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A B S T R A C T

It is widely accepted that feature selection is an essential step in predictive modeling. There are several ap-
proaches to feature selection, from filter techniques to meta-heuristics wrapper methods. In this paper, we pro-
pose a compilation of tools to optimize the fitting of black-box linear models. The proposed AnTSbe algorithm
combines Ant Colony Optimization and Tabu Search memory list for the selection of features and uses l1 and l2
regularization norms to fit the linear models. In addition, a polynomial combination of input features was
introduced to further explore the information contained in the original data. As a case study, excitation-emission
matrix fluorescence data were used as the primary measurements to predict total sulfur concentration in diesel
fuel samples. The sample dataset was divided into S10 (less than 10 ppm of total sulfur), and S100 (mean sulfur
content of 100 ppm) groups and local linear models were fit with AnTSbe. For the Diesel S100 local models, using
only 5 out of the original 1467 fluorescence pairs, combined with bases expansion, we were able to satisfactorily
predict total sulfur content in samples with MAPE of less than 4% and RMSE of 4.68 ppm, for the test subset. For
the Diesel S10 local models, the use of 4 Ex/Em pairs was sufficient to predict sulfur content with MAPE 0.24%,
and RMSE of 0.015 ppm, for the test subset. Our experimental results demonstrate that the proposed methodology
was able to satisfactorily optimize the fitting of linear models to predict sulfur content in diesel fuel samples
without need of chemical of physical pre-treatment, and was superior to classic PLS regression methods and also
to our previous results with ant colony optimization studies in the same dataset. The proposed AnTSbe can be
directly applied to data from other sources without need for adaptations.
1. Introduction

Nowadays, predictive modeling permeates every knowledge field.
The ability to quantify an output of interest, classify occurrences, or
predict future outcomes using auxiliary measures are base principles of
many technological advances of the last decades. From detecting cancer
[1,2], social media behavior [3], to industrial production [4], new ma-
chine learning algorithms are changed and developed daily to predict
information that would be too costly, invasive, or impossible to access
directly.

Black box models establish a functional relationship between system
inputs and outputs [5]. The parameters of these functions do not need to
have any phenomenological significance (e.g., heat or mass transfer co-
efficients or reaction kinetics), but are very efficient in faithfully
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representing trends in the process behavior [6]. With a collection of
empirical or simulated data of a system, a model can be fitted to find the
correlation of that information with one or more outputs of interest.

In many applications, the number of available input features can
reach hundreds or even thousands of variables (e.g., image classification
[7–9], spectral data [10–12], and industrial processes [13,14]). How-
ever, data can be associatedwith a high level of noise, collinearity, and be
filled with irrelevant or redundant variables [15]. Several selection
techniques were developed to address the problem of extracting valid
information from the features which can efficiently describe the input
data while reducing noise and useless variables [16]. These techniques
can be categorized into Feature extraction and Feature selection.

Feature extraction approaches project features into a new space with
lower dimensionality by combining the original feature space. Examples
erweiler).
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include Principal Component Analysis (PCA) [17,18], Linear Discrimi-
nant Analysis (LDA) [19], and Partial Least Squares (PLS) [20], which are
the most widely applied techniques to deal with high dimensionality data
[21]. However, it is difficult to link the features from the original space
with the new features since there is no physical meaning for the trans-
formed variables.

On the other hand, the Feature selection approaches aim to select a
small subset of features that minimize redundancy and maximize rele-
vance to the target, maintaining the physical meanings [15]. Meta-
heuristics search algorithms (as Genetic Algorithm [22], Particle Swarm
Optimization [23] and Ant Colony Optimization [24]) use the predictor
as a black box and the predictor performance as the objective function to
evaluate a feature subset. The feature search component will produce a
set of features that will be used by the learning algorithm to predict an
output. The performance of the prediction returns to the feature search
component for the next iteration of subset selection.

The Ant Colony Optimization (ACO) is a metaheuristic multi-agent
algorithm used to solve hard combinatorial optimization problems.
There are several review and survey papers [25–27] dedicated to ACO
applications, that include areas as fluid dynamics, telecommunications,
bioinformatics, system modeling, simulation, image processing, routing,
scheduling, and production problems, logistics, transportation and sup-
ply chain management. ACO algorithms try to mimic the food foraging
behavior of real ants adapting a pheromone memory model that governs
the way agents wander the search space. The management of this pher-
omone influences the diversification (i.e., exploration) and the intensi-
fication (i.e., exploitation) of the search process. A well-design ACO
algorithm use strategies to balances exploration and exploitation (E&E)
to find high-quality solutions for problems [10,28–30]. A natural evo-
lution of E&E techniques was the hybridization of metaheuristic algo-
rithms [31,32]. The incorporation of principles from other searching
algorithms into ACO was used to solve the Traveling Salesman Problem
[33], Vehicle Routing problem [34–36], Tasks to Workstations Assign-
ment problem [37], Multi-skill Resource-constrained Project Scheduling
problem [38], and Quadratic Assignment problems [39,40].

The two major contributions of our methodology is the proposal of a
hybrid variable selection algorithm based on Ant Colony Optimization
and Tabu Search (TS) [41,42], to solve early stagnation and avoid
redundant calculations, and the use of the expansion of bases to further
explore the information contained in the data. After the selection of in-
puts (and before model fitting), the selected variables are expanded as a
new feature matrix consisting of all polynomial combinations of features
with degree equal or less than a defined value. This expansion can cap-
ture non-linear and combinatorial information that may not be perceived
otherwise.

To evaluate the methodology, a case study is presented, where
Excitation-Emission Matrix (EEM) fluorescence spectroscopy is used as
primary information to predict total sulfur concentration in diesel fuel.

2. Methodology

All implementations in this work were done in Python v3.5.4.1 in
combination with the readily available modules, especially from the
SciKit Learn library version 0.20.2 54.

2.1. Preprocessing

The first necessary step for any modeling procedure is the pre-
treatment of the data. If misleading information, outliers, and unscaled
data are given to the optimizer, there will be a detriment in the efficiency
of the algorithm. The preprocessing routine comprehends i) outliers
detection; ii) data segmentation into training, validation, and test data
sets; and iii) data scaling.
2

2.1.1. Outliers detection – Hoteling’s T2 statistic
This method is coupled with Principal Component Analysis (PCA). All

input data is first scaled to mean zero and standard deviation one; then,
PCA is applied, and the eigenvalues and eigenvectors are used to calcu-
late the T2 statistic for each sample, expressed as Eq. (1) [43]:

T2 ¼XT bW bΛ�1 bWT
X 1

where bΛ ¼ diag (λ1, λ2, …, λl) is a diagonal matrix containing the ei-
genvalues related to the l retained PCs; X the matrix of scaled inputs; andcW the matrix of the l retained eigenvectors. In this implementation, the
number of retained PCs is the one able to capture at least 95% of the
original variance of the data. The T2

α threshold is computed as Eq. (2):

T2
α ¼

lðN � 1Þ
ðN � lÞ Fl;N�l;α 2

where l is the number of retained principal components, N the number of
samples, α the level of significance (defined as 5%) and Fl,N-l,α is the
Fisher distribution with l and (N-l) degrees of freedom. Any sample with
T2 higher than T2

α is considered an outlier and removed from the dataset
[44].

2.1.2. Data set splitting based on a modified version of K-rank
The methodology for splitting the data into calibration (cal), valida-

tion (val), and testing (test) subsets is the one implemented by Santos
et al. [45]. This methodology is especially useful when dealing with
multiple solutions problems: situations where standardizes combinations
of the input variables can yield the same output y.

First, the user chooses a k number of clusters, ranging from 1 to N-1
(number of samples - 1). Then, a k-means algorithm [46] with k centroids
is run using only the input variables to split the dataset into ki similar
groups. For each cluster: the ki,samples are sorted in ascending order for a
selected output y; the proportions of each subset are chosen (e.g., 60%
calibration – 20% validation – 20% testing), and the methodology adapts
a pattern to select, in order, the samples to their respective subsets (e.g.,
cal-cal-cal-val-test …). In this implementation, the extremes samples
(with minimum and maximum values of y) in each cluster are always
selected for the training subset, to avoid extrapolation. This clustering of
data is especially useful when dealing with cases that have a multiplicity
of solutions.

Although other splitting methodologies (as cross-validation) can be
appealing when fitting black-box models (to avoid overfitting and the
influence of abnormal samples), the selection of variables can be a very
time-demanding task, and the use of multiple cal/val/test subsets can, for
some cases, render the total computational time prohibitive.

2.1.3. Data scaling
Standardization is a common requirement for many machine learning

estimators. Many elements used in the objective function of a learning
algorithm (as l1 and l2 regularizes of linear models) assume that all
features are centered on zero and have variance in the same order. If a
feature has a variance that is orders of magnitude larger than others, it
might dominate the objective function and make the estimator unable to
learn correctly from other features as expected [47]. The scaler function
must be fitted using the training subset, and then the other subsets are
scaled accordingly. The user can define which scaler is better for their
specific case.

After the pre-processing stage, we end up with clean and scaled data,
with all samples already divided into subgroups, ready to be processed by
the AnTSbe algorithm, the core optimizer that will venture through the
possible combinations of input features to fit linear models and predict
the desired output.
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2.2. AnTSbe – ant colony optimizer hybridized with Tabu Search and
bases expansion

The AnTSbe algorithm is based in Ant Colony Optimization [48], a
type of stochastic optimization where multiple parallel processes (ants)
take different ‘routes’ to minimize an objective function. When applied to
optimization, the algorithm ascribes a quality indicator - called phero-
mone - to each input variable. The pheromone of each input is incre-
mented after each iteration based on howwell a model using this variable
could predict the desired output (the lower the error, the higher the
increment in pheromone). The more pheromone a variable has, the
higher the chance ants in the next iteration will select it. One of the
problems of swarm intelligence algorithms is the stagnation in local
minimums: after a number of iterations, some inputs can dominate the
pheromone trail in such a way that it loses its exploration capabilities.
There are several proposals of ACO adaptations to avoid stagnation, as
pheromone reset, reactive memory, smoothing, and max-min bounds
[49]. In this work, we will incorporate principles from Tabu Search into
the algorithm to avoid early stagnation. TS is a neighborhood
search-based method that uses a memory structure to avoid being trap-
ped in local optima. It improves the efficiency of the searching process by
storing a tabu list of local solutions that were used to restrict the search
by forbidding moves to some poor neighbor solutions that already have
been visited [50]. One feature of tabu exploration is diversification,
responsible for moving the exploration process over different regions of
the search space. In this implementation, TS is hybridized with ACO not
to search for neighbor solutions directly, but to construct a short-term
memory tabu list to avoid previously tested input combinations. The
memory is short-term because it only considers tested input combina-
tions of the last z iterations (after z iterations the input combinations are
not forbidden anymore). Forbidding previously tested combinations for
some iterations encourages exploration, and the evaporation of phero-
mone can help to avoid stagnation in local optima.

To compare and evaluate models, three metrics are used throughout
the algorithm:

(i) Mean Absolute Percentage Error (MAPE), defined as Eq. (3):

MAPE¼ 100%
n

Xn

i

����ðyi � byiÞ
yi

���� 3

where n is the number of samples, y the real value of the output and by
the predicted value of the output;

(ii) Root Mean square error (RMSE) – Eq. (4),

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

X
i

�
yi � byi�2

s
4

and (iii) the Coefficient of Determination (R2) – Eq. (5),

R2 ¼ 1�
P

iðyi � byiÞ2P
iðyi � yÞ2 5

where y is the mean value of y.
The AnTSbe is divided into three phases: Phase One is the initiali-

zation stage, where the optimization parameters are chosen; Phase Two is
the core of the optimization, where models are fitted, evaluated and
compared; and, in Phase Three, the best-fitted models are presented, with
their corresponding variables and all comparative metrics.

2.2.1. Phase One – initialization
The initialization process starts with the selection of all needed

optimization parameters:
Model Size – Nw: the number of input variables in each model. The

user can define Nw0 and Nwn to be the initial and final model sizes,
respectively (with Nw0 � Nwn). If defined, Nw will assume values within
Nw0 and Nwn. The algorithm as a whole (Phase one to three) will be run
3

individually for each Nw.
Type of model: the type of regression to be fitted. The Ridge

Regression (through the scikit-learn function sklearn. line-
ar_model.Ridge) solves a regression model where the loss function is the
Linear Least Squares function, and the regularization is given by the l2-
norm, which aims to reduce the magnitude of coefficients [51]. The Lasso
Regression, similarly, uses l1-norm regularization, which penalizes the
number of total parameters in the model, reducing some coefficients to
absolute zero [52]. The used Scikit-learn LassoLarsIC (criterion ¼ ‘bic’)
implementation solves the Lasso model using Least Angle Reduction
(Lars), and the selection of the regularization parameter α is based on the
Bayesian information criterion [53], making a trade-off between the
goodness of fit and the complexity of the model. The use of regularization
will foment the fitting of models more robust to overfitting, discarding
inefficient input variables and avoiding singularity issues during a model
fitting in cases where there are more variables than observations.

Base Expansion – σ: generate a new feature matrix consisting of all
polynomial combinations of features with degree equal or less than σ.
Even though themodels are linear in the parameters, the expansion of the
selected input variables into polynomial combinations can capture in-
formation that could improve the prediction metrics. It was essential to
only expand the bases after the selection of inputs, because, in cases
where there are thousands of variables, if we simply expand all the fea-
tures before selection, the complexity of the problem and the number of
local minimums would increase exponentially.

Optimization Metric – OptMetric: the metric involved in the loss
function the algorithm will minimize. It can be RMSE or MAPE. If MAPE
is selected, it has the tendency to minimize prediction errors of outputs
with values closer to zero. If RMSE is selected, it has the tendency to
minimize prediction errors of outputs with higher values.

Number of runs – μ: number of times the algorithm resets the
pheromone trail to its initial value τ0.

Number of iterations – t: total number of iterations the algorithm
performs in each run.

Number of ants – Nants: number of models fitted in each iteration.
Tabu memory size – z: number of past iterations where the tested

combinations are part of the tabu memory.
Initial pheromone value – τ0: the initial amount of pheromone for

each variable.
Pheromone gain – k: numerator of the expression of pheromone

increment each ant will add to the variables it has selected in that
iteration.

Pheromone evaporation rate – ρ: defines how much of the current
pheromone will not be kept for the next iteration. If close to one, it will
heavily penalize unselected inputs or inputs that fitted models with high
prediction errors.

Once all parameters are established, the Global Solution is initialized
by fitting a model with randomNw variables. This Global Solution will be
latter compared to future fitted models. The tabu memory is also
initialized as an empty list.

2.2.2. Phase Two – optimization
During Phase Two, the ant army will evaluate possible combinations

of input variables that could minimize the loss function. At the beginning
of each ti iteration, each of the Nants ants will select Nw input variables.
This selection is based on the pheromone trail and in a random factor.
The random factor is represented by a random trigger, generating values
between 0 and 1. The pheromone trail is transformed in a pheromone
density vector γ, by dividing the pheromone of each input by the sum of
all pheromone, and then accumulated as Cγ (Eq. (6)):

Cγi ¼
Xi

1

γi∴γi ¼
τiP
τ

6

The random trigger is fired, and its value compared to the accumu-
lated pheromone density. The closest input with accumulated density
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higher than the trigger is selected, removed from the selection pool, and
the γ is updated without that input. The procedure is repeated until Nw
features are selected. The combination between the random trigger and
the density of pheromone guarantees that every input has a chance into
being selected, but the higher the pheromone density, the greater the
chance of an input being selected. Fig. 1 shows an example of input se-
lection with a random trigger of 0.856. In this example, input X9 would
be the one selected.

After the ant has selected Nw inputs, its selection is compared to the
combinations stored in the tabu memory. If the ant has selected a
forbidden combination, the ant resets and starts the selection once again.
If the ant combination is not forbidden, the selected inputs are expanded
as all polynomial combination of features with degree equal or less than σ
(e.g., if [X1, X2] are the chosen inputs, an expansion with σ ¼ 2 will result
in a new matrix [X1, X2, X1

2, X2
2, X1*X2]).

The ant will use the chosen variables (original or expanded,
depending on the σ) and samples from the calibration subgroup to fit a
linear model of the selected regression type. The fitted model is used to
predict the output of interest for all subgroups (calibration, validation,
and test), and all metrics are evaluated. The ant compares the quality of
its model with the Global Solution, based on a loss function ψq (Eq. (7)),

ψq ¼ ½OptMetric�cal þ ½OptMetric�val þ
max½OptMetric�cal; ½OptMetric�val þ 1
min½OptMetric�cal; ½OptMetric�val þ 1

7

if the ant’s ψq is smaller than the Global Solution’s ψq, the ant’s model
becomes the new Global Solution.

Finally, the ant deposits pheromone in each of the variables it has
selected according to Eq. (8):

τi;tþ1 ¼ τi;t þ k�
ψq þ 1

�3 8

where k is the pheromone gain. The higher the prediction error the model
has, the smaller the increment in pheromone. If by any chance (as in
regressions with l1-norm), the fitted parameter of an input is absolute
zero, then no pheromone is added to that variable. As all ants run in
parallel, the increment of pheromone each ant deposits in their selected
variables will only be perceived in the next iteration, not affecting the
variable selection of other ants in the current ti.

After all Nants have fitted their models and deposited their phero-
mones, the pheromone trail is evaporated, multiplying the trail by the
evaporation rate ρ (Eq. (9)):

τtþ1 ¼ τtþ1 � ð1� ρÞ 9

The tabu memory list is updated, adding all Nants combinations tested
in the current iteration (and removing combinations from any other than
the last z iterations).

The routine is repeated t times, and at each iteration, the pheromone
Fig. 1. Example of pheromone-based input selection with a random trigger
of 0.856.

4

trail is updated. The final pheromone trail can indicate which of the input
variables had a higher correlation with the desired output, been part of
models with smaller predictive errors. To avoid local minima, Phase Two
is repeated μ times, each time restarting the pheromone trail to the initial
τ0 (reset pheromone memory) and emptying the tabu memory list, but
carrying on the Global Solution. At the end of every μ run, the final
pheromone trail – τFμ – and the best predictive model of each particular
run are saved for future reference.

2.2.3. Phase Three – global solution
After μ runs, each with t iterations and Nants models fitted at each

iteration, the algorithm returns the Global Solution - the fitted model
with lowest ψq - along with its metrics for all subgroups, selected input
variables, and corresponding parameters. If the metrics of the test subset
are equivalent to the calibration and validation metrics, then the fitted
model can be considered robust when dealing with samples never seen
before. In addition, the global pheromone trail – τG – is presented, as the
sum of all τF, normalized between 0 and 1 (dividing the vector by its
maximum value), as can be seen in Eq. (10). The global pheromone trail
is an indicator of which input variables had greater success predicting the
output of interest throughout the optimization, been part of models that
had better metrics and smaller prediction errors.

τG ¼
Pμ

1τF
max

�Pμ
1τF

� 10

Fig. 2 presents a schematic representation of the AnTSbe algorithm.
If different model sizes were fitted, the user could select the one that

fits better to their needs, based on all calculated metrics for each of the
returned Global Solutions. Ideally, if there is a clear correlation between
the inputs and the desired output, different sized models should mostly
select the same variables.

In cases where there are many highly correlated input variables, the
AnTSbe algorithm can be used as a variable filter for further analyses.
After running the AnTSbe, it is possible to filter the input variables that
had greater success in predicting the desired output by selecting the in-
puts with higher pheromone (quality indicator) concentration. If the user
wants to filter inputs from optimization with only one specific set of
parameters, a filter vector is created directly as the global pheromone
trail of that optimization. If the user wants to filter inputs considering
multiple sets of parameters (e.g., various model sizes for Ridgemodels and
the same σ), a multi-filter vector is created as the sum of all individual
global pheromone trails. The filter/multi-filter vector is sorted in
descending order, and the user defines how many of the first variables
should be selected as filtered inputs.

With these filtered inputs, the AnTSbe can be re-run, with any
selected parameters, but with the restriction of only selecting inputs
within this filtered base. This procedure can be recursively done.

To evaluate the proposed methodology, a case study will be presented
next, making use of excitation�emission matrix fluorescence spectros-
copy to quantify sulfur concentration in diesel fuel.

3. Case study – Quantifying total sulfur content in diesel fuel
samples using EEM fluorescence spectroscopy

The dispersion of sulfur oxides in the atmosphere from the combus-
tion of fossil fuels is a sensitive topic in environmental laws [54]. The
sulfur contained in the fuel is directly responsible for the emission of
sulfate particulates and SO3/SO2 (that causes acid rain) during com-
bustion, the poisoning of refining catalysts, and the corrosion of pipes,
storage units and motors [55]. In the last 20 years, most developed
countries severely changed their legislations regarding maximum sulfur
content in fuels, going from ten thousand ppm to near-zero levels, being
less than 15 ppm the typical limit for transportation diesel and gasoline
worldwide [56]. Hydrodesulphurization (HDS) is the most common
catalytic chemical process used to remove sulfur from refined petroleum



Fig. 2. Schematic representation of the AnTSbe algorithm.
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products. In a refinery, the reaction takes place in a fixed-bed reactor at
elevated temperatures (from 300 to 400 �C) and elevated pressures
(30–130 atm of absolute pressure), typically using alumina base
impregnated with cobalt and molybdenum as a catalyst, combining the
feed with a hydrogen-rich stream and retrieving hydrogen sulfide (H2S)
[57]. HDS is a costly procedure and should be fine-tuned to avoid in-
efficiency, producing streams out of specification that demand rework.

Presently, to quantify total sulfur concentration in a stream after HDS,
a sample must be collected and taken to a laboratory where qualified
people will handle it and run the specific certification test for sulfur
quantification in their legislation (as the ASTM D-4294 [58], in Brazil).
This quantification procedure, besides being expensive, usually takes
hours in a typical refinery. That means that when the operator finally
receives feedback, it can be too late to make any control action.

To implement advanced controlling techniques to the HDS, it is of
utmost importance to be able to predict in real-time the sulfur concen-
tration of the desulfurized product. As can be seen in works as [11,
59–61], EEM fluorescence spectroscopy can be used as a non-invasive,
fast, and sensitive technique to capture information about total sulfur
5

content in diesel fuel. After HDS, most of the oil’s sulfur is contained in
stable polycyclic aromatic molecules as benzothiophenes and dibenzo-
thiophenes, being the latter the hardest sulfur to remove in diesel oil [62,
63]. These compounds and their derivatives present luminous pro-
prieties, being natural fluorophores [64–67].

The objective of this case study is to apply the AnTSbe methodology
to optimize the selection, among thousands of fluorescence excitation-
emission pairs, of the ones able to predict total sulfur content in diesel
samples satisfactorily.

3.1. Dataset

The dataset used in this study is the one gathered by Ranzan et al.
[11]: excitation-emission matrix fluorescence spectra of sixty-one sam-
ples of diesel fuel, provided and certified by a Brazilian petroleum re-
finery. The samples were characterized as Diesel S10 (samples with total
sulfur lower than 10 ppm) and Diesel S100 (samples with average total
sulfur around 100 ppm). The referred work used the data in a purely
classificatory study, being able to label all samples correctly, but without
any regard about sulfur quantification.

Diesel S10 – eleven samples were characterized as Diesel S10; they
had between 5.1 and 6.4 ppm of total sulfur, with an average of 5.8 ppm.
The sulfur content of these samples was certified according to the ASTM
Standard D-7039 [68], using a Sindie 7039 bench analyzer by XOS®.

Diesel S100 – fifty samples were characterized as Diesel S100, with
total sulfur content between 73.7 and 118 ppm, and an average of 99.5
ppm. All samples were certified according to the ASTM Standard D-4294,
using a LABX-3000 by Oxford®.

EEM fluorescence spectra – the fluorescence spectra were collected
using a Horiba® Fluoromax-4, equipped with a xenon lamp of 150 W.
The measurements were made in a range of excitation wavelengths be-
tween 260 and 600 nm and emission wavelengths between 290 and 850
nm. The geometry of measurements was 90�. Both excitation and emis-
sion wavelengths used an increment of 10 nm. With these arrangements,
each fluorescence spectra was obtained as a 57 � 35 matrix, containing
the fluorescence intensity of 1995 excitation/emission (Ex/Em) pairs. As
no excitation can lead to emission with a smaller wavelength, there were
1467 valid fluorescence pairs in each spectrum. Each EEM spectra was
later unfolded into a row vector, the row representing the sample, and
each column representing one of the Ex/Em pairs. Measurements were
made in triplicate, and all samples were stabilized at 25 �C using a
thermostatic bath. Fig. 3 presents the average EEM fluorescence spectra
for the Diesel S10 and Diesel S100 sample groups.

In this work, we focused on the development of local models, one for
Diesel S10 and another for Diesel S100, mainly because the difference in
total sulfur concentration and quantity of samples between groups was
very significant. If only one global model was fitted, the Diesel S100
samples would dominate the optimization.

3.2. AnTSbe pre-processing and parameters

The following parameters were applied to the optimization of both
Diesel S10 and Diesel S100 local models.

For the data pre-processing, as the number of inputs vastly surpluses
the number of samples, no outlier was removed in the pre-treatment. For
the splitting of subgroups, total sulfur concentration (in ppm) was the
selected output to sort the data, and the chosen proportions for the
calibration, validation, and testing subsets were 60%, 20%, and 20%,
respectively. The number of clusters was defined as one because there
was no multiplicity of solutions. The StandardScaler was defined as the
scaler function, removing the mean and scaling to unit variance (inde-
pendently in each feature).

The general AnTSbe optimization parameters can be seen in Table 1.
For the Diesel S100 models, Model Size (Nw) will range from 3 to 5,

and the Type of Model and bases expansion (σ) were arranged as Ridge
and σ ¼ 1 and LassoLarsIC and σ ¼ 2. With this arrangement, the



Fig. 3. Average EEM fluorescence spectra for the Diesel S10 and Diesel S100
sample groups.

Table 1
AnTSbe general optimization parameters for diesel fuel local
models.

Parameter Value

OptMetric RMSE
N. Runs - μ 50
N. iterations - t 150
Nants 200
Tabu Memory Size - z 5
Initial pheromone value – τ0 1000
Pheromone gain – k 100
Pheromone evaporation rate – ρ 0.1
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algorithm as a whole will be run six times: three model sizes with Ridge
and σ ¼ 1 and three model sizes with LassoLarsIC and σ ¼ 2. We com-
bined the use of Lasso Regression when applying bases expansion (σ> 1),
because the expansion considerably increases the number of model pa-
rameters to be fitted, and the use of l1-norm regularization helped to keep
the models more comprehensible.

As the information contained in the EEM can be highly correlated
(many Ex/Em pairs in a region could contain similar information about
the desired output), this first round of experiments was also used as a
filter to reduce the number of input variables. Then, the algorithm is re-
run, to evaluate if we could improve the quality of the predictive models.

To filter the inputs, the multi-filter approach will be applied: the
global solution for all model sizes of each specific model type will be
evaluated. A multi-filter vector will be created as the sum of the global
6

pheromone trails of each model size (3–5). Considering that each EEM
had more than 1400 pairs, we will filter the 100 input variables with
higher pheromone concentration and re-run the AnTSbe using only these
filtered inputs.

For the Diesel S10 models, Model Size (Nw) will range from 2 to 5,
and the Type of Model and bases expansion (σ) were selected as Ridge and
σ ¼ 1, considering the smaller number of samples. As before, the multi-
filter approach will be applied to filter the 100 input variables with
higher pheromone concentration and re-run the algorithm.

4. Results and discussions

4.1. Diesel S100

The metrics for the first optimization of the Diesel S100 local models
can be seen in Table 2. Both the Ridge as the LassoLars models achieved
similar results for the calibration and validation subsets, with MAPE
smaller than 4% and RMSE around 4 ppm. For the test subset, the Ridge
models achieved slightly better results. The base expansion increases the
number of variables in the model, and, directly, the number of parame-
ters to be fitted. Using σ ¼ 2, the model sizes 3, 4, and 5 expand to 9, 14,
and 20 variables, respectively. All LassoLars global solutions kept (non-
zero parameters) a combination of primary and expanded variables,
indicating that the use of base expansion could be beneficial for Diesel
S100 predictive models. In this run, the number of non-zero parameters
in LassoLars global solutions was 5, 6, and 7 (model sizes 3, 4, and 5).

To filter the results, all final pheromone trails of every model size
(3–5), using Ridge and σ ¼ 1, were normalized between 0 and 1 and
summed. The hundred input variables with higher pheromone concen-
tration were selected as the filtered inputs. In addition, the variables that
participated in each global solution were added to this filter vector.

The AnTSbe was re-run, using the same general parameters as the first
run, but only selecting variables within the filtered inputs. As for the
model size, type, and base expansion, for this filtered run, we choose 3–6,
Ridge regression and bases expansion 2, to evaluate if the expansion of
the variables could improve the prediction metrics. Table 3 presents the
metrics for this filtered run.

As can be seen, comparing the metrics in Tables 2 and 3, the filtered
run achieved better results than the previous optimizations. There was
also a consensus throughout the internal runs of the algorithm about the
selected pairs in each model size. Common pairs between different model
sizes are bolded in Table 3. There was no significant improvement be-
tween selecting 5 or 6 input variables, so, by the principle of parsimony,
there was no need to venture further into even bigger models.

As a direct comparison, linear models were built with classical partial
least squares (PLS) regression using the same calibration, validation, and
test subsets. Table 3 also presents the metrics for the PLS regression
model using 7 latent variables (optimized number of LV’s). The perfor-
mance of the AnTSbe model with 5 inputs was significantly better than
the PLS regression model for the validation and test subsets, requiring
only a fraction of the information (PLS uses the whole spectra).

Fig. 4 presents the measured vs. predicted outputs for the Ridge,
LassoLars, and Filtered Ridge global solutions, with model size 5. For a
more visual comprehension, Fig. 5 presents all the global solutions’ (Nw
¼ 5) selected fluorescence pairs plotted upon the average Diesel S100
EEM.

4.2. Diesel S10

As both the first and the filtered optimization of the Diesel S10models
selected a combination of the same excitation/emission pairs, and the
filtered run used the same optimization parameters, we will focus the
results directly in the filtered global solutions.

Table 4 Presents the global solutions’ metrics and selected fluores-
cence pairs for the Diesel S10 filtered optimization.

Evaluating the global solutions, the predictive model using only 4 out



Table 2
Global solutions’ metrics and selected fluorescence pairs for Diesel S100 - first optimization.

Diesel S100 Ridge and σ ¼ 1
Calibration Validation Test

Model Size R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE
3 0.678 5.16 6.38 0.876 2.62 3.50 0.720 4.25 4.98
4 0.781 4.59 5.27 0.858 3.34 3.75 0.631 4.98 5.72
5 0.823 3.94 4.73 0.855 3.14 3.79 0.758 3.88 4.64
Selected Excitation/Emission Pairs
3 Ex310/Em330 Ex480/Em590 Ex560/Em580
4 Ex290/Em350 Ex310/Em330 Ex340/Em730 Ex370/Em720
5 Ex310/Em330 Ex310/Em680 Ex360/Em370 Ex480/Em590 Ex560/Em580
Diesel S100 LassoLars and σ ¼ 2

Calibration Validation Test
Model Size R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE
3 0.857 3.83 4.26 0.810 3.39 4.34 0.480 5.33 6.80
4 0.834 3.74 4.59 0.739 3.91 5.09 0.676 4.81 5.37
5 0.858 3.85 4.24 0.882 2.79 3.42 0.519 5.39 6.53
Selected Excitation/Emission Pairs
3 Ex310/Em330 Ex370/Em750 Ex440/Em840
4 Ex310/Em330 Ex370/Em740 Ex500/Em790 Ex520/Em650
5 Ex300/Em430 Ex310/Em720 Ex340/Em760 Ex400/Em550 Ex470/Em510

Table 3
Global solutions’ metrics and selected fluorescence pairs for Diesel S100 - filtered optimization and PLS regression (7 LV) metrics for comparison.

Diesel S100 Filtered Ridge and σ ¼ 2

Calibration Validation Test

Model Size R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE

3
0.833 3.72 4.61 0.880 2.69 3.45 0.534 4.93 6.43

4 0.923 2.63 3.12 0.824 3.75 4.17 0.648 4.68 5.59
5 0.952 2.21 2.47 0.939 2.15 2.45 0.753 4.00 4.68
6 0.953 2.13 2.43 0.947 1.98 2.29 0.75 4.20 4.72
PLS7 0.990 0.83 1.12 0.332 6.30 8.13 0.39 6.51 7.38
Selected Excitation/Emission Pairs
3 Ex310/Em440 Ex310/Em710 Ex440/Em840
4 Ex270/Em470 Ex280/Em530 Ex310/Em710 Ex560/Em590
5 Ex270/Em470 Ex280/Em530 Ex310/Em710 Ex500/Em790 Ex560/Em590
6 Ex270/Em470 Ex280/Em530 Ex290/Em670 Ex310/Em710 Ex500/Em790 Ex560/Em590
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of the original 1467 fluorescence pairs (less than 0.3%) is able to
correctly quantify total sulfur in diesel S10 samples with considerable
low errors. In addition, the validation and test metrics are similar to the
calibration metrics, signalizing that the model could deal with unseen
data satisfactorily. There was no significant improvement between
models with 4 and 5 input variables.

As for Diesel S100, PLS regression models were also built using Diesel
S10 whole spectral data and the same calibration, validation, and test
subsets, and the model metrics can be seen in Table 4. Comparing the
AnTSbe and the PLS models, we can see that the later had metrics one
order of magnitude higher than the former. Although non-intuitive, R2

(as defined in Eq. (5)) can assume values between -∞ and 1 [69]. This can
happen when the fitted model has predictions that are worse than a
horizontal line equal to the mean value of the output in that subset.
Generally, R2 is nonnegative for any linear regression with intercept, and
that will always occur in the calibration subset. When using the fitted
model to predict the validation and test subset, if the model is overfitted
or unable to deal with this unseen data, its predictions can be actually
worse than a constant (equal to the mean value of the output). When R2 is
negative, it indicates a complete lack of fit. In the Diesel S10 case, there is
a small amount of validation/test samples, and their total sulfur con-
centration has a very small amplitude within the group. This way, the
predictive model must have very small prediction errors to be better than
the group means. The AnTSbe models achieved the necessary accuracy,
but not the PLS model.

Fig. 6 Presents the measured vs. predicted outputs for the Filtered
Ridge global solution, with model size 4. Finally, Fig. 7 shows the global
solutions’ (Nw ¼ 4) selected fluorescence pairs plotted upon the average
7

Diesel S10 EEM.
Analyzing Figs. 5 and 7, we can see that both local models selected

fluorescence pairs in regions that are far from the peak of fluorescence
intensity. This can be explained by remembering that the black-box
models fitted here use empirical data without any need for phenome-
nological significance. Even though those pairs appear to be in a region of
noise and no fluorescence, after normalization, they follow linear trends
that can be correlated to sulfur in the samples. The algorithm treats all
pairs equally, no matter their relative intensity, and seeks the model with
the smallest errors, as can be seen by the metrics presented. Pairs,
especially the ones between Ex 260 to 400 and Em 300 to 500, could be
correlated to the fluorescence of benzothiophenes and dibenzothio-
phenes observed in other works [64–67]. However, those same works
state that the differences in solvents and radicals attached to the com-
pounds can shift the fluorescence peak to other regions. This way, it is
hard to directly link fluorescence pairs to sulfur-containing molecules
based only on the fitted models. For future works, if the chemical
meaning of the fluorescence pairs is relevant, it is possible to spike diesel
fuel samples with known diesel sulfur-containing compounds and eval-
uate models based on this controlled changes. Also, the valid region to
select features of the spectra can be trimmed to known areas with high
fluorescence intensity.
4.3. Tabu memory activations

To study the impact of the tabu memory list, we follow how many
times, on average, a forbidden combination was chosen by the ants
throughout all performed optimizations. As expected, some parameters



Fig. 4. Diesel S100 Measured vs Predicted outputs for the Ridge, LassoLars, and Filtered Ridge global solutions, with model size 5.

Fig. 5. Global solutions’ (Nw ¼ 5) selected fluorescence pairs for Diesel S100
(Black hexagon – LassoLars; Red cross – Ridge; Yellow star – Filtered Ridge). (For
interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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had a direct correlation with tabu memory activations. First, the number
and source of inputs matter: the higher the number of inputs, the rarer
will be the situation of the stochastic selection of the same elements by
ants. The source is also relevant. In cases like the one presented (using
EEM fluorescence), many neighbor inputs carry similar information. In
cases where inputs are more linear-independent, the activations would
be more frequent. Other very influential parameter is the model size.
Smaller models have more chances to activate de tabu memory, and that
8

is corroborated both by the number of possible combination of inputs by
permutation (that considerably increases with model size) as by the way
the pheromone vector is constructed: the pheromone distribution is un-
even in the top performers andmore equilibrated in the other inputs. This
can be seen in Fig. 8, which illustrates the individually normalized final
pheromone trail of optimizations with diesel S100 and model sizes 3, 4,
and 5.

After the two first inputs with higher pheromone concentration (in-
puts 23 and 1416), there is a close competition for the subsequent top
performers. This balance in pheromone distribution reflects in the input
selection by the ants, meaning that bigger models have smaller chances
of selecting forbidden combinations.

For the number of activations of the Tabu memory, in the first opti-
mizations (1467 inputs), model sizes 3, 4, and 5 had 500, 100, and 10
activations, respectively, for diesel S10. Diesel S100 had in general, only
a fifth of that – 100, 20, ~1. This difference is due to the higher number
of fluorescent-sulfured components present in diesel S100, making the
information contained in the spectra more disperse. In the filtered runs
(100 inputs), both diesel S10 and S100 had, on average, 6.000, 2.000,
and 200 activations for model sizes 3, 4, and 5. Considering that each run
fits 30.000 models (200 ants and 150 iterations), 6.000 activations are
equivalent to repeating 20% of all fitted models. For the reasons dis-
cussed above, in this case study, the tabu memory had no influence in
model sizes 5 or bigger.

4.4. Contrast with previous works

Our research group also studied the application of fluorescence
spectroscopy as a tool to predict sulfur content in diesel fuel in a previous
work [61]. In it, the chosen optimization strategy applied for the selec-
tion of fluorescence pairs and the fitting of linear models was called Pure



Table 4
Global solutions’ metrics and selected fluorescence pairs for Diesel S10 - filtered optimization. PLS regression (4 LV) metrics for comparison.

Diesel S10 Filtered Ridge and σ ¼ 1

Calibration Validation Test

Model Size R2 MAPE RMSE R2 MAPE RMSE R2 MAPE RMSE
2 0.889 1.86 0.134 0.813 1.49 0.086 0.784 0.71 0.046
3 0.952 1.25 0.088 0.968 0.62 0.036 0.750 0.72 0.050
4 0.980 0.83 0.057 0.949 0.73 0.045 0.978 0.24 0.015
5 0.986 0.71 0.048 0.994 0.26 0.016 0.991 0.15 0.009
PLS4 0.997 0.12 0.008 �8.58 9.22 0.619 �5.12 4.19 0.247
Selected Excitation/Emission Pairs

2
Ex310/Em640 Ex400/Em760

3 Ex260/Em790 Ex340/Em810 Ex390/Em570
4 Ex340/Em810 Ex380/Em450 Ex520/Em650 Ex600/Em740
5 Ex260/Em790 Ex290/Em450 Ex340/Em810 Ex400/Em760 Ex410/Em660

Fig. 6. Diesel S10 Measured vs. Predicted outputs for the Filtered Ridge global
solution, with model size 4.

Fig. 7. Global solution’ (Nw ¼ 4) selected fluorescence pairs for Diesel S10.

Fig. 8. Individually normalized final pheromone trail of optimizations with
Diesel S100 and model sizes 3, 4, and 5.
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Spectra Chemometric Modeling (PSCM): an ACO based algorithm
developed for the selection of spectral elements to predict state variables.
The AnTSbe can be seen as an evolution of the PSCM, but for general use.
The major differences between algorithms are the intended contributions
of this work: the introduction of regularized linear models, hybridization
with Tabu Search, the adjustable mechanisms of pheromone manipula-
tion, the use of polynomial input expansion, and filtration runs. Both
works used the same diesel S10 and S100 datasets, being the only
9

difference that the PSCM diesel S100 group had one more sample, con-
taining 138 ppm of total sulfur. In addition, the splitting of the data was
not the same: The PSCM study applied systematic sampling to split the
datasets into only training and test subsets, in a 2:1 proportion. Dis-
regarding these small differences, the results of both works can be
reasonably compared. Table 5 presents a compilation of the Global So-
lutions of bothmethodologies for diesel S100 and S10, with model sizes 5
and 4, respectively. As can be seen in Table 5, the proposed modifications
made a positive impact in the general quality of the final predictive
models.

In both studies, the same Diesel S10 dataset was used as a case to
evaluate and present the evolution in the methodologies. However, the
small number of samples must be taken into account when applying the
predictive models to other researches or industrial applications. The
authors strongly recommend that future works that intend to predict
sulfur concentration in ultra-low-sulfur diesel increase the size of the
dataset to reparameterize the presented models or even rerun the algo-
rithm in search of more suitable case-specific models.

5. Conclusions

Fluorescence EEM is a fast and viable source of information that can
be correlated to many properties in diesel fuel. Applying the AnTSbe
methodology, we were able to optimize the selection of input variables
and fit predictive models that use a small amount of fluorescence data to
estimate total sulfur concentration in diesel samples.

For the Diesel S100 local models, using only 5 out of the original 1467
fluorescence pairs, combined with bases expansion, we were able to
satisfactorily predict total sulfur content in samples with mean absolute



Table 5
Comparison between Global Solutions of AnTSbe and PSCM [61] methodologies
for diesel S100 and S10, with model sizes 5 and 4, respectively.

S100 Calibration Validation Test

R2 RMSE R2 RMSE R2 RMSE
AnTSbe5a 0.952 2.47 0.934 2.45 0.753 4.68
PSCM5 0.660 7.41 - - - - - - 0.410 8.94
S10 Calibration Validation Test

R2 RMSE R2 RMSE R2 RMSE
AnTSbe4b 0.980 0.057 0.949 0.045 0.978 0.015
PSCM4 0.940 0.09 - - - - - - 0.690 0.16

a Filtered Ridge σ ¼ 2 andb Filtered Ridge σ ¼ 1.
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prediction errors of less than 4% and root mean squared errors of 4.68
ppm, for the test subset. For the Diesel S10 local models, the use of 4 Ex/
Em pairs was sufficient to predict sulfur content with MAPE 0.24%, and
RMSE of 0.015 ppm, for the test subset.

Comparing the AnTSbe global solutions with classical PLS regression
models and previous optimization studies (PSCM), the proposed meth-
odology proved superior in the task of predicting sulfur content in real
diesel fuel samples without the need for any physical or chemical pre-
treatment. Furthermore, the proposed AnTSbe methodology can deal not
only with fluorescence data, but could be used for optimizations with any
source of information, as infrared/Raman spectrum, industrial mea-
surements, physicochemical properties, or even a combination of those.
The introduction of the tabu memory list was useful to avoid early
stagnation and redundant calculations, especially in models with smaller
sizes. The technique could be even more fruitful in studies where the
input variables are less correlated. The use of bases expansion also
proved beneficial for the predictive models.

Using only a small selected fraction of the original spectra, we reduce
the time required to acquire data, the influence of noisy inputs that do not
carry valid information, and simplify the equipment specification. The
proposed methodology is a further step for the construction of custom
sensors that could be coupled directly into refinery streams to predict
sulfur or even other compounds that present natural fluorescence. This
predictive information can be used by operators to take effective con-
trolling actions in hydrodesulphurization processes.
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Abbreviations

ACO Ant Colony Optimization
Ex/Em excitation/emission
EEM excitation-emission matrix
HDS hydrodesulphurization
LV latent variable
MAPE mean absolute prediction error
10
PLS Partial Least Squares
PCA Principal Component Analysis
PSCM Pure Spectra Chemometric Modeling
RMSE root mean squared error
S10 sample group with less than 10 ppm of sulfur
S100 sample group with average 100 ppm of sulfur
TS Tabu Search.
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