Nikon Instruments Inc., New York, USA). 

6. Immunohistochemistry 

Formalin-fixed paraffin-embedded tissue sections of colons from DSS-treated WT 

and Ninjurin1 KO mice were deparaffinized and rehydrated prior to ki-67 staining 
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(Abcam, MA, USA). Slides were incubated with antibody against ki-67 for 1 h at RT, 

followed by incubation with the secondary antibodies for 1 h at RT. Finally, the slides 

were incubated with DAB substrate (DAKO, CA, USA) and counterstained with 

hematoxylin. For Alcian blue staining, the slides were stained in Alcian blue solution 

for 30 min and subsequently washed with distilled water. Counterstaining was 

conducted with nuclear fast red solution for 5 min, after which the slides were washed 

and mounted.  

7. Purification and activation of lymphocytes  

A single cell suspension was isolated from the spleen of C57BL/6 mice. CD4+ and 

CD8+ T cells were purified using CD4 and CD8 microbeads, in accordance with the 

manufacturer’s instructions (Miltenyi Biotech, Gladbach, Germany). B cells were 

purified using CD43 microbeads with MACS kit. CD4+ and CD8+ T cells were 

activated with plate-bound anti-CD3 (5 μg/mL) and soluble anti-CD28 (5 μg/mL) 

supplemented with IL-2, and cultured for 3 days. B cells were stimulated with BAFF 

(50 ng/mL) and LPS (10 μg/mL) for 3 days. 

8. RNA isolation and reverse transcription–polymerase chain 

reaction (RT-PCR)/real-time quantitative PCR (qRT-PCR) 

analysis 

Total RNA was isolated from colon tissues and cells using the TRIzol reagent 

(Invitrogen, CA, USA). Briefly, 1 ml of TRIzol was applied to cells or tissues, and 

the solution was mixed vigorously. Chloroform was added to each sample and the 
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mixtures were centrifuged at 12,000 g for 20 min at 4 °C. The upper layer of solution 

was transferred to a new tube and mixed with isopropanol. After the samples were 

centrifuged at 12,000 g for 20 min at 4 °C, pellet was washed with 70% EtOH at 

12,000 g for 10 min at 4 °C two times. The supernatant was discarded and the pellet 

was dried. DEPC-treated distilled water was added to dissolve RNA. Using a 

synthesis kit, PrimeScript RT reagent, the extracted RNA (1~2 μg) was used as a 

template for reverse transcription to synthesize cDNA according to the manufacturer's 

instructions (Takara, Kyoto, Japan). Each RNA sample was mixed with oligo DT and 

incubated at 65 °C for 5 min. After 1 min of incubation at 4 °C, the mixture of reverse 

transcriptase, Rnase inhibitor, dNTP, and reaction buffer was transferred to each 

sample and incubated at 42 °C for 1 h. To inactivate the enzymatic reaction, the 

samples were incubated at 95 °C for 5 min, followed by cooling on ice. The RT-PCR 

products were analyzed on 1.5% agarose gel in Tris-

acetate/ethylenediaminetetraacetic acid buffer. qRT-PCR was performed with the 

Stratagene Mx3000P QPCR System (Agilent Technologies, La Jolla, CA, USA). The 

primers for PCR are indicated in Table 1. 

.   
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Genes Species Direction Primers (5' → 3') 

Ninj1 Mouse 
Forward GAGTATGAGCTCAACGGCGA 

Reverse TGACCAGGAAGATGAGCAGC 

IL1β Mouse 

Forward GCCTTGGGCCTCAAAGGAAAGAATC 

Reverse GGAAGACACAGATTCCATGGTGAAG 

CCL2 Mouse 
Forward TCCCAATGAGTAGGCTGGAGAGC 

Reverse CAGAAGTGCTTGAGGTGGTTGTG 

IL1α Mouse 
Forward GATGACCTGCAGTCCATAACC  

Reverse CTGGCAACTCCTTCAGCAAC 

IL6 Mouse 
Forward GAGGATACCACTCCCAACAGACC 

Reverse AAGTGCATCATCGTTGTTCATACA 

TNFα Mouse 
Forward ATAGCTCCCAGAAAAGCAAGC 

Reverse CACCCCGAAGTTCAGTAGACA 

Arg-1 Mouse 
Forward CAGAAGAATGGAAGAGTCAG 

Reverse CAGATATGCAGGGAGTCACC 

Ym-1 Mouse 
Forward AGAAGGGAGTTTCAAACCTGG 

Reverse TGTTTGTCCTTAGGAGGGC 

Fizz-1 Mouse 
Forward TCCAGCTGATGGTCCCAGTGAATA 

Reverse GGCAGTGGTCCAGTCAAC 

Actin Mouse 
Forward TGGAATCCTGTGGCATCCATGAAAC 

Reverse TAAAACGCAGCTCAGTAACAGTCCG 

GAPDH Mouse 
Forward AAGGGCATCTTGGGCTACACT 

Reverse TACTCCTTGGAGGCCATGTAGG  

Ninj1 Human 
Forward CAAGCTGGACTTCCTCAACAA 

Reverse CATGTCCATCAAGGGCTTCT 

IL1β Human 
Forward AGCTGTACCCAGAGAGTCC 

Reverse ACCAAATGTGGCCGTGGTTT 

IL6 Human 
Forward AGACAGCCACTCACCTCTTCA 

Reverse CACCAGGCAAGTCTCCTCATT 

 

Table 1. Primers for RT- and qRT-PCR 
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9. Cell isolation from colons 

Colons were dissected from mice and washed with cold phosphate-buffered saline 

(PBS). Colons were then cut into several small pieces, inverted, and incubated at 37°C 

in RPMI supplemented with 0.015% DTT and 1 μM EDTA for 30 min with gentle 

shaking. The remaining tissue was incubated at 37°C in RPMI supplemented with 1.5 

mg/mL collagenase and 0.5 mg/mL dispase, with gentle shaking. The supernatant 

containing the lamina propria cells was passed through a 70 μm strainer and stained 

for use in flow cytometric analysis.  

10. Flow cytometry analysis 

Lamina propria cells were stained with fluorochrome-conjugated antibodies against 

CD45.2, CD11b and F4/80 (BD Bioscience, CA, USA). After fixed with 4% 

paraformaldehyde, the cells were stained with rabbit anti-Ninjurin1 followed by 

FITC-conjugated secondary antibody. A FACS Canto II instrument (BD Biosciences) 

was used to acquire the results, which were analyzed by FlowJo V10 software.  

11. Peritoneal macrophage isolation 

Peritoneal macrophages were harvested from WT and Ninjurin1 KO mice. After the 

abdominal skin of mouse was removed, 3 ml of PBS was injected to the peritoneal 

cavity using a syringe and aspirated PBS from peritoneum. This step was repeated 

two more times. The solutions containing peritoneal cells were centrifuged for 5 min 

at 500 g. The peritoneal cells were resuspended in DMEM supplemented with 10% 

FBS and streptomycin (100 μg/ml)/penicillin (100 units/ml). The cells were incubated 
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at CO2 incubator for 40 min in cell culture plates. After non-adherent cells were 

washed with PBS three times, the adherent cells were collected and prepared for 

further experiments.  

12. Bone marrow-derived macrophage (BMDM) isolation and 

culture 

After mice were euthanized by carbon dioxide inhalation, femurs of mice were 

excised. Cells were flushed from the femur of mice and incubated in RPMI1640 

medium (Welgene) supplemented with 10% FBS, 30 ng/mL of mouse colony-

stimulating factor (Miltenyi Biotec), and streptomycin (100 μg/ml)/penicillin (100 

units/ml). After 5 days, adherent cells were harvested with cell dissociation solution 

(Sigma-Aldrich), and cultured in new plates for use in further experiments. The 

adherent cells were stained with antibodies against CD11b (BD Biosciences) and 

F4/80 (eBioscience) and analyzed by FACS Calibur (BD Biosciences). Over 90% 

adherent cells were positive for CD11b and F4/80. To stimulate BMDM, 0.5 μg/mL 

of LPS was applied for 2 h, or 10 ng/mL of IL4 (Peprotech, London, UK) was applied 

for 12 h.  

13. Analysis of tight junction protein complex in vitro 

Coverslips were sterilized and placed in 24-well cell culture plates. Caco2 cells were 

seeded on sterile coverslips at 90~100% confluency, and allowed to differentiate for 

an additional 10 days. Every 2~3 days, cell culture media were changed. The 

differentiated cell monolayers were transfected with adenovirus expressing human 
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Ninjurin1 (Ad-Ninjurin1) or empty vector (Ad-EV), with or without 5% DSS, as 

previously described (Jang et al., 2016). The cells were fixed and incubated with ZO-

1 antibody, as the protocol published in a previous report (Jung et al., 2017a). Briefly, 

cells were incubated with MeOH/acetone for 20 min at -20 °C and blocked with 

blocking solution (Life technologies) for 1 h at RT. Fixed cells were then reacted with 

anti-ZO-1 antibody (Thermo Fisher Scientific, MA, USA) overnight at 4 °C. FITC-

conjugated secondary antibody (Santa Cruz Biotechnology) was applied for 2 h at RT 

in the dark. The nucleus was stained and mounted with Vectashiled mounting 

medium (Vector Laboratories).  

14. Microarray analysis 

RNA was isolated from peritoneal macrophages extracted from WT and Ninjurin1 

KO mice. RNA from each sample was synthesized to make cDNA by using the 

GeneChip Whole Transcript amplification kit, according to the manufacturer’s 

protocol. The cDNA was hybridized with the Affymetrix Mouse Gene ST 2.0 arrays 

and analyzed by Macrogen (Seoul, Korea). Data were normalized by applying the 

multi-average (RMA) method, and statistical significance was calculated by applying 

the LPE test. The raw data were uploaded in NCBI (GSE142544).  

15. Mouse cytokine array 

WT and Ninjurin1 KO Raw264.7 cells were cultured with 0.5 μg/mL of LPS for 12 

h. Approximately 1 mL of media was collected from each group and centrifuged to 

remove particulates. The secreted cytokines and chemokines in media were assessed 
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by using a mouse cytokine array according to the manufacturer’s instructions (R&D 

Systems, MN, USA). Briefly, nitrocellulose membranes containing 40 different 

capture antibodies were blocked for 1 h at RT with gentle shaking. Antibody cocktail 

buffer was applied to the membranes for 1 h at RT. After discard the antibody buffer, 

the membranes were incubated with the collected media from Raw 264.7 cells 

overnight at 4 °C with gentle shaking. Each membrane was washed three times and 

Streptavidin-HRP solution was applied. After washing three times, membranes were 

incubated with chemiluminescent reagent mixtures. The pixel density of each spot of 

the array was determined by using Image J software.   

16. Colon explant and ELISA 

Approximately 1 cm of colon tissue was excised and washed several times with PBS 

supplemented with penicillin and streptomycin. The tissue was then incubated in 

RPMI 1640 media in 24-well plates at 37°C for 24 h. The supernatant was collected 

and centrifuged to remove debris. Using a DuoSet mouse IL1β and IL6 ELISA, the 

supernatants were analyzed for IL1β and IL6 content according to the manufacturer’s 

instructions (R&D Systems). Briefly, PBS containing capture antibodies was 

transferred to 96-well microplate overnight at RT to coat the plate. After washed with 

0.05% Tween 20 in PBS three times, the plates were blocked at RT for 1 h. The colon 

explants were added to the plates for 2 h at RT. The plates were washed and incubated 

with solution containing detection antibodies. Streptavidin-HRP solution and 

substrate solution were applied sequentially. 2 N H2SO4 was added to the plates to 

stop the reaction. Using a microplate reader (Multiskan GO Microplate 
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Spectrophotometer, Thermo Fisher Scientific, Vantaa, Finland), the optical density of 

each well was determined.  

17. Human NF-κB Pathway Array 

THP-1 cells were cultured with 10 nM of phorbol 12-myristate 13-acetate overnight. 

The cells were incubated with 0.1 μg/ml of LPS for 2 h. Cells were lysed with 

modified RIPA buffer and the same protein amount was utilized. NF-κB-related 

proteins were investigated using human NF-κB pathway array following the 

manufacturer’s instructions (ARY029; R&D Systems). Nitrocellulose membranes 

containing 45 different capture antibodies were blocked for 1 h at RT with gentle 

shaking. The membranes were incubated with the prepared THP-1 cell lysates 

overnight at 4 °C on a rocking platform. After washing three times, each membrane 

was incubated with solution containing detection antibodies for 1 h at RT. 

Streptavidin-HRP solution was applied. After washing three times, membranes were 

incubated with chemiluminescent reagent mixtures.   

18. RNA interference 

Small interfering RNA (siRNA) duplexes against PKCδ was synthesized and purified 

by Bioneer (Daejeon, Korea). The sequences of siRNA targeting PKCδ were siRNA1 

(5′-GAUGAAGGAGGCGCUCAGTT-3′) and siRNA2 (5′-

GGCUGAGUUCUGGCUGGACTT-3′) (Yoshida et al., 2003). For siRNA treatment, 

duplexed siRNA was introduced into WT and Ninjurin1 KO Raw264.7 cells using 

Mirus TransIT-X2 (Mirus Bio, WI, USA). Cells were lysed with modified RIPA 
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buffer for western blot analysis at 48 h after transfection.  

19. Statistical analysis 

Results are presented as the mean ± SD or mean ± SEM. When comparing two groups, 

statistical significance was determined by applying the two-tailed Student’s t-test. 

Ninjurin1 gene expression data were retrieved from the microarray data matrices 

uploaded on GEO by the original authors (GSE1710, GSE22307, and GSE3365). R 

scripting was applied to obtain the expression values of Ninjurin1 from data matrices. 

Welch’s T test was utilized to compare Ninjurin1 gene expressions in different 

specimens. Testing was performed using the SPSS 20 software (IBM Corporation, 

NY, USA). Significance of difference p-values are represented in text and figures as 

* p < 0.05, ** p < 0.01, or *** p < 0.005.  
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III. Results 

1. Ninjurin1 expression increases under intestinal 

inflammatory conditions 

Since Ninjurin proteins are reported to play a crucial role in immune responses, I 

analyzed the expression of Ninjurin1 and Ninjurin2 genes in an IBD patient cohort 

and in a mouse model of colitis. By analyzing the publicly published mRNA 

expression profiles (Gene expression omnibus, GEO), I determined that Ninjurin1 

mRNA expression was greater in colon tissues from patients with CD (n = 10) and 

UC (n = 10), as compared to normal controls (n = 11) (Figure 8A) (Costello et al., 

2005). Moreover, Ninjurin1 mRNA expression was upregulated in the colon of DSS-

treated mice, when compared to untreated (normal) mice (Figure 8B) (Fang et al., 

2011). However, Ninjurin2 mRNA expression was not different between normal 

controls and colon tissues from patients with CD and UC (Figure 9A). In parallel to 

this result, DSS-treated mice did not show changed expression level in Ninjurin2 

compared to untreated mice (Figure 9B). These results indicate that only Ninjurin1 

expression is related to colitis incidence.   
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Figure 8. Ninjurin1 mRNA expression in colon tissues.  

(A) Analysis of Ninjurin1 expression in colon tissues from UC and CD patients. The 

gene expression data (GSE1710) were obtained from the GEO database. ** p < 0.01, 

Welch’s T test. (B) Analysis of Ninjurin1 expression in colon tissues from mice. The 

gene expression data (GSE22307) were obtained from the GEO database. ** p < 0.01, 

Welch’s T test. 
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Figure 9. Ninjurin2 mRNA expression in colon tissues.  

(A) Analysis of Ninjurin2 expression in colon tissues from UC and CD patients. The 

gene expression data (GSE1710) were obtained from the GEO database. (B) Analysis 

of Ninjurin2 expression in colon tissues from mice. The gene expression data 

(GSE22307) were obtained from the GEO database.  
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2. Ninjurin1 expression increases in colon tissues of DSS-

treated mice 

I further validated Ninjurin1 expression in mice colon tissues by western blot analysis. 

I treated 1.5% DSS to mice for 8days and sacrificed to assess Ninjurin1 expression 

in colon tissues. As expected, Ninjurin1 in colons of DSS-treated mice show 

increased expression levels as compared to untreated mice (Figure 10). Moreover, 

immunofluorescence staining revealed that the number of Ninjurin1+ cells 

significantly increased in colon tissues of DSS-treated mice (Figure 11) compared to 

control mice. Interestingly, Ninjurin1 expression in inflamed colon was limited to 

non-epithelial cells, and cells expressing Ninjurin1 were mainly localized in the 

submucosa (Figure 11). Surface epithelial cells which are linked by tight junction 

proteins did not express Ninjurin1. These findings suggest that during colitis, there is 

increased Ninjurin1 expression in cells at the sites of inflammation.   
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Figure 10. Immunoblot analysis of Ninjurin1 in DSS-treated colon tissues. 

(A) Ninjurin1 and GAPDH performed on colonic tissues extracted from control (CT) 

and 1.5% DSS-treated mice; n = 3 per group. Similar results were observed in three 

independent experiments. (B) Densitometry represents relative protein levels of 

Ninjurin1. Values are mean ± SD. * p < 0.05, Student’s t-test. 
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Figure 11. Immunofluorescence staining of Ninjurin1 in colon tissue sections 

harvested from mice.  

(A) Representative images are shown. Scale bars, 50 μm. Boxed area is magnified on 

right. (B) The quantification of Ninjurin1 immunofluorescence is presented as the 

mean fluorescence intensity; n = 3 per group. Values are mean ± SD. *** p < 0.005, 

Student’s t-test. CT, control. 
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3. Ninjurin1 deficiency alleviates experimental colitis 

To assess whether Ninjurin1 has a functional role in colitis, WT and Ninjurin1 KO 

mice were administered 1.5% or 2.5% DSS for 8 days, followed by determining the 

colitis incidences. Ninjurin1 KO mice were generated by deletion of exon1 of 

Ninjurin1 (Figure 12). Ninjurin1 KO mice exhibit lesser body weight loss (Figure 13) 

and a considerably longer colon length (Figure 13 and Figure 14A, B) as compared 

to WT mice. H&E analysis reveal less epithelial erosion, crypt destruction, and 

submucosal edema in the colon of DSS-treated Ninjurin1 KO mice than DSS-treated 

WT mice (Figure 15A). Histopathological assessments associated with colitis were 

quantified as described in Table 2. The tissue phenotypes associated with colitis were 

also quantified, and results reveal reduced colitis incidence in DSS-treated Ninjurin1 

KO mice (Figure 15B). Untreated WT and Ninjurin1 KO mice did not display 

significant differences in tissue histology features (Figure 15). Ki-67 and Alcian blue 

staining were performed to confirm the severity of colitis incidence in Ninjurin1 KO 

mice. DSS-treated Ninjurin1 KO mice had relatively intact epithelia and a greater 

number of proliferating cells and mucin-containing goblet cells, as compared to DSS-

treated WT mice (Figure 16). Taken together, these results indicate that Ninjurin1 

aggravates experimental colitis. 
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Figure 12. Schematic diagram and confirmation of Ninjurin1 deficient mice.  

(A) Gene structure of WT and Ninjurin1 KO mice. (B) Mouse genotype was verified 

using PCR of genomic tail DNA. 
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Figure 13. Body weight loss of WT and Ninjurin1 knock-out (KO) mice were 

treated with DSS to induce experimental colitis. 

WT and Ninjurin1 KO mice were administered 1.5% or 2.5% DSS for 8 days. 

Bodyweight loss is presented as a percentage of the initial weight ± SD; n = 5 per 

group. Student’s t-test comparing 1.5% DSS treated WT mice and 1.5% DSS treated 

Ninjurin1 KO mice, # p < 0.05, and comparing 2.5% DSS treated WT mice and 2.5% 

DSS treated Ninjurin1 KO mice, * p < 0.05, ** p < 0.01. Similar results were 

observed in four independent experiments. CT, control 

 

 

  



 

42 

 

 

Figure 14. Colon length of DSS treated mice.  

(A) Mice were sacrificed on day 8 after initiation of DSS treatment. Representative 

images of colons from WT and Ninjurin1 KO mice are presented. (B) Colon lengths 

were quantified (mean ± SD). * p < 0.05, Student’s t-test. CT, control. 
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Figure 15. Histological analysis of colon tissues (H&E staining).  

(A) H&E staining of colon sections was performed, and representative images are 

presented. Scale bars, 50 μm. Boxed areas are magnified below. (B) Submucosal 

edema, surface epithelial erosion, and crypt damage were evaluated and quantified 

by histology scores (0–9). Data are presented as mean ± SD. * p < 0.05, Student’s t-

test. CT, control. 
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Table 2. Histological scoring of colitis (Fodil et al., 2017). 

 



 

45 

 

 

Figure 16. Histological analysis of colon tissues (Ki67 and Alcian blue staining). 

Ki67 staining of colon sections from 1.5% DSS-treated WT and Ninjurin1 KO mice 

were visualized for crypt regeneration. Scale bars, 50 μm (upper panel). Alcian blue 

staining of colon sections from 1.5% DSS-treated WT and Ninjurin1 KO mice 

indicate the epithelial integrity. Scale bars, 50 μm (lower panel). 
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4. Ninjurin1 is highly expressed on cells of myeloid lineage  

Among the immune cells, myeloid cells have been reported to predominantly express 

Ninjurin1 during experimental stimulation (Ahn et al., 2009; Ifergan et al., 2011). A 

previous report indicates that Ninjurin1 is mainly expressed in myeloid cells isolated 

from human peripheral blood leukocytes, whereas B and T lymphocytes express 

relatively low levels of Ninjurin1 (Ifergan et al., 2011). To define the immune 

compartment expressing Ninjurin1 and modulating colonic inflammation, I evaluated 

Ninjurin1 expression in BMDMs, T cells, and B cells. In the naïve state, Ninjurin1 is 

highly expressed in BMDMs, as compared to the lymphoid populations (including 

CD4+ and CD8+ T cells, and B cells) (Figure 17, upper). During inflammation, 

leukocytes are differentiated and activated to function appropriately. In the activated 

state, macrophages reveal highest expression of Ninjurin1, compared to other 

lymphocytes (Figure 17, lower). In both naïve and activated states, Ninjurin1 is 

expressed by myeloid cells in peripheral blood leukocytes. 
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Figure 17. mRNA expression of Ninjurin1 in the indicated leukocytes and 

macrophages was analyzed by qRT-PCR.  

Bone marrow-derived macrophages (BMDMs) were cultivated from bone marrow 

cells, and CD4+ and CD8+ T cells and B cells were isolated from spleen using MACS 

(upper panel). Ninjurin1 expression was determined using lipopolysaccharide (LPS)-

treated BMDMs, anti-CD3/anti-CD28-activated CD4+ and CD8+ T cells, and 

LPS/BAFF-activated B cells (lower panel); n = 3 per group. Data represent mean ± 

SEM. *** p < 0.005 compared to the BMDM group, Student’s t-test.  
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5. Macrophages during colitis development show increased 

expression of Ninjurin1 

To research further information on the expression pattern of Ninjurin1 in various 

immune cells under inflammatory conditions, I investigated alteration of Ninjurin1 

protein expression on lymphocytes and myeloid cells during development of 

experimental colitis. Lymphocytes and myeloid cells were extracted from mesenteric 

lymph node and spleen of untreated and DSS-treated mice. Ninjurin1 expressions on 

CD19+ B cells, CD4+, and CD8+ T cells extracted from mesenteric lymph node were 

not altered with DSS treatment (Figure 18 upper). In contrast to lymphocytes, 

expression of Ninjurin1 was significantly upregulated on CD11b+ myeloid cells 

(Figure 18 lower). Macrophages, monocytes (CD11b+Gr-1low and CD11b+ Gr-1int), 

and neutrophils (CD11b+Gr-1hi) showed increased Ninjurin1 expression pattern under 

inflammatory conditions. The lymphocytes and myeloid cells extracted from spleen 

showed increased Ninjurin1 expression from DSS-treated mice compared to that from 

untreated mice (Figure 19). Moreover, in accordance with Figure 17, macrophages 

and monocytes from DSS-treated mice showed the strongest expression of Ninjurin1 

compared with lymphocytes and neutrophils (Figure 18 and Figure 19). To gain 

further information about Ninjurin1 expression in macrophages, I extracted 

peritoneal and colonic macrophages from untreated and DSS-treated mice. I observed 

that mice treated with DSS showed increased Ninjurin1 expression in peritoneal 

macrophages (Figure 20). Furthermore, a FACS analysis revealed that the colonic 

macrophages extracted from lamina propria of DSS-treated WT mice exhibited 
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enhanced Ninjurin1 expression compared to those from untreated mice (Figure 21). 

Therefore, these results suggest that macrophages are responsible for expressing 

Ninjurin1 in colon tissues, which exhibit increased Ninjurin1 during colitis. 
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Figure 18. Ninjurin1 expression on lymphocytes and myeloid cells in mesenteric 

lymph node of mice.  

Single cell suspensions were isolated from the mesenteric lymph node of 1.5% DSS-

treated mice or control mice, and stained with surface markers. Shown are the 

representative FACS histograms for Ninjurin1 expression with mean fluorescence 

intensities (MFIs). * p < 0.05, *** p < 0.005 compared to the CT group. 
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Figure 19. Ninjurin1 expression on lymphocytes and myeloid cells in spleen of 

mice.  

Single cell suspensions were isolated from the spleen of 1.5% DSS-treated mice or 

control mice, and stained with surface markers. Shown are the representative FACS 

histograms for Ninjurin1 expression with mean fluorescence intensities (MFIs). * p 

< 0.05, *** p < 0.005 compared to the CT group. 
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Figure 20. Ninjurin1 expression in peritoneal macrophages. 

Ninjurin1 and actin protein expressions were detected in peritoneal macrophages 

extracted from untreated and 2.5% DSS-treated WT mice; n = 4 per group. 

Densitometry represents relative protein levels of Ninjurin1. Similar results were 

observed in three independent experiments. Values expressed are mean ± SD. *** p 

< 0.005, Student’s t-test. CT, control. 
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Figure 21. Induction of Ninjurin1 in macrophages of DSS-treated mice was 

analyzed by flow cytometry.  

Shown are the representative FACS histograms for Ninjurin1 expression within 

macrophage gate (7-AAD-, CD45+, CD11bhi, F4/80+) with mean fluorescence 

intensities (MFIs). 
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6. Intestinal barrier is not affected by Ninjurin1 

Epithelial barrier destruction is also associated with IBD. Tight junction proteins are 

located in the apical region of the intestinal epithelium, and form selectively 

permeable barriers. Increased permeability and loss of tight junction-related proteins 

are prerequisites for the development of colitis (Chelakkot et al., 2018). When 

mimicking the intestinal barrier in vitro, the Caco2 cell line is the most popular model 

because of its ability to spontaneously differentiate into an enterocyte-like phenotype. 

I evaluated Ninjurin1 expression in Caco2 cells and detected a relatively low 

expression level (Figure 22A). This result was parallel to my immunofluorescence 

data which reveals that Ninjurin1 expression is mainly detected in non-epithelial cells 

(Figure 11). I subsequently overexpressed Ninjurin1 in Caco2 cells with Ninjurin1 

expressing adenovirus and subjected the cells to immunofluorescence staining with 

the anti-Zo-1 antibody. Regular distribution of Zo-1 protein in a Caco2 monolayer 

was unaffected by the overexpression of Ninjurin1 (Figure 22B). DSS was applied to 

Caco2 monolayers to mimic intestinal barrier dysfunction; this treatment disrupted 

the Zo-1 distribution in the Caco2 monolayer, with no significant changes in Zo-1 

distribution upon Ad-Ninjurin1 treatment (Figure 22B). Overexpression of Ninjurin1 

in intestinal epithelial cells did not alter the intestinal barrier function.  
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Figure 22. Ninjurin1 function in intestinal epithelial cells.  

(A) Ninjurin1 expression in Raw 264.7 and Caco2 cells was detected by Western 

blotting. (B) The effect of Ninjurin1 on the structure of tight junction complexes in 

vitro. Caco2 cell monolayers were infected with Ad-EV (adenovirus-empty vector) 

or Ad-Ninjurin1, and subsequently incubated with 5% DSS. Cell monolayers were 

stained for ZO-1 and images were collected by confocal microscopy. ZO-1 (green), 

nuclei (DAPI, blue), and CT, control.  
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7. Migration capacity of macrophages is not influenced by 

Ninjurin1 expression during colitis development 

During the development of intestinal inflammation, macrophage infiltration is vital 

for pathogenesis. Interestingly, I did not observe decreased prevalence of myeloid 

cells in the spleen tissues and lamina propria of Ninjurin1-deficient mice (Figure 23). 

To confirm this result, I analyzed CD11b+ F4/80+ macrophages extracted from lamina 

propria by FACS analysis. DSS treatment resulted in marked infiltration of 

macrophages into the colonic tissues of both Ninjurin1-deficient and WT mice 

(Figure 24A, B). Using immunofluorescent staining, I further confirmed that there 

were no changes in the number of F4/80+ macrophages in the colon tissues from DSS-

treated WT and Ninjurin1 KO mice (Figure 24C). To investigate Ninjurin1 expression 

in the colon during colitis, the tissues were subjected to immunohistochemical 

analysis. I observed Ninjurin1 staining in a subpopulation of cells that are also 

positive for the macrophage marker F4/80 (Figure 25). These findings indicate that 

Ninjurin1 expressed on macrophages does not modulate the migration capacity of 

macrophages.  
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Figure 23. Infiltrating myeloid cells of DSS-treated mice were analyzed by flow 

cytometry.  

Single cell suspensions were isolated from the spleen and lamina propria (LP) of 1.5% 

DSS-treated mice or control mice, and stained with surface markers. The 

representative FACS profiles are shown within viable leukocyte gate (7-AAD- CD45+) 

with expression of CD11b and Gr-1.  
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Figure 24. Infiltrating macrophages of DSS-treated mice were analyzed by flow 

cytometry and immunofluorescent staining.  

(A) Single cell suspensions were isolated from the lamina propria of 1.5% DSS-

treated mice or control mice, and stained with surface markers. The representative 

FACS profiles are shown within viable leukocyte gate (7-AAD-, CD45+) with 

frequencies of CD11bhi F4/80+ macrophages. (B) Cumulative data of CD11bhi F4/80+ 

macrophages; n=3 per group. Data represent mean ± SEM., Student’s t-test. CT, 

control. (C) Immunofluorescence staining of F4/80 in colon tissue sections from mice. 
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The quantification of F4/80 immunofluorescence is presented as the mean 

fluorescence intensity; n=3 per group. Values are mean ± SD. Student’s t-test. Not 

significant (n.s.). 
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Figure 25. Confocal microscopy image of colon section from untreated (CT) and 

1.5% DSS-treated WT mouse. 

Sections were stained with antibodies against Ninjurin1 (red), F4/80 (green), and 

nuclei (DAPI, blue). Scale bars, 50 μm. Boxed area in upper panel is magnified in 

lower panel. 
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8. Ninjurin1 in macrophages enhances production of cytokines 

modulating colon inflammation 

To elucidate the role of Ninjurin1 in macrophages and in inflammatory stimuli, I 

compared gene expressions in peritoneal macrophages from WT and Ninjurin1 KO 

mice. Several studies suggest that peritoneal macrophages are implicated in the 

development of colitis, even though these cells are not present at the inflammatory 

site (Eissa et al., 2017; Wang et al., 2013). Here, I determined that pro-inflammatory 

cytokines and chemokines such as IL1β, IL6, and CCL2 are upregulated in peritoneal 

macrophages from WT mice compared to the levels in peritoneal macrophages from 

Ninjurin1 KO mice (Figure 26A). Using qRT-PCR, I validated differences in the gene 

expression of pro-inflammatory cytokines in peritoneal macrophages (Figure 26B). 

In addition, I investigated the secretion of 40 different cytokines and chemokines in 

conditioned culture media of Raw264.7 cells. Initially, the Ninjurin1 gene was 

knocked out by using the CRISPR-Cas9 system, which was confirmed by western 

blot analysis (Figure 27A). In response to LPS, Ninjurin1 KO Raw264.7 cells 

secreted a lesser amount of pro-inflammatory cytokines than that secreted by WT 

cells (Figure 27B, C). This result was consistent with that in a previous study 

demonstrating that induced expression of pro-inflammatory cytokines with LPS was 

diminished when Ninjurin1 function was blocked with a Ninjurin1-blocking peptide 

(Jennewein et al., 2015). I also found that Ninjurin1 KO Raw 264.7 cells stimulated 

with LPS show decreased mRNA expression of IL1β and CCL2, whereas LPS-treated 

WT cells exhibit significantly increased IL1β and CCL2 levels (Figure 28A, B). 
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Moreover, overexpression of Ninjurin1 in THP-1 cells increased mRNA expressions 

of IL1β and IL6 (Figure 29). Furthermore, examining the gene expression of a 

cytokine in colons of DSS-treated mice revealed a decrease in mRNA expressions of 

IL1β and IL6 in colons of DSS-treated Ninjurin1 KO mice compared to DSS-treated 

WT mice (Figure 30A). In peritoneal macrophages from DSS-treated Ninjurin1KO 

mice, diminished IL1β expression was obtained, as compared to peritoneal 

macrophages from DSS-treated WT mice (Figure 30B). To confirm the above results, 

colon explant culture was performed, and the amounts of IL1β and IL6 was 

determined by ELISA. The amounts of IL1β and IL6 expressed in the colon explant 

culture media from WT mice was significantly higher than Ninjurin1 KO explants 

(Figure 31). Collectively, these results indicate that Ninjurin1 expression contributes 

to the activation of macrophages.  
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Figure 26. Differences in mRNA expression profiles of macrophages from WT 

and Ninjurin1 KO mice.  

(A) A schematic diagram shows experiment using peritoneal macrophages. (B)Heat 

map of inflammation-related gene expression in peritoneal macrophages from WT 

and Ninjurin1 KO mice based on microarray analysis; n = 3 per group. (C) qRT-PCR 

was performed to confirm the genes of interest identified by microarray analysis. Data 

are presented as mean ± SEM. ** p < 0.01, *** p < 0.005, Student’s t-test.  
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Figure 27. Analysis of cytokines and chemokines secreted by WT and Ninjurin1 

KO macrophages.  

(A) Raw264.7 WT and Ninjurin1 KO cells were treated with 0.5 μg/ml of LPS for 

the indicated duration. Western blot analysis was performed to detect the expression 
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of Ninjurin1 and tubulin. (B) Supernatants were collected from Raw264.7 WT and 

Ninjurin1 KO cells in the presence and absence of 0.5 μg/mL of LPS for 12 h. 

Cytokines and chemokines in the supernatants were analyzed by using a mouse 

cytokine array panel. (C) Densitometry represents relative levels of each spot on the 

array. 
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Figure 28. Ninjurin1 in Raw264.7 cells regulate the inflammatory response.  

WT and Ninjurin1 KO Raw264.7 cells were treated with 0.1 or 0.5 μg/mL of LPS for 

the the indicated duration. The mRNA expressions of IL1β and CCL2 were detected 

and normalized by GAPDH. Data are presented as mean ± SEM. *** p < 0.005, 

Student’s t-test. CT, control. 
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Figure 29. Overexpression of Ninjurin1 increases mRNA expression of IL1β and 

IL6.  

THP-1 cells were infected with Ad-EV (adenovirus-empty vector) or Ad-Ninjurin1. 

The mRNA expressions of Ninjurin1, IL1β, and IL6 were detected by qRT-PCR and 

normalized by GAPDH. Data are presented as mean ± SEM. * p < 0.05 , *** p < 

0.005, Student’s t-test. 



 

68 

 

 

Figure 30. Loss of Ninjurin1 from macrophages reduces mRNA expression of 

IL1β and IL6.  

(A) Relative mRNA expressions of IL1β and IL6 were analyzed by performing qRT-

PCR using colon tissues from untreated and DSS-treated WT and Ninjurin1 KO mice; 

n = 3 per group. The expression values are normalized to GAPDH, and the plots are 

presented as mean ± SEM. *** p < 0.005, Student’s t-test. Similar results were 

observed in three independent experiments. (B) Relative mRNA expression of IL1β 

was analyzed by performing qRT-PCR using peritoneal macrophages from untreated 

and DSS-treated WT and Ninjurin1 KO mice; n = 3 per group. Data are presented as 

mean ± SEM. ** p < 0.01, *** p < 0.005, Student’s t-test. CT, control. 
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Figure 31. Detection of IL1β and IL6 secreted from colon explant.  

(A) Schematic diagram of colon explant experiment. (B) WT and Ninjurin1 KO mice 

were treated with 1.5% DSS for 8 days. Mice were sacrificed on day 8 after initiating 

DSS treatment. Colonic tissue explants were harvested, and secreted IL1β and IL6 

levels were assessed by ELISA; n = 4 per group. Data are presented as mean ± SEM. 

* p < 0.05, Student’s t-test. Similar results were observed in three independent 

experiments.  
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9. Ninjurin1 inhibition in macrophages reduces production of 

cytokines  

I examined whether inhibition of Ninjurin1 affects the intestinal inflammation. To 

inhibit function of Ninjurin1, I treated Ninjurin1 antibodies or blocking peptides in 

BMDMs. As shown in Figure 32A, Ninjurin1 antibodies did not prevent mRNA 

expression of IL1β compared to LPS only treated BMDMs. However, Ninjurin1 

peptides reduced mRNA expressions of pro-inflammatory cytokines compare to LPS 

treatment alone (Figure 32B). These in vitro data suggest that Ninjurin1 blocking 

peptides may show a similar effect during development of experimental colitis in 

mice. Thus, WT mice were treated with the blocking peptide, Ninjurin126-37, to inhibit 

Ninjurin1. The mRNA expressions of IL1β and IL6 were dramatically reduced by 

inhibiting Ninjurin1 with the blocking peptide during the development of colitis 

(Figure 33A). The amounts of IL1β in colon explant cultures from Ninjurin126-37- 

treated mice with DSS was also lower than that obtained from mice treated with DSS 

alone (Figure 33B left). Although the difference between the two groups was not 

significant, there was a trend toward decreased IL6 expression in Ninjurin126-37- 

treated mice with DSS compared to mice treated with DSS alone (Figure 33B right). 

These results imply that Ninjurin1 inhibition decreases the intestinal inflammatory 

response.  
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Figure 32. Ninjurin1 inhibition with Ninjurin1 antibodies or blocking peptides.  

(A) BMDMs were incubated with 5 μg of Ninjurin1 antibodies for 4 h and 0.1 μg/ml 

of LPS for 3 h. The mRNA expression of IL1β was detected by RT-PCR and 

normalized by GAPDH. (C) BMDMs were treated with 20 μM of Ninjurin1 peptides 

for 3 h 30 min and 0.1 μg/ml of LPS for 3 h. The mRNA expressions of IL1β and 

CCL2 were detected by RT-PCR and normalized by GAPDH. 
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Figure 33. IL1β and IL6 production from colon tissues with Ninjurin1 blocking 

peptides.  

(A) WT mice were intravenously injected with 0.9% NaCl (saline) as control, or 

Ninjurin1 blocking peptide (B.P.), and treated with 1.5% DSS for 8 days. Mice were 

sacrificed on day 8 after initiating DSS treatment. IL1β and IL6 mRNA expressions 

in colon tissue were analyzed by qRT-PCR; n = 4, untreated; n = 5, DSS + saline; n 

= 6, DSS + Ninjurin1 blocking peptide. Data are presented as mean ± SEM. *** p < 

0.005, Student’s t-test. (B) Colonic tissue explants were harvested, and levels of 

secreted IL1β and IL6 were assessed by ELISA; n = 5, DSS + saline; n = 6, DSS + 

Ninjurin1 blocking peptide. Data are presented as mean ± SEM. * p <0.05, Student’s 

t-test. CT, control.  
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10. Ninjurin1 deficiency in myeloid cells decreases 

susceptibility to experimental colitis 

To confirm that Ninjurin1 in cells of myeloid lineage has an important function in 

colon inflammation, I generated mice with a myeloid cell-specific Ninjurin1 

deficiency and studied the pathogenesis of colitis (Figure 34A, B). Ninjurin1 cWT 

(conditional wild-type: Ninjurin1fl/fl) mice were crossed with Lyz-Cre mice to 

generate Ninjurin1 conditional KO mice (Ninjurin1fl/fl; Lyz-Cre+ mice, designated as 

Ninjurin1 cKO). Western blot analysis validated Ninjurin1 expression in peritoneal 

macrophages and BMDM of the cWT and Ninjurin1 cKO mice (Figure 35A). I also 

examined intestinal inflammation in cWT and Ninjurin1 cKO mice; the cWT mice 

exhibited significant body weight loss, compared with Ninjurin1 cKO mice (Figure 

35B). The cWT mice also show marked colon shortening (Figure 36A, B). Relative 

mRNA expressions of IL1β, IL6, and CCL2 were significantly lower in the colon of 

DSS-treated Ninjurin1 cKO mice than cWT mice (Figure 37). The amounts of IL1β 

and IL6 expressed in the colon explant culture media from cWT mice were higher 

than that obtained from Ninjurin1 cKO mice, which is consistent with results of 

mRNA expression analysis (Figure 38). These results indicate that absence of 

Ninjurin1 in myeloid cells is sufficient to alleviate experimental colitis.  
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Figure 34. Generation of myeloid cell specific Ninjurin1 deficient mice.  

(A) Gene structure of Ninjurin1fl/fl (cWT) and Ninjurin1fl/fl; Lyz-Cre+ mice (Ninjurin1 

cKO). (B) Mouse genotype was verified using PCR of genomic tail DNA.(C) 

Peritoneal macrophages and bone marrow-derived macrophages were isolated from 

cWT (conditional wild-type: Ninjurin1fl/fl) and Ninjurin1 cKO (conditional KO: 

Ninjurin1fl/fl; Lyz-Cre+); Ninjurin1 was detected by immunoblotting, using GAPDH 

as the internal control. 
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Figure 35. Ninjurin1 deficiency on macrophages reduces colonic inflammation 

during DSS treatment.  

(A) cWT and Ninjurin1 cKO were administered 1.5% DSS for 8 days; n = 5, normal 

group; n = 8, DSS group. Body weight is presented on day 8 after initiation of 

treatment (B) Body weight loss is presented as a percentage of initial weight (mean 

± SD). Student’s t-test comparing 1.5% DSS treated cWT mice and 1.5% DSS treated 

Ninjurin1 cKO mice, * p < 0.05. Similar results were observed in four independent 

experiments. 
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Figure 36. Colon length of DSS treated cWT and Ninjurin1 cKO mice.  

(A) Representative images of colons from cWT and cKO mice. (B) Colon lengths 

were quantified. Data are presented as mean ± SD. * p < 0.05, Student’s t-test. 
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Figure 37. Relative mRNA expressions of IL1β, IL6, and CCL2 extracted from 

colons of cWT and cKO mice.  

Data are presented as mean ± SEM. ** p < 0.01, *** p < 0.005, Student’s t-test. 
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Figure 38. Detection of IL1β and IL6 secreted from colon explant from cWT and 

cKO mice.  

Colonic tissue explants were harvested, and IL1β and IL6 secretions were assessed 

by ELISA; n = 4 per group. Similar results were observed in two independent 

experiments. Data are presented as mean ± SEM. * p < 0.05, Student’s t-test. CT, 

control. 
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11. STAT1 is activated in macrophages under inflammatory 

conditions. 

To evaluate the expression of inflammatory markers under inflammatory conditions, 

I used NF-κB pathway array. THP-1 cells were incubated in the absence or presence 

of LPS and the lysates were evaluated on the array. Of the several inflammatory 

markers, signal transducer and activator of transcription 1 (STAT1) activation was 

enhanced most dramatically in the presence of LPS compared to untreated sample 

(Figure 39). STAT1 is one of the transcription factors, which are activated as a result 

of binding to cytokine receptors. Phosphorylation of STAT1 at Ser-727 and Tyr-701 

are required for DNA binding and transcription activity. A previous paper studied that 

activation of TLR2 and TLR4 results in phosphorylation of STAT1 in macrophages 

(Rhee et al., 2003). When I treated LPS in THP-1 cells for 2 h, phosphorylation of 

STAT1 was increased (Figure 39). Interestingly, another well-known inflammation 

related proteins such as p65 showed less dramatic changes than STAT1 activation 

(Figure 39).  
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Figure 39. NF-κB-related protein regulation in LPS-treated THP-1 cells.  

THP-1 cells were incubated with 0.1 μg/ml of LPS for 2 h. Cell lysates were analyzed 

by human NF- κB pathway array.  
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12. Ninjurin1 modulates PKCδ/θ activation 

In LPS-TLR signaling pathway, STAT1 has been known to be phosphorylated by 

PKC. Pharmaceutical inhibition of PKCδ/θ led to dephosphorylation of STAT1, 

which shows the evidence that PKCδ/θ is an upstream kinase of STAT1 (Wallerstedt 

et al., 2010). Western blot analysis was performed to identify the molecular pathway 

by which Ninjurin1 modulates PKCδ/θ activation. PKCδ/θ in colons of DSS-treated 

WT mice show increased activation levels, compared to DSS-treated KO mice 

(Figure 40). To verify this result, I administered LPS to WT and Ninjurin1 KO Raw 

264.7 to mimic macrophage activation during development of colitis. In WT cells, 

LPS stimulation significantly increased the activation of PKCδ/θ (Figure 41). 

However, LPS-treated Ninjurin1 KO cells showed no difference in the activation of 

PKCδ/θ compared to WT cells (Figure 41). Moreover, LPS-administered WT and 

Ninjurin1 KO Raw264.7 cells were treated simultaneously with rottlerin (rott), a PKC 

δ/θ inhibitor, to examine the IL1β mRNA expression levels. As expected, LPS-treated 

WT Raw264.7 cells show markedly increased mRNA expression of IL1β compared 

to LPS-treated Ninjurin1 KO Raw264.7 cells (Figure 42). Treatment with rott 

decreases the mRNA expression of IL1β in LPS-treated WT Raw264.7 cells, as 

compared to LPS treatment alone (Figure 42). However, in Ninjurin1 KO cells, 

almost no change was observed with combined treatment of rott and LPS, as 

compared to cells treated with LPS alone (Figure 42). To determine whether PKCδ/θ 

can regulate Ninjurin1 expression in a feedback fashion, I transfected WT Raw264.7 

cells with siRNA against PKCδ; expression of Ninjurin1was unchanged in PKCδ-
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deficient cells (Figure 43A). I verified this result with WT Raw264.7 cells in the 

presence of the PKCδ inhibitor. Inhibition of PKCδ by using rott did not change 

Ninjurin1 expression (Figure 43B). Taken together, these results indicate that 

Ninjurin1 regulates PKCδ/θ activation, leading to the production of cytokines.  
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Figure 40. The PKCδ/θ activation is regulated by Ninjurin1 in colon tissues.  

(A) Immunoblot analysis of Ninjurin1, pPKCδ/θ, and Actin performed on colonic 

tissues extracted from 1.5% DSS-treated WT and Ninjurin1 KO mice; n = 3 per group. 

(B) Densitometry represents relative protein levels of pPKCδ/θ. Values presented are 

mean ± SD. * p < 0.05, Student’s t-test. 
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Figure 41. The PKCδ/θ activation is regulated by Ninjurin1 in macrophages.  

(A) WT and Ninjurin1 KO Raw264.7 cells were treated with 0.5 μg/mL of LPS for 2 

h. Western blot analysis was performed to detect the expression of Ninjurin1, pPKCδ/ 

θ, and GAPDH. (B) Densitometry represents relative protein levels of pPKCδ/θ. n.s., 

not significant. Values presented are mean ± SD. * p < 0.05, Student’s t-test. Similar 

results were observed in three independent experiments. 
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Figure 42. Inhibition of PKC δ/θ reduces IL1β production.  

WT and Ninjurin1 KO Raw264.7 cells were treated with 5 μg/mL of rott (rottlerin) 

and LPS (0.5 μg/mL) for 6 h. qRT-PCR was performed to detect mRNA expressions 

of IL1β. Data are presented as mean ± SEM. * p < 0.05, Student’s t-test. Similar 

results were observed in three independent experiments. 
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Figure 43. PKC δ/θ is downstream of Ninjurin1.  

(A) Scrambled siRNA (SC) and PKCδ siRNA were applied to WT and Ninjurin1 KO 

Raw264.7 cells, followed by treatment with 0.1 μg/mL of LPS for 2 h. Ninjurin1, 

pPKCδ/θ, pSTAT1, and GAPDH protein levels were detected by immunoblotting. (B) 

WT and Ninjurin1 KO Raw264.7 cells were incubated with 1 or 5 μg/mL of rottlerin 

(rott) for 6 h, followed by treatment with 0.5 μg/mL of LPS for 2 h.  
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13. Ninjurin1 does not regulate M2 polarization  

Macrophages are polarized into two types: M1 and M2. M1 macrophages have pro-

inflammatory phenotypes, called classically activated macrophages. M2 

macrophages are known to have anti-inflammatory properties such as tissue repair 

and cell proliferation, called alternatively activated macrophages (Italiani and 

Boraschi, 2014). Cytokines like IL1β and IL6, which I discussed above, are pro-

inflammatory cytokines that are related to M1 macrophages. According to previous 

papers, signal transducer and activator of transcription 6 (STAT6) has an essential 

role in macrophage M2 polarization (Gong et al., 2017; Szanto et al., 2010). 

Activation of STAT6 modulates transcriptional activation of M2-specific genes such 

as arginase 1 (Arg-1), chitinase-like protein 3 (Ym-1), and resistin-like α (Fizz-1) 

(Goenka and Kaplan, 2011). To study that Ninjurin1 modulates M2 polarization, I 

incubated BMDMs from WT and Ninjurin1 KO mice with IL4. STAT6 activation was 

not changed in WT and Ninjurin1 KO macrophages (Figure 44A). In parallel to this 

result, I could not detect any changes in the mRNA expression of anti-inflammatory 

cytokines in IL4-treated BMDM from WT and Ninjurin1 KO mice (Figure 44B).  
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Figure 44. M2 macrophage polarization in the presence or absence of Ninjurin1.  

Bone marrow-derived macrophages (BMDM) were extracted from WT and Ninjurin1 

KO mice incubated with 10 ng/mL of IL4 for 12 h or 0.5 μg/ml of LPS for 2 h. CT, 

control. (A) pSTAT6 and GAPDH protein levels were detected by immunoblotting. 

(B) Anti-inflammatory cytokines were detected by RT-PCR. 
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IV. Discussion 

The results of this study illustrate that Ninjurin1 in macrophages is a regulatory factor 

involved in the development of colitis. Using myeloid cell-specific Ninjurin1-

deficient mice as well as conventional Ninjurin1 KO mice, I show that the loss of 

Ninjurin1 attenuates intestinal inflammation. These findings clearly demonstrate that 

a deficiency of Ninjurin1 in macrophages decreases intestinal inflammation, resulting 

in reduced pathogenesis.  

In recent years, several papers have reported that Ninjurin1 expression is induced 

under inflammatory conditions (Ahn et al., 2014b; Cho et al., 2013; Ifergan et al., 

2011; Jennewein et al., 2015). In accordance with these previous results, I identified 

that protein expression of Ninjurin1 is induced in inflamed colon tissues of WT mice. 

I presumed that the increased expression of Ninjurin1 in inflamed colon homogenates 

is the result of induction of its expression on macrophages. Although macrophage 

infiltration is shown to be a critical step in the development of colitis, there were no 

changes in the numbers of macrophages extracted from colons of DSS-treated WT 

and Ninjurin1 KO mice. Ninjurin1-deficient and Ninjurin1-expressing macrophages 

have similar capacities to migrate to the site of a lesion, thereby suggesting that the 

difference in colitis incidences seen in WT and Ninjurin1 KO mice are not determined 

by differences in macrophage infiltration, but rather by activation of macrophages. 

These results conflict a previous report dealing with the role of Ninjurin1 in colon 

cancer. During colon cancer development, overexpression of Ninjurin1 suppresses 
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the migration of macrophages, resulting in the alleviation of cancer development 

(Woo et al., 2016). Macrophages in tumor tissue directly facilitate the enhancement 

of growth and mobility of tumor cells. As a tumor progresses, cancer cells train 

macrophages to adopt new characteristics, allowing them to contribute to migration, 

angiogenesis, intravasation, and extravasation (Condeelis and Pollard, 2006; Duff et 

al., 2007). Thus, tumor-associated macrophages (TAM) function in differently than 

macrophages of normal tissue. Moreover, I analyzed previously published mRNA 

profiles and determined that Ninjurin1 expression is not induced in colon cancer 

tissues of mice, as compared to mice with normal colons (GSE31106) (Tang et al., 

2012). In this paper, I present the different roles of Ninjurin1 in macrophages under 

intestinal inflammatory conditions as compared with TAM during colon cancer 

development.  

Similar to the previous paper that analyzed the role of Ninjurin1 in colon cancer, 

several reports have demonstrated that Ninjurin1 mediates migration of cells in 

inflammatory conditions (Ahn et al., 2014a; Ahn et al., 2014b; Ifergan et al., 2011; 

Jang et al., 2016; Jennewein et al., 2015; Yang et al., 2017). Thus, it was surprising 

that during colitis development, Ninjurin1 did not alter the migration capacity of 

macrophages, which was seen only in lung fibrosis. Upon bleomycin treatment, 

Ninjurin1 KO mice ameliorated lung fibrosis; however, the number of infiltrating 

macrophages from both KO and WT mice were not different (Choi et al., 2018). 

During development of colitis and lung fibrosis, the Ninjurin1 pathway controlled 

activation of the macrophages, resulting in the triggering an inflammatory response.  
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The interaction of LPS and macrophage is important in the pathogenesis of DSS-

induced colitis model (Ingalls et al., 1999). LPS-activated macrophages in colon 

tissues trigger the onset of mucosal edema and diarrhea (Dang et al., 2015). LPS is a 

well-known activator of TLR4 on macrophages, and for full activation of 

inflammatory signals, PKCδ/θ is considered an important factor in the TLR4-

mediated pathway (Bhatt et al., 2010; Kontny et al., 2000). In the current study, the 

combined treatment with PKCδ/θ inhibitor and LPS resulted in diminished cytokine 

secretion, as compared to LPS-alone treatment group (Figure 42). Therefore, I assume 

that Ninjurin1 regulates TLR4-PKCδ/θ activation under inflammatory conditions. 

I also present evidence that my results from the murine colitis model are relevant to 

human IBD patients. By analyzing published data, I detected a correlation between 

Ninjurin1 expression and IBD (Figure 8A). Furthermore, the transcriptional profile 

in peripheral blood mononuclear cells (PBMC) revealed that mRNA expression of 

Ninjurin1 is increased in PBMC of IBD patients, as compared to levels obtained in 

PBMC of healthy subjects (Figure 45) (Burczynski et al., 2006). Macrophage is one 

of the cell types present in PBMCs, and myeloid cells in human PBMC are known to 

present the highest levels of Ninjurin1 expression among the leukocytes (Ifergan et 

al., 2011). Thus, I deduce that there is a positive correlation between Ninjurin1 and 

IBD.  

Over-active immune response is one of the main etiologies that cause IBD (Zenlea 

and Peppercorn, 2014). Immunosuppressive agents have been considered as the 

therapeutic focus. Infliximab, adalimumab, and natalizymab are beneficial in the 



 

92 

 

treatment of CD and UC (Colombel et al., 2009; Targan et al., 2007; van Dullemen 

et al., 1995). According to a previous report, treatment of Ninjurin1 blocking peptide 

diminishes systemic inflammation in septic mice (Jennewein et al., 2015). In the 

current study, I observed that the attenuated gut inflammation in mice treated with 

Ninjurin1 blocking peptide compared to untreated mice during DSS treatment, which 

exhibits its potential as an immunosuppressive therapy.  

In conclusion, my results demonstrate that Ninjurin1 in macrophages contributes to 

intestinal inflammation in experimental colitis. Therefore, I propose that targeting 

Ninjurin1 may be a promising therapeutic approach to decreasing the pathogenesis of 

colitis.  
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Figure 45. Analysis of Ninjurin1 expression in peripheral blood mononuclear 

cells from UC and CD patients.  

The gene expression data (GSE3365) were obtained from GEO database. *** p < 

0.01, Welch’s T test. 
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국문 초록 

 

마우스 대장염에서 대식세포 

Ninjurin1의 기능 연구 

 

Nerve injury-induced protein 1 (Ninjurin1)은 손상된 신경 주위 슈반세포

에서의 발현이 처음으로 알려진 세포막 단백질이다. Ninjurin1은 염증반응

에서 대식세포의 이동과 부착에 관여하여 염증반응을 조절한다고 알려져 

있다. 또한 Ninjurin1은 대식세포, 단핵구, 그리고 호중구와 같은 혈액 유

래 면역세포에서 강력하게 발현된다고 보고되었다. 현재까지 많은 연구가 

대식세포에서 대해 이루어져 있지만 생리학적 현상에 대한 보고는 제한

적이며 자세한 염증조절기전이 알려지지 않아 염증성 질환에서의 

Ninjurin1의 작용 기전을 밝히는 연구가 필요할 것으로 생각되었다.  

염증성 대장질환은 위장관의 만성 염증 상태를 나타내는 용어로서 크론

병과 궤양성 장염으로 구분되며 이들 모두 염증의 발생과 완화가 반복되

는 것이 특징이다. 대장염 발생 시, 여러 면역 세포들 중 선천 면역을 담

당하는 대식세포의 활성화가 주된 역할을 하는 것으로 알려져 있다. 본 

연구에서는 Ninjurin1의 염증 조절 기전을 대장염 발생과정에서 확인하고

자 하였다. 

공개된 유전체 빅데이터인 Gene Expression Omnibus에서 Ninjurin1과 대

장염의 상관관계를 분석한 결과 대장염 환자들의 대장 조직 샘플 내 

Ninjurin1 발현 양이 정상 대장 조직에 비하여 유의적으로 증가함을 확인



 

106 

 

하였다. 또한 대장염 환자들의 림프구 및 단핵구에서 Ninjurin1의 mRNA 

발현 양이 유의적으로 증가하는 것을 확인하였다. 따라서 대장염 발생 과

정에서 Ninjurin1이 중요한 역할을 할 것으로 생각하였다.  

본 연구에서는 대조군과 Ninjurin1 유전자 결손 마우스(Ninjurin1 KO)에 

dextran sodium sulfate (DSS)를 8일 동안 처리하여 대장염을 유발하였다. 

Ninjurin1 KO 마우스에서는 대조군 마우스에 비해 대장염 병변이 미약하

였고 대장염 유도에 따라 대식세포에서 Ninjurin1의 발현이 현저하게 증

가하는 것이 관찰되었다. 대장염 부위의 대식세포 수를 분석한 결과 

Ninjurin1의 발현은 대식세포의 이동성에는 관여를 하지 않는다는 것을 

확인하였다.  

Microarray를 수행하여 대식세포에서 Ninjurin1이 결손 됨에 따라 대부분

의 염증 관련 유전자의 발현이 현저하게 저하되었음을 확인하였다. LPS

에 의한 마우스 대식세포주의 염증 활성화 과정에서 Ninjurin1 유전자의 

발현을 억제하면 염증성 사이토카인 유전자가 대조군에 비해 적게 증가

하였다. 또한 대조군 마우스 대장조직에 비해 Ninjurin1 KO 마우스 대장

조직에서 사이토카인 발현이 낮았다. 

대장염 발생에서 대식세포의 Ninjurin1이 중요한 역할을 하고 있음을 확

인하기 위하여 대식세포 특이적으로 Ninjurin1의 발현을 억제한 마우스에 

대장염을 유발하였다. Ninjurin1이 대식세포에서 결손 됨에 따라 대조군에 

비해 더 미약한 병변이 관찰되었고, 대장 조직으로부터 분비된 사이토카

인을 측정한 실험에서도 대조군에 비해 사이토카인의 분비가 감소되어 

있음을 확인하였다. 

대식세포에서 Ninjurin1이 염증 신호를 전달하는 기전을 확인한 결과, 대

조군에 비해 Ninjurin1 KO 마우스의 대장 조직에서 Protein Kinase C (PKC) 
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δ/θ의 활성화가 감소되어 있음을 관찰하였다. 마우스 유래 대식세포주

에서 LPS를 처리한 실험에도 일관된 결과를 얻었다.  

본 실험에서는 위 일련의 실험들을 통하여 다음과 같은 몇 가지 현상 및 

기전을 밝혔다. (1) 대장염 유도시 대조군 마우스에 비해 Ninjurin1 KO 마

우스에서 대장염 병변이 미약하게 관찰되었다. (2) Ninjurin1이 대식세포 

특이적으로 억제된 마우스에서도 대조군 마우스에 비해 병변이 덜 증가

하였다. (3) 대식세포에서 Ninjurin1 발현의 억제는 IL1β와 같은 염증성 

사이토카인의 분비를 감소시켰다. (4) Ninjurin1은 PKCδ/θ 단백질의 활성

화를 조절하여 염증성 사이토카인의 분비를 유도하였다.  

따라서 본 연구는 대식세포에서 Ninjurin1이 PKCδ/θ 활성화를 유도하고 

염증성 사이토카인의 분비를 증가시켜 결과적으로 대장염 발생을 일으키

는 작용 기전을 규명하였으며 이로 인해 대장염 유발의 원인으로서 

Ninjurin1의 가능성을 제시한다.  

 

 

주요어: Nerve injury-induced protein 1 (Ninjurin1), 염증성 대장염, 대식

세포, Protein Kinase C δ/θ (PKC δ/θ), 염증성 사이토카인 
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