
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Exploiting and Evaluating Live 360° Low Latency Video Streaming Using
CMAF
Uitto, Mikko; Heikkinen, Antti

Published in:
2020 European Conference on Networks and Communications, EuCNC 2020

DOI:
10.1109/EuCNC48522.2020.9200954

Published: 01/09/2020

Document Version
Peer reviewed version

Link to publication

Please cite the original version:
Uitto, M., & Heikkinen, A. (2020). Exploiting and Evaluating Live 360° Low Latency Video Streaming Using
CMAF. In 2020 European Conference on Networks and Communications, EuCNC 2020 (pp. 276-280). IEEE
Institute of Electrical and Electronic Engineers. https://doi.org/10.1109/EuCNC48522.2020.9200954

Download date: 06. Jul. 2022

https://doi.org/10.1109/EuCNC48522.2020.9200954
https://cris.vtt.fi/en/publications/7ff72dcc-f35e-423a-83c5-24e91faaf9b3
https://doi.org/10.1109/EuCNC48522.2020.9200954


Exploiting and Evaluating Live 360◦ Low Latency
Video Streaming Using CMAF

Mikko Uitto
VTT Technical Research Centre of Finland Ltd

Kaitoväylä 1, 90570 Oulu, Finland
Email: firstname.lastname@vtt.fi

Antti Heikkinen
VTT Technical Research Centre of Finland Ltd

Kaitoväylä 1, 90570 Oulu, Finland
Email: firstname.lastname@vtt.fi

Abstract—In this paper, we describe the implemented 360◦ live
video streaming architecture and evaluation setup running in the
5G test network (5GTN), which can be considered beneficial for
live educational services and providing a fast situation awareness
in medical sector. The concentration is on providing more global
HTTP adaptive streaming (HAS) architecture using also CDN
components rather than having only a point-to-point solution.
With this setup, we evaluate the common media application
format (CMAF) usage in HAS context in order to have reliable
video transmission method for high bitrate 360◦ video as well as
setting the end-to-end (e2e) latency as low as possible. By this,
both uplink and downlink direction are investigated by using
wired, wireless, or mobile connection. In addition, the experienced
e2e latency is measured. The extensive placement of synchronized
network measurement indicators from distinct network nodes
help to identify the bottlenecks in mobile video delivery path and
verify the CMAF-based usefulness in streaming optimization. 5G
key performance indicators delay and throughput are the key
parameters in 360◦ live streaming, which can be useful in forming
the overall, live view of an educational surgery or even from an
accident scene. In such scenarios, mobile networking can be the
easiest and often the only option for outputting the important
information to relevant users, such as students or doctors.

I. INTRODUCTION

The recent advances in mobile network technology have
opened new target of applications and usage in various in-
dustry sections, which are often relying on traditional wired
networking methods. Traditional fields such as medical health-
care, heavy industry in harbours, and authorities can benefit
from high-speed wireless connection especially for live video
streaming scenarios. For example, receiving hospital can ben-
efit from live video when monitoring the patient real-time in
ambulance in order to provide better first-sight vision. Also,
real-time educational surgery from a treatment room is possible
if real-time feedback for students is a requirement. Further-
more, remote operations in conjunction to such scenarios are
also dependent of the live video stream. Although the evolution
of current wireless local area networks (WLANs), such as in
802.11ad, enable significant throughputs up to several gigabits
per second their use in mobile live streaming scenarios is often
limited due to range of signal coverage. The improved network
mobility with current LTE/5G technology enables not only
place-independent client access to streaming services, but also
mobile video production scenarios in the field.

Live video streaming techniques today varies depending
on the target applications, use case and slightly of the used
access network technology. Earlier more traditional real-time

based protocols, such as real-time streaming (RTSP) or real-
time messaging protocol (RTMP) in conjunction with real-
time transport (RTP) and user datagram (UDP) protocols have
been used in such streaming scenarios, but they often need
dedicated data transmission path where access against firewalls
and network address translation (NAT) is allowed. In addition,
streaming to unknown number of audience for these protocols
without using more efficient multicast/broadcast based pro-
tocols is considered inefficient when thinking network data
usage. Thus, transmission errors for vital medical content
should be avoided when considering information sharing from
the ambulance towards target hospital.

In order to overcome firewall issues alongside with erro-
neous data possibility, hypertext transfer protocol (HTTP) on
top of transmission control (TCP) has become more general-
ized in live video transmission. Pull-type transmission initial-
ized by the client is more efficient for the service providers.
Many of the popular service providers, such as YouTube,
are relying on HTTP streaming as it favours for guaranteed
transmission procedure and certain flexibility in terms of the
transmission setup although with cost of higher delay. This is
one of the key questions in our video streaming work; how
to minimize the latency by using the available open-source
components and optimal setup parameters. In our work, we
define the network delay as one-way and stream latency as the
e2e delay between camera capture and display in client.

HTTP Adaptive streaming (HAS) dominates over-the-top
(OTT) based consumer video distribution today both in live
as well as video on demand (VoD) streaming and is often
combined with content delivery networks (CDN)s. In HAS
the video stream is divided into a sequence of short media
segments and delivered to the client using common HTTP
servers. With traditional HAS, typical latency is over 6 seconds
and it mainly depends on the media segments length, which
are typically 1 to 10 seconds. The encoder needs to create a
full segment before sending it to the CDN before client can
download it. Usually client’s player downloads two or more
segments to the playback buffer to guarantee uninterrupted
playback. Hence, the encoding and playback are generating
most of the e2e latency.

One option to reduce the e2e latency without shortening
segment duration is to use chunked transfer encoding, where
the data in the segments is composed of a series of chunks and
the encoder can send the chunks to the player immediately after
their encoding [1]. For example if encoder produces 5-second
segments at 25 frames per second (fps) and puts one frame



per chunk it can be forwarded after 40ms without the need for
waiting 5s until the whole segment is ready. Commen media
application format (CMAF) [2] is a MPEG standard to simplify
delivery of HAS so that Apple’s HTTP Live Streaming (HLS)
[3] and MPEG’s Dynamic Adaptive Streaming over HTTP
(DASH) [4] can use the same media segments and chunked
encoding feature.

Swaminathan et al. [5] presented first studies how HTTP
chunked encoding approach can reduce the latency in live
video streaming. They used 1s chunks and achieved 2.5s
latency. Bouzakaria et al. [6] validated the very low latency
streaming in their system where encoder and DASH-aware
web server are in the same computer. When the web server
receives a request from a client it parses the segment to
detect thee fragments and sends these as a chunk to the client.
They can achieve only 240ms latency in this system. Essaili
et al. [7] presented a prototype implementation of chunked
transfer encoding in low latency DASH delivery system. They
evaluated the system distribution latency in WiFi connection
with different fragment duration.

One of the good 5G enhanced mobile broadband (eMBB)
use cases contains high throughput video streams, such as 360◦

streams that can be beneficial of forming situation awareness
of a scene. 4K and 8K resolution require huge amount of bits
as well as bandwidth, but are still manageable with the current
LTE and 5G new technologies. 360◦ live streaming is usually
one option for realising virtual reality (VR) streaming, which
has been also conducted using DASH [8] [9].

In this paper we present our system architecture for low
latency 360◦ CMAF streaming using DASH to be used for
example medical and healthcare related scenarios. In section
II, the proposed system architecture will be presented that is
functional in 5G test network (5GTN). Section III presents the
detailed evaluation setup with the applied measurement tools
and results. Finally, a conclusion with future work aspects will
be done.

II. SYSTEM ARCHITECTURE

The chunked CMAF low latency live video streaming
system architecture contains a live capturing camera, video
encoder, live packetizer, origin, edge, and HTML5 player. The
overview of the system architecture is presented in Fig. 1 and
it is operational in 5GTN. 5GTN [10] is one of the hybrid
4G-5G test network infrastructures coordinated by 5G Test
Network Finland (5GTNF), located at VTT’s 5G laboratory
and University campus areas in Oulu, Finland. It is currently
connected to multiple test sites and introduces several 5G
components, such as multi-access edge computing (MEC), and
evolved multimedia broadcast multicast service (eMBMS) with
CDN. Radio access technology (RAT) is LTE Advanced (LTE-
A) using the carrier aggregation (CA) technique operating in
frequency division duplex (FDD) mode on around 2.6 GHz
and time division duplex (TDD) aroung 2.3 GHz. Currently
the core network functionalities are handled mainly by evolved
packet core (EPC) simulator. 5G new radio (NR) is expected
to be integrated in the 5GTN during spring 2020.

A live video camera is connected to the encoding computer
through HDMI to USB capture card. The modern cameras are
also capable of producing and transmitting directly the encoded

video stream e.g. via RTMP, but we want to include also small,
powerful, separate encoding PC in the architecture in order to
have possibility e.g. to form audio feedback channel in the
future. In addition, network delay measurement realization is
easier with such machine and not directly from application-
restricted camera. The Live Encoder compresses the live video
feed with low latency settings and streams the video to the
RTMP server located in the Live Packetizer. The encoding PC
is connected to the 5GTN and is referred as the uplink (UL)
server.

The Live Packetizer contains RTMP server and CMAF
packetizer. The RTMP server receives the live video feed
and serves the stream to the CMAF packetizer. It packs one
frame to a fragment (chunk) and pushes the fragment using
HTTP PUT chunked transfer encoding to the Origin server.
The Origin is a part of the open-source CDN together with
edge servers and enables effective HTTP video delivery when
multiple users need to access the same content. The Origin
receives the HTTP PUT request from the CMAF packetizer.
The Edge server will shield the Origin server from load
that simultaneous requests from distinct players aka clients
can cause. When a client requests a video segment using
HTTP PULL from the server, the Edge server distributes video
segments in chunks to the player. If the requested data is not
available in the Edge server, it requests the data using HTTP
PULL from the Origin and forwards it to the Video Player. The
Edge stores the requested data for a certain time according
to its caching rules. The Origin and the Edge both use the
chunked transfer encoding.

Open-source HTML5 player Dash.js [11] supports CMAF
low latency streaming and is utilized in our architecture as the
Video Player. It is a reference DASH client implementation for
playing videos via Javascript libraries in a browser using Media
Source Extensions API. The low latency implementation in
Dash.js uses W3C Fetch API and chunked transfer encoding.
HTML5 player is also connected to the 5GTN and is referred
as the downlink (DL) application.

III. EVALUATION AND RESULTS

A. Evaluation setup

This section presents our evaluation setup that is a de-
tailed version of the system architecture in Fig. 1. The video
streaming path introduced next was evaluated against delay
in different networks as test cases: wired (Ethernet), WLAN
(802.11ad), and mobile (LTE-A), which are available in our
test network (5GTN). Live video content was used as the input,
but drastic movement in the feed was avoided for keeping the
bitrate relatively constant and to have comparable set of runs.

The evaluation setup for chunked CMAF low latency live
360◦ video streaming system has been built using open source
software and the overview is presented in Fig. 2. All the servers
run Ubuntu 18.04 operating system. 360◦ streamer depicted in
the figure consists of Insta Pro 2 360◦ camera and Intel NUC
Live Encoder with Intel Core i7-8809G CPU connected via
HDMI to USB 4K capture card. The camera functions with
real-time stitching forming the video with 4K resolution at 30
fps in equirectangular format. The Live Encoder captures the
video from USB 3.0 port in 4:2:0 YUV format nearly 3 Gbit/s.
The video is encoded using x264 software encoder with 13



CDN

Live Encoder

Live Packetizer Origin Edge

Video PlayerVideo Camera

5GTN 5GTN

RTMP

HTTP PUT
Chunked transfer 

encoding

HTTP PULL
Chunked transfer 

encoding

Fig. 1: System architecture for low latency CMAF video streaming.

Mb/s target bitrate and low latency settings (preset=superfast,
tune=zerolatency, profile=high, bframes=0, ref=3, scenecut=0).
The Live Encoder is connected to the network using either
wired, WLAN or mobile connection depending on the test
case. The encoder streams the video to the Live Packetizer
(see Fig. 2) via RTMP.

The Live Packetizer contains RTMP server (Nginx with
rtmp-module) [12] and FFmpeg for chunked CMAF pack-
aging. The RTMP server receives the live video feed and
serves this stream to FFmpeg. FFmpeg generates 4-second
long segments and packs one frame to a chunked fragment
and pushes the fragment using HTTP PUT request method to
the Origin server. The Origin server contains two components:
an ingest and a shield (edge). The ingest is based on the open
source Streamline server written in Go [13] and it receives
the HTTP PUT request from CMAF packetizer. The shield is
based Nginx and it will protect the ingest server from load
that players’ simultaneous requests can cause by caching the
requested data for two seconds. The shield server distributes
video to the player using chunked transfer encoding. As a
Video Player we used laptop with Ubuntu 18.04 and Intel
Core i7-4800MQ CPU that runs Dash.js player version 3.0.1 in
Chrome browser version 80.0 and FFplay media player. These
players does not include support for 360◦ videos and they show
the video in 4K resolution.

The delay measurements were divided into two methods:
measurements with network performance indicator Qosium
and measurements using screen clock capturing. We wanted to
identify how e2e latency is divided in the live video streaming
system. In the first method, the streaming video camera cap-
tures the current time in milliseconds from screen 1. Player
plays the video in screen 2 that is alongside screen 1. We take
a picture of the screens and calculate the time difference, which
is e2e latency. We used FFplay when we measured the latency
in the middle of the system. The FFplay was used with format
flag nobuffer that reduces the latency introduced by buffering
and flag low delay that forces low latency playback. We used
Dash.js when we measured the e2e latency with CMAF. We
set the liveDelay to 1.0s (target delay), liveCatchUpMinDrift
to 0.05s (Minimum delay deviation allowed before catch-
up activation), and liveCatchUpPlaybackRate to 0.5% (Max.
catch-up rate).

Secondly, Qosium [14] was used for measuring the up-
link and downlink network performance as it can provide a
real-time, passive, and light-weight measurement method for

TABLE I: Used video and network parameters.

Video Network
Resolution 3840x2160 (4K) Wired network 1 Gbps Ethernet

Bitrate 13 Mbps (CBR) WLAN AP 802.11ad @ 2.4 GHz
Frame rate 30 fps LTE BS eNB pico cell @ 2.6 GHz

Coding H.264 LTE Frequency Band 7 @ 10 MHz
Packetization CMAF (DASH) LTE Modulation 2x2 MIMO

DASH segment length 4s LTE EPC version EPC simu LTE WTS

reliable assessment without generating additional congestion
traffic into the network. Qosium consists of two components,
namely as Probe and Scope. The Scope is responsible for
visualizing and/or gathering the results, but it is not part of
the measurement path and requires only network connection
to one of the probes. The Probes are installed and run in
the nodes that serve as endpoints of the measured network
path and pass barely the measured traffic through them. Fig. 2
shows the Probe and Scope nodes in our evaluation case. The
uplink measurement path holds Probes in Live Encoder and
Live Packetizer, and downlink measurement Probes in Origin
and Video Player, respectively. Scope was placed in external
laptop for gathering the results, connected to Probe located in
Origin. In our measurements, delay, and throughput are the
main indicators visualized in the results. Thus, indicators such
as packet loss, delay, and jitter were also monitored. The video
bitrate was fitted to the uplink capacity in order to avoid packet
losses.

One of the important issues when using Qosium (or any
other delay-to-point measurement tool) for measuring the
network delay is setting the time synchronization as accurate
as possible for distinct machines. Basically three alternatives
exist: network time protocol (NTP), precision time protocol
(PTP), and global positioning system (GPS) time. Our several
pre-measurement tests indicated that NTP was not accurate
enought for synchronization and decided to use PTP. Open-
source PTP daemon [15] was used in our measurements.
First we set a common PTP master machine in our 5GTN
from which the PTP slaves (Probe machines) get the clock
synchronization via wired Ethernet network. Naturally, we
configured the routing for each component in the evaluation
setup so that video was routed via desired network interface
in each test case.

B. Results

As depicted in the previous section, the rough division
for delay measurements was divided between Qosium network



Live packetizer Origin360 video streamer
5G/LTE

WLAN

WIRED

5G/LTE

WLAN

Video 
player

WIRED

Qosium Probe Qosium Probe Qosium ProbeQosium Probe Uplink delay Downlink delay

Fig. 2: Evaluation setup.

12

12.5

13

13.5

14

14.5

0 5 10 15 20 25 30 35 40 45 50 55 60

Da
ta

 ra
te

 (M
bi

t/
s)

Time (s)

13,6

Fig. 3: Measured average bitrate for the live video stream.

measurements in the application layer and true latency mea-
surements by taking screen captures from live digital clock
both between sender and client. The evaluation was performed
using wired, WLAN and mobile network inside 5GTN. For
mobile, we also wanted to see how increased bitrate influences
to delays in uplink and downlink. Some of the essential video
and network parameters are illustrated in Table I. In addition
to this, the mobile network capacity was approximately 20 and
60 Mbit/s for uplink and downlink, respectively.

1) Network delay: The network measurements were ac-
complished by using Qosium that gathers and measures the
through-traffic with application layer packets. The paths of in-
terest were uplink transmission between video encoder and live
packetizer as well as downlink transmission between Origin
and Video Player. The delay between packetizer and origin was
not measured since the connection in our architecture is always
wired via Ethernet/fiber and therefore this delay is considered
extremely small. We measured 10 distinct 60s live streaming
runs for each of the network scenarios; wired, WLAN, and
mobile. Finally, an averaged results were conducted. The
averaged data (bit) rate for our live measurements is presented
in Fig. 3 and measured with Qosium as the output rate from
video encoder before the uplink transmission. The box in the
graph shows the total average bitrate, which is 13.6 Mbit/s.
Constant bitrate (CBR) factor enabled in the encoder works
relatively well and the bitrate stays within 200-300 Kbit/s
median. Thus, the earlier FFmpeg encoding experiments done
with lower resolution seem to maintain the bitrate even better
towards the target rate.

Fig. 4 presents the uplink delays with average 60s values
against each of the network types. In the uplink scenario
RTMP stream is transmitted on top of TCP. As can be seen,

0

10

20

30

40

50

60

1 3 5 7 9 111315171921232527293133353739414345474951535557596163

UL delay (RTMP-LTE)

DL delay (RTMP-LTE)

DL delay (DASH-LTE)

0

10

20

30

40

50

60

70

80

90

0 5 10 15 20 25 30 35 40 45 50 55 60

D
el

ay
 (m

s)

Time (s)

UL delay (wired) UL delay (WLAN)
UL delay (LTE 13M) UL delay (LTE 15M)

66,9

49,7

0,3
1,5

12500

13000

13500

14000

14500

Chart TitleFig. 4: Measured average video delays in the UL.

the uplink delay in wired and WLAN scenarios is extremely
fast compared to mobile measurements that is approximately
50ms for the 13 Mbit/s stream. In addition, 15 Mbit/s stream
leads even increased delay. We derived that this arises from
close up eNB congestion by the video traffic leading to TCP
retransmissions in IP level and increased delays in eNB. As
the average delay for our WLAN 802.11ad wireless router is
close to 1ms, it can be considered close to upcoming, real 5G
values launched in the 5GTN.

Fig. 5 shows similarly the downlink delays against different
network types for CMAF packetized RTMP stream. The down-
link delay is relatively the same for 13 Mbit/s and 15 Mbit/s
and much lower than in the uplink side is caused mainly by
eNB packet scheduling and high data rate video.

18498.91
18311.78
18132.83

0

2

4

6

8

10

12

0 2 4 6 8 10121416182022242628303234363840424446485052545658606264

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20 25 30 35 40 45 50 55 60

D
el

ay
 (m

s)

Time (s)

DL delay (wired) DL delay (WLAN)

DL delay (LTE 13M) DL delay (LTE 15M)
16,5

5,6

0,4

16,3

0
2
4
6
8

10
12
14
16
18
20

0 5 10 15 20 25 30 35 40 45 50 55 60

D
el

ay
 (m

s)

Time (s)

DL delay (wired) DL delay (WLAN)

DL delay (LTE 13M) DL delay (LTE 15M)
16,5

5,6

0,4

16,3

Fig. 5: Measured average video delays in the DL.



TABLE II: Measured capturing and e2e latencies.

Test case Measured e2e latency buffer size actual delay
capturing latency 0.43s - -

e2e RTMP latency 0.58s - -
e2e CMAF latency (wired) 1.29s 0.70s 0.59s

e2e CMAF latency (mobile) 2.01s 1.29s 0.72s

2) End-to-end latency: In the latter case we first measured
capturing latency between 360◦ camera and Live Encoder,
illustrated in Table II. FFplay was used to playback the
video from video capture interface in the Live Encoder. In
this case the latency includes only capturing and playback.
Then we measured e2e RTMP latency when FFplay in laptop
plays video from RTMP server. Now the latency includes
capturing, encoding, delivery to RTMP server, delivery to
player and playback. Finally, we measured the total e2e CMAF
latency from camera to the Dash.js running in the laptop with
Chrome browser. In this case the latency consists of capturing,
encoding, delivery to RTMP server, live packetization, delivery
to origin, delivery to player, and playback.

Each measurement took 60s to calculate the average size
of the player buffer and we took a picture of the screens every
three seconds. Based on the pictures we calculated the e2e
latency. We repeated the measurement 10 times to ensure the
correct averaged results for wired and mobile tests. Table II
presents the average values for the latencies. In each test the
player’s playback rate was 1 and there were no stalls during
the playback. In the early e2e measurements with the browser,
we noticed that the realized latency actually varies depending
on the moment browser is started, which also influenced to
player’s buffer size. In the wired network the measured e2e
latency varied from 0.95s to 1.82s and the average was 1.29s.
The player buffer size varied form 0.36s to 1.23s and the
average was 0.70s. In the mobile network the measured e2e
latency varied from 1.74s to 2.28s and the average was 2.01s.
The buffer size varied from 1.1s to 1.5s and the average was
1.29s. The player’s buffer size had a significant impact on e2e
latency when the actual e2e latency was relatively constant.
Therefore, we conducted that the actual e2e latency (camera
capture + encoding + packetizing + network + playout) can
be calculated by subtracting buffer size from the measured
e2e latency. The actual e2e latency in the wired network was
0.59s and in the mobile network 0.72s. However based our
measurement the player buffers 0.6s more on mobile than on
wired network when the actual e2e latency is 0.12s higher.

IV. CONCLUSION

This paper illustrated our live system architecture and
evaluation for realizing 360◦ video streaming setup using fast
video capture with real-time encoding, live packetizing with
CMAF connected to CDN, and low latency player. This setup
was tested against wired, wireless as well as mobile LTE-A
connectivity using the 5GTN in Finland.

The extensive results gathered both by using network
performance monitoring as well as camera capturing indi-
cators show that the current setup is capable for outputting
as low as one second end-to-end latency by using chunked
CMAF packetization, which enables faster, fragment-level
media transmission also in HTTP streaming. This transmission

procedure combined with minimized player buffering allows
good performance with CMAF, which usually leads to several
seconds of experienced delay. One of the use cases within our
streaming setup is considered in medical/health care scenarios,
where live, near real time 360◦ streaming can be beneficial
remote consultation or remote learning scenarios.

The authors plan to continue the development of the
existing testbed and refine each of the components even better
with 5G new radio (NR). 360◦ low latency video player
implementation and integration into VR glasses will be one
of the improvements. Mobility tests especially in the uplink
transmission will be conducted and novel configuration or even
novel multiconnectivity algorithms for guaranteeing the uplink
capacity will be investigated.

ACKNOWLEDGMENT

This work was supported by the European Commission in
the framework of the H2020-ICT-19-2019 project 5G-HEART
(Grant agreement no. 857034) and national PRIORITY and
5G-FORCE projects funded partially by Business Finland. The
authors would like to thank for the support.

REFERENCES

[1] R. Fielding and J. Reschke, “Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing,” Internet Requests for Comments, RFC
Editor, RFC 7230, June 2014. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7230.txt

[2] MPEG, “Information technology — multimedia application format
(mpeg-a) — part 19: Common media application format (cmaf) for
segmented media,” ISO/IEC 23000-19:2018, 2018.

[3] R. Pantos and W. May, “HTTP Live Streaming,” Internet Requests for
Comments, RFC Editor, RFC 8216, June 2017. [Online]. Available:
https://www.rfc-editor.org/rfc/rfc8216.txt

[4] T. Stockhammer, “Dynamic adaptive streaming over HTTP standards
and design principles,” in ACM MMSys’11, San Jose, California, USA,
feb 2011, pp. 133–144.

[5] V. Swaminathan and S. Wei, “Low latency live video streaming using
http chunked encoding,” in 2011 IEEE 13th International Workshop on
Multimedia Signal Processing, December 2011, pp. 1–6.

[6] N. Bouzakaria, V. Concolato, and J. Le Feuvre, “Overhead and per-
formance of low latency live streaming using MPEG-DASH,” in IISA
2014, The 5th International Conference on Information, Intelligence,
Systems and Applications, July 2014, pp. 92–97.

[7] A. E. Essaili, T. Lohmar, and M. Ibrahim, “Realization and evaluation
of an end-to-end low latency live dash system,” in 2018 IEEE Interna-
tional Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB), June 2018, pp. 1–5.

[8] M. Hosseini and V. Swaminathan, “Adaptive 360 vr video streaming:
Divide and conquer,” in 2016 IEEE International Symposium on Mul-
timedia (ISM), Dec 2016, pp. 107–110.

[9] D. Podborski, E. Thomas, M. Hannuksela, S. Oh., T. Stockhammer,
and S. Pohm, “360-degree video streaming with mpeg-dash,” SMTPE
Motion imaging Journal, vol. 127, pp. 20–27, Aug. 2018.

[10] 5GTN. (2019) 5GTN - 5G test network. [Online]. Available:
https://5gtn.fi/

[11] DASH-IF. (2020) dash.js javascript reference client. [Online]. Available:
https://reference.dashif.org/dash.js/

[12] R. Arutyunyan. (2017) Nginx rtmp-module. [Online]. Available:
https://github.com/arut/nginx-rtmp-module

[13] C. K. Henry. (2019) Streamline low latency dash preview. [Online].
Available: https://github.com/streamlinevideo/low-latency-preview

[14] Kaitotek. (2019) Qosium. [Online]. Available:
https://www.kaitotek.com/qosium

[15] K. Correll. (2020) Ptpd, precision time protocol daemon. [Online].
Available: https://ptpd.sourceforge.net


