
This document is downloaded from the
VTT’s Research Information Portal
https://cris.vtt.fi

VTT
http://www.vtt.fi
P.O. box 1000FI-02044 VTT
Finland

By using VTT’s Research Information Portal you are bound by the
following Terms & Conditions.

I have read and I understand the following statement:

This document is protected by copyright and other intellectual
property rights, and duplication or sale of all or part of any of this
document is not permitted, except duplication for research use or
educational purposes in electronic or print form. You must obtain
permission for any other use. Electronic or print copies may not be
offered for sale.

VTT Technical Research Centre of Finland

Timed model checking of fault-tolerant nuclear I&C systems
Buzhinsky, Igor; Pakonen, Antti

Published in:
Proceedings of 18th IEEE International Conference on Industrial Informatics, INDIN 2020

DOI:
10.1109/INDIN45582.2020.9442188

Published: 20/07/2020

Document Version
Peer reviewed version

Link to publication

Please cite the original version:
Buzhinsky, I., & Pakonen, A. (2020). Timed model checking of fault-tolerant nuclear I&C systems. In
Proceedings of 18th IEEE International Conference on Industrial Informatics, INDIN 2020 (pp. 159-164). IEEE
Institute of Electrical and Electronic Engineers. https://doi.org/10.1109/INDIN45582.2020.9442188

Download date: 19. Dec. 2021

https://doi.org/10.1109/INDIN45582.2020.9442188
https://cris.vtt.fi/en/publications/f116fd87-3528-44f0-8c95-7b49f42b6691
https://doi.org/10.1109/INDIN45582.2020.9442188

Timed model checking of fault-tolerant nuclear I&C
systems

Igor Buzhinsky1, 2, Antti Pakonen3
1 Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland

2 Computer Technologies Laboratory, ITMO University, St. Petersburg, Russia
3 VTT Technical Research Centre of Finland Ltd., Espoo, Finland

igor.buzhinskii@aalto.fi, antti.pakonen@vtt.fi

Abstract—Certain safety-critical systems, such as nuclear in-
strumentation and control (I&C) systems, must be ensured to be
correct. One of the approaches of doing this is formal verification
and, in particular, model checking, which thoroughly examines
the state space of the formal model of the system. To make model
checking computationally feasible, many simplifying assump-
tions, often referred to as abstractions, are made. One of such
abstractions is the assumption of discrete time. However, when
I&C systems are considered working in the real world, where
communication delays and failures are possible, this assumption
becomes less realistic, calling for the need for richer formalisms.
In this paper, using timed automata, we extend our previous
model checking approach for nuclear I&C systems to account for
continuous time. We apply our approach to a reactor protection
system case study and show that continuous-time verification is
in general feasible, although proving the satisfaction of certain
system properties still remains a computational challenge.

I. INTRODUCTION

Nuclear instrumentation and control (I&C) systems are
among safety-critical systems that deserve much attention to
make them reliable. The defense-in-depth design principle
assures this reliability on multiple levels, from personnel
training to I&C hardware and software. In Finland, one of the
techniques to ensure the correctness of these implementations
is model checking [1], [2], a formal verification [3] technique
capable of exhaustive state space exploration.

While many works, such as [4]–[7], were devoted to
software-only verification, the works [8]–[10] also accounted
for possible hardware failures. However, all these works op-
erated with discrete time, which corresponds to the number
of performed state transitions of the model. This assumption
is well-justified when the system to be model-checked is a
cyclically executed controller, such as a programmable logic
controller (PLC), in which case a cycle can be associated with
a discrete time unit. However, when several such controllers
communicate via a network, the cycles of these controllers
may not be aligned in time. Moreover, a real-world communi-
cation delay may not be a multiple of the cycle time and vice
versa, making the discrete time semantics either less realistic
or difficult to apply computationally.

This paper addresses the aforementioned problems by
proposing a real-time modeling and model checking approach
for redundant failure-tolerant I&C systems. This approach (1)
makes the model of communication within the I&C system
more precise, and (2) enables checking of specifications with

explicitly specified response time durations. This is achieved
based on the use of timed automata and the capabilities of the
nuXmv [11] model checker.

We evaluate our approach by modeling a reactor protection
system case study and model-checking regular and timed
temporal properties for this model. Our results show that such
properties can be checked with an imprecise approach, but
precise model checking still remains a challenge especially
for timed temporal properties.

The rest of the paper is organized as follows. In Sections II
and III, we introduce the concepts used throughout the paper.
In Section IV, the proposed modeling approach is outlined. In
Section V, this approach is evaluated on a case study. In Sec-
tion VI, it is compared with similar approaches. Section VII
concludes the paper and discusses future work.

II. NUCLEAR I&C SYSTEMS

A. Running example

In this paper, we use a part of the case study from our pre-
vious work [10]—the reactor protection system (PS), which is
a typical nuclear I&C system. More specifically, this is a fault-
tolerant safety function whose purpose is to initiate reactor trip
(shutdown) as a response to certain sensor measurements.

The PS case study is based on the proposed U.S. EPR
nuclear power plant (NPP) [12], with the details not found
in [13] based on our own assumptions. To enable fault tol-
erance, the PS consists of four redundant, identical divisions
that are separated electrically and placed in different rooms.
In each division, the application logic is distributed between
two types of function units:

1) Acquisition and processing units (APUs) obtain inputs
from the sensors of the I&C system and process them
(e.g., compare with thresholds, wait for certain values
to be present for a specified time).

2) Actuation logic units (ALUs) collect the outputs of the
APUs, perform voting (e.g., require that at least 2 out
of 4 APUs vote for actuation) and, also accounting for
additional human operator inputs, generate the values
that can be sent to actuators or other I&C systems. We
regard the outputs of the ALUs as the outputs of the PS.

The architecture of the PS is shown in Fig. 1. Function
units execute on their own devices and therefore their single

APU 1

SCDS SICS

PACS

ALU 1

APU 2

PACS

ALU 2

PACS

ALU 3

PACS

ALU 4

SCDS SICS SCDS SICS SCDS SICS

F

F

Division 1 Division 2 Division 3 Division 4

APU 3 APU 4

Fig. 1. Architecture of the PS (reproduced from [10]). Function units and
connections that are omitted in the formal model are shown in grey. Failures
are injected into division 2.

execution cycles can be considered atomic. The application
logic running inside each function unit is specified using a
network of interconnected basic blocks that model logical
elements such as Boolean operators, flip-flops, delays and
timers. These networks for the PS case study can be found
in [10]. We also note that each signal in Fig. 1, as well as
inside the APUs and the ALUs, is paired with its fault status.
This status may be turned on for some failures and then used
in processing, for example, by excluding knowingly unreliable
signals from voting.

B. Hardware failures

According to the Finnish regulatory guides on nuclear
safety [14], a safety function must be tolerant to arbitrary
failures in a single division (N+1 requirement). Combining
this assumption with redundancy and symmetry leads to the
possibility of the following modeling assumptions, which were
proposed in our previous works [9], [10]:
• A single division may be assigned as the one with

the failure, and the failures can include arbitrary, self-
announcing (indicated with fault statuses) and non-self-
announcing corruptions of unit outputs and signals trans-
mitted through connections. We select division 2 as the
failing one.

• Only one non-failing ALU needs to be modeled. We
select the ALU from division 1. The failing ALU from
division 2 does not need to be modeled as well.

C. Network communication

There are two sorts of connections in the PS:
• The connections from the sensors and the human oper-

ators to function units are hardwired. They are encoded
with 4..20 mA current, one signal per wire [13]. Failure
statuses are not carried this way, but instead the signal
can be marked as invalid by the APU if, e.g., the current
drops below 4 mA.

• According to [12] (Chapter 11), each function unit has
a Profibus communication module connected to an op-
tical link module (OLM). OLMs are used to transfer
signals through fiber-optic cables to other OLMs, this way
achieving electrical isolation [12] (Chapter 6). As a result,
transmitted data (with a possibility of grouping several
signal values together to be transmitted atomically) is
passed through several buffers on the way from an
APU to an ALU. However, to reduce the computational
complexity of modeling, we will assume that there is a
single buffer between each APU and ALU with bounded
transmission delays. These delays can be estimated as
explained in [12] (Appendix B).

III. MODEL CHECKING

Model checking is a formal verification technique to exhaus-
tively explore the state space of the formal model of a system.
It is performed automatically by tools called model checkers.
Often, formal models are represented with different state
machine formalisms, such as Kripke structures (for discrete-
time model checking), timed transition systems [15] and
timed automata [16] (for continuous-time model checking). In
verification of timed automata, discrete and timed transitions
are distinguished: the former instantly change the state of the
model or its component, and the latter only increment the
elapsed time and the values of clocks defined in the model.

Model checking is often resource consuming. One part
of this problem comes from the need to process large state
spaces. This problem is mitigated by the use of symbolic model
checking. Among the verifiers that implement symbolic model
checking are NuSMV [17] and nuXmv [11]. They implement
model checking algorithms such as the ones based on binary
decision diagrams (BDDs), bounded model checking [18]
(BMC) and IC3 [19] (nuXmv only).

A. nuXmv model checker

While some model checkers, such as UPPAAL, allow the
user to specify the models directly as state machines, other
tools offer different languages. NuSMV [17] offers a language
where a model is specified as an arrangement of interconnected
nested modules, and each module has its own state variables,
initialization and transition rules. The MODCHK [4], [5] tool,
which is used in VTT for customer and research projects, in
addition offers a graphical interface to specify the connections
between the modules visually. The model can be verified
directly in this tool (using MODCHK as a front-end for
NuSMV) or exported as a NuSMV model.

The nuXmv verifier is a successor of NuSMV, whose
recent version [11] supports timed model checking. Below,
we provide an example of a nuXmv listing defining a single
module, which represents a buffer that can be used to store
a single Boolean value. This way, a delay in its transmission
over the network can be modeled, and in our approach (see
Section IV-B) we use buffers of this kind on the connections
between function units.

1 MODULE BUFFER(IN0, SHOULD_EXEC)
2 VAR
3 OUT0: boolean;
4 timer: clock;
5 ASSIGN
6 init(OUT0) := IN0;
7 next(OUT0) := timer >= 50 & SHOULD_EXEC
8 ? IN0 : OUT0;
9 next(timer) := timer >= 50 & SHOULD_EXEC

10 ? 0 : timer;
11 INVAR
12 TRUE -> timer >= 0 & timer <= 100

In this example, if timer is between 50 and 100 (time
units are abstract, but they can be mapped to a real-world
duration, e.g., 1 ms) and an external execution permission
SHOULD_EXEC is given, the buffer can update its stored
version of input variable IN0, resetting the timer. Specifically,
the ASSIGN declaration is used to specify possible initial
values of state variables, and INVAR constrains the timer such
that it starts from a value between 0 and 100 and cannot elapse
beyond 100. Finally, fault statuses are not shown here for
simplicity, but they can be treated as Boolean signals processed
simultaneously with IN0.

B. Temporal logics

Linear temporal logic (LTL) [20] is a formal language that
extends Boolean propositional logic with temporal operators,
which can relate Boolean expressions at different discrete time
instants of a single execution scenario. LTL temporal operators
include X (“in the next state”), F (“eventually in the future”)
and G (“always in the future”). Metric interval temporal logic
(MITL) [21] is similar to LTL, but facilitates timed model
checking by annotating temporal operators with time intervals.
In particular, in addition to LTL, nuXmv supports MITL
operators G[a,+∞) (always, starting from a time units from
the current moment), G[0,a] (always during the entire next a
time units), F[a,+∞) (eventually in the future, starting from a
time units from the current moment), F[0,a] (eventually during
the next a time units). In these operators, a is a real number.
For example, the property G((G[0,10] IN0)→ F[0,10] OUT0)
is satisfied for the BUFFER example above, meaning “always,
if IN0 is true for 10 future time units, then OUT0 will also
become true during the same time interval.”

Usually, LTL or MITL formulas (or temporal properties)
correspond to system specifications. If a property is violated,
it is always possible to find a counterexample—a behavior
scenario of the system showing the violation.

IV. PROPOSED MODELING APPROACH

A. Timed models

Broadly speaking, our modeling approach is based on the
formalism of timed automata. A timed automaton1 is a tuple
(L,L0, C,E), where L is a finite set of locations, L0 ⊆ L
is a set of initial locations, C is a finite set of real-valued
clocks, and E ⊆ L2 × R|C| × 2C is a set of edges. A timed
automaton can be interpreted as an executable model: its state

1We use a simplified definition compared to the classical one [16].

is composed of a location and an assignment of the clocks, the
clocks are initialized with zeros, an initial location is selected
nondeterministically from L0, and (l1, l2, t1, ..., t|C|, Cr) ∈ E
means that location l1 can change to location l2 when the
values of clocks are t1, ..., t|C|, and all the clocks from the set
Cr will be reset to zero as a result of this transition. In addition
to such discrete transitions, timed transitions are possible,
which synchronously increment all the clocks by some positive
value. Below, we tailor this definition for our needs, essentially
introducing variables, modularity, and associating each module
with exactly one clock.

A clock module is a tuple (V in, V s, V out, R, L, L0, c, E),
where V in = {vin

1 , ..., v
in
k } is a finite set of input variables,

V s = {vs
1, ..., v

s
m} is a finite set of state variables, V out ⊆ V s

is a finite set of output variables (state variables that can be
accessed by other parts of the modular model), R : V in∪V s →
{true, false} ∪ 2Z is a range function, which returns the set of
values for each variable, L ⊆ R(vs

1) × ... × R(vs
m) is a set

of locations, L0 ⊆ L is the set of initial locations, c is a
clock, and E ⊆ L2 × R2 × R(vs

1) × ... × R(vs
m) is the set

of edges: (l1, l2, tmin, tmax, x1, ..., xk) ∈ E if and only if a
transition from l1 to l2 is allowed when tmin ≤ c ≤ tmax and
vin
i = xi for each 1 ≤ i ≤ k. During clock module execution,

we assume that initially c ≥ 0, and c is reset to zero after
each discrete transition. Thus, a clock module is a variant of
a timed automaton that has only one clock.

A clock unit with execution cycle length r is a clock module
such that each its edge has form (l1, l2, r, r, x1, ..., xk), i.e., a
transition is only possible when c = r. We require that the
initial value of the clock of a clock unit is 0 ≤ c ≤ r. A clock
buffer with bounds rmin and rmax ≥ rmin is a clock module
such that each its edge has form (l1, l2, rmin, rmax, x1, ..., xk),
i.e., a transition is only possible when rmin ≤ c ≤ rmax.
Clock buffers are suitable for representing nondeterministic
transmission delays in a network.

A timed model is a tuple (V,RV ,M,X), where V is a
set of system input variables, RV is the range function of
these variables (defined as for clock modules), M is a set
of clock modules, and X is a set of connections of the
form (v1, v2), where v1 belongs to V or V out of some clock
module, and v2 belongs to V in of another module. Thus,
connections allow certain modules to read (but not set) system
input variables or output variables of other modules. A timed
model can be interpreted as a timed automaton, where (1)
a location is an assignment of system input variables and
state variables of each clock module, (2) initial locations
correspond to arbitrary assignments of system input variables
and possible initial locations of clock modules, (3) the set
of clocks is composed of the clocks of clock modules, and
(4) the set of edges corresponds to the following discrete
transitions: system input variables change arbitrarily, and any
positive number of clock modules make their own transitions
and reset their clocks. If multiple clock modules can make
discrete transitions, then these transitions can be performed
synchronously or sequentially with all possible groupings.
In a timed transition, clocks increment synchronously in all

clock modules by some positive value. However, we limit this
behavior with the following invariant: no clock can advance
beyond rmax of any of the modules.

B. Implementing I&C systems as timed models

Generally, an I&C system consists of a number of function
units and connections between them and sensor inputs. The
I&C system can be modeled with a timed model as follows:
• Each sensor input in each unit is represented as a system

input variable.
• Each function unit in each division is represented with a

clock unit.
• Each connection is represented with a clock buffer, where

the input variables of the buffer are the output variables
of the sender or system input variables, and the input
variables of the recipient are the output variables of clock
buffers. Clock buffers are assigned with different rmin and
rmax depending on the type of connection.

With this approach, the PS needs 5 clock units (we set r =
50, measuring time in ms), 13 clock buffers for hardwired
connections (we set rmin = 0 and rmax = 50) and 4 clock
buffers for Profibus connections (we set rmin = 0 and rmax =
150). A timeline of a possible execution of this model is shown
in Fig. 2. Note that in this scenario, while APU 4 and ALU 1
execute concurrently, ALU 1 is unable to get the most recent
output of APU 4 due to it being stored in the buffer. What is
more, on the second cycle, ALU 1 receives the output which
is even older than the previous one of the APU 4.

C. Implementing timed models in nuXmv

A timed model can be naturally specified in a timed model
checker suitable for verification of asynchronous systems, such
as UPPAAL [22]. Motivated by the works [6], [23], we tried
implementing the timed model of the PS in UPPAAL but faced
computational intractability of this model. Instead, we used the
nuXmv model checker, where we implement timed models as
follows:

1) The continuous time domain is selected
(@TIME_DOMAIN continuous).

2) All system input variables and clock modules are de-
clared in the main module.

3) Each clock module is implemented as a nuXmv module
with a separate clock timer defined and an invari-
ant of the form INVAR TRUE -> timer >= rmin &
timer <= rmax. The part “TRUE ->” is included due
to syntactic restrictions of the nuXmv language.

4) An execution mask e1, ..., e|M |, where |M | is the number
of clock modules, is specified as a Boolean array. If ei
is false during a discrete transition, then clock module i
preserves its state variables unchanged. The constraint
e1 ∨ ... ∨ e|M | eliminates discrete transitions without
system execution progress.

5) Clock buffers are implemented similarly to the code
demonstrated in Section III-A, except that they are
capable of handling several signals transmitted simul-
taneously.

6) Clock units are also implemented similarly, but with a
notable distinction: instead of memorizing a number of
values, a clock unit needs to execute a function block
diagram that can be expressed as a modular (two-level in
the case of the PS) nuXmv code without timed features.
To support execution suspension (point 4 above), we
modify nuXmv modules that contain state variables (i.e.,
whose output variables cannot be expressed as functions
of input variables) to explicitly preserve their state when
an additional input signal SHOULD_EXEC is false.

A slightly altered version of our model is available online2.
The modification involves simplifying the fault signal process-
ing logic to better match publicly available information.

V. EXPERIMENTS

A. Temporal specifications

We formulated 48 temporal properties that are mostly re-
lated to different response-request and absence of spurious ac-
tuation [5] requirements. These properties are almost the same
as the black-box requirements used in our previous work [10]
under the presence of communication delays. Specifically, the
same natural language requirement is often specified with mul-
tiple temporal properties of variable strength. However, unlike
in our previous works, 28 of these requirements contained
time-bounded MITL operators that specified concrete response
durations. For example, the property

(G¬MAN RESET1)→ G((G[0,150] ∨4i=1(HLEG Pi > 70))→
F[0,300] RODS DOWN1)

means “if manual reset of ALU 1 is never requested, then
always, if the hot leg pressure (HLEG P) is above 70 bar in any
division during then next 150 ms, then ALU 1 will produce the
RODS DOWN command at least once within the next 300 ms.”
This property is violated for the PS, but replacing “∨” with
“∧” makes it satisfied.

B. Experimental setup

For each temporal property independently, nuXmv was
run with a time limit of one hour and a memory limit
of 16 GB, with command-line options “-coi -dynamic
-df -int -time”. As verification algorithms, we used
BMC (timed_check_ltlspec -b nuXmv batch com-
mand) and IC3 (timed_check_ltlspec). Both BMC
and IC3 increase their internal bound k during processing.
However, while IC3 is always able to find the outcome of a
temporal property for some value of this bound, BMC is only
able to detect property violations (but may be more efficient in
doing this compared to IC3). All runs were performed twice:
assuming 0 and 1 hardware failures. Experiments were done
on a single CPU core (2.67 GHz) of a computational cluster.

2https://github.com/igor-buzhinsky/ps-timed-model

APU 1

APU 2

APU 3

APU 4

buffer

ALU 1

100 ms 40 ms 60 ms

50 ms 50 ms 50 ms 50 ms
cycle time

Fig. 2. A timeline showing a possible execution scenario of the PS. All units and the buffer between APU 4 and ALU 1 are shown. A black circle indicates
a discrete transition (single execution) of a clock module. Each function unit executes with a cycle length of 50 ms, and in this example the executions of
APU 1 and APU 3, and APU 4 and ALU 1 are synchronized. Unlike function units, the buffer updates its knowledge about the output of APU 4 at irregular
but bounded times. Information transmission between APU 4 and ALU 1 is shown with blue arrows.

C. Results

The results of model checking are shown in Table I. Precise
model checking with IC3, unfortunately, was unable to handle
most of temporal properties, and in particular almost all timed
properties. Checking of timed properties failed due to reaching
the time limit. For a subset of these properties, we observed
that increasing the time limit up to four hours was also
insufficient. A possible explanation of this outcome is that
nuXmv translates timed verification problems to untimed ones,
and the length of timed temporal properties is increased several
times when they are transformed to untimed ones.

On the other hand, BMC finds violations of both un-
timed and timed temporal properties almost instantly. In all
unchecked cases, the time limit was reached. This happens
either when the property is actually satisfied (BMC will
increment its bound k infinitely in such cases), or showing
their violation requires longer counterexamples. There are
visible gaps between k reached for violated and unchecked
properties. For example, for timed properties for a one-failure
model, found counterexamples have at most k = 15, but all
unprocessed cases reached at least k = 19.

The obtained results comply with our works [9], [10]
on checking similar systems with discrete time semantics.
Checking a model with communication delays is more com-
putationally difficult and usually susceptible to BMC only.
For non-timed temporal properties, we did not observe any
changes of verification outcomes compared to discrete-time
verification of the same properties.

VI. RELATED WORK

In [9], [10], an approach was proposed to verify nu-
clear I&C systems under the presence of hardware failures,
asynchrony and communication delays. In Section II-B, we
already mentioned the key modeling ideas of this approach
that are essential for this paper. Unlike the present work,
in [9], [10] modeling of asynchrony and communication delays
was done with discrete modules capable of nondeterministic
signal delays of up to several cycles. With this discrete-time
approach, real-time specifications cannot be checked. On the
other hand, the case study considered in [10] was a superset
of the one used in this paper, but the approach of the latter

can be easily generalized to I&C system models with a more
complex structure than the one of the PS.

In [6], [23], a timed model checker UPPAAL [22] was
applied to model a stepwise reactor shutdown system. Unlike
in our work, timed automata were applied to model not net-
work communication (it was not considered in [6], [23]), but
low-level software components (basic blocks) such as timers.
In our paper, internal contents of even time-dependent units
are modeled with discrete time. This is a valid assumption
since, for basic blocks that we consider, time durations that are
not multiple of cycle time can be rounded without a change
in the behavior of the block. Finally, formal models under
verification in [6], [23] were limited to one function unit.

In [24], a fault-tolerant aerospace embedded system was
modeled in UPPAAL with timed automata. The developed
model does not involve network communication and is de-
signed for a safety architecture different from ours.

VII. CONCLUSIONS

In this paper, we presented an approach to model and
verify redundant failure-tolerant I&C systems under real-time
semantics. This approach makes modeling more realistic and
enables verification of timed (i.e., with specific time durations
specified) temporal specifications for I&C systems that are
distributed across multiple devices. As a result, response time
requirements can be checked for such systems.

Our approach utilizes the nuXmv model checker, which was
chosen due to its high performance and compatibility with
our verification framework based on NuSMV and MODCHK.
Nonetheless, due to its formulation in terms of timed automata,
it can be implemented in other model checkers, although at
the moment we are not aware of a better alternative.

The approach has several limitations. Due to computational
complexity of verification, we are able to check response
time requirements only with BMC. Also, due to the license
of nuXmv, the approach cannot be applied in commercial
projects. Other limitations may be addressed in future work:

1) At the moment, we neglect the fact that data transferred
from APUs to ALUs is passed through more than one
buffer. The used communication model could be made
more detailed and thus even more realistic. However,

TABLE I
MODEL CHECKING RESULTS.

Temporal properties Non-timed (total: 20) Timed (total: 28)

Model checking algorithm BMC BMC IC3 IC3 BMC BMC IC3 IC3

Number of divisions with failures 0 1 0 1 0 1 0 1

Checked
properties

Total 9 12 12 11 18 22 1 0
Satisfied 0 a 0 a 9 7 0 a 0 a 0 0
Violated 9 13 3 4 18 22 1 0
Median processing time (s) 2.1 0.5 120.7 89.0 12.6 2.2 1014.1 —
Median bound processed 9 4 12 12 11 11 21 —
Maximum bound processed 11 11 12 12 15 15 21 —

Unchecked
properties

Total 11 7 8 9 10 6 27 28
Unchecked due to time limit 10 6 8 9 10 6 27 28
Unchecked due to memory limit 1 1 0 0 0 0 0 0
Median bound processed 40 45 190 243 22.5 22.5 65 92
Minimum bound processed 23 32 23 198 18 19 15 15

a BMC can only prove that a property is violated.

we expect this change to increase the computational
complexity of model checking.

2) Timed modeling and model checking could be tried on a
larger case study, such as the one in [10]. This could be
done by extending the tool proposed in [10] to support
generation of timed formal models.

ACKNOWLEDGMENTS

This work was financially supported by the Finnish Re-
search Programme on Nuclear Power Plant Safety 2019-
2022 (SAFIR2022), and by the Government of the Russian
Federation (Grant 08-08). We acknowledge the computational
resources provided by the Aalto Science-IT project.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. Peled, Model checking. MIT press,
1999.

[2] C. Baier and J.-P. Katoen, Principles of model checking. MIT press,
2008.

[3] V. D’silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 7, pp. 1165–1178, 2008.

[4] A. Pakonen, T. Mätäsniemi, J. Lahtinen, and T. Karhela, “A toolset for
model checking of PLC software,” in 2013 IEEE 18th Conference on
Emerging Technologies & Factory Automation (ETFA). IEEE, 2013,
pp. 1–6.

[5] A. Pakonen and K. Björkman, “Model checking as a protective method
against spurious actuation of industrial control systems,” in 27th Euro-
pean Safety and Reliability Conference (ESREL). CRC Press, 2017,
pp. 3189–3196.

[6] J. Lahtinen, J. Valkonen, K. Björkman, J. Frits, I. Niemelä, and
K. Heljanko, “Model checking of safety-critical software in the nuclear
engineering domain,” Reliability Engineering & System Safety, vol. 105,
pp. 104–113, 2012.

[7] A. Pakonen, J. Valkonen, S. Matinaho, and M. Hartikainen, “Model
checking for licensing support in the Finnish nuclear industry,” in
International Symposium on Future I&C for Nuclear Power Plants
(ISOFIC). Korean Nuclear Society, 2014.

[8] J. Lahtinen, “Hardware failure modelling methodology for model check-
ing,” VTT, Tech. Rep. VTT-R-00213-14, 2014.

[9] A. Pakonen and I. Buzhinsky, “Verification of fault tolerant safety I&C
systems using model checking,” in 2019 IEEE International Conference
on Industrial Technology, (ICIT). IEEE, 2019, pp. 969–974.

[10] I. Buzhinsky and A. Pakonen, “Model-checking detailed fault-tolerant
nuclear power plant safety functions,” IEEE Access, vol. 7, pp. 162 139–
162 156, 2019.

[11] A. Cimatti, A. Griggio, E. Magnago, M. Roveri, and S. Tonetta,
“Extending nuXmv with timed transition systems and timed temporal
properties,” in International Conference on Computer Aided Verification.
Springer, 2019, pp. 376–386.

[12] Areva NP. (2012) U.S. EPR Protection System, Technical Report
ANP-10309NP, Revision 4. [Online]. Available: https://www.nrc.gov/
docs/ML1216/ML121660317.html

[13] ——. (2013) U.S. EPR Final Safety Analysis Report. [Online].
Available: https://www.nrc.gov/reactors/new-reactors/design-cert/epr/
reports.html

[14] STUK. (2013) YVL B.1 Safety design of a nuclear power plant.
[Online]. Available: https://www.stuklex.fi/en/ohje/YVLB-1

[15] T. A. Henzinger, Z. Manna, and A. Pnueli, “Timed transition systems,”
in Workshop/School/Symposium of the REX Project (Research and
Education in Concurrent Systems). Springer, 1991, pp. 226–251.

[16] R. Alur and D. L. Dill, “A theory of timed automata,” Theoretical
Computer Science, vol. 126, no. 2, pp. 183–235, 1994.

[17] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, R. Sebastiani, and A. Tacchella, “NuSMV 2: An opensource
tool for symbolic model checking,” in International Conference on
Computer Aided Verification. Springer, 2002, pp. 359–364.

[18] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, Y. Zhu et al.,
“Bounded model checking,” Advances in Computers, vol. 58, no. 11,
pp. 117–148, 2003.

[19] A. Cimatti and A. Griggio, “Software model checking via IC3,” in
International Conference on Computer Aided Verification. Springer,
2012, pp. 277–293.

[20] A. Pnueli, “The temporal logic of programs,” in 18th Annual Symposium
on Foundations of Computer Science (SFCS). IEEE, 1977, pp. 46–57.

[21] R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing
punctuality,” Journal of the ACM (JACM), vol. 43, no. 1, pp. 116–146,
1996.

[22] G. Behrmann, A. David, K. G. Larsen, J. Hakansson, P. Petterson, W. Yi,
and M. Hendriks, “UPPAAL 4.0,” in 3rd International Conference on
the Quantitative Evaluation of Systems (QEST), Sept 2006, pp. 125–126.

[23] K. Björkman, J. Frits, J. Valkonen, J. Lahtinen, K. Heljanko, I. Niemelä,
and J. J. Hämäläinen, “Verification of safety logic designs by model
checking,” in 6th American Nuclear Society International Topical Meet-
ing on Nuclear Plant Instrumentation, Control, and Human-Machine
Interface Technologies (NPIC&HMIT), 2009, pp. 5–9.

[24] M. Zhang, Z. Liu, C. Morisset, and A. P. Ravn, “Design and verification
of fault-tolerant components,” in Methods, models and tools for fault
tolerance. Springer, 2009, pp. 57–84.

