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Abstract 

 

Development of Micelle-encapsulated 

ESIONs as a T1 Contrast Imaging Agent 

: Prolonged Blood Circulation and 

Enhanced Hepatobiliary Excretion 

Minseok Suh 

Department of Molecular Medicine and Biopharmaceutical Science, 

The Graduate School of Convergence Science and Technology, 

Seoul National University 

 

Due to clinical concerns about gadolinium toxicity, there is growing interest in 

the development of alternative contrast agents for magnetic resonance imaging 

(MRI). Recently, extremely small-sized iron oxide nanoparticles (ESIONs) are 

attracting considerable attention as a biocompatible T1 contrast agent, which can 

overcome inherent limitations of conventional T2 contrast agents based on iron 

oxide nanoparticles (IONPs). Still, there is a lack of studies regarding the actual 

fate of this novel ESIONs when administered in vivo, which is essential for further 

clinical translation. 

In this study, in vivo biodistribution and pharmacokinetics of micelle 

encapsulated ESIONs were demonstrated after radiolabeling. Furthermore, using 
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simultaneous positron emission tomography (PET) /MRI, dynamic change of PET 

derived radioactivity and MRI signal intensity was directly compared at the same 

time point. 

Micelle encapsulated ESIONs can be an efficient T1 contrast agent with fair r1 

relaxivity of 3.43 mM-1s-1 and a low r2/r1 ratio of 5.36. Radiolabeling process did 

not significantly affect the characteristics of the micelle encapsulated ESIONs. In 

vitro and in vivo stability test revealed that radioactivity of 64Cu well reflects the in 

vivo dynamics of micelle encapsulated ESIONs. Biphasic blood clearance was 

observed from the biodistribution study, showing relatively long blood circulation 

time of 62 min at the distribution phase and 12.8 hours at a elimination phase. As 

the radioactivity in the blood pool decreased, uptake in the liver increased, and 

after reaching a peak within 4 hours, it gradually decreased. Up to 40% of 

administered radiolabeled ESIONs were eliminated through the hepatobiliary 

system within 24 hours.  

Direct comparison of PET and MRI signal revealed that in vivo discordancy 

may occur at the high concentration range of ESIONs or when they are internalized 

into the intracellular space.  

Micelle encapsulated ESIONs, with relatively long blood circulation time and 

rapid excretion through the hepatobiliary system, are promising T1 contrast agent 

which can potentially offer both efficiency and safety. Furthermore, radiolabeled 

ESIONs, by complementing each other’s strengths and weaknesses, can be further 

applied to monitor the microscopic distribution in various clinical situations. 
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Introduction 

Nanomedicine is a term referring to an emerging field of medicine using 

nanomaterials. Nanomaterials are in a size range similar to the biological 

substances used by our own living organisms, yet can be intentionally designed, 

functionalized, produced, and applied (1). Regarding these points, nanomaterials 

have a potential advantage for medical applications.  

Iron oxide nanoparticles (IONPs) are one of the few nanomaterials that can be 

applied clinically with FDA approval. As our body contains quite a lot of iron and 

stores it in ferritin, IONPs are well known to be a biocompatible nanomaterial. 

Various studies have been conducted for application in clinical fields such as 

tumor-targeted imaging (2), magnetic hyperthermia therapy (3, 4), drug delivery (5, 

6), and live-cell tracking through cell labeling (7, 8). In particular, it has been 

applied in the clinical field for a long time as a magnetic resonance imaging (MRI) 

T2 contrast agent by utilizing superparamagnetic properties (9-11). The first 

generation IONPs, such as ferumoxide and ferucarbotran, have been mainly used 

for liver imaging agent (12-14). In normal liver after administration, most IONPs 

are taken up by the Kupffer cell, showing a low signal in T2 contrast MRI, whereas 

due to the absence of the Kupffer cell, IONPs are not taken up in the tumor tissue, 

resulting in a relatively high signal compared to the normal tissue. However, due to 

their large size (dH ~50-200nm), IONPs were quickly cleared from the blood pool, 

and as a result, the clinical application was limited. Ultrasmall superparamagnetic 

IONPs (USPIO), with a hydrodynamic size of 20-50 nm, was introduced in 1990 as 

a next-generation imaging agent (9). They had an optimal size to avoid 

reticuloendothelial system (RES) uptake, resulting in a longer blood circulation, 
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which made them possible for versatile clinical applications, such as lymph node 

imaging (15-18), plaque imaging (19) and central nervous system macrophage 

imaging (20, 21). However, there is an inherent limitation in the case of T2 contrast 

agents producing negative signals (22, 23). Simply, the signal in the region of 

interest may be difficult to distinguish due to the influence of surrounding 

hypointense lesions and organs. Furthermore, the ‘blooming effect’ may occur due 

to high magnetic properties altering the local magnetic milieu, exaggerating the 

lesion, and blurring the image. Consequently, the clinical use of several iron oxide 

imaging agents has been discontinued in the United States and most of Europe (24). 

On the contrary, the T1 contrast agent with a positive signal is relatively 

preferred in the clinical practice due to its high sensitivity. The T1 contrast effect is 

induced by shortening the longitudinal (T1) relaxation time of protons of a water 

molecule, which is the result of the interaction with an electron of contrast agents 

(25). Thus, paramagnetic compounds with more unpaired electrons may generally 

be more effective T1 contrast agents. Gadolinium (Gd) has 7 unpaired electrons 

and strong paramagnetic properties. Since the first Gd-based complex was 

approved by the FDA as an MRI contrast agent in 1988, more than 10 million MRI 

studies are currently conducted annually. Although Gd is the most widely used 

contrast agent in clinical practice, short-term and long-term safety issues have been 

continuously raised. The current consensus is that possible degradation of some 

Gd-based complexes, but not all, may induce nephrogenic systemic fibrosis in 

patients with renal impairment (26, 27). Furthermore, retention of Gd, although 

trace amount, has been recognized in a few organs, such as brain, skin, and bone 

(26, 28). To date, the clinical significance of such retention is not clearly known, 

but there is a concern that it may cause any long-term safety issue. To avoid these 
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degradation retention problems, Gd-complexes with stable and short blood 

circulation time has been developed, but their rapid clearance acts as a significant 

limitation when a relatively longer monitoring period is required (29). In view of 

these points, a next-generation T1 contrast agent with long blood circulation time 

and rapid body clearance is required for clinical application. 

Interestingly, recent studies have shown IONPs’ possibility as a T1 contrast 

agent (22, 30-33). The two main components to define the behavior of T1 contrast 

agents are longitudinal relaxivity (r1) and relaxivity ratio (r2/r1). From the viewpoint 

of relaxation, a high r1 value and a low r2/r1 ratio (close to ‘1’) are characteristics of 

an ideal T1 contrast agent (25). Iron has 5 unpaired electrons, which is sufficient 

enough to interact with a proton in water molecules and reduce T1 relaxation time, 

indicating high r1 value. Indeed, USPIO has been used as a blood pool imaging 

agent (34-36). However, IONPs including USPIO commonly have high r2 value 

and as a result, high r2/r1 ratio, due to its strong magnetic property, which limits its 

usage as an effective T1 contrast agent. Thus, reducing the magnetic property is the 

key strategy to make IONPs as T1 contrast agent. With decreasing nanoparticle size, 

magnetization decreases due to increased surface effects and reduced core volume. 

Accordingly, recent studies have recognized that extremely small-sized IONPs 

(ESIONs), smaller than 5 nm, can be a potential T1 contrast agent (37). Moreover, 

as IONPs have an advantage regarding biocompatibility, safety, and sufficient 

blood circulation time, they are expected to be a next-generation positive contrast 

agent.  

Since most of the inorganic nanoparticles, including IONPs, are originall

y dispersed in organic solvents after synthesis (38), they require surface mod
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ification with various surfactants before being exposed to the aqueous enviro

nment  fo r  i n  v ivo  adminis t ra t i on .  Micelle encapsulation method, for 

hydrophilization of nanomaterials, was recently introduced by our group to make a 

quick and straightforward one-step method for producing multifunctional 

nanoparticles under mild condition (39). The beauty of this method relies on the 

use of combined multiplex amphiphiles with different functional groups 

simultaneously, which enables the achievement of surface multifunctionality by 

bonding of small molecules as a specific ligand and accessible radiolabeling. 

Furthermore, the micelle encapsulation method has advantages in terms of mass 

production and cost effectiveness. 

For further clinical application of this micelle encapsulated ESIONs as a T1 

contrast agent, studies regarding toxicity, biodistribution, pharmacokinetics, and 

optimal fate are necessary. However, at this time point, these data are lacking, and 

it is challenging to conduct such a study due to inherent limitations of in vivo MRI 

quantification. Firstly, relaxation measurement is typically nonlinear in the range of 

high contrast agent concentration (40, 41). Commonly T1 effect is dominant at low 

concentration, however, at the high concentration range as the T2-shortening effect 

increases, it results in signal quenching. Each MRI sequence also shows the 

maximum signal intensity in a different range of concentrations. Moreover, after in 

vivo administration, more factors affect the quantification. The contrast agents 

usually are not uniformly distributed and when internalized into the cell, their 

relaxation properties significantly change (42-44). After cell internalization, MRI 

contrast agents normally are clustered inside the cellular components. Here, 

contrast agents cannot preferentially interact with protons of water molecules, and 

clustering increases local concentration and thus increases magnetization capacity. 
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As a result, the signal of the T1 contrast agent quenches after cell internalization. 

Lastly, protein binding and viscosity differences may alter the relaxivity. 

Here radionanomedicine comes in (45, 46). In nuclear imaging, the observed 

effect is proportional to the injected concentration of radionuclide. Therefore, 

radiolabeling of the novel drug allow tracing the tracks and perform absolute 

quantification of injected radiolabeled compounds in the in vivo system, which can 

light upon the in vivo characteristics of biodistribution and optimal fate. 

Furthermore, only a trace amount of radionuclide is sufficient for pharmacokinetic 

study in vivo, which can offset concerns regarding the pharmacologic effect. 

Positron emission tomography (PET) imaging techniques used for 

radionanomedicine, provide many orders of magnitude higher sensitivity than that 

of computed tomography (CT) or MRI (47). PET imaging, of course, has a 

detection range. However, radioactivity can be controlled regardless of the amount 

of ligand, and if the amount of ligand is constant, it shows a uniform distribution 

Thus, when knowing the amount of injected radionuclide, you can evaluate the 

distribution intuitively and quantify accurately.  

The recent development of PET/MRI system, with fine spatial resolution, high 

sensitivity, high temporal stability, and minimal mutual interference, made 

simultaneous imaging of multimodal imaging probes possible (48-50). The 

combination of the two modalities, complementing each other’s strengths and 

weaknesses, appears to play an important role in the clinical field. Although many 

interesting multimodal imaging probes have been suggested, their spatiotemporal 

characteristics have been investigated using each imaging device separately. 

Sequential image acquisition makes the exact correlation and comparison studies of 
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multimodal imaging probes impossible (51, 52). Using simultaneous PET/MRI we 

can evaluate the in vivo fate of multimodal probe at the same time point and 

enables direct comparison, which is the actual beauty of multimodal imaging (53).  
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Purpose 

In this study, I defined the in vitro characteristics of micelle encapsulated 

ESIONs and demonstrated the in vivo biodistribution and pharmacokinetics using 

radiolabeled ESIONs. A direct comparison of PET derived radioactivity and MRI 

signal intensity was demonstrated using simultaneous PET/MRI.  
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Materials and Methods 

Synthesis of ESIONs 

The ESIONs with 3 nm core size were synthesized based on the thermal 

decomposition method as described in a report by Park et al. (54) and were 

provided from Lee’s group (Kookmin Univ.). Briefly, iron-oleate complex (oleic 

acid & oleyl alcohol) was dissolved in diphenyl ether at room temperature. The 

mixture was heated to 250°C at a constant heating rate of 10°C /min and then kept 

at this temperature for 30 min under an inert atmosphere. After the reaction, the 

mixture containing the nanoparticles was rapidly cooled to room temperature, and 

50 mL of acetone was added to precipitate the nanoparticles. The nanoparticles 

were separated by centrifugation and dispersed in chloroform.   

 

Radiolabeling of micelle encapsulated ESIONs 

Three steps are required for the radiolabeling of hydrophilized ESIONs 

(Figure 1). All steps are based on encapsulation with micelles in one pot, and in the 

last step, isotopes are labeled with NOTA chelators doped on the micelle surface. 

Micelle preparation, as the first step, was followed by the previous method 

(39), but the experiment was conducted with a slight modification for the large-

scale encapsulation. Briefly, tween 60 solutions at concentrations of 10% (v/v) in 

distilled water (100 mL) were sonicated and heated for 30 min. Then, compared 

with the Tween60 mole number, 2 mol% of NOTA-SA was added and micelles 
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were re-formed with the same reaction temperature and time.  

ESIONs was uniformly dispersed in the Tween60 micelle solution at the 

second step. After the removal of chloroform, 100 mg of ESIONs was added to 40 

mL of micelles, and the remaining CHCl3 was completely removed by stirring at 

room temperature. The mixture was sonicated for 30 min using bath type sonicator 

at 60°C. After sonication, the reaction mixture was centrifuged and purified at 

40 000 rpm and 4°C for 2 h using OptiPrepTM gradients. After purification, the 

gradient was removed by an Amicon filter (Amicon Ultra-0.5, 100 kDa, Merck 

Millipore, 10000 rpm, 25°C, 2 min).  

Radiolabeling was conducted at the final step. Radioisotope (64Cu) containing 

vial was blown-dried by dry N2 gas in the hood. After the vial was completely dried, 

500 µL of 1 M sodium acetate buffer (pH 5.3) was added to reach pH 5. The 1 mL 

of encapsulated ESIONs was added and incubated at room temperature for 30 min. 

After radiolabeling, for the purification and neutralization, the buffer and unlabeled 

radioisotopes were removed by an Amicon filter (Amicon Ultra-0.5, 100 kDa, 

Merck Millipore, 10000 rpm, 25°C, 2 min). Radiolabeling efficiency was 

determined using radio-instant thin layer chromatography-silica gel (radio-ITLC-

SG) after the radiolabeling procedure with citric acid (retardation factor (Rf) of free 

radioisotope = 0.9-1.0; Rf of radiolabeled ESIONs = 0.0-0.1) as the mobile phase. 
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Figure 1. Schematics of stepwise radiolabeling process 
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Characterization of ESIONs 

The hydrodynamic diameter and size distribution of micelle, micelle 

encapsulated ESIONs and radiolabeled ESIONs were analyzed by a dynamic light 

scattering (DLS) system Zetasizer Nano ZS90 (Malvern Instruments Ltd, 

Worcestershire, UK). Radiolabeled IONP (20 μL) was dissolved in distilled water 

(1 mL). The measured particle size and distribution were obtained in the mean 

number-percent (%) value. The average value was determined by measuring 5 

times at 25°C at a scattering angle of 90°. 

The T1 and T2 relaxation times of micelle encapsulated ESIONs and 

radiolabeled ESIONs were measured using a 1.41 T minispec mq 60 NMR 

Analyzer (Bruker, Germany) at 37°C. Relaxivity values were calculated via linear 

least-squares fitting of 1/relaxation time (s−1) vs. the iron concentration (mM). 

To determine the pH-dependent characteristic change of micelle encapsulated 

ESIONs, 0.5 ml of ESIONs (1 mgFe/ml) were added to 1.5 ml of buffer solutions 

with different pHs. The hydrodynamic diameter, size distribution, and relaxation 

properties were measured. 

 

Stability Test 

The stabilities of radiolabeled ESIONs were determined by ITLC-SG plates 

(Pall Corp., U.S.A.) with 0.1 M citric acid. The ITLC-SG strip was scanned using a 

TLC scanner (AR-2000, Bioscan, U.S.A.). The stability test of radiolabeled 

ESIONs on storage condition was examined in phosphate-buffered saline (PBS) at 
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room temperature for baseline, 1, 4, and 24 hours. Furthermore, the stability of 

radiolabeled ESIONs in human serum was also investigated. 0.1 mL of 

radiolabeled ESIONs were mixed with 1 mL of human serum, followed by 

incubation at 37°C. Before the test, human serum was filtered with Minsart syringe 

filter (0.2 μm, Sartotius stedim biotech, NY, USA). At baseline, 1, 4, and 24 hours, 

the radiochemical purity of the radiolabeled IONP solutions with human serum was 

tested as described above. 

 

Animal study 

All animal studies were conducted under approval by the Institutional Animal 

Care and Use Committee at Seoul National University. Specific pathogen-free 6-

week-old male BALB/c mice were purchased from Orient Bio (Seongnam, Korea). 

All PET/MRI data used in this study were acquired using SimPET (Aspect 

imaging, Shoham, Israel) simultaneous PET/MRI system. The SimPET system 

consists of 1-T permanent magnet-based MRI and novel SiPM-based PET insert, 

which has advantages not only in performance but also in installation space, 

maintenance, and stability (48). The SimPET insert has a peak sensitivity of 3.4% 

and center volumetric resolution of 0.53 mm3 (49, 50). 

The animal experiment consists of 3 parts (Figure 2). 

 

Part 1. Biodistribution of Micelle encapsulated-ESIONs 
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Image-based in vivo biodistribution of radiolabeled ESIONs was evaluated 

using simultaneous PET/MRI in BALB/c mice (n = 3). 64Cu-IONP with an iron 

concentration of 5 mgFe/kg (dose = 11.25 ± 0.7 Mbq/200 ul) was injected into the 

mice through the tail vein. Before the injection, the pre-MRI scan was obtained 

using a 3-dimensional (3D) T1-weighted gradient echo (GRE) sequence (TR/TE, 

9/2.8 ms; Flip angle, 45 degrees). Dynamic PET imaging was acquired for 56 

minutes right after the injection of radiolabeled ESIONs and later reconstructed to 

8 sequential images with 7 min interval. Simultaneously, 3D T1-weighted GRE 

MRI images were acquired with the same 7 min interval. PET/MRI images of 

serial time points were further acquired at 2, 3, 4, 24, 48, and 72 hours after 

injection for 7 min. Acquired images were reconstructed using a 2D ordered-

subsets expectation maximization algorithm with scatter and decay correction. The 

volume of interest (VOI) was manually drawn over the major organs (heart, liver, 

spleen, kidney, and lung) and excretory organs (intestine and bladder) on MRI 

images of mice acquired at different time points. The radioactivity in the organs 

from different sized radiolabeled ESIONs was estimated by applying the VOI 

(drawn on MRI images) over the organs on respective PET images acquired 

simultaneously. The activity (Bq) measured in the organ was normalized to the 

total injected dose of each radiotracer and divided by the volume of respective 

organs to obtain percentage injected dose per volume (%ID/ml). The PET image-

based biodistribution was plotted as a function of time to generate time-activity 

curves (TACs). Feces and urine were collected, to evaluate the in vivo stability and 

excretion of the 64Cu-ESIONs, at 1 and 4 hours after injection. The stability of 

radiolabeled ESIONs in excreted materials was determined by ITLC-SG and the 

iron concentration was measured for each excreta. 
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Ex vivo biodistribution of radiolabeled ESIONs was further evaluated. After 

injection of 64Cu-IONP (dose = 1 μCi/100 μL), mice were sacrificed at serial time 

points of 5 min, 1, 4, and 24 hours (n = 3, respectively, total = 12). Urine and feces 

were collected from 0 to 4 hours and from 4 to 24 hours. Radioactivity of blood, major 

organs (heart, lung, liver, spleen, stomach, intestine, and kidney) and excreta (urine and 

feces) was counted using a gamma scintillation counter (DREAM r-10, Shinjin Medics 

Inc., South Korea). The stability of radiolabeled ESIONs in blood samples acquired 

at different time points (5min, 1, and 4 hours) was evaluated using ITLG-SG. 

 

Part 2. Direct Comparison of PET and MRI signal in vivo 

Blood Pool 

Data regarding image-based in vivo biodistribution from Part 1. was used to 

compare the blood pool signal between the PET and MRI. For the quantitative 

evaluation of vascular contrast enhancement in the MRI, signal intensity ratio (SIR) 

was calculated in the VOI of heart as following.  

  

SIR of MRI and %ID/ml acquired from PET at the same time point was 

compared. 

A phantom study was conducted to further define the dose-dependent signal 

difference of each modality. A radiolabeled ESIONs were diluted into 5 different 

concentrations. At each step, ESIONs were diluted to half of the previous 
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concentration starting from 1 mM (dose = 2.6 MBq/ml). The diluted 64Cu-ESIONs 

and normal saline, as a control, were filled into plastic vials and embedded into a 

plastic container that has multiple crafted holes for vial insertion. The container 

was placed in a perpendicular direction to the main magnetic field and the same 

PET/MRI protocol, as done in the biodistribution study, was applied. Circular VOI 

was drawn over each vial inserted holes for the quantification.  

Dose-dependent change of blood pool MRI signal was evaluated in vivo using 

ESIONs with 3 different concentrations (2.5 mgFe/kg, 5 mgFe/kg and 10 mgFe/kg). 

Ten sequential images of 3D T1-weighted GRE with 3.5 min interval was acquired 

right after the injection of ESIONs with different concentration. An additional 1.5-

hour MRI image was acquired. For the quantitative evaluation of vascular contrast 

enhancement, SIR was quantified using the manually drawn VOI of the aorta. 

 

Liver 

Quantitative values derived from Part 1. was used to compare the liver signal 

between the PET (%ID/ml) and MRI (SIR) obtained simultaneously.  

To reflect the internalized fraction, retention fraction of radiolabeled ESIONs 

was obtained at each time point. The washout liver model was used to compare the 

cell retention fraction and MRI liver signal (SIR). After injection of 64Cu-ESIONs, 

with iron concentration of 5 mgFe/kg (dose = 13.23 ± 0.42 Mbq/200 ul), mice were 

sacrificed at serial time points of 5 min, 1, 4 and 24 hours (n = 2, respectively, total = 8). 

The liver was extracted after ligation of the portal vein, hepatic artery, and the inferior 

vena cava. Radioactivity (pre-radioactivity) of the liver was counted using a gamma 
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scintillation counter. Afterward, radiolabeled ESIONs in the blood pool were removed 

by perfusion through the portal vein using warm normal saline. Post-radioactivity was 

counted and cell retention fraction of radiolabeled ESIONs in the liver was calculated 

as follows. 

  

Part 3. Monitoring microscopic distribution of radiolabeled ESIONs in vivo 

As a proof of concept study, the microscopic distribution of ESIONs was 

evaluated in the tumor model, 4 hours after intratumoral injection of 64Cu-IONP 

(dose = 2.68 ± 0.13 Mbq/50 ul). Tumor xenograft models were provided by Seok’s 

group (Seoul National Univ.). Briefly, 2x105 4T1-Luc2 cells were injected into the 

inguinal right fourth mammary fat pad of 7 week-old female BALB/c mice and were 

used in the study, 21 days after injection. 
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Figure 2. Experimental design 
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In vivo experimental design consists of 3 parts. Part 1. Biodistribution of 

64Cu-ESIONs; Part 2. Direct comparison of PET and MRI signal in vivo; Part 3. 

Monitoring microscopic distribution of radiolabeled ESIONs in vivo 
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Transmission electron microscopy (TEM) 

Transmission electron microscopy (TEM) images of liver tissue at each time 

point and tumor tissue were acquired to further investigate the microscopic 

distribution of ESIONs. TEM images were taken at an acceleration voltage of 80 

keV (JEM-1400; Jeol). Liver tissue of 5 min, 1 hour, 4 hours and 24 hours after 

ESIONs injected mice was chopped and multiple pieces were selected including 

different 4 regions of both lobes of the liver.  

 

Concentration measurement 

Inductively coupled plasma mass spectrometer (ICP-MS, ELAN 6100, Perkin- 

Elmer, Massachusetts, USA) at National Center for Inter-university Research 

Facilities (NCIRF, Seoul National University) was used to estimate the 

concentration of core IONPs. 

The concentration of micelle encapsulated ESIONs and radiolabeled ESIONs 

was measured using NanoDrop 2000c Spectrophotometer (Thermo Scientific, 

USA). Briefly, ESIONs were all decomposed to iron ion in nitric acid solution and 

incubated at room temperature for 30 min. Then KSCN solution was added, and as 

the color of the solution change to red, the wavelength of the mixture was detected 

by the Spectrophotometer. The concentration was calculated by incorporating the 

measured absorbance into the standard curve extracted from the standard Fe(NO3)3 

solution. 
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Results 

pH-dependent characteristic change of ESIONs 

Micelle, as an anionic surfactant, commonly induce negative charge to the 

nanoparticle after encapsulation. This negative charge leads to electrostatic 

repulsion between the encapsulated nanoparticle and stabilizes it. However, when 

introduced to the acidic pH, through protonation, the surface charge of the 

nanoparticle may become near neutral, which can cause aggregation of particles 

(55, 56). In this study, the labeling process is performed at acidic pH (pH 5.6) for 

effective labeling. Therefore, pH-dependent change of hydrodynamic size and MRI 

relaxation properties when exposed to acidic pH was observed.  

After exposure to acidic pH, after a certain period, it was visually cloudy, and 

aggregated particles could be observed in the TEM image (Figure 3a). The 

hydrodynamic diameters of micelle encapsulated ESIONs in neutral pH (baseline), 

pH6, and pH5 were 9.35 ± 2.20 nm, 736.12 ± 254.20 nm, and 116.32 ± 57.31 nm, 

respectively. When exposed to acidic pH micelle encapsulated ESIONs showed the 

bigger size and more scattered distribution compared with the baseline (Figure 3b). 

In the same vein, relaxivity, especially T2 relaxation time, was highly variable at 

acidic pH. Due to the aggregation effect, r2 was estimated to be high and as a result 

r2/r1 was high compared to the micelle encapsulated ESIONs (Figure 4). The detailed 

values are summarized in Table 1.   

Comprehensively, since the acidic pH can affect the characteristics of micelle 

encapsulated ESIONs, in this study, the neutralization process through buffer 

exchange after radiolabeling was additionally performed. 
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Figure 3. Hydrodynamic size of micelle encapsulated ESIONs in different pH 

a, Micelle encapsulated ESIONs after exposure to an acidic pH was visually cloudy, 

aggregated in the TEM image, b, and showed a significant increase in 

hydrodynamic size.   



 32 

 

Figure 4. Relaxivity of micelle encapsulated ESIONs in different pH 

Micelle encapsulated ESIONs after exposure to an acidic pH showed a lower r1 

value of 2.68 s-1mM-1 and a higher r2/r1 ratio of 9.03 compared to the baseline, 

which showed r1 and r2/r1 ratio of 3.43 s-1mM-1 and 5.36, respectively.   
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Characteristics of radiolabeled ESIONs 

The ESIONs core showed excellent uniformity on TEM, and there was no 

change in the micelle encapsulation process (Figure 5a). 

The hydrodynamic diameters of the micelle, micelle encapsulated ESIONs, 

and 64Cu-ESIONs were 7.48 ± 1.51 nm, 9.35 ± 1.28 nm, and 9.47 ± 2.20 nm, 

respectively. No significant change in size was observed after the radiolabeling 

procedure (Figure 5b). 

Compared to baseline, relatively low r1 value was observed in radiolabeled 

ESIONs, but similar r2/r1 ratio was observed (Figure 6). Thus, radiolabeling process 

of micelle encapsulated ESIONs did not significantly alter the relaxivity. 

Furthermore, micelle encapsulated ESIONs and radiolabeled ESIONs are expected 

to have sufficient performance as a T1 contrast agent, with relatively low r2/r1 ratio. 

The detailed values are summarized in Table 1.   
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Figure 5. Size of the micelle, micelle encapsulated ESIONs, and radiolabeled 

ESIONs  

a, The shape and visual size of the ESIONs core were not changed on TEM image 

after micelle encapsulation. b, The hydrodynamic diameters of the micelle, micelle 

encapsulated ESIONs (baseline) and 64Cu-ESIONs (post-label) were 7.48 ± 1.51 

nm, 9.35 ± 1.28 nm, and 9.47 ± 2.20 nm, respectively.   
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Figure 6. Relaxivity of micelle encapsulated ESIONs and radiolabeled ESIONs 

After radiolabeling, r1 value (2.83 s-1mM-1) was estimated to be low compared to 

that of baseline (3.43 s-1mM-1). However, no significant change in the r2/r1 ratio 

was observed after radiolabeling (baseline vs post-label, 5.76 vs 5.36). 
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Characteristics  pH5 Baseline Post-label 

Relaxivity r1 (s-1mM-1) 2.68 3.43 2.83 

 r2 (s
-1mM-1) 24.24 18.40 16.31 

 r2/r1 9.03 5.36 5.76 

Hydrodynamic Size (mean ± SD, nm) 116.32 ± 57.31 9.35 ± 1.28 9.47 ± 2.20 

 Table 1. Characteristics of micelle encapsulated ESIONs in different 

conditions 
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Stability Test 

Labeling efficiency of 64Cu-ESIONs was over 95% and remained stable until 

24 hours in PBS solution at room temperature (92.4%) and in human serum at 

37 °C (77.1%) (Figure 7).  
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Figure 7. In vitro stability test 
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Part 1. Biodistribution of 64Cu-ESIONs 

Image-based in vivo biodistribution study 

Serial PET images were obtained after 64Cu-ESIONs injection and maximum 

intensity projection (MIP) images were demonstrated (Figure 8).  

For the quantification, the correction factor was first obtained using a 64Cu 

phantom. Next, the %ID/ml value, of each organ at each time point, was measured 

from manually drawn VOI and it was expressed as TAC (Figure 9). 

In the early time points, the radiolabeled ESIONs were mainly distributed 

among organs representing the blood pool, such as heart, great vessel, lung, and 

kidneys. A biphasic decrease of radioactivity in the blood pool was observed. In the 

early time point, the half-life was approximately 62 min and in the slowly 

decreasing phase, the half-life was measured to be approximately 12.8 hours. 

Minimal bladder uptake, suggesting a urinary excretion, was observed in the early 

hours. Over time, blood pool activity decreased, and the uptake of the liver and 

intestine increased up to 4 hours. Afterward, both the liver and intestine showed a 

gradual decrease in radioactivity, until 72 hours.  
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Figure 8. In vivo PET results of 64Cu-ESIONs 

Decay-corrected MIP (Maximum Intensity Projection) images in BALB/c mice at 

different time points after intravenous injection of 64Cu-ESIONs were shown.
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Figure 9. Image-based quantification of 64Cu-ESIONs biodistribution 

In vivo PET image of BALB/c mice after intravenous injection 64Cu-ESIONs was 

quantitatively analyzed. Major organ uptake at serial time points was obtained and 

was expressed as mean ± SD (%ID/ml).
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Ex vivo biodistribution study 

The ex vivo biodistribution of 64Cu-IONP was obtained in units of %ID/organ 

at each time point (Figure 10). The mean and standard deviation of %ID/organ are 

summarized in Table 2. Blood activity as an organ was first measured in %ID/g and 

then multiplied by 7% of the mouse weight, considering the mouse blood volume. 

Rapid clearance was observed in the blood, lung, and kidney. Still, a considerable 

amount of radioactivity remained in the blood at 1 hour and 4 hours, 

mean %ID/organ ± SD was estimated to be 15.98 ± 2.28 and 7.19 ± 1.03, 

respectively. Liver uptake peaked at 1 hour and gradually decreased until 24 hours. 

Intestinal uptake gradually increased until 4 hours and remained plateau. Urine and 

feces from injection to 4 hours and 4 to 24 hours were collected. The sum of urine 

and feces accumulated up to 24 hours was 4.45 ± 2.32 and 38.77 ± 3.11 respectively. 

Comprehensively, up to 40% of radiolabeled ESIONs were excreted through the 

hepatobiliary pathway within 24 hours. 
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Figure 10. Ex vivo quantification of 64Cu-ESIONs biodistribution 

Ex vivo biodistribution of BALB/c mice after intravenous injection 64Cu-ESIONs 

was quantitatively analyzed. Major organ uptake at serial time points was obtained 

and was expressed in units of %ID/organ. 
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Time 5 min 1 hour 4 hours 24 hours 

Organs Blood 40.55 ± 1.98 15.98 ± 2.28 7.19 ± 1.03 0.74 ± 0.33 

 Heart 0.75 ± 0.08 0.34 ± 0.03 0.21 ± 0.02 0.09 ± 0.06 

 Lung 5.35 ± 1.01 2.79 ± 1.37 0.90 ± 0.58 0.47 ± 0.10 

 Liver 23.06 ± 2.96 36.63 ± 8.22 27.68 ± 1.99 24.18 ± 1.71 

 Spleen 1.06 ± 0.22 0.44 ± 0.17 0.27 ± 0.06 0.50 ± 0.16 

 Stomach 0.44 ± 0.14 1.21 ± 0.33 0.44 ± 0.23 0.36 ± 0.11 

 Intestine 3.21 ± 0.33 8.36 ± 1.49 13.81 ± 5.14 13.73 ± 1.92 

 Kidney 3.18 ± 0.38 2.22 ± 0.26 1.16 ± 0.17 1.28 ± 0.25 

 Total 77.61 ± 4.58 67.97 ± 13.12 51.66 ± 4.10 41.37 ± 2.93 

Excreta Feces   1.43 ± 1.18 37.34 ± 3.11 

 Urine   0.07 ± 0.02 4.38 ± 2.33 

Table 2. Ex vivo biodistribution of 64Cu-ESIONs in the major organs 

(%ID/organ)



 45 

In vivo stability 

From the pharmacokinetic study, excretion of radiolabeled ESIONs was 

mostly through hepatobiliary excretion and some portion as urine. To confirm the 

composition of excreta and evaluate the in vivo stability, the radiochemical purity 

of urine, blood, and feces was estimated using ITLC-SG.  

ITLC-SG result of the urine collected one hour after an injection of 64Cu-

ESIONs revealed that most of the radioactivity was detected as a disintegrated 

form (Figure 11a). Furthermore, spectrophotometry revealed no measurable 

concentration of iron in the urine (Figure 11b).  

Almost identical peaks with that of 64Cu-ESIONs were observed from the blood, 

collected at 5 min, 1 hour, and 4 hours. 

Stool contents were collected from the large bowel at 4 hours after injection of 

64Cu-ESIONs and mixed with normal saline. The mixture of stool samples showed 

contrast enhancement in 3D T1-weighted GRE MRI and at the same time 

radioactivity in PET image. As a result of supporting this, ITLC-SG revealed high 

radiochemical purity (81%) of 64Cu-ESIONs in the stool sample (Figure 13). 
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Figure 11. Radiochemical purity test of urine sample 

A urine sample was collected, 1 hour after administration of 64Cu-ESIONs. a, 

Radioactivity of urine was mostly detected as a disintegrated form. b, As a result of 

measurement using spectrophotometry, iron was not detected in the urine sample.
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Figure 12. Radiochemical purity test of blood sample 

A blood sample was collected at different time points (5 min, 1 hour, and 4 hours) 

after administration of 64Cu-ESIONs. Radioactivity of blood was mostly detected 

as an intact form.
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Figure 13. Radiochemical purity test of stool sample 

A stool sample was collected, 4 hours after administration of 64Cu-ESIONs. The 

mixture of stool samples showed contrast enhancement in T1-weighted MRI with 

corresponding radioactivity. Radioactivity of blood was mostly detected as an 

intact form with radiochemical purity of 81%.
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Part 2. Direct comparison of PET and MRI signal in vivo 

Image-based comparison of blood pool signal 

After injection of 64Cu-ESIONs with an iron concentration of 5 mgFe/kg (dose 

= 11.25 ± 0.7 Mbq/200 ul), SIR from the 3D T1-weighted GRE MRI and %ID/ml 

acquired from the PET was compared. 

In the early time point, SIR showed almost plateau value, but radioactivity 

rapidly declined. From 1 hour, both SIR and radioactivity gradually decreased with 

time and reach the plateau after 24 hours. The correlation graph showed that both 

signals were linear in the range with low radioactivity but relatively non-linear in 

the range with high radioactivity. 
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Figure 14. Direct comparison of PET and MRI blood pool signal in vivo 

Time-dependent change of PET and MRI blood pool signal was compared after 

injection of 64Cu-ESIONs with an iron concentration of 5 mgFe/kg. a, Time 

activity curve and correlation graph were obtained, as SIR representing MRI signal 

intensity and %ID/ml as PET radioactivity. b, Representative image showing 

persistent blood pool enhancement in the MRI, while a significant decrease of 

radioactivity was observed in the corresponding region.  
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Phantom study of dose-dependent signal change 

A similar result was observed in the phantom study. PET and MRI signals, of 

64Cu-ESIONs solutions which were diluted sequentially in half, were measured. 

While the PET signal showed a linear distribution over the entire concentration 

range, the SIR value showed a relatively linear change with the concentration at a 

low concentration, but at a high concentration range, the signal rather decreased as 

the concentration increased (Figure 15). 
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Figure 15. Direct comparison of PET and MRI signal in phantom  

Concentration-dependent change of PET and MRI signal was compared using 

sequentially diluted 64Cu-ESIONs. MRI signal intensity was expressed as SIR and 

PET as Bq/ml  
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Dose-dependent difference in MRI signal in vivo 

Time-dependent change of blood pool MRI signal was further evaluated using 

3 different concentrations of ESIONs (Figure 16). Linear decrease of blood pool 

signal over time was observed at a concentration of 2.5 mgFe/kg. Similar to the 

previous results, when 5 mgFe/kg was administered, a plateau of SIR value was 

shown initially and then the signal decreased at 1.5 hours. At the highest 

concentration of ESIONs, 10 mgFe/kg, SIR value was estimated to be the lowest in 

the early time point and the signal rather increased after 1.5 hours. 
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Figure 16. Comparison of time-dependent MRI signal change in different 

concentration in vivo 

Time activity curve of SIR was compared between 3 different concentration (10 

mgFe/kg, 5 mgFe/kg and 2.5mgFe/kg) of ESIONs. 
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Image-based comparison of liver signal 

SIR value and %ID/ml of liver from serial PET/MRI were obtained after 

injection of 64Cu-ESIONs with an iron concentration of 5 mgFe/kg (dose = 11.25 ± 

0.7 Mbq/200 ul) and both values were compared. While the MRI signal gradually 

decreased over time, persistent uptake of 64Cu-ESIONs was observed in the liver 

by PET (Figure 17). 
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Figure 17. Direct comparison of PET and MRI liver signal in vivo 

Time-dependent change of PET and MRI liver signal was compared after injection 

of 64Cu-ESIONs with an iron concentration of 5 mgFe/kg. a, Time activity curve 

and correlation graph were obtained, as SIR representing MRI signal intensity 

and %ID/ml as PET radioactivity. b, Representative image showing a gradual 

decrease of MRI signal in the liver, while radioactivity is relatively maintained in 

the corresponding region.  
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Comparison between cell retention fraction and liver SIR 

Retention fraction of radiolabeled ESIONs was obtained at each time point, 

using a washout liver model. Brief scheme and representative images of before and 

after washout are shown in Figure 18a. Retention fraction, starting from 64.1 % at 

5 min, increased with time and reach the plateau at 4 hours. Compared with the 

liver SIR value, from the corresponding time point, retention fraction showed a 

negative correlation and linearity (Figure 18b).     
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Figure 18. Comparison between cell retention fraction and liver SIR 

a, Brief scheme and representative images of before and after washout. b, The 

retention fraction (%) of radiolabeled ESIONs was obtained at each time point, 

using a washout liver model, and was compared with SIR, representing an MRI 

signal. 
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TEM study of cell internalization in liver 

The hepatic uptake and microscopic distribution of radiolabeled ESIONs were 

investigated using serial time point TEM image (Figure 19). At 5 min, ESIONs 

were observed in both the blood pool and intracellular compartments of endothelial 

cells and hepatocyte. While the ESIONs in the blood pool were freely distributed, 

intracellular ESIONs were clustered inside the cytoplasmic vesicles. ESIONs were 

more dominant in the intracellular components than the blood pool at 1 hour after 

injection. Compared with the earlier time point, ESIONs inside the endothelial 

cells were clustered in numerous lysosomes. Pinocytosis at the endothelial cell was 

observed from 5 min TEM image until 1 hour. At 4 hours, clustered ESIONs were 

observed in the lysosomes of the Kupffer cell. In the hepatocytes, vesicles 

containing IONP were frequently seen at the cell margin. ESIONs were rarely 

observed in the blood pool. Clustered ESIONs were still visualized, at 24 hours, 

inside the Kupffer cell, and some in the vesicles of the hepatocyte. 
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Figure 19. Observation of cell internalization in liver using TEM 

TEM image of liver tissue, which was collected at different time points (5 min, 1 

hour, 4 hours, and 24 hours) after administration of 64Cu-ESIONs, was acquired. 

Uptake of ESIONs was observed from the early time point in various cells, such as 

Kupffer cell, hepatocyte, and liver sinusoidal endothelial cell. Red arrow indicates 

internalized ESIONs clustered inside the intracellular vesicles, including 

endosomes and lysosome. Blue arrow indicates pinocytosis observed in the 

endothelial cells, which is assumed to be the cell internalization mechanism of 

ESIONs.
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Part 3. Monitoring microscopic distribution of radiolabeled ESIONs in vivo  

PET/MRI image was obtained in the mouse tumor model, 4 hours after 

intratumoral injection of radiolabeled ESIONs. Compared to the pre-scan, the 3D 

T1-weighted GRE MRI scan at 4 hours showed a bright signal in the tumor, and 

PET derived radioactivity was observed on the corresponding site (Figure 20a). 

TEM image revealed that radiolabeled ESIONs were mostly located at the 

extracellular space, as a freely dispersed form (Figure 20b).
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Figure 20. Monitoring of microscopic distribution in tumor model 

a, Coronal image of PET/MRI was acquired from the mouse tumor model, 4 hours 

after intratumoral injection of 64Cu-ESIONs. b, Corresponding TEM image was 

obtained to visualize the microscopic distribution of 64Cu-ESIONs. 
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Discussion 

Biodistribution and pharmacokinetics of micelle encapsulated ESIONs were 

evaluated after radiolabeling. The radiolabeling process did not induce significant 

changes in characteristics of micelle encapsulated ESIONs and when considering 

the in vitro and in vivo stability, radioactivity seemed to well reflect the in vivo 

dynamic of micelle encapsulated ESIONs. the biodistribution study of radiolabeled 

ESIONs revealed a relatively long blood circulation time. While maintaining their 

intact radiolabeling form, radiolabeled ESIONs were mainly cleared through the 

hepatobiliary pathway and up to 40% of injected 64Cu-ESIONs were excreted 

within 24 hours. I investigated the difference between PET and MRI signal in vivo, 

using simultaneous PET/MRI. Both the in vivo and phantom study, the signal 

intensity of the blood pool in 3D T1-weighted GRE MRI was found to have a 

concentration-dependent change in the low concentration range, but it was 

considered non-linear in the high concentration range. Meanwhile, 64Cu induced 

radioactivity showed excellent linearity with the concentration. Next, 3D T1-

weighted GRE induced MRI signal showed a linear relationship with cell 

internalization, which was reflected by the retention fraction, in the liver. Using 

this result, potential usage of radiolabeled ESIONs for monitoring microscopic 

distribution was evaluated in the mouse tumor model.  

Inorganic nanoparticles, including IONPs, can be taken up by the 

reticuloendothelial system (RES) and remain in the corresponding organs, which 

may consequently, lead to toxicological side effects. The mechanism by which 

nanoparticles exhibits cytotoxicity has not been clearly elucidated, but it is 

hypothesized that nanoparticles produce reactive oxygen species (ROS) and as a 
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result induce cellular oxidative stress (57). IONPs, with their excellent 

biocompatibility, is considered as a safe and non-toxic nanoparticle. Studies have 

been conducted, since the first clinical administration decades ago, to confirm the 

side effects of IONPs after administration to humans (58-60). From the studies, 

overall adverse events were reported to occur between 5% and 24%, mostly mild to 

moderate adverse events, and serious adverse events were observed only in a very 

limited number of patients. A recent Ferumoxytol study in 8666 patients with iron 

deficiency, reported a 1.25% overall incidence of side effects and a serious side 

effect of 0.21% (61). However, there are still concerns about the lack of clear 

results on long-term side effects (62). Moreover, conflicting evidence regarding 

toxicity has been reported based on in vitro and in vivo studies (29, 63-69). This is, 

for some reason, because the IONPs used in each experiment were conducted using 

IONPs with various sizes, shapes, surface charge, surface coating materials, 

concentration and different in vitro and in vivo models. Thus, when applying a new 

particle with different sizes, surface encapsulation method, or targeting ligand, a 

systematic toxicity study is additionally needed, which can be supported by 

biodistribution and pharmacokinetic studies. However, for this novel micelle 

encapsulated ESIONs, biodistribution and pharmacokinetic studies are limited to 

date which are prerequisite for the clinical translation.   

From the biodistribution and pharmacokinetic study, I have observed 

relatively long blood circulation, approximately 62 min at the early time point and 

12.8 hours at a later period, and rapid hepatobiliary excretion, up to 40% at 24 

hours. In general, nanoparticles, after in vivo administration, are cleared through 

three main mechanisms, which are renal system, hepatobiliary systems, and RES 

(70, 71). Each mechanism has a different clearance time. Nanoparticles can be 
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cleared through the renal system within hours to days, and through the 

hepatobiliary system within hours to weeks, whereas, nanoparticles, retained in the 

RES, can be eliminated after degradation which takes months to years. Various 

factors such as size, surface coating, surface charge, and shape are involved in 

blood clearance and excretion of nanoparticles.  

Size is the initial key factor in determining the main clearance pathway of the 

nanoparticle. A quantum dot study revealed that effective excretion through the 

urinary system can be achieved at the hydrodynamic size less than 5.5 nm, the 

renal filtration cutoff size (72). Bawendi et al. reported exceedingly small IONPs 

with a hydrodynamic size of 4.7 nm (32). They used IONP with a core size of 3 nm 

and zwitterionic dopamine sulfonate for the ultrathin hydrophilic shell. Due to its 

small size, the IONP in the study showed effective T1 contrast and rapid clearance 

through the renal system. As a result, it showed relatively fast blood clearance, 

half-life of 19 min. Still, it is a long blood half-life compared to a common Gd-

DTPA agent (2 min), but it may not be a sufficiently long time for steady-state 

imaging and tumor imaging. Nanoparticles exceeding the diameter of liver 

sinusoidal fenestrae, which ranges from 50 to 200 nm, are mainly taken up by the 

RES and retained (70). In the same vein, large IONPs (dH ~100-200nm) are rapidly 

removed from the blood pool after administration and mostly are retained in the 

liver and spleen after being phagocytosed by the tissue macrophage (73, 74). 

Generally, these large-sized IONPs have shown short blood half-life, half of the 

injected dose was cleared within minutes (74-77). Besides the short blood 

circulation time, the degradation and excretion process in the RES is significantly 

slow, which can take from months to years (78, 79). Prolonged retention of IONPs 

from this slow clearance process, may raise the concerns for long-term toxicity. 
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Nanoparticle with size ranging from 8 nm to 50 nm can pass through the liver 

fenestrae extravasate into the space of Disse and directly interact with the 

hepatocyte (70, 80). Subsequently, the nanoparticle can be endocytosed into the 

hepatocyte, then released through the bile canaliculi, and finally excreted through 

the intestine. In this size range, rapid excretion through the kidneys can also be 

avoided. Various biodistribution studies using USPIO, with a focus on FDA 

approved ferumoxytol (dH ~30 nm) and ferumoxtran-10 (dH ~30 nm), have been 

conducted. Both ferumoxytol and ferumoxtran-10 showed prolonged blood 

circulation with blood half-life estimated to be 12 hours and 30 hours, respectively 

(81, 82). In the animal models, the blood half-life is relatively shorter (78), as 

ferumoxytol showing blood half-life of approximately 45 minutes in the mice (83). 

Although it has the advantage of long circulation time, there still is a concern for 

systemic clearance of the IONPs in vivo. Preclinical study of Ferumoxtran-10 after 

59Fe labeling revealed that a considerable amount of USPIO remained in the body 

and only 22% was excreted in 84 days, mainly as feces (84).  

The size of radiolabeled ESIONs (9.47 nm) in this study seems to be optimal 

as an effective blood pool imaging agent by minimizing uptake in RES such as 

Kupffer cells and avoiding renal clearance so that it can remain in the blood pool 

for a long time. The larger the size, the greater the uptake in the RES, so smaller 

particles can avoid prolonged retention in the macrophage (70, 85), as a result, a 

larger portion can pass through the hepatocyte and excrete into the hepatobiliary. 

Also, by minimizing toxicity through rapid hepatobiliary excretion, radiolabeled 

ESIONs are expected that there may be fewer concerns about safety issues. 

Another important factor affecting the clearance pathway is the surface 
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coating method. Without proper surface coating, most nanoparticles tend to 

aggregate due to hydrophobic interactions or Van der Waals forces, then 

opsonization accelerates and as a result gets eliminated through the RES rapidly 

(86, 87). Opsonization of nanoparticle is a process whereby surface-bound opsonin, 

such as antibody and complement proteins, undergo a conformational change to 

have a stronger attraction to the receptors of the phagocytes on the particle surface 

(88). By minimizing opsonization, recognition by RES can be minimized, and as a 

result, the stealth effect can be maximized to obtain high stability, long blood pool 

circulation, and less RES retention of the nanoparticle. Opsonization of 

nanoparticles may vary depending on the surface properties, including charge and 

hydrophobicity, thus, it can be manipulated by the surface coating materials (89, 

90). Different types of materials, including synthetic polymeric molecules, such as 

polyethylene glycol (PEG) (91), and natural polymers, such as dextran (92), 

albumin (93), have been used for surface coating. Among these polymers, dextran 

and PEG have been the most widely used materials for IONPs surface coating, and 

most of the clinically approved IONPs are coated with dextran and it's derivative 

(94). These surface coating has shown enhanced stability, low cytotoxicity, and 

longer blood circulation time (74, 94-96). In addition to the surface coating method 

with polymers, encapsulation methods that incorporate IONPs inside the vesicles, 

such as liposomes (97-99) and micelle (100), has been introduced. Like the 

conventional surface coating method, the encapsulation method also showed 

prolonged blood circulation time by minimizing RES uptake, high colloidal safety 

and improved biocompatibility (94). In general, it is known that surface coating can 

reduce cell toxicity by improving stability and reducing the number of oxidative 

sites (66, 101, 102). More importantly, encapsulated surface of IONPs can be 

further functionalized based on the terminal active groups. 
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Since the micelle encapsulation method was first applied to a quantum dot and 

proved its possibility (103), studies have been conducted to optimize this method, 

to be more simple and rapid, for various nanoparticles (104-106). Recently, Lee et 

al. integrated these progress to make a quick and straightforward one-step method 

for producing multifunctional nanoparticles under mild condition (39) andfurther 

applied for the encapsulation and radiolabeling of IONPs (dC ~5nm, dH ~10.12nm), 

to be used as a PET/MRI dual-modality agent for lymph node imaging (18). In the 

study micelle encapsulated radiolabeled IONPs showed no significant cellular 

toxicity, but, in vivo systemic effect was not evaluated, as IONPs were injected 

through the footpad.  

Moreover, micelle encapsulation can accelerate the hepatobiliary clearance of 

the nanoparticles. Seo et al. reported the micelle encapsulated upconverting 

nanoparticles (UCNP) can be cleared via hepatobiliary excretion in their intact 

forms (107). They have revealed efficient hepatobiliary excretion of UCNP after 

initially taken up by the hepatocyte, using PET and TEM images. However, 

underlying molecular mechanisms are not understood well. For rapid hepatobiliary 

excretion, recognition by RES should be avoided. In general, for nanoparticles to 

be excreted through the hepatobiliary system, they must path through these steps: 

(a) liver sinusoid, (b) space of Disse, (c) hepatocytes, (d) bile ducts, (e) intestines, 

and (f) out of the body. During this process, interaction with liver non-parenchymal 

cells (e.g. Kupffer cells) affects excretion. Existing studies have confirmed that if 

MPS recognition can be effectively avoided, excretion through hepatobiliary 

system may increase. For example, depletion of Kupffer cells through clodronate 

liposomes (108), positive surface change (109), and micelle encapsulation 

increased excretion through the liver (107). It is speculated that micelle 
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encapsulation of the ESIONs may lower the recognition by RES. After avoiding 

recognition by RES, micelle encapsulated ESIONs must be effectively internalized 

into hepatocytes. Heine et al. confirmed that polymer coated nanoparticles are 

mainly accumulated in liver sinusoidal endothelial cells, while micelle 

encapsulated nanoparticles are taken up in hepatocytes and Kupffer cells (110). In 

the study, low-density lipoprotein (LDL) receptor knock-out transgenic mice were 

used. In the wild type, uptake of micelle encapsulated nanoparticles was observed 

in both hepatocyte and Kupffer cells, whereas in transgenic mice, uptake was 

observed only in the Kupffer cells. Additionally, it was confirmed that hepatocyte 

uptake reduction in apolipoprotein E (ApoE) deficient mice. Comprehensively it is 

speculated that the LDL receptor and ApoE appear to play important roles in the 

hepatocyte uptake of micelle encapsulated ESIONs  

Various methods have been used to evaluate the biodistribution and 

pharmacokinetics of IONPs. A qualitative and quantitative method for the 

biodistribution study can be roughly categorized into ex vivo and in vivo studies 

(78). Simply, using an optical microscope, the distribution of IONPs can be easily 

confirmed by staining the extracted tissue. However, staining with Prussian Blue 

has an important limitation that it is difficult to distinguish between endogenous 

iron and exogenous IONP. The TEM image is a representative ex vivo imaging tool 

that has a resolution below 1 nm and, as a result, can utilize it to evaluate the 

microscopic distribution of IONPs (111-113). However, TEM image-based 

biodistribution studies have an inherent limitation, due to the small field of view it 

can only provide information regarding a selected area. For the quantitative 

biodistribution study, spectroscopy and magnetometry techniques can be used. The 

mass spectrometry technique that ionizes a sample using an inductively coupled 
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plasma is used in many ways for the accurate quantification of iron, but it also has 

limitations, such as the staining method, that cannot distinguish between 

endogenous and exogenous components. Conversely, the magnetometry technique 

can distinguish exogenous components using magnetic properties and allow 

accurate quantification (114). Ex vivo methods can observe the microscopic 

distribution of IONPs with high resolution and provide accurate quantitative values, 

but since they can be observed only after animal sacrifice, it is impossible to image 

the function of living organs and it is difficult to track the dynamic behavior over 

time.  

In vivo imaging can compensate for these limitations. The optical image is 

frequently used for in vivo studies, which can be obtained and quantified by 

labeling a fluorophore on a core or surface. However, IONPs themselves may have 

a quenching effect on fluorescence signal (68). Moreover, weak tissue penetration 

limits its clinical application. Based on the superparamagnetic properties of IONPs, 

MRI has been the most widely used method for the evaluation of in vivo 

biodistribution and quantification. Recently, to overcome the inherent limitations of 

T2 relaxivity based quantification, studies using T1 quantitative mapping 

sequences, such as UTE (ultra-short echo time) and SWIFT (sweep imaging with 

Fourier transformation), have been reported, which can obtain linear quantitative 

values at relatively higher concentration range (115-117). Though, endogenous iron 

and background tissue interference may affect the accurate quantification in 

relaxivity based methods. Magnetic particle imaging (MPI) is a more recent 

tomographic imaging technique, it forms images by exploiting the intrinsic 

saturation property of IONPs (118). MPI can track and quantify nanoparticle 

concentrations regardless of endogenous irons and without tissue background noise. 



 73 

Similarly, PET, using radiolabeled particles, can be used for tracking and 

quantifying only the injected IONPs without being affected by the background. 

Radiolabeling of the nanoparticle can be done either in the core or on the surface. 

Both core (32, 119-121) and surface labeling (18, 122) have been used for in vivo 

tracking of IONPs.  

There is a concern for in vivo stability of radiolabeling, especially for surface 

labeled nanoparticles. A recent study has evaluated the in vivo integrity of 

polymer-coated gold nanoparticle with both core and surface labeling, and suggest 

that disassociation of nanoparticle surface coating is caused by the intracellular 

proteolytic enzymes (123). The disintegration of the radiolabeled nanoparticle may 

also occur in the blood circulation by the plasma enzyme (124). Given the high 

radiochemical purity in the blood and the presence of mostly disintegrated form in 

urine, it is speculated that radiolabeled ESIONs will be released through urine as 

soon as it is disassociated. Referring to the distribution of 64Cu-NOTA-C18 shown 

in the micelle encapsulated UCNP study (107), in this study, 64Cu-NOTA, not 

micelle encapsulation, may disintegrate and clear through the renal system. This is 

in line with the previous study which evaluated the in vivo integrity of IONPs 

using 59Fe, as core and 111In as surface labeling radionuclide (125). In this study, the 

radioactivity of 59Fe and 111In showed an overall similar biodistribution pattern but 

showed a significant difference in the kidney, which demonstrates that the 

disassociated 111In is mainly cleared through the renal system. Collectively, in vivo 

stability can be easily monitored through estimation of urinary output, but since, 

the urinary excretion was minimal (%ID: 4.45%, at 24 hours), the effect of 

disintegration in our study might be negligible. Furthermore, high radiochemical 

purity of stool contents demonstrates that radioactivity of 64Cu well reflects the in 
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vivo dynamics of ESIONs. 

Indeed, biodegradation was beyond the scope of this study. Although 

biodegradation has minimal effect in the early dynamics of radiolabeled ESIONs, it 

is an important factor related to long-term clearance and chronic toxicity. 

Commonly, it is speculated that the biodegradation of IONPs would be similar to 

that of ferritin, in which protein shell gets dissolved in the intracellular lysosome 

(78). The degradation of exogenously injected IONPs mainly takes place in the 

intracellular lysosome of macrophage, in different RES organs (126, 127). The 

study of ferumoxtran-10 revealed different elimination patterns of iron oxide core 

and dextran shell, using the dual-labeling method with 59Fe and 14C, representing 

the core and shell, respectively (84). After phagocytosed by the RES, the dextran 

shells were dissolved and were mostly eliminated through the renal system (89% in 

56 days). Whereas, the iron core was cleared very slowly, mostly through the 

hepatobiliary system (21% in 84 days). Because of such difference in the clearance 

of core and shell, degradability should be considered for evaluation and 

quantification of long-term pharmacokinetics of radiolabeled ESIONs in the future 

study.  

As a result of biodegradation, the free iron can trigger the production of ROS 

which may induce chronic toxicity (68, 128). However, the high hepatobiliary 

clearance shown in this study demonstrates that the uptake portion to RES, 

including Kupffer cell, is relatively low compared to the hepatocyte, which means 

that the biodegradation portion of radiolabeled ESIONs by RES is relatively small. 

Also, it is reported, that IONPs with small core sizes showed faster biodegradation 

in the liver and spleen (129). Overall, biodegradation of radiolabeled ESIONs is 
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expected to occur less and faster by RES, so there may be less chronic toxicity. 

Micelle encapsulated ESIONs with 3 nm core size showed fair r1 relaxivity of 

3.43 mM-1s-1 and a relatively low r2/r1 ratio of 5.36, proving its potential as an 

effective T1 contrast agent. Radiolabeling process did not significantly alter the 

relaxation properties of ESIONs. After in vivo administration of radiolabeled 

ESIONs, simultaneous PET/MRI imaging revealed high T1 contrast power along 

the blood pool with corresponding radioactivity. Still, when referring to studies 

related to Gd, which has been the most widely used T1 contrast agent, it is 

necessary to consider various concerns of optimization and obtaining best contrast 

for the clinical application of ESIONs.  

Signal intensity is determined by the inherent property of the contrast agent 

and local tissue concentration, so theoretically, the intensity of the signal should 

increase as the concentration of the contrast agent increases, but in reality, 

obtaining the best contrast may be limited due to the T2-related signal decay. Thus, 

signal intensity in the T1-weighted MRI is the consequence of the trade-off 

between T1 related effect of increasing the contrast and T2-related effect of 

reducing the contrast (40). Generally, in the high concentration range, due to high 

T2 related effect, signal quenching is observed (40, 130, 131). Though, in the 

concentration range for the routine practice of Gd-based T1-weighted MRI, such a 

phenomenon is rarely occurring and only observed in the regions where 

gadolinium is highly concentrated, such as the bladder (132). However, IONP 

based contrast agents, with stronger magnetic properties than gadolinium, have 

stronger T2 shortening effect and as a result, may show considerable signal 

quenching in the clinical dosage. Phantom study of USPIO revealed signal 
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decrease at a concentration higher than 0.2 mM in the 3D T1-weighted GRE 

sequence (117).  

In this study, radiolabeled ESIONs showed a similar pattern of non-linearity 

and reduce of T1 signal intensity in the high concentration range. Whereas, 

radioactivity showed a linear correlation over the entire concentration range. In 

vivo image revealed that the time-dependent signal intensity change appeared in 

various patterns at different concentrations. Linear signal decay in the blood pool 

was only observed when low concentration (2.5 mgFe/kg) of ESIONs was injected. 

Conversely, signal plateau and even reduced signal were observed, when medium 

concentration (5 mgFe/kg) and high concentration (10 mgFe/kg) of ESIONs were 

injected, respectively. Thus, for accurate quantification, using MRI signal intensity, 

it would be better to administer a low concentration of ESIONs. And for the 

purpose to maintain enhanced signal in the blood pool for a longer period, a higher 

concentration may be optimal. Moreover, when applying radiolabeled ESIONs 

with medium concentration (5 mgFe/kg), the best contrast of the blood pool signal 

can be maintained for a long time, and at the same time, accurate quantitation using 

radioactivity may also be possible. Nevertheless, it is necessary to consider the 

trade-off between high concentration-induced toxicity and achieving the best 

contrast. 

Signal intensity can also be affected by the local distribution of contrast agents. 

When the local distribution of contrast agents changes from a freely dispersed to 

clustered state or when contrast agents internalize into the cell, reduction of T1 

relaxation occurs and may induce signal intensity quenching in T1-weighted MRI 

(42-44, 133). Phagocytosis and pinocytosis are the major cell internalization 
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mechanism of nanoparticles. Large IONPs (dH > 100nm) are phagocytosed by the 

RES, while, small IONPs (dH < 20nm) are internalized mainly through pinocytosis, 

non-specific and non-receptor mediated endocytosis (73, 134). Through either 

mechanism, cell internalized nanoparticles mostly end-up in the lysosome and are 

clustered (135). The signal quenching, after cell internalization, may be the 

consequence of r1 reduction due to limited water exchange inside the vesicles or 

strengthening of the T2 shortening effect due to high local concentration and 

aggregation (33, 133).  

As expected, signal quenching was observed in the liver over time, while 

radioactivity remained relatively constant. Since the liver is the organ where most 

nanoparticles accumulate or path through, radiolabeled ESIONs may have been 

accumulated in the liver RES, including Kupffer cell, liver sinusoidal endothelial 

cells and also in the hepatocyte. TEM images complement the result that from early 

time point (5 min), radiolabeled ESIONs were internalized into the cells.  

Although signal quenching after cell internalization can limit accurate 

quantification, various clinical applications may be possible. Aghighi et al. 

proposed a strategy to image tumor necrosis from the speculation that administered 

USPIO may be freely dispersed in the tumor necrosis, while internalized and 

clustered in the tumor tissue, resulting in a different T1/T2 enhancement pattern 

(136). Girard et al. focused on this issue and proposed that combining the 

relaxation-based mapping technique and magnetic susceptibility mapping, which 

can provide a quantitative value of IONPs concentration regardless of microscopic 

distribution, can provide a robust quantitative value of internalized faction and their 

local concentration (42). Moreover, it is speculated that microscopic distribution 
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can be simply quantified using radiolabeled ESIONs. As shown from the liver 

washout model, MRI signal intensity can provide an estimation of tissue retention 

fraction and at the same time, total tissue concentration of radiolabeled ESIONs 

can be quantified using radioactivity measured by PET.  

Magnetic hyperthermia, which is generated when intratumorally injected 

IONPs are exposed to an altering external magnetic field, can be a promising 

therapeutic tool for cancer treatment (2, 3, 137). The specific absorption rate (SAR), 

indicating the heating potential of the administered particle, is the major factor in 

determining the dosage (3). Furthermore, it is important to accurately assess the 

tumor uptake to evaluate whether the correct dose has been directed to the target 

tumor site. However, currently available methods using MRI and CT scan has 

limitations (138). Also, it cannot distinguish the IONPs' local distribution, whether 

it is internalized in the cell or it is freely distributed in the extracellular space (138). 

Such an internalized portion is important as the nanoparticle internalizes, it 

aggregates and the SAR can grow up (139). Thus, it may be possible to more 

accurately predict the therapeutic effect by radioactivity-based quantification of 

tumor uptake and estimating the microscopic distribution using radiolabeled 

ESIONs.  

Radiolabeled ESIONs may also reveal the immune status in the tumor 

microenvironment (TME). Recently, the paradigm of cancer treatment is changing 

from the cytotoxic chemotherapy attacking the cancer itself to an immunotherapy 

agent that induces cancer attack by activating the body's immune system (140). 

Among them, the immune checkpoint inhibitor has proven its potential with an 

effective and persistent therapeutic effect. However, there are still concerns, such 
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as limited efficacy in some patients and resistance in most common cancers. 

Accordingly, studies are being conducted, with a focus on the impact of TME on 

the efficacy of immunotherapy and the immune evasion mechanism of cancer, in 

order to turn immunologically “cold” tumor into a “hot” tumor (141, 142). The 

“cold” tumor has characteristics of reduced tumor antigens, antigen-presenting cell 

deficit, and absence of T cell activation, whereas, “hot” tumors have abundant 

lymphocyte infiltration in the TME. From the previous studies, it is reported that 

IONPs are more preferred by the immune cells compared with the tumor cells (143, 

144). Comprehensively, “cold” and “hot” tumors may show different enhancement 

pattern by radiolabeled ESIONs, as former showing bright signal owing to less cell 

uptake by tumoral immune cells and latter showing relatively dark signal. In this 

study, 4 hours after intratumoral administration of radiolabeled ESIONs, positive 

enhancement was observed at the tumor with corresponding radioactivity, 

indicating the tumor may be immunologically “cold”. Indeed, breast cancers 

exhibit relatively low immune cell infiltration, thus, have been considered as “cold” 

tumor (145). This also applies to the mouse 4T1 breast tumor model (146), which 

was used in this study. 
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Conclusion 

In conclusion, the in vivo dynamic of micelle encapsulated ESIONs was 

evaluated using simultaneous PET/MRI. Micelle encapsulated ESIONs can be an 

effective T1 contrast agent with relatively long blood circulation time and rapid 

excretion through the hepatobiliary system, which offers both efficiency and safety. 

Additionally, by complementing strengths and weaknesses of PET and MRI, 

radiolabeled ESIONs can be a promising multimodal imaging agent for monitoring 

microscopic distribution in vivo. 
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국문 초록 

 

가돌리늄 조영제의 독성에 대한 임상적 우려로 인해, 자기 공명 영상 

(MRI)을 위한 새로운 조영제의 개발에 대한 관심이 증가하고 있다. 

최근, 초소형 산화철 나노 입자 (ESIONs)는 생체 적합성 T1 

조영제로서 상당한 주목을 받고 있다. ESIONs는 철 산화물 나노 입자 

(IONPs)를 바탕으로 한 기존의 T2 조영제의 고유한 한계를 극복할 수 

있다. 하지만 현재까지 ESIONs의 생체내 동태에 대한 연구는 제한적인 

상태다. 향후 ESIONs의 임상적용을 위해서는 관련 연구가 필요한 

상황이다.  

본 연구에서, ESIONs은 비교적 높은 r1 이완도와 낮은 r2/r1 비를 

보여 효율적인 T1 조영제로서의 가능성을 확인하였다. 실험실적 안정성 

시험과 생체 내 안전성 시험을 바탕으로 64Cu의 방사능은 ESIONs의 

생체 내 역학을 잘 반영한다는 것이 밝혀졌다. 방사성 표지 된 

ESIONs을 이용하여 생체 내 분포 및 약동학을 평가한 결과, ESIONs는 

비교적 긴 시간 혈액 내 분포하였으며 간담도를 통해 빠르게 배설되는 

것을 확인하였다.  

또한, PET/MRI를 사용하여, PET 유래 방사능의 동적 변화 및 MRI 

신호 강도를 동일한 시점에서 직접 비교 평가하였다. PET 및 MRI 

신호의 불일치는 고농도 범위의 ESIONs가 투여되는 경우나 ESIONs가 

세포 내로 함입되는 경우 발생함을 밝혔다. 

비교적 긴 혈액 순환 시간과 간담도계를 통한 빠른 배설을 바탕으로 

ESION은 혈액 풀 영상 조영제로서 높은 효율성과 안전성을 동시에 

가질 것으로 기대된다. 또한, 방사능 표지 ESION은 서로의 강점과 

약점을 보완함으로써 다양한 임상 상황에서 적용 가능할 것으로 
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기대된다.  

 

주요어 : 산화철 나노 입자, 초소형 산화철 나노 입자, 양전자 

단층 촬영, 자기 공명 영상  
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