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ABSTRACT

Establishment of

a Parkinson’s disease model and

evaluation of therapeutic effects of

dopaminergic precursor cells in

a MPTP-treated common marmoset

Jae-Bum Ahn, D.V.M.

Department of Medicine

Translational Medicine Major

The Graduate School

Seoul National University

Parkinson's disease (PD) is one of the most important neuro-

degenerative diseases. Studies investigating cell transplantation as

an alternative to L-3,4-dihydroxyphenylalanine administration or

deep brain stimulation surgery are being actively conducted.

Many PD animal models are used for PD treatment or

prevention. However, most of them are rodent models, and the

most representative is the model established with 1-meth-
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yl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Compared to other

models, nonhuman primate (NHP) MPTP-treated models show

clinical symptoms similar to human patients and facilitate behav-

ioral evaluation, suggesting the use of various MPTP injection

models according to experimental needs. Most NHP MPTP-treat-

ed models are optimized for short-term studies within three

months and are not suitable for long-term studies such as cell

transplantation. Since fetal mesenchymal cell transplantation in

early studies, studies using mesenchymal stem cells or embryonic

stem cells (ESCs) have been conducted. Studies have also been

conducted using induced pluripotent stem cells, which can resolve

ethical concerns and immune rejection. Despite advances in effi-

cacy evaluation and safety of cell transplantation, studies on dif-

ferentiation and discovery of homogeneous classification marker

have yet to be investigated systematically since the degree of

differentiation and homogeneity of cells after differentiation are

directly related to clinical recovery and reduction of side effects.

Accordingly, a Parkinson's disease model was established by

subcutaneous administering "2-2-1-1-1" mg/kg of MPTP to

common marmosets (Callithrix jacchus) to induce a long-term

and stable clinical manifestations. Daily observation showed sta-

ble and persistent clinical symptoms. The results of tower test

also reduced the motor function compared with pre-treatment

with MPTP. In striatal positron emission tomography (PET) im-

ages, radioactivity was significantly reduced compared with prior

MPTP administration. Immunohistrochemical analysis showed loss
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of tyrosine hydroxylase (TH)-positive cells and fibers in sub-

stantia nigra. In addition, 2.0 × 106 cells were implanted intra-

cranially into the stratum of marmoset PD model to evaluate the

therapeutic effect of dopaminergic (DAergic) precursor cells from

human ESCs differentiating into DAergic neurons associated with

PD symptoms using trophoblast glycoprotein, a new differ-

entiation marker. The results of daily observation showed that

the clinical symptoms recovered significantly from the third week

after the cell transplant compared with the group exposed to

MPTP. The tower test result confirmed that significant increase

in the number of levels the marmosets climbed from the seventh

week after the cell transplant. In the striatal PET image, the

specific uptake ratio value was significantly increased from the

fourteenth week after the cell transplant compared to the MPTP

treatment group. The histopathological analysis revealed no ex-

cessive inflammatory reactions or tumor-like neoplasms, and

TH-positive cells developed from implanted DAergic precursor

cells in the cell transplant site. Based on the above results, it is

purposed that the marmoset model produced by the new MPTP

treatment method is suitable for long-term studies such as cell

transplantation, and it is suggested that DAergic precursor cells

represent potential as PD treatments for human patients.

Keywords: Parkinson’s disease; nonhuman primates; common

marmoset; cell therapeutics; animal model; stem cell; cell trans-

plantation

Student Number: 2012-31146
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LITERATURE REVIEW

Parkinson’s Disease (PD)

Parkinson’s disease (PD) is one of the most important neuro-

degenerative disorder triggered by dopaminergic (DAergic) cell

death in the substantia nigra (SN) and dopamine depletion sub-

stantially, leading to manifestations such as tremor, rigidity and

slow movement. PD was described by Dr. James Parkinson in

1817 in the essay, “Shaking Pasly”, and was named in 1862 by

Jean-Martin Charcot in honor of Dr. Parkinson (1). PD is one of

the top three geriatric diseases, along with Alzheimer's disease

(AD) and stroke (2), and is the second-largest degenerative brain

disease with a prevalence of 200 per 100,000 people worldwide (3,

4). The number of patients in their 60s and over increases rap-

idly (5).

Classification and Etiology of PD

According to Jean-Martin Charcot, PD is characterized by tremor

and rigid/akinesia depending on the clinical motor symptoms;

however, PD patients do not necessarily need to manifest tremor

(1). PD is classified into different types depending specific fea-

tures; idiopathic, inherited, and other atypical PD (6). Idiopathic

type of PD is the most common although underlying etiology is

unknown, unfortunately. Some studies have reported that PD is

caused by factors such as smoking, coffee and tea consumption,
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and exposure to pesticides, traumatic brain damages, organic sol-

vents, uric acid, daily products, nonsteroidal anti inflammatory

drugs, statin and calcium channel blockers (7). Other studies

have reported that diabetes and vitamin D deficiencies are also

associated with PD (8). However, it is attributed to a combina-

tion of genetic and environmental conditions, and not to a specif-

ic etiological factor alone.

Five to 10% of PD patients present with the inherited type, and

specific genes are known to be associated with PD such as

Parkin, DJ-1, PINK1 and others (3, 9, 10). PARK genes 1 to 18

are currently linked to familial PD, since the publication of the

first mutant genetic map associated with possible PD in 1996

(11). PARK8 and PARK17 were associated with general PD oc-

curring in older age groups, with corresponding mutant genes

LRRK2 and VPS35, respectively. Early-onset PD is associated

with PARK2 (Parkin), PARK6 (PINK1), PARK7 (DJ-1),

PARK9 (ATP13A2), PARK14 (PLA2G6), and PARK15 (FBXO7)

excluding PARK1, whose gene name is SNCA. Among them,

SNCA, LRRK2, Parkin, PINK1, DJ-1, and ATP13A2, are linked

to PD, and the identity of the rest is still being investigated for

possible linkage to PD (12).
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Motor and non-motor symptoms of PD

Several neuropathological and neurochemical studies have shown

that major clinical symptoms of PD, including motor symptoms

are associated with dopamine. Subsequent studies have reported

that motor symptoms do not appear until dopamine levels in the

striatum are reduced significantly along with extensive loss of

DAergic neuron in the SN (13). In the “subclinical state” charac-

terized by symptoms of motor abnormalities, the dopamine level

in the striatum decreases to 80%, and nearly 60% of DAergic

cells in the SN appear to be lost, with eventual dopamine reduc-

tion and loss of DAergic neurons. However, it is known that

motor symptoms do not occur due to various compensatory

mechanisms until the disease is at an advanced stage (14). Thus,

major motor symptoms such as tremors appear at late stage of

disease, and it is very difficult to treat or prevent progressive

disease because of the loss of a large number of DAergic

neurons. Therefore, treatment initiation before the onset of

“subclinical state” with motor symptoms can most effectively

prevent disease progression (15, 16). However, it is very difficult

to identify specific early symptoms, especially non-motor symp-

toms such as sleep disorder, anxiety and depression, because

those symptoms vary among patients and it is not easy to real-

ize specific non-motor symptoms (17, 18). Nonmotor symptoms

can be largely classified into neuropsychological abnormalities,

sleep disorders, autonomic neurological abnormalities, sensory ab-
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normalities, and pain, and according to Witjas et al., anxiety, se-

vere sweating, delayed information processing, fatigue, hyper-

sensitivity, and hallucinations appear to be approximately 50% of

those in PD patient (19). Non-motor symptoms are important not

only as an indicator for early diagnosis in PD patients, but also

in terms of quality of life in both patients and caregivers as well

as motor symptoms (20).

Animal models of PD

In vitro and in vivo models are used to study PD mechanisms

and treatments. In vitro models facilitate rapid pathological in-

vestigations inexpensively, and without the ethical concerns asso-

ciated with animal models. In addition, genetic manipulation is

easier and the reproducibility is high as large-scale experiments

can be performed in a short time. However, since actual PD oc-

curs via interaction with various neurons and other cells or tis-

sues in addition to dopamine neurons, it can be studied only in

living animal models. For this reason, results obtained from the

in vitro model for this reason should be verified in studies using

animal models (21). A search of SCOPUS (Elsevier) with the

keywords “Parkinson ’s disease” and “Animal models” returned

about 13,000 articles. In particular, in the last 5 years, the num-

ber of studies using animal models has increased, with about

1,000 articles in each year (Figure 1). The rat model for the PD

study was first developed in 1970 by Ungerstedt and Arbuthnott
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by administering a neurotoxic substance called 6-hydroxydop-

amine (6-OHDA) into the brain (22). In 1971, Hockman estab-

lished a cat model by including thermal damage in the brain tis-

sue surgically (23). Subsequently, studies using dog and rat

models have been conducted, and primate models have been re-

ported in Japan in 1979 (24). The PD animal models include

acute models developed via neurotoxin administration and chronic

model involving genetically modified animals. The animal model

used for most PD studies is established via a neurotoxin admin-

istration (25) (Table 1, Figure 2).
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Figure 1. Species distribution in animal models for PD. As a re-

sult of literature search in SCOPUS with “Parkinson’s disease”

and “animal model”, rodent models such as mice and rats were

mostly used in PD studies, and primate models were used within

10%. (A) Total period (1974-2019). (B) Last 5 years (2015-2019).
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Table 1. Characteristics of animal models used in PD

Type Methods
Characters

Advantage Disadvantage

Acute
(Neurotoxin

based)

6-OHDA
· Simultaneous acquisition of normal and
pathological consequences in an individual
(ethical aspect)

· Stereotaxic surgery required
· Not all clinical and pathological symptoms
are expressed

MPTP
· Various routes of administration
· All clinical symptoms can be observed

· Danger to health when exposed
· Difference in Lewy body (LB) formation
among
histopathological characteristics

Rotenone
· Results of epidemiological investigation
· LB analog formation among
histopathological properties

· Only some animal species can establish
a model

Chronic

Aging · Results of epidemiological investigation · Cannot use uniform and controlled models

Genetic
modification

· Expression of specific proteins derived from
humans

· Special operation skills required
· A long time to establish a model strain
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Figure 2. Methods used in animal models for PD from 1974 to

2019. As a result of literature search in SCOPUS with

“Parkinson’s disease” and “animal model”, most studies were

conducted using the MPTP treatment (35%), followed by

6-OHDA treatment (26%), and the genetic manipulation (24%).
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6-OHDA models

The 6-OHDA model is established via topically application of a

chemical neurotoxin, and various models including mice, cats,

dogs, and monkeys as well as rats have been developed (26).

Although studies using 6-OHDA models were conducted until

1985, administering 6-OHDA directly to brain tissue was techni-

cally difficult because 6-OHDA cannot cross the blood-brain

barrier. Particularly, a bilateral lesion induced via intraventricular

or intracranial administration results in death, due to motor

symptoms and the inability to feed or drink water (27).

Therefore, the 6-OHDA model is most commonly used to admin-

ister 6-OHDA directly to the substantia nigra, the nigrostriatal

tract, or the striatum. In addition to the model retention rate due

to reduced mortality, a single animal can be used in the ex-

perimental and animal groups simultaneously (28).

MPTP models

The MPTP model was constructed in 1982 by Langston et al.,

who found symptoms similar to PD in drug addicts who injected

MPTP-contaminated heroin (29). In particular, most of the histo-

pathological findings along with the characteristic clinical symp-

toms in PD patients were observed in the nonhuman primate

(NHP) model, and in the mouse model, DAergic neurons degen-

eration was observed, although no representative clinical symp-

toms were observed. However, the rat model was inadequate be-
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cause it was resistant to MPTP due to the species characteristics

(30). In addition, in the case of the mouse model, no inclusion

body similar to the Lewy body (LB), one of hallmarks of PD,

was found, although the model was established with acute, sub-

chronic, and chronic MPTP treatment via injection or using an

osmotic pump (31, 32). However, acute or subacute MPTP treat-

ment leads to necrosis of DAergic neurons in the SN, but is

limited by a spontaneous recovery due to the reversible response.

Other neurotoxin models

As studies investigated the role of environmental factors in hu-

man PD, a model was developed by chemical treatment the as-

sumption that exposure to herbicides or pesticides may be a

cause. Among the herbicides, paraquat (N, N'-dimethyl-4-4'-bi-

piridinium) was structurally similar to MPP+ (1-methyl-4-phenyl-

pyridinium), a metabolite of MPTP, and therefore used in mouse

studies. Decreased DAergic nerve cell fibers in the striatum and

neurons of the SN were reported in patients with decreased mo-

tor abilities (33). In contrast, only a small number of necrotic ni-

grostriatal DAergic neurons were observed in other studies (34)

without behavioral abnormalities or neural circuit destruction (35).

However, based on several models developed using the method

reported by Betarbet et al., (36) only about half of the rats treat-

ed with rotenone showed necrosis of nigrostriatal neural cells,

and the model was not established in mice or monkeys except
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rats (37).

In recent years, inflammation has been reported as an important

factor contributing to PD. A rat model in which the endotoxin

lipopolysaccharide (LPS) was directly injected to the nigrostriatal

pathway has been developed based on inflammation in the ni-

grostriatal pathway triggered by neurotoxins administered (38).

LPS administered topically to the SN or striatum is not directly

toxic to DAergic neurons, but cytotoxins released by microglia

activation disrupted the dopamine neural circuit. Hunter et al. (39)

confirmed a decrease in dopamine concentration and accumulation

of α-synuclein (α-syn) in the striatum along with SN cell ne-

crosis in a mouse model administered LPS in the striatum.

Genetic models

After studies using mouse and rat transgenic animal models ex-

posed to oxidative stress, which believed to cause PD, cell trans-

plantation therapy was developed using genetically modified ani-

mals (40, 41). In the late 1990s, various genetically modified

mouse models were used to investigate pathological mechanisms:

MAO-B transformation or knockout (KO) mouse model (42, 43),

neuronal nitric oxide synthase or inducible NOS KO mouse model

(44, 45), and dopamine transfer factor (DAT) or dopamine re-

ceptor KO mice (46, 47). However, this strategy is difficult to ac-

cept as practical transgenic PD models. In the early 2000s, mice

with knockout of α-syn (48, 49), DJ-1 (50), Parkin (51), PINK1
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(52), and other genes were investigated. However, a non-mam-

malian transgenic animal model was developed as an alternative

to compensate for the poor nigrostriatal neuronal necrosis in

transgenic mouse models. The representative non-mammalian

transgenic animal models, fruit flies (Drosophila) (53, 54),

Caenorhabditis elegans (55), and zebrafish (56) models are eco-

nomical in terms of model development and maintenance com-

pared with rodent or NHP models, and a large number of such

models can be tested simultaneously (57). As a result, an optimal

model for evaluating the effect of α-syn deletion or neuro-

protection was developed while maintaining the nigrostriatal

pathway, which increases the concentration of dopamine and dop-

amine metabolites in the striatum and increases the concentration

of α-syn in the striatum (58).

Limitation of rodent models of PD

In general, rodents have been utilized as animal models compared

with NHP based on accessibility, easy handling and manipulation,

ease of husbandry, and economics of management. As an animal

model for PD studies, the 6-OHDA-treated rat model presents

behavioral disorders such as limb movement abnormalities, ataxia,

and sensory-motor disorders; however, the standard 6-OHDA

model carries a hemisphere lesion, which is different from the

patient's symptoms (59). The MPTP-treated mouse model ex-

hibits motor symptoms such as tremor and gait abnormalities,
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but unlike the primate model, it does not show dyskinesia, be-

cause the nerve pathways associated with MPTP damages are

presumed to differ from those of the mouse and NHP, and sev-

eral therapies may explain the difference in interpretation of re-

sults in mouse models and human patients (60). The transgenic

mouse model is easy to develop and maintain compared to a

neurotoxin-treated model, except that genetic engineering techni-

ques are essential. In addition, in a mouse model, the over-

expression or deletion a gene underlying hereditary PD represents

an optimal condition to identify the causative role of a specific

gene. However, the common intrinsic genetic factor underlying

dopamine neuronal necrosis is not observed in the characteristic

mouse species (61).

NHP models of PD

The ideal animal model of PD should show motor or non-motor

symptoms in PD patients and responses to therapies used clin-

ically, and similar histopathologic lesions in the brain (62-64).

However, no animal models meeting the above conditions com-

pletely are available. Therefore, NHP models have an advantage

over other species models because NHP models are the closest

genetically with human, exhibit similar anatomy of central nerv-

ous system (CNS) including the brain and other organs, and op-

erate arms or legs like human (29, 65, 66).
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Neurotoxin models – 6-OHDA, MPTP

Neurotoxin-treated primate models were mainly developed by

MPTP and 6-OHDA, especially 6-OHDA models of baboons

(Papio papio) (67) and rhesus monkeys (Macaca mulata) (68),

but mainly common marmosets (Callithrix jacchus). The charac-

teristics of 6-OHDA NHP model vary according to the location

and frequency of administration of 6-OHDA (69-76). In general,

the striatum, SN, and medial forebrain bundle, which is the ni-

grostriatal pathway, are the treatment sites. New models have

been developed to control dose frequency due to the nature of

recovery after about 10 weeks after treatment with 6-OHDA

similar to MPTP (77). In order to develop the 6-OHDA model,

although a very small needle is used in the brain tissue, it is

asscociated with the risk of physical damage following multiple

injections, and appropriate stereotaxic surgery is required to in-

ject it in the correct position. In addition, administering 6-OHDA

to induce symptoms in only one hemisphere, the various clinical

symptoms seen in human PD patients do not appear.

However, the MPTP model was created using old world monkeys

such as velvet monkey (Chlorocebus aethiops), rhesus monkey,

and cynomolgus monkey (Macaca fasicularis), in addition to new

world monkeys such as squirrel monkey (Saimiri sciureus) and

common marmoset, and is the most used model (77) (Figure 3).

In addition, a model development method in which MPTP admin-

istration route, dosage, and frequency or duration of admin-
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istration is very diverse was introduced depending on the clinical

symptom progression and maintenance period of the model (Table

2). Unlike other models, in the MPTP model, it affects only the

DAergic neurons in the brain (78), and leads to the accumulation

of α-syn in the dopaminergic neurons associated with LBs (79).
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Figure 3. Methods used to create NHP model of PD from 1974

to 2019. As a result of literature search in SCOPUS with

“Parkinson’s disease”, “animal model” and “primate” or “monkey”,

most studies were conducted using the MPTP treatment model

(88%), followed the Aging model (6%), and the 6-OHDA treat-

ment model (3%).
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Table 2. NHP PD model characteristics according to various MPTP treatment methods

Types Species Routes Doses Duration
Study
periods

References

M. fascicularis IV
A. 0.75 mg/kg
B. Total 2.75-9.25 mg/kg

A. 2 wk
B. 12-20 wk

A. 4 d
B. 8-20 wk

Perez-Otano et al. (80)

M. fascicularis IV Total 2.8-3.2 mg/kg 14-16 d 25 d Bezard et al. (81)

M. fascicularis IV 0.2 mg/kg 13-17 wk 25 d Meissner et al. (82)

M. fascicularis IV Total 2.6-27.0 mg/kg 1-2 wk 4-8 wk Crossman et al. (83)

M. fascicularis IV 0.6 mg/kg 18 wk 5-8 wk Brownell et al. (84)

M. fascicularis IV 0.2 mg/kg 29 d 8 wk Bezard et al. (63)

M. fascicularis IV Total 12.6-15.8 mg 4-7 d 60 d Visanji et al. (85))

M. fascicularis SC Total 0.6-4.0 mg/kg 1-5 wk 4 wk Morissette et al.* (86)

M. fascicularis IM
A. Total 10.7-12.3 mg/kg
B. Total 1.0-6.5 mg/kg

A. 58 wk
B. 4-24 wk

17 wk Durand et el. (87)

M. fascicularis IM Total 2.8-7.0 mg/kg 15-35 d 48 wk Seo et al. (88)

M. nemestrina IV Total 14.94-75.42 mg 20-52 wk 8-60 d Schneider and Kovelowski*** (89)

C. aethiops IM Total 2.8-5.3 mg/kg 2-8 wk 10 d Jan et al.** (90)

C. aethiops IM Total 3.2-13.2 mg/kg 2-8 wk 10 d Jan et al.** (91)

C. aethiops IM Total 1.3-5.2 mg/kg 2-7 wk 15 wk Mounayar et al. (92)

(Continues)
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Table 2. (continued)

Types Species Routes Doses Duration
Study
periods

References

P. papio IV
A. Total 34.1-40.6 mg/kg
B. Total 11.0-27.8 mg/kg

A. 68-84 wk
B. 20-86 wk

A. 8-40 wk
B. 28-64 wk

Hantraye et al.,**** (93)

P. papio IV Total 11.0-37.6 mg/kg 20-86 wk 28-64 wk Varastet et al. (94)

M. mulata IV Total 9.9-18.6 mg 5-8 d 14 wk Burns et al. (95)

C. jacchus IP 2-4 mg/kg 4 d 10 d Jenner et al. (65)

C. jacchus IP 2-3 mg/kg 5 d 4-5 wk Rose et al. (96)

C. jacchus IP
A. Total 6-22 mg/kg
B. Total 78-83 mg/kg

A. 3-7 d
B. 5 wk

12 wk Ueki et al. (97)

C. jacchus SC 2 mg/kg 5 d 8 wk Iravani et al. (98)

C. jacchus SC 2 mg/kg 5 d 12 wk Fox et al. (99)

S. sciureus SC
A. 2 mg/kg
B. Total 6.0-8.75 mg/kg

1 d 6 wk Di Monte et al. (100)

S. sciureus IP 8.0-9.5 mg/kg 1-5 d 25 d Langston et al. (101)

S. sciureus SC Total 12,9-15,9 mg/kg 4-17 wk 8 wk Stephenson et al. (102)

M. mulata IV 0.4-1.2 mg/kg 1 inj 4-6 wk Ovadia et al. (103)

M. mulata IV 3 mg 1 inj 6 wk Emborg et al. (104)

M. mulata IV 3 mg/kg 1 inj 12 wk Kordower et al. (105)

(Continues)
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Table 2. (continued)

Types Species Routes Doses Duration
Study
periods

References

M. mulata IV 3-4 mg 1 inj 12 wk Collier et al. (106)

M. mulata IV 0.8 mg/kg 1 inj 20-28 wk Benazzouz et al. (107)

M. mulata IV
0.4 mg/kg (right)
+ 0.2 mg/kg (left)

each 1 inj 48 wk Smith et al. (108)

M. fascicularis IV 0,05-1.6 mg/kg 1 inj 4-14 wk Bankiewicz et al. (109)

M. fascicularis IV 0.3-0.6 mg/kg 1 inj 8 wk Aebischer et al. (110)

M. nemestrina IV 2.5-3.5 mg/kg 1 inj 6-8 yr Emborg-Knott and Domino***** (111)

C. apella IV 1.2 mg/kg 1 inj 80-88 wk Emborg and Colombo (112)

osmotic
-pump

M. fascicularis SC 0.5 mg/24 h 2-4 wk 4 wk Hadj Tahar et al. (113)

M. fascicularis SC Total 3 mg 1-2 wk 48 wk Sanchez et al. (114)

C. jacchus SC Total 6.0-14.25 mg 2 wk 20 wk Petryszyn et al. (115)

Mixed

M. mulata IV 2.5 mg ICA + 0.3 mg/kg 1 inj + 4 wk 6 wk Emborg ME et al. (116)

M. mulata IV 2.5 mg ICA + 0.3 mg/kg
1 inj
+ 2-7 wk

28-68 wk Eberling et al. (117)

inj: injection; d: day; wk: week; yr: year

* 2-3 mg injections at weekly intervals

** 0.4 mg/kg 4 daily injections in each of the first 2 weeks followed by 1 or 2 injections per week

*** 0.010-0.175 mg/kg injections up to 3 times per week

**** 0.4 mg/kg 5 daily injections followed 5-6 months later by weekly injections of 0.2-0.5 mg/kg for 8-18 months

***** Freezing was not observed in all MPTP-infused monkeys.
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Aging models

The NHP PD model can be largely classified into three types: an

aging model, a neurotoxin administration model, and a genetic

modification model. The aging model was developed based on the

fact that PD in most human patients occurs at an older age and

aging is presumed to be the cause of PD. The model was devel-

oped by several investigators using rhesus monkeys (118-126)

and squirrel monkeys (127, 128). In the aging model, postural and

gait abnormalities and mild tremors were detected in human PD

cases, whereas histopathological degenerative changes involving

nigrostriatum such as dopamine reduction in the striatum, dop-

amine neuronal necrosis in the SN, and deposition of lipofuscin

were observed. However, aging is not a disease, but a natural

change, and among NHP, it is difficult to develop a specific

model because the aging period vary with each strain and

individual. It is difficult to associate motor symptoms with ab-

normalities involving the DAergic neuropathy, as it is possible to

develop not only PD symptoms, but also other aging diseases of

the musculoskeletal system or metabolism, in addition to the high

cost required for model management.

Genetic models

In humans, α-syn is a major component associated with the

SNCA gene mutation in patients with hereditary familial PD and

the LBs found in patients with idiopathic PD. Unfortunately, in
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NHPs, no human-like spontaneous mutation is known. Therefore,

a model was established by directly injecting the human α-syn

gene into the brain, and similar to the 6-OHDA model, intra-

cranial administration was included (129, 130). Thus, most models

use marmoset monkeys instead of other strains. In the model

overexpressing normal α-syn and mutant α-syn, degenerated

dopamine neurons were found in the striatum, whereas DAergic

neuronal necrosis in the ventral midbrain region was higher in

the model over-expressing the mutant α-syn than in the model

over-expressing the normal α-syn (129). In order to introduce the

α-syn gene, the degree of overexpression and peaking time vary

depending on the type of carrier used in the viral vector (131,

132) (Table 3). Overexpression of the introduced gene and symp-

tom manifestation occur after a few days to weeks. In addition,

it is necessary to introduce a gene directly into the brain tissue

similar to the 6-OHDA model, which may lead to physical dam-

age in the absence of adequate surgical expertise. However, the

symptoms observed in human familial or idiopathic PD patients

cannot be detected as the gene introduced only in one hemisphere

is expressed, which is a model limitation.
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Table 3. Human α-syn overexpression in NHP models

Animals Endpoint after

viral injection
References

Strains Age

C. jacchus

21-66 mth 52 wk Eslamboli et al., (129)

65-72 mth 16 wk Kirik et al., (130)

A. 2 yr

B. 6 yr
11 wk Bourdenx et al., (133)

M. mulata

A. 2-3 yr

B. 7-8 yr

C. 15-18 yr

8 wk Yang et al., (134)

M. fascicularis 8 yr 17 wk Koprich et al., (135)

wk: week; mth: month; yr: year
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Advantages of MPTP-treated NHP models

NHP PD models involving NHPs compared with other animal

species are mostly developed via MPTP administration. Various

NHP models such as cynomolgus monkey model were developed

(136), since Langston et al. (101) developed the squirrel monkey

model and Jenner et al., (65) developed the common marmoset

model in 1984 (137). Cynomolgus and rhesus monkeys, which are

most frequently used as old-world monkey MPTP models, exhibit

individual differences in sensitivity to MPTP. Therefore, several

investigators have introduced models to showcase different routes

and dosages (111, 138-140). However, most of the marmoset

monkeys used as the new world monkey MPTP models were

developed via subcutaneous administration for 5 consecutive days,

and some researchers modified the MPTP treatment method for

the desired condition (97, 141, 142) (Table 2).

The NHP MPTP model can be used to evaluate in a variety of

combinations such as bradykinesia, postural abnormalities, facial

expression changes, tremors, and rigidity in human PD patients.

It also facilitates the evaluation of cognitive abilities, fine move-

ments, tremors, and excessive blinking using tools similar those

adopted for human PD patients, as well as the Wisconsin General

Apparatus Test (89, 116, 143-145).

However, the NHP MPTP model develops dyskinesia caused by

L-DOPA administration similar to that of human PD patients.

The varying severity of dyskinesia in the NHP model, caused by
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L-DOPA after MPTP administration, is clinically relevant as

mentioned in chapter 4 of the Unified Parkinson’s Disease Rating

Scale (UPDRS), used to evaluate human PD patients (146, 147).

In particular, 70% or more of drugs evaluated using a NHP

model, compared with rodents or other animal models, have sci-

entific and ethical advantages in predicting efficacy in phase 2

clinical trials of dyskinesia treatment (148, 149). The NHP MPTP

model is useful not only for the study of motor symptoms but

also for non-motor symptoms. In particular, in the case of the

marmoset model, unlike other species, psychosis-like behavior

was numerically evaluated (150, 151). Since non-motor symptoms

such as hallucinations in human PD patients are important in-

dicators of disease severity (152), they are invaluable in new

drug development or research studies evaluating excessive body

care or hallucinogenic symptoms with varying severity. In addi-

tion, rapid eye movements (REM) can be observed in the NHP

MPTP model in sleep (153) and cognitive disorders (154), which

are very common in human PD patients (155, 156). Further, evi-

dence of lost cognitive ability related to the frontal lobe (157)

suggests its advantage as a diagnostic tool (Table 4).
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Table 4. Similar clinical symptoms of human PD and MPTP-treated

NHP models

Sort Symptoms

Motor

Delayed response

Delayed moving

Resting tremors

Dyskinesia caused by L-DOPA

Non-motor

Mild cognitive impairment

Sleep disorder

Confused circadian rhythm

Constipation
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Current PD therapy

Currently, PD therapy is based on drugs such as Levodopa

(L-3,4-dihydroxyphenylalanine; L-DOPA) for the management of

symptoms underlying motor disorders and deep brain stimulation

(DBS), which is a surgical method of electrostimulation to specif-

ic parts of the brain that control motor functions. Individual

medications are used to relieve symptoms associated with

non-motor abnormalities.

L-DOPA and supportive medication for PD therapy

L-DOPA has been used as a combination of L-DOPA and

DOPA-decarboxylase inhibitor (DDCI) to increase the duration of

drug efficacy for nearly 20 years since the approval by the

United States Food and Drug Administration (FDA) as a PD

therapy in 1970 after Gerge Cotzias confirmed its clinical useful-

ness in 1967 (158). Subsequently, as a treatment of advanced PD,

ergoline dopamine agonists (DAs) such as pergolide or cabergo-

line, which directly affect the dopamine receptor alter the intrinsic

neurotransmitter (159), and monoamine oxidase B (MAO-B) in-

hibitors such as selegiline or rasagiline, which showed efficacy in

MPTP-treated animals were used with L-DOPA (160). In the

1990s, catecholmethyltransferase inhibitors such as entacapone or

trocapone were used to prevent degradation of L-DOPA in blood

or across blood-brain barrier (161), in addition to non-ergoline

DAs such as ropinirole and pramipexole (159). L-DOPA is still



- 27 -

used as a golden standard for PD therapy. Evidence supports the

use of exogenous dopamine against endogenous dopamine deple-

tion to ameliorate symptomatic parkinsonism but not to prevent

progression of disorder (162-164).

Surgical approach for PD therapy

In addition, surgical treatment is used instead of drug admin-

istration, and the first reported surgical treatment involved pallid-

otomy (165, 166) and thalamotomy (167), which were used in ear-

ly 1950s to excised the underlying basal nucleus. Since 1980,

Brice and McLellan developed DBS, a reversible, controllable, and

safer surgical method has been developed to suppress the disease

progression via electrical stimulation to the midbrain and basal

ganglia, operating in the most common mode (168). In the early

stages of DBS, electrodes were also inserted into the ventral in-

termediate nucleus of thalamus, which is effective both tremor

and dyskinesia, without affecting other parkinsonisms (169).

Thus, electrical stimulation is commonly performed in the sub-

thalamic nucleus and globus pallidus pars interna (170) during

DBS. Additional insertion of electrodes into the pedunculopontine

nucleus, assists with walk and balance (171).

Limitation of current therapy and alternative trials

for PD

It is reported that side effects such as “Wearing-off” and
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L-DOPA-induced dyskinesia may occur when PD patients are

treated with L-DOPA long term (172, 173). In general, after an

average of 5 years of L-DOPA treatment, at least 40% of pa-

tients develop severe dyskinesia and motor fluctuations (174), as

well as significant increases in non-motor symptoms during that

period, according to several studies (19, 175). Therefore, novel and

variable formulations to minimize the unexpected adverse effects

associated with long-term L-DOPA treatment have been inves-

tigated in field conditions; however, the formulation that can be

used to exclude all adverse effects is not still exist (176, 177).

However, DBS may alleviate or control motor symptoms, but it

can not resolve the underlying cause of PD and the mechanism

of motor symptom relief is not fully understood (171). In addition,

there is a limitation that not all PD patients undergo DBS sur-

gery, but only patients who meet the criteria such as clinically

defined age, duration and progression of PD, and especially, re-

sponse to L-DOPA (178). Further, in most patients undergoing

DBS surgery, the therapeutic effects on motor symptoms are

recognizable; however, non-motor symptoms such as hallucina-

tions and memory loss persist (179).

Due to limitations of current pharmacological and surgical thera-

pies, multiple complementary or alternative therapies has been of-

fered additionally to enhance the quality of patient’s life (180).

Most of the currently available pharmacological or alternative

therapies may be used to managed major motor symptoms, and
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molecular approaches such as neurotrophic factor therapy (181,

182), gene therapy (183), or cell replacement therapy (184-186)

are emphasized. Neuromodulator therapy is based on the role of

neurotrophins, peptides secreted from neuroglia, support cells,

such as astrocytes or dendritic cells, in regulating growth and

differentiation of nervous system (187, 188). Although neurtrophins

associated with PD have been reduced or neuronal necrosis is

not reported in human patients, neurotrophins may be of ther-

apeutic value by promoting neuronal growth and function and

disrupting neurotoxic processes. Neutrophins that are expected to

have therapeutic effects include nerve growth factor, as well as

brain-derived neurotrophic factor (BDNF), neurotrophin 3 and 4/5,

glial cell-derived neurotrophic factor (GDNF), cerebral dopamine

neurotrophic factor (CDNF), and recently discovered mesen-

cephalic astrocyte-derived neurotrophic factor (MANF) (189).

Gene therapy involves a combination of methods for disease reg-

ulation and non-regulation. Most studies involves in disease con-

trol aim to control cell necrosis associated with PD and re-

generate necrotic cells by overexpressing neuronal regulatory

substances with neuroprotective effects in the SN region.

However, non-disease regulation entails normalization of abnormal

nerve signals in the basal nucleus by expressing DAergic or

γ-aminobutryic acidergic enzymes, and control of motor dysfunc-

tion rather than regulating the underlying cause of PD (190)

(Table 5). Although those therapies are tested pre-clinically and
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clinically, no remedy is available for complete patient recovery.
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Table 5. Gene therapy studies for PD

Type Gene References

Disease-regulating

GFL modulators

- GDNF
Ariakasinen and Saama (191)

- neurturin

Non-GFL modulator

- CDNF
Lindahl et al., (182)

- MANF

- BDNF Ding et al., (192)

- Nurr1 Dong J et al., (193)

- vascular endothelial growth factor Sheikh et al., (194)

Non-disease regulating

Dopamine converting enzymes

- tyrosine hydroxylase
Muramatsu et al., (195),

Jarraya et al., (196)
- GTP cyclohydroxylase

- alpha-amino acid decarboxylase
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Development of stem cell therapy for PD

Among the alternative therapies introduced above, cell therapy

facilitates cellular transplantation to replace necrotic or apoptotic

DAergic cells affected by unknown causes and restore its func-

tion (Table 6). Since a study published in 1979 demonstrating,

improved dyskinesia and graft survival and differentiation after

transplanting nerve cells containing DAergic cells derived from

rat fetus in a rat model (197), fetal nigral cells transplantation

has been reported to be effective not only in supplying dopamine

but also to induce the formation of a neural network between the

transplanted cells and existing cells. However, using aborted fe-

tuses to obtain embryo-derived cells triggered ethical and im-

munological concerns (198). To address these challenges, a meth-

od of transplanting autologous cells was introduced, and clinical

studies using various tissues to synthesize dopamine were also

conducted (199). Two main approaches to cell transplantation

therapy are availabe. First, neurorestoration, in which the trans-

planted cells or tissues might play a direct role in existing cells

or tissues, alleviating or regulating motor dysfunction caused by

necrotic cells via secretion and release of neurotransmitters, syn-

apse formation, and neural circuit formation. Second, the trans-

planted cells and tissues modify host environment indirectly re-

sulting in neuroprotection or neurorescue via anti-inflammatory,

angiogenic or neurogenic, and immune regulatory effects (199).
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Table 6. Tissues and cells used in cell transplantation studies for PD therapy

Type Source Host References

fetal ventral mesencephalon (VM) tissue Human Human
Lindvall et al., (200)

Peschanski et al., (201)

embryonic VM tissue Rat Rat Lee et al., (202)

Adipose tissue-derived stem cells Human
Rat

Mouse

Schwerk et al., (203)

Choi et al., (204)

Bone marrow-derived stem cells Rat Rat
Park et al., (205)

Capitelli et al., (206)

Embryonic stem cells Human Rat Brederlau et al., (207)

Induced pluripotent stem cells Human Rat Kikuchi et al., (208)

Neural stem cells Mouse Monkey Virley et al., (209)
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Implications of stem cell therapy

Stem cells can be divided into multipotent adult stem cells, pluri-

potent embryonic stem cells (ESCs), and induced pluripotent stem

cells (iPSCs) according to differentiation ability. Most of the cell

transplantation therapies are expected to replace necrotic cells via

differentiation or play a supplemental role in case of lost function.

However, the biggest risk is that of neoplasm due to excessive

differentiation or hyperproliferation (210). Cell transplantation

therapy must ensure the safety of the transplanted cells. General

chemical-based therapy can identify adverse reactions within a

short time or days after administration, in contrast to cell

transplantation. The absolute physical time for proliferation and

differentiation to an appropriate number ranges from a few weeks

and months to a long time until the cell is settled at an appro-

priate position in the recipient with functional expression.

Therefore, it cannot be evaluated via a safety evaluation method

based on general chemical compounds (211).

Unlike other organs or tissues, the brain, in particular, has

unique anatomical and histological characteristics. The

blood-brain barrier prevents the direct entry of bacteria or cells,

which are polymers greater than a nm in size. Therefore, a cell

transplantation method for the treatment of brain diseases includ-

ing PD requires, effectively delivery of cells other than direct

transplantation into a specific brain region, and has yet to

developed. Several studies have reported the improvement of mo-
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tor function and the presence of DAergic neurons in the NHP

model used in the experiment. Other studies have reported that

only some of the animals used in the experiment were less ef-

fective or not at all. In particular, the effects on survival, differ-

entiation and proliferation, and transplanted individuals after

transplantation differed depending on the origin, lineage, and de-

gree of differentiation of the cells used in transplantation (Tab1e

7).
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Table 7. Therapeutic effects of Cell transplantation using NHP PD models

Models Transplanted cells Results References

MPTP Monkey neural progenitor cells
․motor symptoms recovery was observed
․no recovery pattern was observed in PET images

Takagi et al. (212)

MPTP
Human iPSC-derived neural
progenitor cells

․no recovery pattern was observed in PET images
․survival and differentiation of transplanted tissues

were observed at 6 months after transplantation
Kikuchi et al. (213)

MPTP
Human ESC-derived neural
progenitor cells

․new tissues of D14-graft cells were observed
․dopamine-PET images of D42-graft cells were

observed
․no motor symptoms recovery was observed

Doi et al. (214)

MPTP
Monkey iPSC-derived DAergic
precursor cells

․hyperplasia or new tissues was not observed
․no recovery pattern in PET images or motor

symptoms were observed
Emborg et al (215)

MPTP
Monkey bone marrow-derived
mesenchymal stem cells

․motor symptoms recovery was gradually observed
․no new tissues were observed in biopsy and PET

images
Hayashi et al. (216)

MPTP Monkey iPSCs
․motor symptoms recovery was observed in only 1

out of 3 animals
․no recovery pattern was observed in PET images

Hallett et al. (217)

6-OHDA Monkey embryonic nigra tissue

․motor symptoms recovery was observed at 6
months after transplantation

․Turning movements related to caudate nucleus and
limb movements related to putamen were confirmed

Annett et al. (218)
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The immune response of transplanted recipients is the most im-

portant factor in the therapeutic effect of cell transplantation. In

studies using rat models to date, the survival rate of DAergic

neurons was only 3-20%, suggesting it is not possible to expect

the effect because it cannot produce enough dopamine to improve

motor symptoms. Most of the transplanted cells die within a

week after transplantation. Within 24 hours, the cells are elimi-

nated by apoptosis due to hypoxia or lack of nutrients, or phag-

ocytosis by neutrophils. The immune response by microglia or

astorcytes leads to loss of cells from day 3 after transplantation

(219, 220). Therefore, as a strategy to maximize the effect on cell

transplantation, various studies have been conducted to ensure

that the transplanted cells survive as much as possible, and the

cell survival rate is increased or rather decreased by simulta-

neous treatment with GDNF, the known neurotrophic factor, or

drugs that control the inflammatory response (221, 222). However,

immunosuppressants administered to control the recipient's im-

mune response can lead to infections or tumors induced by bac-

teria or viruses, and an increased risk of teratoma formation by

transplanted cells. Therefore, it is necessary to study the optimal

immunosuppression strategy that can maximize the survival of

transplanted cells while reducing the risk of the recipient (223,

224). The immune response is also an important factor in the se-

lection of the animal model used in cell therapy studies. NHP

models that can confirm the survival and function of transplanted
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cells without immunosuppression when transplanting hu-

man-derived cells as well as allogeneic cells, is the best choice

for studying the effects of cell transplantation on motor symp-

toms recovery or treatment (225).

Importance of early PD diagnosis and

available biomarkers

Most people with PD manifest weak clinical symptoms are diag-

nosed with PD after an average of 10 years since the actual on-

set of PD. By then, approximately 70% of DAergic neurons are

already lost, resulting in poor treatment nad prognostic outcomes

based on a diagnosis of clinical symptoms (226). PD is not a le-

thal disease, but because patients can lives for at least 20 years

after the intervention, it is important to ensure that the quality of

life is not deteriorated by various complications caused by motor

and non-motor symptoms, and the increased familial, social and

economic burdens of the patient (227). Therefore, early diagnosis

of PD guarantees the patient's quality of life to the maximum

extent possible, as it increases the range of options available for

appropriate treatment to alleviate both movement and non-motor

symptoms and delay the progress of the disease. In addition,

there is a great advantage in reducing the costs of patient care

(15).
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The difficulty in diagnosis of PD based on motor

symptoms

Current studies about treatment or prevention may be focused on

finding specific early symptoms (228, 229) or biomarkers

(230-232) for diagnosis and potential inhibition of disease

progression. However, to date, there is no biomarker for early di-

agnosis, and unfortunately, motor symptoms such as resting

tremor, rigidity, posture impairment in PD are found in other

CNS degenerative diseases such as multiple system atrophy

(MSA), progressive supranuclear palsy (PSP), corticobasal degen-

eration (CBD), dementia with LBs, essential tremor, and drug-in-

duced Parkinsonism. Therefore, it has been reported that 6-8% of

misdiagnosis is attributed to neurology specialists and 47% of

misdiagnosis due to general practitioners diagnosing PD with on-

ly movement symptoms (233-238).

Current imaging diagnostics for early stage PD

Currently, techniques for early diagnosis used clinically include

imaging and biomarker detection using biologically derived

samples. Diagnostic methods using imaging equipment include

single photon emission computed tomography (SPECT), and posi-

tron emission tomography (PET) using radioactive isotopes, and

magnetic resonance imaging (MRI), magnetic resonance spectro-

scopy (MRS), and transcranial sonography (TSC) without radio-

active isotopes (239).
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SPECT and PET

For SPECT and PET using radioactive isotopes, changes in dop-

aminergic nerve pathways such as the SN and striatum are

identified and used in diagnosis. SPECT is generally less ex-

pensive than PET, facilitating its application in clinical trials.

Although the dopamine activity is reduced in patients at early

stages of PD (240), it cannot differential diagnosis of, such as

MSA, PSP, and CBD (241). However, PET has recently been ap-

proved as a method for the diagnosis of PD by the USA FDA

[18F]F-DOPA has been used to measure the activity of L-DOPA

decarboxylase. Various radioisotope markers such as iodine

([123I]FP-CIT) and technetium ([99mTc]TRODAT) as well as fluo-

rine ([18F]FP-CIT) related to dopamine transporter in dopamine

neurons were used clinically (242-244). In particular, most studies

using dopamine transporters reported a sensitivity higher than

95% and a specificity of 90-100%, and suggested that changes in

intake of dopamine transporters were related to the severity of

motor symptoms (245). However, about 15% of patients with

early PD show normal findings in PET images of dopamine car-

riers (246, 247).

MRI and MRS

MRI that does not use radioactive isotopes is used for diagnosis

by identifying structural changes in PD-related region such as

striatum or SN in the brain. It is particularly useful for differ-



- 41 -

ential diagnosis of atypical PD patients, and is used as an alter-

native diagnostic to SPECT or PET. Recently, functional MRI

with blood oxygen level dependent signals has been used as an

indirect diagnostic method because the signal changes and patho-

logical mechanisms are not fully understood (248). MRS is an-

other diagnostic method using nuclear magnetic resonance for

identifying metabolic changes in the brain. MRS is useful not

only for diagnosis but also identification of effective biomarkers

(249, 250). In addition, several studies have reported that it is

particularly useful in differentiating PD and other neuro-

degenerative diseases that exhibit similar movement symptoms

(251).

TCS

TCS, another diagnostic method that does not use radioactive

isotopes, focuses on the discovery of hyperechoic images in the

SN of PD patients. van de Loo et al. (252) reported showed a

diagnostic sensitivity of 79% and a specificity of 81%. Differential

diagnosis is possible with diseases showed similar motor symp-

toms of PD based on the change in the echo of the basal nu-

cleus or lens nucleus except the SN (253, 254).

Biomarkers in biological fluids for early diagnosis

of PD

Research is ongoing to explore the specific biomarkers for early
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diagnosis of PD. However, unfortunately, biomarkers for accurate

prediction of PD outbreaks in preclinical stages applicable in clin-

ical trials have yet to be identified. In general, biomarkers are

used to evaluate pathophysiology, and pharmacological responses

to treatment attempts. Many studies have been conducted using

cerebrospinal fluid (CSF) and blood to detect biomarkers for dif-

ferential and early diagnosis of PD or other diseases with

Parkinsonian symptoms, however, the results were inconsistent

due to the large heterogeneity of the sample population and the

method of obtaining non-standardized samples (255). Blood, sali-

va, and biopsy tissues are sources of realistic biomarkers, be-

cause cerebrospinal fluid is limited by the risks and costs asso-

ciated with obtaining a specimen.

Biomarkers related oxidative stress in CSF and serum

Biomarkers for early diagnosis of PD to date can be divided into

oxidative stress-related biomarkers, which are related to patho-

genesis and progression of PD, and biomarkers related to abnor-

mal protein accumulation and aggregation. Representative bio-

markers related to oxidative stress include DJ-1 protein, uric acid,

homocysteine (Hcy), and 8-hydroxydeoxyguanosine (8-OHdG) (Table

8).

DJ-1

DJ-1 protein has a neuroprotective effect against oxidative stress,



- 43 -

and DJ-1 dysfunction is known to induce various oxidative

stress-related diseases including PD (256). In addition, several

studies have been conducted in relation to the DJ-1 concentration

and PD symptoms in the blood (257) or CSF (258), as mutations

in the DJ-1 gene are associated with hereditary PD (259). In an

early study, it was found that the concentration of DJ-1 in CSF

or plasma in PD patients was higher than in the normal control

group and was proportional to the Hoehn-Yahr (H & Y) score,

another clinical diagnostic measure. However, studies using recent

techniques have shown that the concentration of DJ-1 in plasma

(260) and CSF (261) of PD patients is lower than that of normal

controls, possibly due to errors in sample acquisition and purifi-

cation in that most of the DJ-1 occurs in hemoglobin and plate-

lets of red blood cells. Although the relationship between the

progression of PD disease and DJ-1 is not clearly known (262),

it is considered as an important potential biomarker for the diag-

nosis of PD based on the results showing that the DJ-1 concen-

tration in PD patients is lower than the CSF of patients with AD

or MSA, other neurodegenerative disorders (263).

Uric acid

It is known that uric acid has an antioxidant effect as the free

radicals (264), such as reactive oxygen species, produced during

an inflammatory reaction presumed to be the cause of PD, gen-

erate oxidative stress and necrosis of dopamine neurons in the



- 44 -

SN (265). In vitro experiments revealed that uric acid not only

prevents DAergic neuronal necrosis caused by oxidative stress,

but also prevents degeneration. Studies using rat (266) and

mouse (267) 6-OHDA models demonstrate reduced 6-OHDA tox-

icity and amelioration of behavioral symptoms or histological

conditions when high levels of uric acid in the body are ad-

ministered externally or through genetic modification. Based on

the above results, uric acid concentration and pathogenesis pro-

gression rate were inversely proportional to the results of pre-

clinical studies, confirming that uric acid can be used as a bio-

marker in CSF. It was confirmed that PD patients with low

blood uric acid levels scored much higher on UPDRS than nor-

mal controls (268).

Hcy

It is known that high levels of plasma Hcy are commonly asso-

ciated with vascular disease or AD, and metabolic diseases such

as vitamin B12 and folic acid deficiency (269-271). In particular,

the high concentration of plasma Hcy was also reported in PD

patients treated with L-DOPA and Hcy concentration in CSF

was also reported to be high before treatment with L-DOPA or

compared to the normal control group (272). However, in vitro

and in vivo experiments revealed that DAergic neuronal necrosis

in the SN due to the toxic effects of plasma Hcy (271, 273). The

high concentrations of Hcy accelerate oxidative stress in DAergic
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neurons (274). In patients with degenerative brain diseases such

as mild cognitive impairment, AD, and cerebral amyloid angiop-

athy, as well as PD, plasma levels of Hcy were higher than in

normal controls, as a screening or diagnostic indicator of PD, in

which the plasma levels of Hcy are the highest (275).

8-OHdG

8-OHdG is known as the best biomarker of DNA damaged due

to oxidative stress. Some studies have reported an increase in

the concentration of 8-OHdG in the SN of PD patients in that

oxidative damage of DNA plays a significant role in PD etiology

(276). The CSF and serum 8-OHdG levels in PD patients were

higher than in normal controls (277, 278). In addition to CSF and

serum, the concentration of 8-OHdG in urine was also sig-

nificantly higher in PD patients than in the normal control group,

and correlated with the H & Y score. A very high correlation of

8-OHdG with hallucinations, one of PD non-motor symptoms,

suggests its role as a reliable biomarker for early diagnosis of

PD (279).
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Table 8. Biomarkers related to oxidative stress in human

Item Source

Concentration of
PD patient group

compared to
normal group

References

DJ-1
CSF

↓
Shi et al., (260)

Plasma Hong et al., (261)

Uric acid Blood ↓ Boushel et al., (269)

Hcy Plasma ↑ Irizarry et al., (275)

8-OHdG

CSF

↑

Carcia-Moreno et al., (278)

Serum Gmitterová et al., (277)

Urine Hirayama et al., (279)
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Biomarkers related to abnormal protein accumu-

lation and aggregation in CSF and serum

Representative biomarkers related to abnormal protein accumu-

lation and aggregation include α-synuclein (α-syn), ubiquitin

C-terminal hydrolase-L1 (UCH-L1), and nerve fiber light chain

protein (NFL) (Table 9).

α-syn

α-syn is the most representative biomarker. It regulates synaptic

formation, although its normal physiological role is unclear. In

PD, it is well known as a key element of LBs, which are ag-

gregates of α-syn in neurons. In addition, α-syn is a result of

the expression of the SNCA gene, known as the cause of geno-

type PD. It is known that phosphorylation, misfolding, and abnor-

mal accumulation of α-syn play an important role in PD etiology.

It was found that the concentration of α-syn in the CSF of PD

patients was significantly lower than in the normal control group

(280-282), and showed a negative correlation with the H & Y

score (283). In addition, when the ratio of total α-syn and oligo-

meric form α-syn was compared between the PD patient and the

normal control group, the results showed that the oligomeric form

of α-syn in cerebrospinal fluid increased significantly in PD pa-

tients with high specificity and sensitivity (284). Phosphorylated

α-syn concentrations were higher in PD patients than in normal

controls (285-287). Also, phosphorylated α-syn induces the death
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of neurons (288) as the disease progresses, since the concen-

tration of soluble α-syn and non-phosphorylated α-syn in plasma

decreases in PD-related brain regions. Instead, the concentration

of non-soluble α-syn and phosphorylated α-syn is increased,

suggesting that the phosphorylated α-syn more clearly reflects

the PD condition (289). In addition, the phosphorylated α-syn

concentration in CSF is also considered as a useful marker for

early diagnosis of PD, based on the results of higher levels in

patients with PD than MSA or PSP as well as normal controls

(290).

UCH-L1

UCH-L1 is a specific protein found in the brain and is known

for its role in removing abnormal proteins in the cytoplasm of

neurons, and is related to α-syn metabolism, a key factor in LBs

causing the death of neurons. UCH-L1 is a marker of PD diag-

nosis, showing high sensitivity and moderate specificity (89%,

67%, respectively). The concentration of UCH-L1 in the CSF of

PD patients was reduced compared with the normal control

group. In particular, when compared with other degenerative

brain diseases such as MSA or PSP, the concentration was the

lowest (291, 292). In addition, UCH-L1 concentration in CSF is

highly correlated with α-syn concentration, suggesting its benefit

in early diagnosis if two markers are used together.
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NFL

Nerve fibers play a very important role in neuronal function as a

key element in the axonal structure of CNS and peripheral nerve

system. Abnormal phosphorylation of nerve fibers was found in

PD patients (293, 294). NFL, a key factor in neuronal signal

transmission and morphology, was recognized as a potential bio-

marker associated with myelinated axon degeneration, but the

concentration of NFL in serum as well as cerebrospinal fluid in

actual PD patients was similar to the normal control (295, 296).

Rather, it was observed that the NFL concentration in the CSF

of patients with other degenerative brain diseases such as PSP,

MSA, and CBD was increased (297, 298), suggesting that the

NFL concentration associated with PD was not increased since

PD rarely occurred in degenerative axons unlike other degener-

ative brain diseases indicated above. Therefore, it is difficult to

use NFL alone as an early diagnostic biomarker of PD, but it fa-

cilitates differential diagnosis of other degenerative brain diseases.
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Table 9. Biomarkers related to abnormal protein accumulation and aggregation in human

Item Source
Concentration of

PD patient group compared to
normal group

References

Total α-syn CSF ↓

Mollenhauer et al., (280)

Park et al., (281)

Parnetti et al., (282)

Oligomeric form

/ total α-syn
CSF ↑ Brggink et al., (284)

Phosphorylated α-syn

CSF ↑ Wang et al., (290)

Plasma ↑
Foulds et al., (286)

He et al., (287)

soluble α-syn Plasma ↓ Foulds et al., (289)

UCH-L1 CSF ↓
Jiménez-Jiménez et al., (291)

Mondello et al., (292)

NFL CSF -
Constantinescu et al., (293)

Hansson et al., (294)
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Conclusion

PD is a degenerative disease that exhibits characteristic motor

symptoms due to necrosis of DAergic neurons in the SN. The

disease mechanism is attributed to mitochondrial damage caused

by oxidative stress, but a clear cause has yet to be identified.

L-DOPA had been used to treat PD traditionally. However, it al-

leviates movement symptoms and slows the disease progression

without resolving PD. DBS is a surgical treatment; however, it is

limited in application in that it cannot be used for all patients.

Stem cell therapy is being studied as an alternative to previous

treatments. Animal studies are needed to analyze the causes, de-

velopment and progression of PD, as well as therapeutic or prog-

nostic drugs. PD animal models have been developed using vari-

ous methods such as toxin administration and genetic manipu-

lation of various animal species. However, it is very important to

develop a suitable animal model expressing the characteristics

and effects of living cells used as a cell therapy agent can be

expressed because most animal models provide conditions con-

ductive to investigation of existing chemical therapeutics or pre-

ventive drugs.
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CHAPTER Ⅰ

Establishment of

a novel Parkinson’s disease model

in common marmoset

for cell therapy evaluation
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ABSTRACT

Since animal models of Parkinson’s disease (PD) are useful re-

search tools to investigate human patients, it is most appropriate

and important to select the optimal research model for treatment

or prevention. Because most of the characteristics of PD patients

can be expressed, MPTP is mostly used to generate various ani-

mal model of PD, including NHP. In the case of a NHP model,

various methods have been introduced depending on the ex-

perimental purpose. However, acute dosing is associated with a

high incidence of early deaths due to the toxicity of MPTP itself.

PD symptoms and lesions do not appear completely at low doses

administered long term. In addition, most of the known method

using MPTP are models suitable for short-term research and not

for experiments that require sufficient time, such as cell or tissue

transplants. Based on these findings, a new method of subcuta-

neous treatment using “2-2-1-1-1” mg/kg MPTP was ad-

ministered to common marmosets (Callithrix jacchus) with stable

PD symptoms over a long-term period without animal death.

After MPTP treatment, stable clinical symptoms were observed

continuously based on evaluation criteria of 10 or higher in daily

observation. Based on the tower test, marmosets did not show an

elevation of 5.61 ± 0.72 levels compared to levels before MPTP

administration. In the striatal PET image, radioactivity after

treatment decreased by 33.35 ± 1.23% compared to levels before
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MPTP treatment. Immunohistochemistry showed a loss of

TH-positive cells and fibers in the SN after MPTP treatment. It

is proposed that the marmoset model developed by the novel

MPTP treatment method may be an optimal model for studies

requiring long-term cell transplantation.

Keywords: Parkinson’s disease; MPTP; common marmoset;

nonhuman primate; animal model



- 55 -

INTRODUCTION

Pakrinson’ disease (PD) is a representative degenerative brain

disease occurring in the elderly (5). The exact cause of the onset

is still unknown, but the mechanism known to date entails oxi-

dative stress, such as inflammation caused by endogenous or

exogenous factors, in the mitochondria of dopaminergic (DAergic)

neurons in the substantia nigra (SN). The damage induces ne-

crosis of nerve cells manifested by tremors, limb rigidity, brady-

kinesia, and gait disorder as clinical symptoms (13).

Various in vitro (21, 299, 300) and in vivo (301-304) models have

been developed to evaluate therapeutic and preventive drugs as

well as investigate the pathogenesis of PD. The in vitro model

targeting DAergic neurons is highly economical and reproducible.

In contrast, the patient environment is in a state of harmony

with various systems rather than mediated via signaling between

several types of cells and cells alone. Therefore, in vivo studies

are essential (305,306). The PD animal model was developed by

treatment with another neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahy-

dropyridine (MPTP) or rotenone, starting with a rat model devel-

oped injected with the neurotoxin 6-hydroxydopamine (6-OHDA)

in the brain in 1970. A genetically engineered animal model has

been developed and used since the late 1990s. To date, about

95% of studies using PD animal models have used rodent models

such as mice and rats, which are still used in several recent
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studies. The rat model was used more than the mouse model to

test neurotoxins such as 6-OHDA or MPTP mainly used from

1970s to 1990s. However, since 1990s until recently, genetic ma-

nipulation technology was mainly used, and the mouse model

was used more than the rat model. Also, in view of the ethical

aspects and the ease of managing animals, few studies used ani-

mal species other than vertebrates such as fruit flies (Drosophila)

or Caenorhabditis elegans (C. elegans), but the progress is

steady (307-309).

The nonhuman primate (NHP) model of PD, which is associated

with anatomical and histological advantages and genetic sim-

ilarity, has been developed and used since the 1980s to overcome

the difficulties associated with existing rodent models in terms of

expression, evaluation or interpretation of clinical symptoms (310,

311). The cicadian rhythm of rodents is opposite to that of hu-

mans or NHP, which complicates the evaluation of parkinsonian

symptoms during the day when rodents are naturally inactive

(312-314). It is difficult to identify abnormal posture or gait ab-

normalities in the rodent, a quadruped, compared with humans,

and it is difficult to evaluate motor symptoms caused by limb

tremor or rigidity, which is especially important in human

patients. The NHP model is very useful in evaluating non-motor

symptoms such as hallucinations and emotional relief as well as

motor symptoms (315, 316). The NHP model similar to the rodent

model, uses a neurotoxin, for genetic manipulation, and an aging
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method, which is applicable to most of the elderly human pa-

tients with PD (317, 318).

A wide variety of strains have been used to develop NHP mod-

els, from old world monkeys such as cynomolgus monkeys

(Macaca fascicularis) and rhesus monkeys (M. mulata) to new

world monkeys such as common marmosets (Callithrix jacchus)

and squirrel monkeys (Saimiri sciureus) (319, 320). Marmosets

show a high degree of genetic similarity to humans when com-

pared to rodents such as rats and mice, and anatomically, the ro-

dent striatum has a single structure. In contrast, other NHP, in-

cluding marmosets, show the most distinctive features of differ-

entiation between caudate and putamen in their capsule, similar

to humans, in the study of central nervous system (CNS) degen-

erative disorders such as PD and differences in dopamine func-

tion closely related to PD mechanism and dopamine neuron dis-

tribution in the SN (321-323). When compared with other old

world monkeys such as the cynomolgus monkey, marmosets are

very small (about 350-450 g) and can be easily handled. Also, it

is possible to survive for up to 15 years in laboratory conditions.

They generally procreate twins every 5 months even in the ex-

perimental group (324-326). In addition, it is possible to use an

stereotaxic device for rodents by utilizing the already stand-

ardized marmoset brain atlas, Therefore, it can be very useful for

PD research compared with the old world monkey that requires

magnetic resonance image (MRI) or computed tomography (CT)
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images in the 6-OHDA model or cell transplantation studies re-

quiring intracranial injection (327-330).

The NHP model using marmoset was developed and various

models were used according to the purpose of the study. Since

human PD patients manifest bilateral symptoms, the MPTP

treatment model, which is most similar to the unilateral 6-OHDA

model, is the most common. In addition, in the absence of differ-

ences in sensitivity to MPTP between individuals compared with

other NHP strains, a standardized method of acute systemic

treatment for MPTP dosage and frequency has been introduced

(331) (Table 10). Since the common marmoset models developed

with these protocols shows clinical symptoms immediately after

MPTP treatment, it was mostly used to conduct short-term

studies lasting 8 weeks to develop chemical treatments, such as

L-3,4-dihydroxyphenylalanine (L-DOPA) and its derivatives as

the “golden rule”, which are immediately recognized upon treat-

ment, and the development of adjuvant therapy for dyskinesia

following administration of L-DOPA.
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Table 10. Various MPTP treatment methods used in common marmoset PD models

Routes Doses Duration Study periods References

SC

1 mg/kg 8 d 2 wk Philippens et al. (332)

2 mg/kg 5 d

2-3 wk Smith et al. (333)

30 d Fox et al. (151)

6-8 wk Hansard et al. (334)

8 wk Iravani et al. (98)

10-12 wk Hansard et al. (335)

12 wk Fox et al. (99)

15 wk van der Stelt et al. (336)

IP

2-4 mg/kg 4 d 10 d Jenner et al. (65)

2-2-3-3-3 mg/kg 5 d 4-5 wk Rose et al. (96)

0.5-4.5 mg/kg** 29 d 10 wk Russ et al. (337)

A. 6-22 mg/kg; B. 78-83 mg/kg A. 3-7 d; B. 5 wk 12 wk Ueki et al. (97)

0.25-1.25 mg/kg 15 wk* 12 wk Colosimo et al. (62)

SC: subcutaneously; IP: intraperitoneally, d: day; wk: week

* twice a week with MPTP treatment

** 15 doses of MPTP treatment (total dose 25 mg/kg)
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Recent studies investigating disease treatment directly (restoration

via differentiation and proliferation) or indirectly (modulation of

immune reaction or differentiation and proliferation) using trans-

planted cells have been conducted continuously for various dis-

eases as well as PD that are refractory to current chemical

treatment methods or have side effects (338-341). Stem cells or

differentiation-controlled progenitor cells, which are investigated

as cell therapy products, require time to migrate, settle, pro-

liferate, and differentiate at a site of recovery post-transplantation

(342-345). A novel model is needed to stably express long-term

clinical symptoms to establish the expected effect of the trans-

planted cells, instead of the marmoset PD model, which is suit-

able for short-term studies conducted before. Therefore, the pur-

pose of this study is to establish a novel MPTP treatment proto-

col involving common marmosets to develop a model suitable for

cell therapy by modifying the protocol used to develop the exist-

ing MPTP model.
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MATERIALS AND METHODS

Animals

Four adult male common marmosets (C. jacchus) were obtained

from CLEA Japan, Inc. During the experiment, all animals were

maintained in cages (76.8 × 39.4 × 59.0 cm) individually under

controlled conditions (23-28℃, 45-70% humidity, 12 h light/dark

cycle). Animals were fed specialized diet supplemented with nu-

trients and preferably in commercial diets (Teklad New World

Primate Diet 8794, Harlan, USA) and fresh fruits, with quail eggs

additionally. To evaluate the animals health condition, body

weight was measured daily during MPTP treatment and once a

week after MPTP treatment. They were cared for and maintained

according to the Guide for the Care and Use of Laboratory

Animals 8th edition, NRC (2011) in a facility accredited by

AAALAC international (#001169). The animals were provided

chewable rubber toys for enrichment. All procedures and proto-

cols were approved by the Institutional Animal Care and Use

Committee of Seoul National University Hospital (No. 13-0024).

MPTP-induced PD model

With reference to protocols for establishment MPTP-treated

model, all animals were subcutaneously treated with 2 mg/kg

MPTP HCl (M0896, Sigma-Aldrich, USA) dissolved in saline on

the first 2 days and 1 mg/kg for 3 days (Figure 4) to develop
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an appropriate model in preventing animals death during the ex-

periment while stable and prolonged clinical symptoms were

observed. In order to prevent possible damage due to environ-

mental exposure to MPTP, the animals were managed in spe-

cially designed cages which were sealed under negative pressure

after MPTP treatment. All procedures related to MPTP treatment

were performed according to safety regulations. To confirm the

induction of parkinsonian symptoms, all animals were subcuta-

neously treated with 15.6 mg/kg L-DOPA methyl ester HCl

(D1507, Sigma-Aldrich, USA; equivalent to 12.5 mg/kg L-DOPA).
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Figure 4. The scheme of MPTP treatment regimen. Black arrow:

2 mg/kg MPTP subcutaneous treatment at D0 and D1; white ar-

row: 1 mg/kg MPTP subcutaneous treatment at D2, D3, and D4.
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Behavioral assessment

Daily observation

The behavioral assessment was conducted by recording the be-

havioral changes of animals in individual cages with a video

camera and scoring by the observer according to the evaluation

items (Table 11). The score of each item increased according to

the severity of symptom expression, and the sum of the scores

of each item exceeding 10 was selected to establish the PD

model.

Tower test

The tower test developed by Verhave and colleagues (346) were

partially modified and adapted to evaluate motor function involv-

ing head and limb movement and spatial perception of animals.

The evaluation tool was made of transparent and solid acrylic

material (27.0 × 27.0 × 151 cm). Seven wooden cylindrical ladders

were equipped with three-dimensionally staggered positions, with

the distance between each ladder ranging from 8 cm to 32 cm.

All animals were fully trained until the last ladder was reached

before MPTP treatment to apply the tower. During the evaluation

after MPTP treatment, animals were removed from the cage and

brought to the entrance at the bottom of the tower. The number

of ladders climbed by the animals for 7 minutes was measured

and recorded by a video camera in a separate quiet room.
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Behavioral assessments after L-DOPA administration

To investigate the model establishment based on symptom recov-

ery following L-DOPA administration, a behavioral assessment in

cages was conducted and tower test was conducted at intervals

of 0, 0.5, 1, 2, 4, 6, 12, and 24 h after L-DOPA administration.
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Table 11. Evaluation items and scores of MPTP-treated common

marmosets

Observation item Score*

Alertness 0-1

Reaction to stimuli 0-3

Blinking 0-1

Checking movement 0-2

Posture 0-4

Motility 0-3

Vocalization 0-2

Tremor 0-1

Fur condition 0-1

*: 0; normal or absence, 1; mild, 2; moderate, 3 or 4; severe
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PET imaging analysis

Positron emission tomography (PET) images using 18F-FP-CIT, a

dopamine transporter (DAT)-binding ligand, were obtained to

confirm changes in striatal dopaminergic function in the common

marmoset’s brain over time before and after MPTP treatment.

PET images were acquired before MPTP treatment and periodi-

cally after MPTP treatment (Figure 5). All animals were injected

with 1.5 mCi 18F-FP-CIT via the saphenous vein in the awake

state, and were treated with injectable anesthetics (ketamine, 10

mg/kg) and analgesic (xylazine, 4 mg/kg) intramuscularly and

inhaled gas anesthetics (isoflurane, 1-2%) while acquiring PET

images with a dynamic LIST mode using the PET scanner (GE

eXplore Vista PET/CT, GE Healthcare, USA) for 60 minutes. All

PET images were reconstructed in advance by a PET equipment

manufacturer, and processed based on information such as the

type of radioisotope and CT images obtained before PET images

were acquired. The radioactivity was measured by setting the

striatum region as an region-of-interest (ROI) based on re-

constructed PET transverse images using an analytical tool pro-

vided by the PET equipment manufacturer.
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Figure 5. The experiment protocol. Black arrow: “2-2-1-1-1” mg/kg MPTP subcutaneous treatmentfor 5

days; white arrow: 12.5 mg/kg L-DOPA subcutaneous administration at 4 weeks after MPTP treatment;

black bar: 18F-FP-CIT PET image acquisition at 0, 2, 4, 6, 8, 10, 12, 14, 18, 24, and 32 weeks after

MPTP treatment.
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Microscopic assessment

All animal were induced to a state of shallow anesthesia by in-

tramuscular administration of anesthetics (ketamine, 10 mg/kg)

and analgesics (xylazine, 4 mg/kg) prior to blood collection.

Animals were sacrificed after blood collection from the posterior

vena cava to obtain brain tissue under respiratory anesthesia

(isoflurane, 1-2%). The removed brain was incised into the mid-

dle and divided into left and right hemispheres, and each tissue

was fixed in 10% neutral buffered formaldehyde solution for 72 h.

Tissues were processed into paraffin-embedded blocks and tissue

slices were sectioned. Immunohistochemistry (IHC) was per-

formed for the detection of tyrosine hydroxylase (TH) in striatum

and substantia nigra. Immunohistochemical staining was con-

ducted with rabbit polyclonal anti-TH antibody (Abcam,

ab117112, UK) and Discovery XT Automated IHC stainer using

ChromoMap DAB detection kit (Ventana Medical System, USA)

according to the manufacturer’s protocols.

Statistical analysis

Behavioral assessment and tower test results after L-DOPA ad-

ministration to MPTP-treated common marmosets and results of

18F-FP-CIT radioactivity in the PET image of the striatum re-

gion are presented as mean ± standard deviation (SD). These re-

sults were analyzed with independent Student’s t-test and multi-

ple analyses with Tukey/Duncan test using SPSS 19 (IBM,
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Chicago, IL, USA). The probability level for statistical sig-

nificance was set to 0.05.
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RESULTS

Stable parkinsonian symptoms without death for 32

weeks after MPTP treatment with novel method

The behavioral assessment of three MPTP-treated marmosets

and one untreated marmoset was conducted and scored depending

on: alertness, reaction to stimuli, eye blinking, checking move-

ment, posture, motility, vocalization, tremor, and fur condition.

During the MPTP treatment period, akinesia or slowness move-

ment, rigidity, and postural abnormality were mainly observed.

After the MPTP treatment, both resting and active tremors were

observed characteristically, and eye blinking was also sig-

nificantly increased. Importantly, no mortality was detected in

any MPTP-treated marmosets during the experiment. In partic-

ular, these parkinsonian symptoms were observed continuously

until the end of the experiment (up to 32 weeks), and with con-

stant severity (a score > 10). Notably, tremors and postural in-

stability were observed at high levels for 32 weeks in

MPTP-treated marmosets, in relation to the clinical motor symp-

toms seen in human PD patients (Figure 6).
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.

Figure 6. Behavioral assessment score of MPTP-treated common marmosets. All marmosets showed

clinical symptoms immediately after MPTP treatment, and stable parkinsonian symptoms (a score > 10)

without death until the end of the experiment after completing the MPTP treatment. Two marmosets

(13Cj17 and 13Cj15) were euthanized at 10 and 11 weeks of MPTP administration, respectively, to con-

firm the establishment of the model.
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In addition, these symptoms induced by MPTP treatment pre-

ventd normal intake of water and feed. Intensive management

such as forced feeding was performed based on the average daily

feed intake and body weight was measured daily. As a result,

the body weight of the MPTP-treated marmosets was maintained

without significant difference until the end of the experiment

(The initial body weights: 367.0 ± 36.72 g; the final body

weights: 364.7 ± 55.05 g) (Figure 7).
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Figure 7. Changes in the body weight of MPTP-treated common marmosets. There was no significant

difference between the initial and final body weights of the experiment under appropriate feed and water

supply via forced feeding. Two marmosets (13Cj17 and 13Cj15) were euthanized at 10 and 11 weeks of

MPTP administration, respectively, to confirm the establishment of the model.
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Motor dysfunctions without recovery for 32 weeks after

MPTP treatment with novel method

The tower test was conducted to evaluate changes in motor

function such as limb motion and rigidity, and postural abnor-

mality, following MPTP treatment. The tower test is a method

of evaluation based on the instinct marmosets to climb to a

higher place. MPTP treatment was used after confirming the

highest level reached by all animals based on for about 4 weeks

before MPTP treatment. After MPTP treatment, each animal was

provided a week of fixed and regular time, and the highest level

climbed for 7 minutes was recorded and animal movements were

recorded with a video camera during evaluation. MPTP-treated

animals climbed only 1 to 3 of the 7 levels on average for 7 mi-

nutes until the end of the experiment. In particular, the motor

function indicated by climbing for 32 weeks was not recovered

and the climbing level was maintained (Figure 8).
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Figure 8. Tower test results of MPTP-treated common marmosets. After MPTP treatment, all marmo-

sets failed to the high level as before due to motor dysfunction, which persisted without recovery for 32

weeks. Two marmosets (13Cj17 and 13Cj15) were euthanized at 10 and 11 weeks of MPTP admin-

istration, respectively, to confirm the establishment of the model.
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Amelioration of clinical symptoms temporarily after

administration of L-DOPA following MPTP treatment

In order to confirm the recovery of motor symptoms by

L-DOPA, which is currently used widely as a standard therapy

in PD patients, MPTP-treated marmosets were subjected to be-

havioral assessment and tower test hourly after L-DOPA

administration. Motor dysfunction such as limb and trunk tremor

and postural imbalance improved markedly between 2 and 4 h

after L-DOPA administration. In addition, tower test results in-

creased to an average of up to 6 levels, similar to pre-MPTP

treatment. However, motor abnormality was observed again. It

was confirmed that the tower test result was also lowered 1 to 2

levels from 6 to 24 h after L-DOPA administration (Figure 9).
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Figure 9. Behavioral assessment and tower test result of L-DOPA administration to MPTP-treated com-

mon marmosets. MPTP-treated marmosets (n = 3) administered with L-DOPA showed clinical relief from

2 to 4 hours after administration. However, clinical symptoms appeared again 6 hours after L-DOPA

administration. Asterisks indicate significant differences between pre- and post-administration of L-DOPA,

*P < 0.05.
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Lower radioactivity in the striatum based on

18F-FP-CIT PET images without recovery for 32

weeks after MPTP treatment with novel method

In human PD patients and MPTP-treated animal models, the

DAergic pathway in the striatum and the SN was damaged, and

radioisotope ligands that specifically bind to DAT were already

used clinically for PD diagnosis. Among these ligands,

18F-FP-CIT, which has been recently used in clinical practice,

was used to obtain striatal PET images of MPTP-treated mar-

mosets at 0, 2, 4, 6, 8, 10, 12, 14, 18, 24, and 32 weeks. Before

the MPTP treatment, 18F-FP-CIT showed a high affinity to the

striatum, and decreased significantly after MPTP treatment. The

radioactivity of 18F-FP-CIT in the striatal PET image did not in-

crease and remained low until 32 weeks (Figure 10).
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(A)

13Cj17

13Cj15

13Cj18

(B)

Figure 10. The striatal 18F-FP-CIT PET images and schematic dia-

gram (A) and radioactivity changes (B) after MPTP treatment in

common marmosets. The radioactivity of 18F-FP-CIT in the stria-

tum was low in PET images of all MPTP-treated marmosets (n

= 3), and remained low for 32 weeks without significant change.

Asterisks indicate significant difference between pre- and

post-MPTP treatment, *P < 0.05.
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Loss of tyrosine hydroxylase-positive cells and fibers

in the SN and striatum after MPTP treatment with

novel method

It is well known that the death of DAergic neurons in the SN of

human PD patients and MPTP-treated animal models, and the

reduction in TH, which catalyzes the convert L-tyrosine to

L-DOPA, dopamine precursor, are the histopathologic hallmarks

of PD. The results of anti-TH IHC show a significant reduction

in TH immunoreactivity of the SN in MPTP-treated marmosets

compared with marmoset without MPTP treatment. IHC results

of brain tissue obtained from marmoset after 32 weeks of MPTP

treatment were also significantly reduced compared with un-

treated marmosets (Figure 11).
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Figure 11. TH Immunohistochemistry in the SN of MPTP-treated

common marmosets. TH-positive cells were significantly de-

creased in the SN of marmoset 32 weeks after MPTP treatment,

compared to the untreated control animal; scale bar: 1 mm.
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DISCUSSION

A variety of methods have been used to develop PD models of

NHP by MPTP treatment, including both old and new world

monkeys according to the study goals (15). Various methods to

generate MPTP models using common marmosets have been in-

troduced (Table 1). Most of the methods used to develop

MPTP-treated marmoset model are acutely toxic, resulting in

symptoms of motor dysfunction in severe case of human PD

within a short period of time. It was a model suitable for the

study of therapeutic agents designed to ameliorate motor symp-

toms or a prevention of dyskinesia caused by L-DOPA admin-

istration, which is a basic option as a PD treatment.

Subcutaneous injection of 2 mg/kg for 5 consecutive days, which

is a widely used method to develop the marmoset model of PD,

induces various motor dysfunctions such as akinesia, rigidity,

tremors (both resting and active), and postural abnormality) at

the end of MPTP treatment, and these parkinsonian symptoms

stabilize after 6-8 weeks of treatment completion (347). However,

some reports shown that symptoms stabilize over longer periods

(348, 349).

Among the various known methods used to develop animal mod-

els of PD, neurotoxins such as MPTP, 6-OHDA, and rotenone

treatment are most widely used. MPTP-treated models are sim-

ilar to most cases of human PD. In particular, MPTP-induced
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marmoset model shows no spontaneous recovery even after a

long period of time compared to old world NHP primate models

such as cynomolgus monkey (M. fascicularis) model. Since the

type and severity of symptoms expressed by various MPTP

treatment regimen vary, it is the most basic task to develop and

select an appropriate MPTP treatment regimen for MPTP model

suitable for the experimental need. Although it is a major prob-

lem in the production of a mouse MPTP model, reports of animal

death within 24 h after administration of the first high dose are

attributed to a cardiovascular side effects of MPTP (350). In or-

der to minimize mortality or other side effects, methods of dis-

pensing MPTP treatment multiple times have been mainly used

to develop the MPTP marmoset models. Although 2 mg/kg body

weight is the basic daily dose over a period of several months,

the model establishment may fail due to excessive toxicity during

MPTP treatment when the final accumulated dose of MPTP is

excessive (4 repetitions of 2 mg/kg SC for 3 consecutive days at

several monthly intervals; total cumulative doses: 12-20 mg/kg)

(351). However, when used at low concentrations to prevent

MPTP toxicity, no or partial motor symptoms were detected in

MPTP marmoset models (1 mg/kg SC for 3 or 5 consecutive

days) (352 ,353). Even if MPTP was administered for more than

a week (1 mg/kg SC for 8 consecutive days), insufficient clinical

parkinsonian symptoms were associated with delayed apoptosis of

DAergic neurons in the SN, suggesting the absence of defective
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feed or drinking in the models (332). Based on these prior report,

a novel 2-2-1-1-1 mg/kg MPTP treatment regimen was estab-

lished for marmoset PD model to evaluate clinical motor symp-

toms over a long time because of the limited toxicity caused by

MPTP. As a result, all models survived without death during the

32 weeks of experimental period, and a model was developed to

monitor stable motor symptoms without signs of spontaneous

recovery.

Although no animal deaths occurred during the experiment period

as a result, marmoset models failed to consume adequate feed

and drinking water due to severe motor symptoms, especially

akinesia and bradykinesia, during the first two days of treatment

with 2 mg/kg MPTP. Because parkinsonian symptoms interfere

with essential physiological activities in MPTP models, intensive

management is an important aspect of animal welfare and scien-

tific strategy. Therefore, body weight was measured daily during

MPTP treatment, and weekly to indirectly evaluate the health

status of marmosets, and accordingly, models were intensively

managed by determining the amount and frequency of feeding

and drinking during the forced feeding. Feed and drinking water

supplies underlying basic metabolism are essential to maintain

MPTP models healthy, and can fundamentally exclude the possi-

ble causes other than MPTP treatment based on clinical symp-

toms observed. Basically, the forced feeding program is a liquid

diet that is finely ground with a shredder after soaking fully
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with double the volume of normal saline and 5% glucose fluid in

a 1:1 ratio of the daily average amount of feed intake immedi-

ately before feeding. During the whole experiment, forced feeding

was conducted in MPTP-treated marmosets, and the liquid diet

was administered via a syringe with hand-restraint and spilled

at the back of the animal tongue in small amounts to prevent

aspiration pneumonia. In addition, fruits such as appels and ba-

nanas were ground finely just before feeding, placed in a syringe,

and fed similarly. These forced feeding measures were im-

plemented every four hours during the light-cycle period. Also,

dehydration correction is an essential element in managing MPTP

models, especially given that severe dehydration can have fatal

consequences. Unlike old world monkeys such as cynomolgus and

rhesus monkeys, marmosets have relatively small bodies and

narrow blood vessel diameters. It is therefore very difficult to

correct dehydration by parenteral methods, so a solution mixed

with a normal saline and 5% glucose fluid of 1:1 was ad-

ministered subcutaneously or orally.

Motor symptoms such as akinesia or abnormal posture are the

main symptoms in human PD patients. However, in most PD

cases, there are many non-motor symptoms such as insomnia,

cognitive impairment, and hallucinations occur, in addition to con-

stipation (354-357). Constipation was also found in rodent models

treated with neurotoxins such as 6-OHDA (358) and rotenone

(359, 360) and human α-syn transgenic mouse models (361 362),
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especially in mouse (363, 364) and NHP (365) models treated with

MPTP. Although the causes of constipation in human PD pa-

tients and MPTP animal models have yet to be determined, it is

attributed to a complex set of abnormalities involving the dop-

amine nervous system of the digestive tract, and motor symp-

toms due to insufficient feed and drinking (366-368). In the pre-

vious study, MPTP-induced cynomolgus monkey models also un-

derwent abdominal massages and treated with medication if nec-

essary by closely monitoring the animal condition after forced

feeding because of discomfort due to abdominal distention and

excessive intestinal gas by constipation. Therefore, abdominal

massage was used and medication if necessary in the MPTP

marmoset model used in this study. Liquid diets including pro-

biotics were administered to prevent or alleviate symptoms of

constipation.

Recently, several studies including cell or gene therapies replaced

conventional chemical therapy. Studies used undifferentiated cells

such as autologous, allogenic, or induced pluripotent stem cells

(iPSCs) to investigate musculoskeletal, cardiovascular, or neuro-

logical disorders, which are known to be difficult or impossible to

regenerate or recover on their own (341). Several studies of PD

therapy have also used MPTP-treated animal models, such as

rodents and NHP models, to administer neural stem cells and

others that can replace L-DOPA and other drugs-dosing methods

or surgical methods such as DBS (369, 370). Since the late 1990s,
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studies have been conducted on various NHP models of PD to

determine the effects of iPSC transplantation as well as mesen-

chymal stem cells (Table 12). Most of the NHP PD models used

in these cell transplantation studies w1ere treated with MPTP,

and in the case of transplanted iPSCs, cells derived from humans

and NHPs were used. However, Takagi et al., (212) reported the

recovery of motor symptoms after 14 weeks by transplanting

neural precursor cells differentiated by monkey ES cells into the

cynomolgus monkey model treated with MPTP. Hallet et al.,

(217) reported the recovery of the motor symptoms after 6

months by transplanting autologous iPSCs derived from monkeys

into a MPTP-treated cynomolgus monkey. Based on these stud-

ies, cell transplantation requires adequate time for proliferation or

differentiation of transplanted cells. In addition, spontaneous re-

covery was observed 70 days after MPTP treatment in the cyn-

omolgus monkey model, which was injected with a subcutaneous

dose of 0.2 mg/kg every day for 14 days in a pilot study.

Another study showed similar results in the MPTP-treated cyn-

omolgus monkey model. However, reversible parkinsonian symp-

toms were also observed in the marmoset MPTP model. It is

important to develop a primate MPTP model in which long-term

symptoms are stable.

In conclusion, the novel MPTP treatment protocol of 2 mg/kg for

the first 2 days followed by 1 mg/kg for 3 consecutive days, re-

sulted in stable motor parkinsonism for 32 weeks without mortal-
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ity in common marmosets based on behavioral evaluation, imag-

ing diagnostics assessment, and histopathological investigation.

Although follow-up studies are needed to corroborate the findings

in this small animal study, it is a proof-of-concept study estab-

lishing an appropriate model for studies that require a longer pe-

riod of time for analysis of effects such as cell transplantation or

gene therapy, based on the results obtained from the marmoset

MPTP model in this study. In addition, it is suggest that this

study can address a maintenance methods based on animal wel-

fare for a long term in studies using NHP PD models.
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Table 12. Cell transplant studies using NHP models of PD

Models Transplanted cells References

MPTP Monkey neural progenitor cells Takagi et al. (212)

MPTP Human iPSC-derived neural progenitor cells Kikuchi et al. (213)

MPTP Human embryonic stem cell-derived neural progenitor cells Doi et al. (214)

MPTP Monkey iPSC-derived dopaminergic precursor cells Emborg et al (215)

MPTP Monkey bone marrow-derived mesenchymal stem cells Hayashi et al. (216)

MPTP Monkey iPSC Hallett et al. (217)

6-OHDA Monkey Embryonic nigra tissue Annett et al. (218)
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CHAPTER Ⅱ

Evaluation of therapeutic effects of

human embryonic stem cell-derived

dopaminergic precursor cells

transplanted into a marmoset model of

Parkinson’s disease



- 92 -

ABSTRACT

Cell transplantation is as an alternative to existing treatments for

PD such as conventional L-DOPA administration and DBS

surgery. The degree of differentiation and the homogeneity of

cells after differentiation are directly linked to the recovery of

clinical symptoms and the reduction of side effects in cell

transplantation. Therefore, efforts to discover new markers of

differentiation and homogeneous classification that are most ef-

fective in PD treatment are ongoing as transplanted cells differ-

entiate into dopamine neurons. Accordingly, a total of 2.0 × 106

cells were implanted into striatum of the marmoset MPTP model

intracranially to evaluate the therapeutic effects of dopaminergic

(DAergic) precursor cells obtained using trophoblast glycoprotein,

a newly discovered marker that uniquely divides into ventral

midbrain DAergic neurons associated with PD clinical symptoms.

Observations of daily behavior showed a significant recovery

compared to the MPTP treatment group at 3 weeks after cell

transplantation, resulting in a difference of up to 11.17 ± 0.83

points based on evaluation criteria. In the tower test, it was sig-

nificantly higher than in the MPTP treatment group at 7 weeks

after cell transplantation, confirming an average difference of up

to 5.67 ± 0.33 levels. In addition, the PET image analysis of the

striatum showed a significant difference from 14 weeks after cell

transplantation compared with the MPTP treatment group, with



- 93 -

an increase of up to 0.26 ± 0.01 in SUR value. In addition, histo-

pathologic assessment showed that no excessive inflammatory

cell erosion or tumor-like tissue was observed. TH-positive cells

observed were identified as those derived from the transplanted

DAergic precursor cells in the cell transplant site. The results

suggest that DAergic precursor cells represent a potential treat-

ment modality for PD patients.

Keywords: Parkinson’s disease; cell transplantation; dop-

amine precursor cells, common marmoset MPTP model
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INTRODUCTION

L-3,4-dihydroxyphenylalanine (L-DOPA) is still used as a stand-

ard PD therapy, suggesting the role of exogenous dopamine

against endogenous dopamine depletion in ameliorating sympto-

matic parkinsonism does not prevent progression of disorder

(162-164). However, the side effects such as “Wearing-off” and

L-DOPA-induced dyskinesia LID may occurr when PD patients

are treated with long-term L-DOPA (172, 173). Therefore, novel

and variable formulations which can minimize unexpected results

with long-term L-DOPA treatment have been investigated clin-

ically, however, therapy that is devoid of adverse effects does not

exist (177, 371).

Due to the limited pharmacological therapies available, multiple

complementary or alternative therapies have been suggested to

ensure better quality of life (180). Whereas most of the currently

available pharmacological or alternative therapies may be used to

manage major motor symptoms, molecular approaches such as

neurotrophic factors (181, 182), gene therapy (183), or cell re-

placement (184-186) are of increasing interest. Although such

therapies are tested preclinically and clinically, a remedy for

complete recovery is still unavailable. Among the alternative

therapies introduced above, cell transplantation may be used to

replace necrotic or apoptotic dopaminergic cell of unknown etiol-

ogy for function. Preclinical experiments using various cells such
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as fetal or embryonic ventral midbrain tissues (200, 201), mesen-

chymal stem cells (MSCs) (203-206), embryonic stem cells

(ESCs) (372-374), and induced pluripotent stem cells (iPSCs)

(375, 376) have been conducted to date, and some are undergoing

clinical trials (377).

However, cell transplantation, which is expected to be effective

as an alternative treatment, is asccociated with several

challenges. First, since transplanted cells cannot cross the

blood-brain barrier, which is an histological firewall, it is cur-

rently a common practice to transplant directly into the brain.

Regardless of the skills and expertise of the medical practitioners

using microinjection needles, the possibility of physical damage

through repeated transplantation remains. Secondly, although the

CNS has immune privilege characteristics (378), side effects in-

clude a risk of infection and neoplastic transformation following

the use of immunosuppressive agents to modulate transplant

rejection. Of course, when transplanting autologous MSCs or

iPSCs, it is not necessary to use an immunosuppressive agent,

but it is ineffective as a therapeutic agent given the time and

expense to separate and purify the active ingredient (379, 380).

Third, although most countries use ESCs obtained from stillborn

fetuses or embryos, ESCs have yet to be completely resolved

(381). However, autologous stem cel transplantation can partially

address concerns, such as the side effects of using immunosuppressants.

Lastly, the most important challenges include the health and
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safety issues associated with cell transplantation, and tumori-

genesis is one of the main considerations, associated with the

overgrowth of transplanted cells, residual pluripotent cells, or

mutations during cell preparation (382-385). Another main consid-

eration is the graft-induced dyskinesia (GID), which occurs due

to the difference of dopamine replacement patterns or differ-

entiation into non-DAergic or serotoninergic cells by the graft, or

immune response or abnormal plasticity by the host (386, 387).

Although tumor formation or GIDs are less likely to occur using

protocols to purify cells that only differentiate into the desired

type, studies are being conducted to purify cells with a more ho-

mogeneous composition appropriate for clinical applications, since

cells derived from ESCs or iPSCs are still at risk of hetero-

geneity (388-392). As a method to compensate for this problem,

methods for transplanting cells differentiated into neural stem

cells (NSCs), DAergic progenitor cells, and DAergic precursor

cells with high probability of differentiation into DAergic neurons

were performed (Table 13).

Therefore, the purpose of this study is to not only investigate

the effects of recovery from parkinsonism in common marmoset

(Callithrix jacchus) MPTP models implanted with DAergic pre-

cursor cells derived from human ESCs using a new marker that

can be considered as a more homogenous, but also to obtain re-

sults of safety evaluation to determine whether the transplanted

cells produce unwanted neoplasms. In addition, investigated
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whether the MPTP model developed using the novel MPTP

treatment method is actually amenable to cell therapy

investigations.
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Table 13. Cell therapy studies employing NSCs, DAergic progenitor or precursor cells

Animal model Source cells Implanted cells Dose References

Rat mouse ESCs Nurr1-ESCs 1.6 × 105 Kim et al., (393)

Rat human ESCs DAergic progenitor cells 4 × 105 Ben-Hur et al., (394)

Monkey human ESCs NSCs 1 × 106 Redmond et al., (395)

Rat human ESCs
A. d10-ESCs
B. d16-ESCs

A. 1.5 × 105

B. 3 × 105
Kirkeby et al., (396)

Monkey human ESCs NSCs 1 × 106 Daadi et al., (397)

Mouse mouse ESCs DAergic precursor cells 5.5 × 104 Batista et al., (398)

Rat human iPSCs NSCs 4 × 105 Doi et al., (388)

Monkey human iPSCs Neural progenitor cells 4.8 × 106 Kikuchi et al., (213)

Rat human iPSCs DAergic progenitor cells 1.5-3.0 × 105 Nolbrant et al., (399)

Rat rat ESCs NSCs 2.5 × 106 Wu et al., (400)

Mouse mouse ESCs DAergic progenitor cells 3 × 105 Precious et al., (401)

Mouse
A. human iPSCs
B. human ESCs

DAergic progenitor cells 1 × 105 Schweitzer et al., (402)
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MATERIALS AND METHODS

Animals

Six adult male common marmosets (Callithrix jacchus) were ob-

tained from CLEA Japan. During the experiment, all animals

were maintained in cages (76.8 × 39.4 × 59.0 cm) individually

under controlled conditions (23-28℃, 45-70% humidity, 12 h

light/dark cycle). Animals were fed specialized diet supplemented

with nutrients and commercial diets were preferred (Teklad New

World Primate Diet 8794, Harlan, USA) in addition to fresh

fruits, and quail eggs. Based on the experience gained from pre-

vious studies, the diet was soaked in a mixed fluid of normal

saline and 5% dextrose. It was finely grounded, and forcibly fed

in a fluid form and periodically supplied with sap to prevent

dehydration. To check the animals health condition, the body

weight was measured daily during the MPTP treatment and once

a week thereafter. Animals were cared for and maintained ac-

cording to the Guide for the Care and Use of Laboratory

Animals 8th edition, NRC (2011) in the facility accredited by

AAALAC international (#001169). Chewable rubber toys were

provided for animal enrichment. All procedures and protocols

were approved by the Institutional Animal Care and Use

Committee of Seoul National University Hospital (No. 13-0024).
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MPTP-induced PD model

Using the method established in a previous study, six animals

were subcutaneously treated with 2 mg/kg MPTP HCl (M0896,

Sigma-Aldrich, USA) dissolved in saline on the first 2 days, fol-

lowed by and 1 mg/kg for 3 days to develop an PD model

(Figure 12). To prevent MPTP exposure to the environment, ani-

mals were managed up to 48 h after administration of the final

MPTP in a cage specially designed to maintain sealing and neg-

ative pressure after MPTP treatment. All procedures related to

MPTP processing were carried out in accordance with safety

regulations including handling and disposal of MPTP and wearing

an appropriate personal protection equipment when handling.
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Figure 12. The experiment protocol. Black arrow: “2-2-1-1-1” mg/kg MPTP subcutaneous treatment for

5 days; white arrow: DAergic precursor cells at d20 stage following undifferentiated human ESC trans-

plantation at 4 weeks after MPTP treatment; black rhombus: 18F-FP-CIT PET images acquisition at 0, 2,

4, 6, 10, 14, 18, 24, and 32 weeks after MPTP treatment.
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Cell collection

All DA precursor cells from undifferentiated human ESCs trans-

planted into the MPTP-treated marmoset model were kindly pro-

vided by Prof. Dong-Wook Kim, Yonsei Stem Cell Research

Center (YSCRC), Yonsei University College of Medicine, Korea.

DA precursor clusters obtained on day 13 after differentiation of

human ESC according to the differentiation protocol were clearly

separated into single cells and cultured to differentiate into neu-

rons for 7 days. The DA precursor cell of d20 stage was sepa-

rated into single cells again. A magnetic activated cell sorting

assay was used to select only cells positive for cell surface

marker, such as LMX1A, expressed in the midbrain dopamine

neurons, EN1 and FOXA2, expressed on DAergic precursor cell,

and the new marker, trophoblast glycoprotein (TPBG). The sorted

DA precursor cells were used for cell transplantation after 2 days

of culture.

Cell transplantation

Three marmosets were injected intracranally with DAergic pre-

cursor cells derived from human ESCs at 4 weeks after MPTP

treatment (Figure 13). All animals were injected with 0.04 mg/kg

atropine subcutaneously and anesthetized with 5 mg/kg ketamine

and 1 mg/kg xylazine into muscle. After induction of anesthesia,

animals inhaled 0.5-1.5% isoflurane (Abbvie Limited, UK) in 1

L/min of oxygen through the nose cone during the surgery,
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placed on heating pad. The heart rate, oxygen saturation, body

temperature parameters were monitored every 10 minutes until

full recovery after surgery. Transplantation sites were defined

using the marmoset brain atlas and the 4 sites of each hemi-

sphere were determined on the putamen, and the caudate nucleus

(Table 14). After surgery preparation, a skin over the target area

of left and right hemisphere incised, and muscle and fascia were

dissected to expose the cranial bone surface, and the burr-hole

was drilled. Using the stereotaxic frame for rodents, a cell sus-

pension of 1.0 × 105 cells/μL was prepared, 5 μL of which was

injected into target sites with a 23-gauge needled Hamilton sy-

ringe driven by a microinjector at a rate of 1 μL/min. Needles

were removed 5 minutes after injection. After all the injections,

the site around burr-hole was washed, and the fascia and mus-

cles were sutured with absorbable fiber, whereas the skin was

sutured with non-absorbable fiber. After surgery, animals were

treated with antibiotics (cefazolin, 20 mg/kg; Chong kun dang

Pharmaceutical Corporation, Korea) and analgesics (meloxicam,

0.2 mg/kg; Boehringer Ingelheim, Ingelheim, Germany) for 3 days

intramuscularly. No immunosuppressive agents were used until

the end of the experiment.
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Table 14.

Site AP ML DV Diagram

Caudate

nucleus
9.9

2.3

-9.3

-10.6

Putamen 8.6

-19.4

-20.7

(After fixing the ear hole with ear bar, based on the bregma)

AP: Anterior-Posterior; ML: Medial-Lateral; DV: Dorsal-Ventral; mm
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Behavioral assessment

Daily observation

The behavioral assessment was conducted by recording the be-

havioral changes of animals in the individual cage with a video

camera and scoring by the observer according to the evaluation

items (205) (Table 15). The score of each item was increased

according to the severity of symptom expression: the normal sta-

tus was scored 0 and the maximum severity score was 18. The

sum of the scores of each item exceeding 10 points was selected

to establish the PD model.
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Table 15. Scoring scale for daily monitoring of MPTP-treated

common marmoset models

Observation item Score*

Alertness 0-1

Reaction to stimuli 0-3

Blinking 0-1

Checking movement 0-2

Posture 0-4

Motility 0-3

Vocalization 0-2

Tremor 0-1

Fur condition 0-1

*: 0; normal or absence, 1; mild, 2; moderate, 3 or 4; severe)
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Tower test

To determine motor function as a natural behavior of marmosets,

we modified the “Tower” apparatus (346) before using in the

test. A test apparatus included a cuboid and combined 10

mm-thick transparent acryl plastic front along with a side panel

and white opaque acryl plastic back panel with same thickness

(270 × 270 × 1500 mm). It contained a total of seven levels for

animals to step on and hang up. Each level had a distance be-

tween the front and the back for animals to turn their body and

climb, and the levels varying in distance were farther at in-

creased height. The third and sixth levels were located

diagonally. All animals were trained to climb all levels in 7 min

before MPTP treatment. The test was performed every week and

the highest level, which the animal climbed in 7 min, was eval-

uated and recorded by a video camera in a separate and quiet

room.

PET-CT imaging and analysis

Positron emission tomography-Computed tomography (PET-CT)

images were acquired using PET-CT scanner (VISTA-CT, GE

Healthcare, USA) with a dynamic list mode. We injected 1.5 mCi

of 18F-FP-CIT (New Korea Industrial Co., LTD, Korea) into the

saphenous vein 1 h before acquiring PET-CT image (403-405).

To acquire the PET-CT image, marmosets were injected with

atropine and anesthetized with mixture of ketamine and xylazine
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in the same protocol for cell transplantation. After induction of

anesthesia, animals inhaled 0.5-1.5% isoflurane (Abbvie Limited,

Berkshre, UK) in 1 L/min of oxygen through the nose cone to

maintain a stable status. The heart rate, oxygen saturation, and

respiratory rates of the animal were monitored every 10 min by

the end of acquisition. Radioactivity was measured by setting the

striatum as an ROI based on reconstructed PET transverse im-

ages using an analysis tool provided by the PET equipment

manufacturer. 18F-FP-CIT-specific uptake ratios (SURs) were

calculated for the target striatal volume-of-interest (VOI), which

was defined as (mean SUV of striatal VOI − mean SUV of cer-

ebellum VOI/mean SUV of cerebellum VOI).

Histopathologic examination

At the end of daily observation, tower test, and PET-CT image

acquisition, 32 weeks after the MPTP treatment, the abdomen

was opened and blood was collected via caudal vena cava after

deep anesthesia with the mixture of ketamine and xylazine. The

brain was dissected immediately after bleeding by cutting the

vein. The brain was divided into each hemisphere and fixed for

at least 72 h in 10% neutral buffered formaldehyde. For immuno-

fluorescence staining, the left hemisphere was frozen, whereas the

right one was dissected at the site including striatum and SN

and embeded in formalin-fixed paraffin. The paraffin-embedded

brain tissues were serially sectioned into 4-μm-thick layers on a
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microtome, deparaffinized in xylene, and rehydrated in a graded

ethanol series.

H&E staining and Immunohistochemistry

Sectioned tissue slides were stained with H&E using an autos-

tainer (Leica, Germany) and other slides were processed im-

munohistochemically for Tyrosine hydroxylase (TH; ab117112,

Abcam, UK). Anti-TH Immunohistochemistry (IHC) was con-

ducted with the ChromoMap DAB detection kit (Ventana, USA)

according to the manufacturer’s instructions.

Immunofluorescence staining

To perform immunofluorescence staining, brains were transferred

sequentially at one-day intervals into 10%, 20% and 30% sucrose

until they sank to the bottom of the container. The entire brain

was then cut into 18 μm-thick coronal sections on a cryostat

(Leica CM 3000, Leica, Solms, Germany). The sections were

sampled systematically throughout the entire striatum and SN

with a random start according to the stereological principles.

Slices were washed with 1X phosphate-buffered saline (PBS),

permeabilized with PBS containing 0.05% (vol/vol) saponin and

5% (vol/vol) normal goat serum for 30 min. Non-specific binding

was blocked with 1.5% normal goat serum for 30 minutes.

Section were also permeabilized for 30 min with 0.1% Triton X.

For double labeling, slices were initially labeled with rabbit an-
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ti-TH (1:1000; Pel-Freez Biologicals, USA) and then im-

munostained with mouse anti-human nuclei (1:500), mouse an-

ti-mitochondria (1:100), rabbit anti-Lmx1 (1:1000; Merck

Millipore, Germany), mouse anti-Nurr1 (1:50), and mouse an-

ti-Ptx3 (1:50; Santa Cruz Biotechnology, Inc., USA), respectively.

Slices were incubated with primary antibody overnight at 4℃.

Fluorescence-labeled secondary antibodies raised against the re-

spective hosts of the primary antibodies were used at a dilution

of 1:500 and incubated for 1 hr at room temperature. All secon-

dary antibodies were purchased from Molecular Probes

(Invitrogen, Co., USA). Fluorescently immune-labeled slices were

analyzed on a confocal microscope (TCS SP8; Leica Solms,

Germany) equipped with three lasers (Diode 405, Argon 488,

HeNe 543). Each channel was separately scanned in multitrack

PMT configuration to avoid cross-talk between fluorescent labels,

and to visualize labeled structures in relation to other cells.

Statistical analysis

The data were expressed as mean ± standard error of mean

(SEM). Data of body weight, behavioral test, and PET images

involving MPTP-treated and cell-transplanted marmosets were

analyzed by independent Student t-test. The correlation of each

item score and total score of daily observation after cell trans-

plantation was analyzed by linear regression analysis with

Spearman’s ρ method using Statistical Package for Social
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Sciences version 22 (IBM, Chicago, IL, USA). P values of less

than 0.05 were statistically significant.



- 112 -

RESULTS

No significant difference in body weight between

MPTP-treated and cell-transplanted marmosets due

to intensive care

There was no significant difference in body weight between

MPTP-treated and cell-transplanted marmosets during the entire

experimental period. In particular, there was no significant differ-

ence in body weight between two groups before MPTP treatment

(MPTP-treated: 339.0 ± 1.53 g; cell-transplanted: 344.0 ± 8.08 g)

and cell transplantation, which was 4 weeks after MPTP treat-

ment (MPTP-treated: 314.3 ± 5.81 g; cell-transplanted: 314.0 ±

2.31 g). As shown in a previous study, akinesia was clearly ob-

served in MPTP-treated marmosets from an average day 2 after

MPTP treatment, and consequently MPTP-treated animals failed

to consume food and water voluntarily. Thus, forced feeding was

performed to prevent weight loss and maintain a healthy status

from day 2 after MPTP treatment. Although there was no sig-

nificant difference in body weight between MPTP-treated and

cell-transplanted animals after cell transplantation, voluntary

feeding and water intakes were observed in cell-transplanted

marmosets from 15 weeks after cell transplantation. The results

showed a gradual weight gain, although it was not significant
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when compared with the weight before MPTP administration

(Figure 13).
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Figure 13. Monitoring body weight of MPTP-treated and cell-transplanted marmosets. Body weights of

both MPTP-treated (white triangle, n = 3) and cell-transplanted marmosets (black circle, n = 3) are

maintained during the study without significant change. Black arrow: MPTP treatment; white arrow: cell

transplantation.
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Progressive recovery of motor symptoms in MPTP

pre-treated cell-transplanted marmosets compared to

MPTP-treated marmosets

Immediately after administration of MPTP, akinesia or bradyki-

nesia was observed among several PD motor symptoms in all

marmosets, in addition to a few marmosets falling within the

cage due to posture impairment or limb movement abnormalities

(Figure 14). At the end of MPTP treatment, both resting and ac-

tive tremors were observed, and excessive blinking, a character-

istic motor symptom in the marmoset MPTP model, was also

observed. At 3 weeks after the cells were transplanted, motor

symptoms gradually began to recover, and this trend continued

until the end of the experiment. As a result, the observed motor

symptoms were scored, which confirmed a significantly decreased

compared with the cell transplantation at 4 weeks after MPTP

treatment. In particular, the motor symptoms recovering after cell

transplantation were different. Alertness by observer, movement

within the cage, and limb tremor were recovered from 3 to 7

weeks after cell transplantation (r = 0.89, 1.00, and 0.95, re-

spectively; p < 0.05), and thereafter, it was observed that not

only motility in the cage but also response to stimuli and postur-

al instability were recovered (r = 0.79, 0.74, and 0.73, re-

spectively; p < 0.05).
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Figure 14. Behavioral assessment in MPTP-treated and cell-transplanted marmosets. Stable and no re-

covery of motor symptoms were observed in MPTP-treated marmosets (white triangle, n = 3) during the

experimental period, whereas gradual recovery of motor symptoms occurred starting from 4 weeks after

transplantation in cell-transplanted marmosets (black circle, n = 3). Black arrow: MPTP treatment; white

arrow: cell transplantation. Asterisks indicate significant difference between MPTP-treated group and the

cell-transplanted group, *P < 0.05
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Significant, but not full recovery of motor function in

cell-transplanted PD marmosets compared to

MPTP-treated marmosets

All marmosets were tested weekly before MPTP treatment to the

final day of study using the tower and completed training which

by climbing to the highest level within 7 min. Both MPTP-treat-

ed and cell-transplanted marmosets did not climb even the first

level from week 1 to week 4 after MPTP treatment (Figure 15).

Subsequently, MPTP-treated marmosets climbed below the 1-2

level (1.4 ± 0.37) on average by the final day of the study,

whereas the levels to which cell-transplanted marmosets climbed

increased steadily after cell transplantation, suggesting a sig-

nificant difference from week 7 after cell transplantation until the

final day of study except for results at week 6-9, and the aver-

age level was the sixth (5.4 ± 0.44). Although no steady or sig-

nificant difference in motor function recovery occurred from 7

weeks after cell transplantation until the end of the experiment,

the motor function of the cell-transplanted marmosets recovered

significantly more than that of the MPTP-treated marmosets. It

recovered significantly more than the level before cell

transplantation.
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Figure 15. Comparison of jumping ability between MPTP-treated and cell-transplanted common

marmosets. As a result of motor function recovery, the cell-transplanted marmosets (filled, n = 3) reached

a significantly higher level than MPTP-treated marmosets (open, n = 3). Asterisks indicate significant

difference between MPTP-treated group and the cell-transplanted group, *P < 0.05.
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Weak recovery pattern in striatal PET images and

SUR in cell-transplanted marmosets

18F-FP-CIT-PET-CT images were obtained to confirm the base-

line status in all marmosets and no significant SUR of the stria-

tum was found between MPTP-treated and cell-transplanted

marmosets (MPTP-treated: 1.27 ± 0.008; cell-transplanted: 1.25 ±

0.059) (Figure 16). The intensity of striatum in PET-CT images

acquired at week 2 after MPTP treatment decreased more than

the baseline intensity in both MPTP-treated and cell-transplanted

group. The SUR strongly decreased in both MPTP-treated and

cell-transplanted marmosets, but the difference was not sig-

nificant between MPTP-treated and cell-transplanted marmosets

(MPTP-treated: 0.43 ± 0.027; cell-transplanted: 0.46 ± 0.009).

Subsequently, the intensity of the striatum and SUR (0.46 ±

0.010) in MPTP-treated marmosets were not significantly

changed between PET-CT images at each time point obtained

from week 6 after MPTP treatment to the final day of the study,

whereas the intensity of the striatum and SUR (0.47 ± 0.035) in

cell-transplanted marmosets were not significantly altered be-

tween PET-CT images at each time point from week 2 to week

6 after cell transplantation, compared with the intensity and SUR

before cell transplantation. However, the intensity of the striatum

and SUR changed significantly in PET-CT images at each time

point obtained from week 14 after cell transplantation until the

final day of the study (week 14: 0.9 ± 0.009; week 18: 0.73 ±
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0.014; week 28: 0.74 ± 0.002, p < 0.05). In addition, the SUR

showed a significant difference compared with SUR in

MPTP-treated marmosets at the relevant time point (week 18:

0.46 ± 0.029; week 24: 0.47 ± 0.029; week 32 after MPTP treat-

ment: 0.48 ± 0.015, p < 0.05)
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(A)

(B)

Figure 16. Striatal 18F-FP-CIT-PET-CT images (A) and SUR

changes (B) of MPTP-treated and cell-transplanted marmosets.

18F-FP-CIT binding in the striatum and SUR of cell trans-

plantation marmosets (filled, n = 3) were increased compared to

MPTP-treated marmosets (open, n = 3). Red arrow: Augmented

intensity compared with intensity level before cell transplantation.

Asterisks indicate significant difference between MPTP-treated

group and the cell-transplanted group, *P < 0.05.
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No tumor-like lesions, but increased TH-positive

neurons and fibers at transplant sites at 28 weeks af-

ter cell transplantation in MPTP-treated marmosets

The recovery of motor symptoms in marmosets treated with

MPTP by cell transplantation was expected. However, the safety

of tumor-like neoplastic tissue developed after cell transplantation

required evaluation. As a result of H&E staining, no tumor-like

neoplastic tissue was observed around the site of cells im-

plantation as well as along the nigrostriatal pathway. In addition,

no excessive infiltration of inflammatory cells was detected at the

site of transplantation (Figure 17).
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Figure 17. Comparison of H&E stain results in brain tissue of MPTP-treated and cell-transplanted

marmosets. The number of neurons in the striatum of MPTP-treated and cell-transplanted marmosets was

significantly reduced compared to the untreated marmoset, and no excessive inflammatory cells or un-

differentiated cells were observed at the transplant site (black circle); scare bar: 50 μm.
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However, as a result of anti-TH IHC, TH-positive cells and fi-

bers in the SN region disappeared in the brain tissue obtained at

the end of the experiment, 32 weeks after administration of

MPTP, or 28 weeks after transplantation of cells, when compared

with the marmoset not treated with MPTP. The difference be-

tween the number of TH-positive cells and fibers in the

MPTP-treated marmosets and the number of TH positive cells in

cell-transplanted marmosets was not significant. However,

TH-positive cells and fibers in the caudate region of the stria-

tum, the implantation site, were significantly higher in cell-trans-

planted marmosets than in the marmoset treated with or without

MPTP (Figure 18).



- 125 -

Figure 18. Comparison of anti-TH IHC results in the brain tissue of MPTP-treated and cell-transplanted

marmosets. The number of TH-positive cells and fibers in the SN of MPTP-treated and cell-transplanted

marmosets was significantly lower compared to the marmoset without MPTP treatment, whereas

TH-positive cells and fibers in the caudate were significantly higher in cell-transplanted marmosets than

in marmosets treated with or without MPTP; Black circle: cell-transplantation site.
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Identification of cells expressing DAergic markers in

transplanted cells at 28 weeks after cell transplantation

In order to confirm whether the increased TH-positive cells

identified as anti-TH IHC were cells differentiating from the

transplanted DAergic precursor cell derived from human ESCs or

cells existing in the transplanted marmoset relative to the restore

of motor function and recovery of motor symptoms in cell-trans-

planted marmosets, IF staining was performed using anti-human

antinuclear (hANA) and anti-TH antibody (Figure 19A). As a

result of anti-TH/anti-hANA IF staining, no hANA or TH-pos-

itive cells were detected in the caudate region of the

MPTP-treated marmosets, whereas cell both positive for hANA

and TH were observed in the caudate region of the transplanted

marmosets. Subsequently, in order to confirm the presence of

TH-positive cells in the IF-stained caudate nucleus in cell-trans-

planted marmosets were human-derived live and functioning cells,

IF staining was performed using anti-human mitochondria (hMit)

and anti-TH antibody. The results of anti-TH/anti-hMit IF

staining revealed, a number of cells both positive for TH and

hMit in the caudate nucleus of cell-transplanted marmosets

(Figure 19B). Lastly, in order to confirm the lineage and current

status of TH-positive cells in cell-transplanted marmosets, IF

staining was performed using antibodies against Lmx1A, used as

a midbrain progenitor cell marker, and Nurr1, Ptx3 used as a DA

precursor cell marker. The results of anti-TH/anti-Lmx1A, an-
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ti-Nurr1 or anti-Ptx3 IF staining showed, a number of cells both

positive for TH and Lmx1A, Nurr1, or Ptx3 in the caudate nu-

cleus of cell-transplanted marmosets (Figure 19C).
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(A) (B)

(C)

Figure 19. IF staining of the caudate nucleus in cell-transplanted marmosets to identify the origin (A), sur-

vival, function (B), and lineage (C) of the transplanted cells. (A) No hANA-positive as well as TH-pos-

itive cells were observed in the caudate nucleus of MPTP-treated marmosets, whereas cells positive for

both TH and hANA were observed in the caudate nucleus of cell-transplanted marmoset (white arrows);

scale bar: 50 μm. (B) A number of TH and hMit-positive cells were observed in the caudate nucleus of

cell-transplanted marmosets (white arrows); scale bar: 25 μm. (C) Cells with positive TH and Lmx1A,

Nurr1 and Ptx3, respectively, were observed in the caudate region of the transplanted marmoset (white

arrows); scale bar: 25 μm.
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DISCUSSION

MPTP is a neurotoxin that has been widely used to generate a

PD model in various animal species, including rodents, primates,

pigs and cats (406). Although MPTP can be introduced via dif-

ferent routes, such as gavage and stereotaxic injection, the sys-

temic route, such as subcutaneous or intravenous injection, is the

most universally exploited mode of administration due to its reli-

ability and reproducibility (407). It is easy to develop a model

without special equipment or technique. Importantly, defects in

DAergic pathway induced by the degeneration of DAergic neu-

rons in the SN have been observed in MPTP-induced PD models

just as in PD patients (408). Such degeneration of DAergic neu-

rons is more frequently observed in the SN than in ventral teg-

mental area (409, 410). However, Lewy body, one of the hall-

marks of PD, is not clearly detected in MPTP-induced PD model

and other pigmented nuclei area, such as locus coeruleus, which

is not affected in MPTP-induced animal models (411).

Various species of MPTP-induced models manifest tremors, ri-

gidity, dyskinesia, and abnormal posture, especially tremor at

resting phase in NHP models (412). Species closer to the genetic

makeups of human are more sensitive to MPTP and thus repre-

sent optimal candidates for PD models (407). Histological exami-

nation revealed that the terminus DAergic neurons in putamen

was more degenerate than that of caudate nucleus in MPTP-in-
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duced NHP model when injected in low concentration (413, 414).

Compared with rodents such as mouse and rats, monkey is more

sensitive to MPTP, and therefore clearly exhibited PD-related

clinical symptoms (406). Specific symptoms depending on species

investigated in a pilot study that MPTP-induced cynomolgus

monkey (Macaca fasicularis) models showed higher rigidity,

whereas, marmoset models manifested tremors at resting phase.

It is meaningful that there is a difference in major motor symp-

toms among NHP models above in that the motor symptoms of

early stage in human patients appear clinically as tremor, rigidity,

and bradykinesia (415, 416). Significant amounts of data derived

from marmoset models have been used for the development of

drugs for PD, such as neurotrophic factors, dopamine agonist,

dopamine reuptake inhibitor, and cell transplantation. Especially,

ethological behaviors can be quantified and clinical scale using

PD patients can be adopted to assess behavioral outcomes of

MPTP-induced bilateral marmoset model (418). Although the

regimen for MPTP induction method to generate a PD model

varies depending on research goals (62, 65, 96-99, 151, 332-337),

the standard protocol for acute regimen 2 mg/kg SC over a peri-

od of 5 days, according to Jenner and his colleagues (65) who

developed such a regimen for acute MPTP-induced PD model in

marmosets. Additionally, this particular model has widely been

used to study dyskinesia induced by L-DOPA and the develop-

ment of new therapeutic methods since TH mRNA was found to
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decrease approximately 95% in the substantia nigra. Additionally,

it has been demonstrated that nerve cells in the SN do not un-

dergo spontaneous restoration in MPTP-induced marmoset model

generated via the method described above. Recently, a few mar-

moset models were established by administering low dose (352)

or chronic treatment (337, 351, 418) for study purpose. However,

such models showed mild or moderate symptoms following ap-

proximately 50% loss of nigrostriatal DAergic neurons and spon-

taneous restoration eventually. Similar to a previous study,

MPTP-treated marmoset models in this study showed motor

symptoms clearly, although no spontaneous restoration was de-

tected in histopathologic, behavioral and imaging studies using

PET. Therefore, the marmoset model in this study is suitable for

the analysis of patient stages that cause motor symptoms after

treatment. In addition, by comparing the cell transplantation

group with the MPTP-treated group with persistent symptoms,

the correct choice of model in this study was determined.

Since the clinical symptoms of PD manifest as dopamine defi-

ciency caused by the damaged DAergic neurons in the SN, many

studies have focused on refuelling the deficient dopamine. Thus,

the injection of L-DOPA, which is a precursor to dopamine, has

been the baseline PD therapy and is currently considered as a

gold standard in clinical practice. However, the administration of

L-DOPA for a long period of time has been found to be asso-

ciated with side effects, including “On-Off” phenomena and
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L-DOPA-induced dyskinesia, and therefore, many studies have

developed adjuvant drugs or therapies to reduce such side effects

(419, 420). However, there is currently no drug that can prevent

or completely reduce the side effects caused by L-DOPA treat-

ment in PD patients. As an alternative to L-DOPA admin-

istration, the transplantation of brain tissues or cells, which when

injected into the damaged region of the brain, can produce dop-

amine has been explored. In vivo experiments using the homoge-

neous or heterogeneous tissue or cells have shown promising re-

sults as they were associated with alleviation or improvements in

PD-related clinical symptoms in animal models (370). Although

significant progress has been made in the field of biotechnology,

challenges in implementing the transplantation of brain tissues or

cells as therapeutic methods for PD patients exist, including

those involving the proliferation of neoplastic cells in the trans-

planted tissues or cells. Studies investigating the clinical efficacy

of such a method utilized pluripotent or multipotent stem cells

instead of terminally differentiated DAergic neurons (421). The

transplanted tissues or cells are expected to differentiate, pro-

liferate and eventually replace the damaged DAergic neurons in

the SN. Such a therapeutic strategy is based on the idea that the

undifferentiated tissue derived from the fetus or the stem cell re-

stores the tissue by migrating to the damaged tissue.

However, undifferentiated tissue or stem cells can transform into

unwanted or unexpected tissue except damaged tissue. As well,
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neoplasms can develop into malignant tumors depending on the

degree of differentiation or proliferation. Thus, controlling the po-

tential for differentiation and proliferation is critical to the devel-

opment of PD therapy exploiting tissue or stem cells. In addition,

following clinical intervention, human PD patients survive for at

least 20 years, whereas most animal models that undergo cell

transplantation have the condition of the graft confirmed for a

short period of time, usually within 16 weeks in rat models (422).

Therefore, results of safety evaluation results for thorough tumor

development over a long period of time are essential, and it is

also important to develop and select animal models that show

stable clinical symptoms over a long time. Although rodent mod-

els such as mice and rats are mostly used in PD studies, be-

cause animal species have different natural lifespans, studies with

absolute time periods, such as cell therapy, require selection of

animal species that can be monitored over a sufficiently long pe-

riod of time.

Studies with iPSCs derived from each patient are increasing be-

cause of ethical concerns regarding about the source of stem

cells and transplant rejection using allogenic or xenogeneic stem

cells. However, uncontrollable differentiation and proliferation are

critical challenges associated with iPSCs. Although the brain is a

solid organ with less immune rejection and some stem cells may

control immune response themselves, the immune rejection is an-

other limitation to the transplantation of either brain tissue or
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stem cells. Many studies have been and are currently underway

to develop a safe and effective therapeutic modality to overcome

the possible immune rejection response of the recipient to

transplantation. However, no immunosuppressive drug is available

to ensure the absolute safety to transplantation. Theoretically, a

transplanted tissue or cell should either evade or overcome the

reactions of host immune system to differentiate and proliferate

so as to replace the damaged tissue. However, it is inevitable

that transplanted materials encounter the host immune system,

and therefore, transplanted tissue or cells undergo “apoptosis” be-

fore clinical improvement is achieved. Additional transplantation

or treatment with immune suppressors could be considered to

overcome such practical issues and to achieve desired therapeutic

effects. However, additional transplantation requires a reliable

supply of tissue or cells and resolution of economic issue related

to high-degree stereotaxic procedure as well as physical damage

following tissue or stem cells transplantation. Additionally,

long-term treatment with immune suppressors may result in side

effects associated with dysfunctional immune system of the

recipient.

In this study, DAergic precursor cells obtained from differ-

entiating human ESCs were transplanted in marmoset MPTP

models, and based on behavior assessment, PET imaging analy-

sis, and histological examination, the efficacy and safety of the

transplanted DAergic precursor cells were evaluated. Any kind of
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neoplastic events were not observed under both naked and mi-

croscopic analysis of the cell-transplanted areas and the pres-

sured areas used in the needle injection. Although DAergic pre-

cursor cells were injected only once, they not only improved be-

havioral and clinical symptoms but also increased the number of

DAergic precursor cells in the transplanted area after a long pe-

riod of time even without treatment with immune suppressors.

These results suggest that transplanted DAergic precursor cells

differentiate and proliferate into cells that eventually replace dam-

aged DAergic neurons and fibers in the nigrostriatal pathway.

Although genetically similar but also heterogenous at the same

time, the transplanted DAergic precursor cells did not elicit an

immune rejection response. Therefore, DAergic precursor cells

were able to survive in the transplanted area for a long period of

time, allowing substantial amount of time for the damaged tissue

to repair. In light of these results, it is suggested that DAergic

precursor cells represent a potential therapeutic modality for PD

patients as they are not associated with the major limitations

previously reported in other transplantation methods.

However, challenges still remain to be overcome although the

safety and efficacy of DAergic precursor cells have been demon-

strated in this study. At first, the discrepancy of the therapeutic

effect depending on the time of injection in acute MPTP treat-

ment model. Based on the results of other studies, differential re-

storation may be minimally affected but continuous damage may
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occur due to slow reaction after MPTP treatment. Therefore, in

order to utilize DA precursor cells as a treatment for PD pa-

tients, further studies are needed to determine the most effective

indication for transplantation after complete PD diagnosis.

Furthermore, as demonstrated in previous studies (388, 393-402),

the optimal number of transplanted cells should also be de-

termined as the therapeutic efficacy has been found to vary de-

pending on the number of transplanted cells. Second, the discrep-

ancy between the imaging results obtained from PET scan, his-

tological results from IHC and IF, and behavioral results from

PD symptoms scale, needs to be addressed. In the absence of a

study of marmoset PD model with cell transplantation, it is diffi-

cult to perform direct comparison with other studies. However,

the behavioral results suggest significant differences in the be-

havioral results of studies involving other NHP model with vary-

ing of cell types (320, 374, 423-425). The possible reasons for

such discrepancies are because the kinds and number of cells and

the transplanted area vary in each published studies and also the

effect of adrenergic pathway, including serotoninergic pathway

compensating for the compromised dopaminergic pathway due to

MPTP. Lastly, it is unclear if the improvements in clinical symp-

toms are due to the replacement of damaged DAergic neurons by

the differentiation and proliferation of DAergic precursor cells or

due to the cytokines or chemokines secreted from the trans-

planted DAergic precursor cells. It was possible to determine the
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fate of DAergic precursor cells and observe DA precursor cells

differentiated into cells with TH capable of secreting dopamine in

this study. However, it was not possible to confirm whether the

transplanted DAergic precursor cells showed important stem

cell-like properties such as paracrine effects. As the paracrine ef-

fect of the stem cells has been reported to be a major contrib-

utor to recovery from the injured cartilaginous joint and also

suppression of tumor proliferation, it will be necessary to de-

termine if the clinical improvements following transplantation of

the DAergic precursor cells are associated with other effects.

In conclusion, DAergic precursor cells derived human ESCs using

new differential marker, TPBG, represent therapeutic effects in

MPTP-treated common marmoset models, and it is suggest that

DAergic precursor cells as a potential treatment modality can be

used to ameliorate motor symptoms for PD patients.
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국문초록

파킨슨병은 가장 중요한 신경퇴행성 질환 중 하나이고, L-3,4-hy-

droxyphenylalanine 투여법이나 뇌심부자극 수술법을 현재 치료법으로

사용하고 있다. 하지만 기존 치료법으로는 완전 회복이 되지 않아

대안 치료법으로써 세포이식에 대한 연구가 활발히 진행되고 있다.

이러한 파킨슨병 치료나 예방을 위하여 많은 동물 모델이 사용되고

있고, 대부분 설치류 모델이 사용되고 있다. 파킨슨병 동물모델을

제작하는 방법으로는 1-metyl-4-phenyl-1,2,3,6-tetrahyrdopyridine

(MPTP)를 투여한 모델 제작법이 가장 대표적이다. 다른 모델에

비해 영장류 MPTP 투여 모델은 파킨슨병 환자와 임상증상이

동일하다는 것과 행동학적 평가 적용이 용이하다는 장점을 가지고

있기 때문에 실험 목적에 따라 다양한 MPTP 투여법을 사용한

영장류 모델을 사용하고 있다. 하지만 대부분 영장류 MPTP 투여

모델은 세 달 이내의 단기간 연구에 최적으로 개발되어, 세포이식과

같은 장시간 연구에는 적합하지 않다. 초기 연구에서 태아 유래

중뇌조직을 이식하는 방법에서 중간엽줄기세포나 배아줄기세포를

이용한 연구가 진행되었고, 최근에는 윤리적 문제와 면역거부반응

문제를 해결할 수 있는 유도만능줄기세포를 이용한 연구가

진행되고 있다. 여러 연구를 통해 세포이식에 대한 효능 평가,

안전성 확보와 관련하여 많은 진보가 있었으나, 분화 정도와 분화

이후 세포 균질성이 임상증상 회복과 부작용 감소에 직접적으로

연관이 되어 있기 때문에 새로운 분화와 균질성 마커 발굴에 대한

연구가 꾸준히 진행되고 있다. 이러한 점들을 바탕으로 장시간

안정적인 임상증상이 발현되는 영쟝류 PD 모델을 제작하기 위하여

마모셋에 “2-2-1-1-1” mg/kg MPTP 피하투여법을 적용하여

새로운 영장류 PD 모델을 확립하였다. 일생행동 평가 결과 마모셋



- 204 -

모델은 장시간 동안 안정적인 임상증상을 보였고 tower test 결과

역시 마모셋 모델은 MPTP 투여 전에 비해 운동기능이 저하된

상태로 유지됨을 관찰하였다. 또한 마모셋 모델의 선조체

양전자방출단층촬영 (PET) 영상에서 MPTP 투여 전에 비해

유의하게 방사선 발현도가 감소함을 확인하였고, 마모셋 모델의

뇌조직 면역염색 결과 흑색질에서 티로신 수산화효소 (TH)-양성

세포와 섬유체가 소실됨을 확인하였다. 또한 새로운 분화 마커인

영양막 당단백질을 사용하여 파킨슨병 증상과 관련된 배쪽중뇌

도파민성 신경세포로 분화하는 도파민성 신경전구세포에 대한 치료

효과를 평가하기 위하여 위의 마모셋 모델의 선조체에 2.0 × 106 개

세포를 뇌내에 이식하였다. 일상행동 평가 결과 세포 이식군은

MPTP 투여군에 비해 세포이식 후 3주째부터 임상증상이 유의하게

회복됨을 관찰하였고, tower test 결과 세포 이식군은 MPTP

투여군에 비해 세포이식 후 7주째부터 올라간 계단이 유의하게

증가됨을 확인하였다. 세포 이식군의 선조체 PET 영상에서 MPTP

투여군에 비해 세포이식 후 14주째부터 specific uptake ratio 값이

유의하게 증가됨을 확인하였다. 조직병리학적 평가 결과 세포이식

부위에서 과도한 염증반응이나 종양성 신생조직은 관찰하지 못했고,

관찰된 TH-양성 세포는 뇌내에 이식한 도파민성 신경전구세포에서

유래됨을 확인하였다. 위 결과들을 종합하였을 때, 새로운 MPTP

투여법으로 제작한 마모셋 모델은 세포이식과 같은 장시간 연구에

적합하고, 도파민성 신경전구세포는 파킨슨병 치료법으로써 고려될

수 있을 것으로 제안한다.

주요어: 파킨슨병; 비인간 영장류; 세포치료제; 마모셋 원숭이;

동물질환모델; 줄기세포; 세포이식
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